1
|
Fu Y, Sun J, Yang C, Li W, Wang Y. Diversified nanocarrier design to optimize glucose oxidase-mediated anti-tumor therapy: Strategy and progress. Int J Biol Macromol 2025; 306:141581. [PMID: 40023419 DOI: 10.1016/j.ijbiomac.2025.141581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Given the inherent complexity and heterogeneity of tumors, current therapeutic approaches often fall short in meeting prognostic requirements. Starvation therapy (ST) utilizing glucose oxidase (GOx) has emerged as a promising strategy, specifically targeting tumor glucose consumption to disrupt nutrient supply. However, the therapeutic potential of GOx is significantly hampered by its inherent limitations as a protein, particularly its poor stability and short in vivo half-life. In recent years, the development of nanocarriors has provided an effective platform for intravenous and local tumor delivery of GOx. This review systematically examines three key strategies in GOx delivery: stimulus-response, biofilm modification, and local delivery. The progress in various carrier systems for GOx-mediated tumor therapy is comprehensively summarized, providing valuable insights for nanocarrier design. Furthermore, the existing challenges and future directions to advance the development of GOx-based tumor therapies are critically analyzed.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Department of medicine, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Chunyu Yang
- Department of Pathology, Harbin 242 Hospital, Harbin, Heilongjiang Province, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Hussein HA, Khaphi FL, Sivaramakrishnan R, Poornima S, Abdullah MA. Recent developments in sustained-release and targeted drug delivery applications of solid lipid nanoparticles. J Microencapsul 2025:1-31. [PMID: 40298193 DOI: 10.1080/02652048.2025.2495290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Solid Lipid Nanoparticles (SLNs) are versatile nano-carriers for wide range of applications. The advantages of SLNs include ease of preparation, low toxicity, high active compound bioavailability, flexibility of incorporating hydrophilic and lipophilic drugs, and feasibility of large-scale production. This review provides an overview on the preparation methods of the SLNs, the micro and nanostructure characteristics of the SLNs, and the different factors influencing sustained release and targeted drug delivery. The applications in agriculture and environment, cosmetics, wound healing, malarial treatment, gene therapy and nano-vaccines, and cancer therapy, are elaborated. The mechanisms such as passive, active, and co-delivery are discussed. The issues, challenges and the way forward with ionisable SLNs for delivery of gene and vaccines, RAS-targeted therapy, and bioactive compounds, are highlighted. In combination with multiple compounds and the potential for integration with nature/bio-based solutions, SLNs are proven to be effective, and practical for diverse applications.
Collapse
Affiliation(s)
| | - Fatin L Khaphi
- College of Dentistry, University of Basrah, Basrah, Iraq
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Sivamani Poornima
- Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mohd Azmuddin Abdullah
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Tárraga WA, Cathcarth M, Picco AS, Longo GS. Silica-binding peptides: physical chemistry and emerging biomaterials applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:203001. [PMID: 40153945 DOI: 10.1088/1361-648x/adc6e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
Silica-binding peptides (SBPs) are increasingly recognized as versatile tools for various applications spanning biosensing, biocatalysis, and environmental remediation. This review explores the interaction between these peptides and silica surfaces, offering insights into how variables such as surface silanol density, peptide sequence and composition, and solution conditions influence binding affinity. Key advancements in SBP applications are discussed, including their roles in protein purification, biocatalysis, biosensing, and biomedical engineering. By examining the underlying binding mechanisms and exploring their practical potential, this work provides a comprehensive understanding of how SBPs can drive innovations in materials science and biotechnology.
Collapse
Affiliation(s)
- Wilson A Tárraga
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
4
|
Sharma R, Kumar S, Komal K, Ghosh R, Thakur S, Pal RR, Kumar M. Comprehensive insights into pancreatic cancer treatment approaches and cutting-edge nanocarrier solutions: from pathology to nanomedicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04094-y. [PMID: 40202672 DOI: 10.1007/s00210-025-04094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. It is characterized by poor prognosis, high mortality, and recurrence rates. Various modifiable and non-modifiable risk factors are associated with pancreatic cancer incidence. Available treatments for pancreatic cancer include surgery, chemotherapy, radiotherapy, photodynamic therapy, supportive care, targeted therapy, and immunotherapy. However, the survival rates for PC are very low. Regrettably, despite efforts to enhance prognosis, the survival rate of pancreatic cancer remains relatively low. Therefore, it is essential to investigate new approaches to improve pancreatic cancer treatment. By synthesizing current knowledge and identifying existing gaps, this article provides a comprehensive overview of risk factors, pathology, conventional treatments, targeted therapies, and recent advancements in nanocarriers for its treatment, along with various clinical trials and patents that justify the safety and efficacy of innovative carriers for drug delivery systems. Ultimately, this review underscores the potential of these innovative formulations to improve outcomes and contribute significantly to the advancement of Pancreatic Cancer treatment. Together, these insights highlight nano-formulations as a promising frontier for effectively treating Pancreatic Cancer.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ravi Raj Pal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
5
|
Luescher AM, Stark WJ, Grass RN. DNA-Based Chemical Unclonable Functions for Cryptographic Anticounterfeit Tagging of Pharmaceuticals. ACS NANO 2024; 18:30774-30785. [PMID: 39438327 PMCID: PMC11544705 DOI: 10.1021/acsnano.4c10870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Counterfeit products are a problem known across many industries. Chemical products such as pharmaceuticals belong to the most targeted markets, with harmful consequences for consumer health and safety. However, many of the currently used anticounterfeit measures are associated with the packaging, with the readout method and level of security varying between different solutions. Identifiers that can be directly and safely mixed into the product to securely authenticate a batch would be desirable. For this purpose, we propose the use of chemical unclonable functions based on pools of short random DNA oligos, which allow the integration of a cryptographic authentication system into chemical products. We demonstrate and characterize a simplified workflow for readout, showing that results are robust and clearly differentiate between the correct tag and a counterfeit. As a proof of concept, we demonstrate the labeling of an acetaminophen formulation with a chemical unclonable function. The acetaminophen was successfully authenticated from a subsample of the product at a DNA admixing concentration of below 50 ng/g. Stability tests revealed that the readout is stable at room temperature for several years, exceeding the shelf life of most drug products. Our work thus shows that chemical unclonable functions are a valid alternative to state-of-the-art anticounterfeit methods, enabling a secure authentication scheme that is physically linked to the product and safe for consumption. The method is widely applicable beyond pharmaceuticals, allowing for more secure product tracing across industries.
Collapse
Affiliation(s)
- Anne M. Luescher
- Institute of Chemical and
Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
| | - Wendelin J. Stark
- Institute of Chemical and
Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
| | - Robert N. Grass
- Institute of Chemical and
Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
| |
Collapse
|
6
|
Liu M, Gao M, Shi X, Yin Y, Liu H, Xie R, Huang C, Zhang W, Xu S. Quercetin attenuates SiO 2-induced ZBP-1-mediated PANoptosis in mouse neuronal cells via the ROS/TLR4/NF-κb pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122948. [PMID: 39423623 DOI: 10.1016/j.jenvman.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
With the increasing development of the society, silicon dioxide (SiO2) has been used in various fields, such as agriculture, food industry, etc., and its residues can pose a potential health threat to organisms. Quercetin (Que) is a potent free radical scavenger commonly found in plants. C57BL/6 mice were chosen to established a mouse model of SiO2 exposure and Que antagonism to investigate the mechanism of action of Que in rescuing the toxic damage of SiO2 on mouse cerebellum tissue. The results showed that cytoplasmic vacuolization, and inflammatory cell infiltration caused by SiO2 were alleviated by the addition of Que, and reduced oxidative stress in mouse cerebellum, alleviated the activation of TLR4 pathway induced by SiO2, and substantially reduced the occurrence of ZBP-1-mediated PANoptosis induced by SiO2 exposure in mouse cerebellum. In NS20Y cells, the oxidative stress activator (Elesclomol) and inhibitor N-acetyl cysteine (NAC), and the NF-κB activator 2 (NA2) were added. Elesclomol and NAC confirm the involvement of ROS in regulating the TLR4/NF-κB pathway, the TLR4/NF-κB pathway regulated ZBP-1-mediated PANoptosis in cerebellum and NS20Y cells induced by SiO2 exposure. In conclusion, the present experimental data suggest that Que mitigates the onset of ZBP-1-mediated PANoptosis in neuronal cells induced by SiO2 through the ROS/TLR4/NF-κB pathway. The present experimental findings help to understand the detoxification effect of Que in more tissues and provide an important reference for the rescue of organisms in long-term SiO2 environment.
Collapse
Affiliation(s)
- Meichen Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ruirui Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chenxi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenwen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
7
|
Yamin MZ, Liu JY, Sayes CM. Comparative Assessment of Cellular Responses to Microscale Silica Morphologies in Human Gastrointestinal Cells: Insights for Occupational Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1376. [PMID: 39457349 PMCID: PMC11508045 DOI: 10.3390/ijerph21101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Silicon dioxide (SiO2), commonly known as silica, is a naturally occurring mineral extracted from the Earth's crust. It is widely used in commercial products such as food, medicine, and dental ceramics. There are few studies on the health effects of pyrogenic and colloidal silica after ingestion. No research has compared the impact of microscale morphologies on mitochondrial activity in colon cells after acute exposure. The results show that crystalline and amorphous silica had a concentration-independent effect on cells, with an initial increase in mitochondrial activity followed by a decrease. Vitreous silica did not affect cells. Diatomaceous earth and pyrogenic silica had a concentration-dependent response, causing a reduction in mitochondrial activity as concentration increased. Diatomaceous earth triggered the highest cellular response, with mitochondrial activity ranging from 78.84% ± 12.34 at the highest concentration (1000 ppm) to 62.54% ± 17.43 at the lowest concentration (0.01 ppm) and an average H2O2 concentration of 1.48 ± 0.15 RLUs. This research advances our understanding of silica's impact on human gastrointestinal cells, highlighting the need for ongoing exploration. These findings can improve risk mitigation strategies in silica-exposed environments.
Collapse
Affiliation(s)
| | | | - Christie M. Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA; (M.Z.Y.); (J.Y.L.)
| |
Collapse
|
8
|
Tomioka N, Abe Y, Matsuda Y. Diffusion of individual nanoparticles in cylindrical diatom frustule. NANOSCALE ADVANCES 2024:d4na00576g. [PMID: 39391628 PMCID: PMC11462474 DOI: 10.1039/d4na00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Diatoms are characterised by silica cell walls (frustules), which have highly ordered micro-/nano-structures. As the synthesis of such structures remains challenging, diatom frustules offer a promising alternative to conventional porous particles in micro-/nano-engineering. In particular, for applications in drug delivery systems, biosensors, and filters, an understanding of particle motion inside frustules is of great importance. In this study, we investigated nanoparticle (NP) motions inside diatom frustules using the single particle tracking (SPT) method. For these measurements, the diameter of the NP was about one-tenth smaller than that of the frustule. Inside the frustule, the diffusion motions of the NPs were suppressed, but this suppression was weakened near the exit of the frustule. Moreover, diffusion anisotropy between the axial and radial directions of the frustule was observed. This anisotropy is difficult to detect with ensemble methods; thus, the SPT method is a powerful approach for investigating NP motions in frustules.
Collapse
Affiliation(s)
- Naoki Tomioka
- Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Yusaku Abe
- Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Yu Matsuda
- Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
9
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
10
|
Orlova P, Meshkov I, Latipov E, Vasiliev S, Mikheev I, Ratova DM, Kalinina A, Muzafarov A, Le-Deygen I. Cyclodextrin-Polymethylsilsesquioxane Combined System as a Perspective Iron Delivery System for Oral Administration. Gels 2024; 10:564. [PMID: 39330166 PMCID: PMC11431624 DOI: 10.3390/gels10090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Anemia is a global health problem that affects both adults and children, but treatment is hampered by serious side effects, primarily associated with the gastrointestinal tract with oral administration of drugs. In this study, we aimed to develop an oral form of iron compounds using polymethylsilsesquioxane hydrogels. To boost loading efficiency and prolong release, the iron compounds (FeCl3 and ferrous D-Gluconate) are incorporated into a guest-host complex with 2-hydroxypropyl-beta-cyclodextrin. We used PRXD, SEM, EDX mapping, and FTIR to investigate the complex formation, as well as the incorporation of such complexes into hydrogels. The optimal system underlines a combination of ferrous D-Gluconate and HPCD in a 1:1 molar ratio, embedded into a hydrogel with a modest quantity of silicate crosslinks. We demonstrated the slowing of iron release in a gastric media. Mathematical investigation revealed that the Higuchi mechanism releases iron from the hydrogel.
Collapse
Affiliation(s)
- Polina Orlova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (P.O.); (I.M.); (D.-M.R.)
| | - Ivan Meshkov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), Moscow 117393, Russia; (I.M.); (A.K.); (A.M.)
| | - Egor Latipov
- Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences (INM RAS), Moscow 115487, Russia;
| | - Sergey Vasiliev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS (FRC PCP MC RAS), Chernogolovka 142432, Russia;
| | - Ivan Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (P.O.); (I.M.); (D.-M.R.)
| | - Daria-Maria Ratova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (P.O.); (I.M.); (D.-M.R.)
| | - Alexandra Kalinina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), Moscow 117393, Russia; (I.M.); (A.K.); (A.M.)
| | - Aziz Muzafarov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (ISPM RAS), Moscow 117393, Russia; (I.M.); (A.K.); (A.M.)
| | - Irina Le-Deygen
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (P.O.); (I.M.); (D.-M.R.)
| |
Collapse
|
11
|
Aziz A, Macht M, Becit B, Zahn D. Molecular Characterization of Mesoporous Silica (Un)loading by Gemcitabine and Ibuprofen - An Interplay of Salt-Bridges and Hydrogen Bonds. J Pharm Sci 2024; 113:785-790. [PMID: 38070777 DOI: 10.1016/j.xphs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024]
Abstract
The molecular mechanisms of mesoporous silica nanomaterial (MSN) loading by gemcitabine and ibuprofen molecules, respectively, are elucidated as functions of pore geometry. Based on a small series of MSN archetypes, we use molecular dynamics simulations to systematically explore molecule-by-molecule loading of the carrier material. Apart from predicting the maximum active pharmaceutical ingredient (API) loading capacity, more detailed statistical analysis of the incorporation energy reveals dedicated profiles stemming from the interplay of guest-MSN salt-bridges/hydrogen bonding in concave and convex domains of the silica surfaces - which outcompete interactions among the drug molecules. Only after full coverage of the silica surface, we find secondary layer growth stabilized by guest-guest interactions exclusively. Based on molecular models, we thus outline a two-step type profile for drug release from MSN networks. Subject to the MSN structure, we find 50-75 % of the API within amorphous domains in the inner regions of the pores - from which drug release is provided at constant dissociation energy. In turn, the remaining 50-25 % of drug molecules are drastically hindered from dissociation.
Collapse
Affiliation(s)
- Awin Aziz
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Moritz Macht
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Bahanur Becit
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Dirk Zahn
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.
| |
Collapse
|
12
|
Budiman A, Wardhana YW, Ainurofiq A, Nugraha YP, Qaivani R, Hakim SNAL, Aulifa DL. Drug-Coformer Loaded-Mesoporous Silica Nanoparticles: A Review of the Preparation, Characterization, and Mechanism of Drug Release. Int J Nanomedicine 2024; 19:281-305. [PMID: 38229702 PMCID: PMC10790662 DOI: 10.2147/ijn.s449159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Drug-coformer systems, such as coamorphous and cocrystal, are gaining recognition as highly effective strategies for enhancing the stability, solubility, and dissolution of drugs. These systems depend on the interactions between drug and coformer to prevent the conversion of amorphous drugs into the crystalline form and improve the solubility. Furthermore, mesoporous silica (MPS) is also a promising carrier commonly used for stabilization, leading to solubility improvement of poorly water-soluble drugs. The surface interaction of drug-MPS and the nanoconfinement effect prevent amorphous drugs from crystallizing. A novel method has been developed recently, which entails the loading of drug-coformer into MPS to improve the solubility, dissolution, and physical stability of the amorphous drug. This method uses the synergistic effects of drug-coformer interactions and the nanoconfinement effect within MPS. Several studies have reported successful incorporation of drug-coformer into MPS, indicating the potential for significant improvement in dissolution characteristics and physical stability of the drug. Therefore, this study aimed to discuss the preparation and characterization of drug-coformer within MPS, particularly the interaction in the nanoconfinement, as well as the impact on drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Central Java, 57126, Indonesia
| | - Yuda Prasetya Nugraha
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ridhatul Qaivani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Siti Nazila Awaliyyah Lukmanul Hakim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
13
|
Li C, Li N, Chen X, Li X, Liu C, Abbas A, Wang Y, Qi S, Zhang Y, Li D, Zhang W, Shu G, Lin J, Li H, Xu F, Peng G, Fu H. Enhancement of dissolution rate and oral bioavailability of poorly soluble drug florfenicol by using solid dispersion and effervescent disintegration technology. Drug Dev Ind Pharm 2024; 50:45-54. [PMID: 38095592 DOI: 10.1080/03639045.2023.2295488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Florfenicol(FF) is an excellent veterinary antibiotic, limited by poor solubility and poor bioavailability. SIGNIFICANCE Here in, we aimed to explore the applicability of fast disintegrating tablets compressed from Florfenicol-loaded solid dispersions (FF-SD-FDTs) to improve the dissolution rate and oral bioavailability of Florfenicol. METHODS Utilizing selecting appropriate preparation methods and carriers, the solid dispersions of Florfenicol (FF-SDs) were prepared by solvent evaporation and the fast disintegrating tablets (FF-SD-FDTs) were prepared by the direct compression (DC) method. RESULTS The tablet properties including hardness, friability, disintegration time, weight variation, etc. all met the specifications of Chinese Veterinary Pharmacopeia(CVP). FF-SD-FDTs significantly improved drug dissolution and dispersion of FF in vitro compared to florfenicol conventional tablets (FF-CTs). A pharmacokinetics study in German shepherd dogs proved the AUC0-∞ and Cmax values of FF-SD-FDTs are 1.38 and 1.38 times more than FF-CTs, respectively. CONCLUSIONS Overall, it can be concluded that FF-SD-FDTs with excellent disintegration and dissolution properties were successfully produced, which greatly improved the oral bioavailability of the poorly soluble drug FF, and the study provided a new idea for a broader role of FF in pet clinics.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nanxin Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingyu Chen
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaojuan Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chang Liu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Awn Abbas
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueli Wang
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuangcai Qi
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yifan Zhang
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongbo Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Green LJ, Bhatia ND, Toledano O, Erlich M, Spizuoco A, Goodyear BC, York JP, Jakus J. Silica-based microencapsulation used in topical dermatologic applications. Arch Dermatol Res 2023; 315:2787-2793. [PMID: 37792034 PMCID: PMC10616207 DOI: 10.1007/s00403-023-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
Microencapsulation has received extensive attention because of its various applications. Since its inception in the 1940s, this technology has been used across several areas, including the chemical, food, and pharmaceutical industries. Over-the-counter skin products often contain ingredients that readily and unevenly degrade upon contact with the skin. Enclosing these substances within a silica shell can enhance their stability and better regulate their delivery onto and into the skin. Silica microencapsulation uses silica as the matrix material into which ingredients can be embedded to form microcapsules. The FDA recognizes amorphous silica as a safe inorganic excipient and recently approved two new topical therapies for the treatment of rosacea and acne. The first approved formulation uses a novel silica-based controlled vehicle delivery technology to improve the stability of two active ingredients that are normally not able to be used in the same formulation due to potential instability and drug degradation. The formulation contains 3.0% benzoyl peroxide (BPO) and 0.1% tretinoin topical cream to treat acne vulgaris in adults and pediatric patients. The second formulation contains silica microencapsulated 5.0% BPO topical cream to treat inflammatory rosacea lesions in adults. Both formulations use the same amorphous silica sol-gel microencapsulation technology to improve formulation stability and skin compatibility parameters.
Collapse
Affiliation(s)
- Lawrence J Green
- George Washington University School of Medicine, Washington, DC, USA.
| | | | | | | | | | | | | | - Jeannette Jakus
- SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
15
|
Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023; 203:115130. [PMID: 37913890 DOI: 10.1016/j.addr.2023.115130] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Oral administration is the preferred route of drug delivery in clinical practice due to its noninvasiveness, safety, convenience, and high patient compliance. The gastrointestinal tract (GIT) plays a crucial role in facilitating the targeted delivery of oral drugs. However, the GIT presents multiple barriers that impede drug absorption, including the gastric barrier in the stomach and the mucus and epithelial barriers in the intestine. In recent decades, nanotechnology has emerged as a promising approach for overcoming these challenges by utilizing nanocarrier-based drug delivery systems such as liposomes, micelles, polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Encapsulating drugs within nanocarriers not only protects them from degradation but also enhances their transport and absorption across the GIT, ultimately improving oral bioavailability. The aim of this review is to elucidate the mechanisms underlying nanocarrier-mediated transportation across the GIT into systemic circulation via both the blood circulation and lymphatic pathway.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China; China Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
16
|
Schmid R, Volcic M, Fischer S, Qu Z, Barth H, Popat A, Kirchhoff F, Lindén M. Surface functionalization affects the retention and bio-distribution of orally administered mesoporous silica nanoparticles in a colitis mouse model. Sci Rep 2023; 13:20175. [PMID: 37978264 PMCID: PMC10656483 DOI: 10.1038/s41598-023-47445-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Besides the many advantages of oral drug administration, challenges like premature drug degradation and limited bioavailability in the gastro-intestinal tract (GIT) remain. A prolonged residence time in the GIT is beneficial for enhancing the therapeutic outcome when treating diseases associated with an increased intestinal clearance rate, like inflammatory bowel disease (IBD). In this study, we synthesized rod-shaped mesoporous silica nanoparticles (MSNs) functionalized with polyethylene glycol (PEG) or hyaluronic acid (HA) and investigated their bio-distribution upon oral administration in vivo. The negatively charged, non-toxic particles showed different accumulation behavior over time in healthy mice and in mice with dextran sulfate sodium (DSS)-induced intestinal inflammation. PEGylated particles were shown to accumulate in the lower intestinal tract of healthy animals, whereas inflammation promoted retention of HA-functionalized particles in this area. Overall systemic absorption was low. However, some particles were detected in organs of mice with DSS-induced colitis, especially in the case of MSN-PEG. The in vivo findings were connected to surface chemistry-related differences in particle adhesion on Caco-2/Raji and mucus-producing Caco-2/Raji/HT29 cell co-culture epithelial models in vitro. While the particle adhesion behavior in vivo was mirrored in the in vitro results, this was not the case for the resorption results, suggesting that the in vitro model does not fully reflect the erosion of the inflamed epithelial tissue. Overall, our study demonstrates the possibility to modulate accumulation and retention of MSNs in the GIT of mice with and without inflammation through surface functionalization, which has important implications for the formulation of nanoparticle-based delivery systems for oral delivery applications.
Collapse
Affiliation(s)
- Roman Schmid
- Inorganic Chemistry II, Ulm University, 89081, Ulm, Germany
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Experimental and Clinical Pharmacology, and Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, and Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Mika Lindén
- Inorganic Chemistry II, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Chen T, Chen L, Luo F, Xu Y, Wu D, Li Y, Zhao R, Hua Z, Hu J. Efficient oral delivery of resveratrol-loaded cyclodextrin-metal organic framework for alleviation of ulcerative colitis. Int J Pharm 2023; 646:123496. [PMID: 37806504 DOI: 10.1016/j.ijpharm.2023.123496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Developing innovative strategies for the oral administration of phytochemicals presents a promising approach to addressing intestinal diseases. However, numerous challenges persist, including limited therapeutic efficacy, poor bioavailability, and inadequate biocompatibility. In this study, we employed a cross-linked cyclodextrin-metal organic framework (CDF) to encapsulate resveratrol (Res), generating Res-CDF, which was subsequently incorporated into natural polysaccharide hydrogel microspheres (Res-CDF in MPs) for targeted oral delivery to alleviate ulcerative colitis (UC). The underlying adsorption mechanism of Res by γ-CD elucidated by molecular dynamics simulations. Importantly, the Res-CDF in MPs formulation protected against gastric acid degradation while preserving the bioactivity of Res. Moreover, the design enabled specific release of Res-CDF in response to the mildly alkaline environment of the intestinal tract, followed by sustained Res release. In UC mice model, Res-CDF in MPs demonstrated potent anti-inflammatory effects by attenuating pro-inflammatory cytokine production and exhibited antioxidant properties. Additionally, Res-CDF in MPs enhanced the expression of tight junction proteins ZO-1, Occludin, and mucin-2 (Muc-2), thereby maintaining normal intestinal barrier function. This innovative oral delivery strategy capitalizes on the advantageous properties of polysaccharide hydrogel and CDF to augment bioavailability of phytochemicals, laying the groundwork for developing novel oral interventions employing natural phytochemicals to address intestinal-related diseases.
Collapse
Affiliation(s)
- Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Hua
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
18
|
Lim H, Seo Y, Kwon D, Kang S, Yu J, Park H, Lee SD, Lee T. Recent Progress in Diatom Biosilica: A Natural Nanoporous Silica Material as Sustained Release Carrier. Pharmaceutics 2023; 15:2434. [PMID: 37896194 PMCID: PMC10609864 DOI: 10.3390/pharmaceutics15102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
A drug delivery system (DDS) is a useful technology that efficiently delivers a target drug to a patient's specific diseased tissue with minimal side effects. DDS is a convergence of several areas of study, comprising pharmacy, medicine, biotechnology, and chemistry fields. In the traditional pharmacological concept, developing drugs for disease treatment has been the primary research field of pharmacology. The significance of DDS in delivering drugs with optimal formulation to target areas to increase bioavailability and minimize side effects has been recently highlighted. In addition, since the burst release found in various DDS platforms can reduce drug delivery efficiency due to unpredictable drug loss, many recent DDS studies have focused on developing carriers with a sustained release. Among various drug carriers, mesoporous silica DDS (MS-DDS) is applied to various drug administration routes, based on its sustained releases, nanosized porous structures, and excellent solubility for poorly soluble drugs. However, the synthesized MS-DDS has caused complications such as toxicity in the body, long-term accumulation, and poor excretion ability owing to acid treatment-centered manufacturing methods. Therefore, biosilica obtained from diatoms, as a natural MS-DDS, has recently emerged as an alternative to synthesized MS-DDS. This natural silica carrier is an optimal DDS platform because culturing diatoms is easy, and the silica can be separated from diatoms using a simple treatment. In this review, we discuss the manufacturing methods and applications to various disease models based on the advantages of biosilica.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Daeryul Kwon
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Sang Deuk Lee
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| |
Collapse
|
19
|
Kostantini C, Spilioti E, Bevernage J, Ceulemans J, Hansmann S, Hellemans K, Jede C, Kourentas A, Reggane M, Shah L, Wagner C, Vertzoni M, Reppas C. Screening for Differences in Early Exposure in the Fasted State with in Vitro Methodologies can be Challenging: Experience with the BioGIT System. J Pharm Sci 2023; 112:2240-2248. [PMID: 36918113 DOI: 10.1016/j.xphs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
The Biorelevant Gastrointestinal Transfer (BioGIT) system is a useful screening tool for assessing the impact of dose and/or formulation on early exposure after administration of immediate release or enabling drug products with a glass of water in the fasted state. The objective of this study was to investigate potential limitations. BioGIT experiments were performed with five low solubility active pharmaceutical ingredients with weakly alkaline characteristics: mebendazole (tablet and chewable tablet), Compound E (aqueous solutions, three doses), pazopanib-HCl (Votrient™ tablet, crushed Votrient™ tablet and aqueous suspension), Compound B-diHCl (hard gelatin capsule, three doses) and Compound C (hard gelatin capsule containing nanosized drug and hard gelatin capsule containing micronized drug). For all formulation or dose comparisons the ratio of mean BioGIT AUC0-50 min values was not predictive of the ratio of mean plasma AUC0-60 min values which became available after completion of BioGIT experiments. BioGIT experimental conditions have not been designed to simulate the gastrointestinal drug transfer process after administration of chewable tablets or aqueous solutions, therefore, BioGIT may not be useful for the assessment of intraluminal performance early after administration of such drug products. Also, based on this study, BioGIT may not be useful in investigating the impact of dose and/or formulation on early exposure when the dose is not administered with a glass of water to fasted healthy individuals or when BioGIT data are highly variable. Finally, the rapid dissolution of nanocrystals after administration of low solubility weak bases may require adjustment of the pH in the gastric compartment of BioGIT to slightly higher pH values. Limitations identified in this study for the BioGIT system may be also relevant to other in vitro systems proposed for similar evaluations.
Collapse
Affiliation(s)
- Christina Kostantini
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Evanthia Spilioti
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | | | | | - Simone Hansmann
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The healthcare business of Merck KGaA, Darmstadt, Germany
| | | | - Christian Jede
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The healthcare business of Merck KGaA, Darmstadt, Germany
| | - Alexandros Kourentas
- Dissolution & Biopharmaceutics, Analytical Research and Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Maude Reggane
- Pharmaceutical Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Lipa Shah
- Pharmaceutical Development, Technical Research and Development, Novartis Pharmaceuticals Corporation, Fort Worth TX 76134, United States of America
| | - Christian Wagner
- Chemical & Pharmaceutical Development, Merck Healthcare KGaA, The healthcare business of Merck KGaA, Darmstadt, Germany
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
20
|
Marin MM, Gifu IC, Pircalabioru GG, Albu Kaya M, Constantinescu RR, Alexa RL, Trica B, Alexandrescu E, Nistor CL, Petcu C, Ianchis R. Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing. Gels 2023; 9:gels9050425. [PMID: 37233016 DOI: 10.3390/gels9050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide's polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
Collapse
Affiliation(s)
- Maria Minodora Marin
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), University of Bucharest, 030018 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Madalina Albu Kaya
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rodica Roxana Constantinescu
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rebeca Leu Alexa
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Bogdan Trica
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Raluca Ianchis
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
21
|
Weiserova Z, Blahova J, Dobukova V, Marsalek P, Hodkovicova N, Lenz J, Tichy F, Franek R, Psenicka M, Franc A, Svobodova Z. Does dietary exposure to 17α-ethinylestradiol alter biomarkers related with endocrine disruption and oxidative stress in the adult triploid of Danio rerio? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161911. [PMID: 36731576 DOI: 10.1016/j.scitotenv.2023.161911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to investigate a comprehensive effect of 17α-ethinylestradiol (EE2) in zebrafish (Danio rerio) with the emphasis on endocrine disruption, oxidative stress and detoxification processes at different levels. Adult male triploid zebrafish were exposed to EE2 administered in feed at two concentrations - 10 and 1000 μg/kg for six weeks. The estrogenic potential of EE2 was evaluated using an analysis of vitellogenin, gene expression focused on reproductive disorders and gonad histological examination. The alterations in antioxidant and detoxification status were assessed using analyses of enzyme activities and changes in transcriptional levels of selected genes. The most significant changes were observed especially in fish exposed to a high concentration of EE2 (i.e., 1000 μg/kg). Such high concentration caused extensive mortality (25 %) mainly in the second half of the experiment followed by a highly significant decrease in the length and body weight. Similarly, highly significant induction of vitellogenin level and vtg1 mRNA expression (about 43,000-fold compared to the control) as well as a significant downregulation of gonad aromatase expression (cyp19a1a) and histological changes in testicular tissue were confirmed in this group. In the group exposed to environmentally relevant concentration of EE2 (i.e., 10 μg/kg), no significant differences in vitellogenin were observed, although all fish were positive in the detection of vitellogenin compared to control, where only 40 % of individuals were positive. In addition, the high concentration of EE2 resulted in significant alterations in most monitored antioxidant and detoxifying enzymes with the exception of catalase, followed by strongly significant upregulation in mRNA expression of gsr, gpx1a, cat and cyp1a genes. Furthermore, a significant decrease in the glutathione reductase activity was recorded in fish exposed to 10 μg EE2/kg. To our knowledge, this is the first study which reports the effects of subchronic per oral exposure to EE2 in adult triploid zebrafish.
Collapse
Affiliation(s)
- Zuzana Weiserova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Veronika Dobukova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Jiri Lenz
- Department of Pathology and Anatomy, Znojmo Hospital, MU Dr. Jana Janskeho 11, 669 02 Znojmo, Czech Republic; Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Roman Franek
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Martin Psenicka
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
22
|
Yang X, Tripathi R, Wang M, Lu W, Anifowose A, Tan C, Wang B. Toward "CO in a Pill": Silica-Immobilized Organic CO Prodrugs for Studying the Feasibility of Systemic Delivery of CO via In Situ Gastrointestinal CO Release. Mol Pharm 2023; 20:1850-1856. [PMID: 36802675 PMCID: PMC9997063 DOI: 10.1021/acs.molpharmaceut.2c01104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Carbon monoxide (CO), an endogenous signaling molecule, is known to exert a range of pharmacological effects, including anti-inflammation, organ protection, and antimetastasis in various animal models. We have previously shown the ability of organic prodrugs to deliver CO systemically through oral administration. As part of our efforts for the further development of these prodrugs, we are interested in minimizing the potential negative impact of the "carrier" portion of the prodrug. Along this line, we have previously published our work on using benign "carriers" and physically trapping the "carrier" portion in the gastrointestinal (GI) tract. We herein report our feasibility studies on using immobilized organic CO prodrugs for oral CO delivery while minimizing systemic exposure to the prodrug and the "carrier portion." In doing so, we immobilize a CO prodrug to silica microparticles, which are generally recognized as safe by the US FDA and known to provide large surface areas for loading and water accessibility. The latter point is essential for the hydrophobicity-driven activation of the CO prodrug. Amidation-based conjugation with silica is shown to provide 0.2 mmol/g loading degree, effective prodrug activation in buffer with comparable kinetics as the parent prodrug, and stable tethering to prevent detachment. One representative silica conjugate, SICO-101, is shown to exhibit anti-inflammation activity in LPS-challenged RAW264.7 cells and to deliver CO systemically in mice through oral administration and GI CO release. We envision this strategy as a general approach for oral CO delivery to treat systemic and GI-specific inflammatory conditions.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38677, United States
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Abiodun Anifowose
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38613, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
23
|
Belec B, Kostevšek N, Pelle GD, Nemec S, Kralj S, Bergant Marušič M, Gardonio S, Fanetti M, Valant M. Silica Coated Bi 2Se 3 Topological Insulator Nanoparticles: An Alternative Route to Retain Their Optical Properties and Make Them Biocompatible. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:809. [PMID: 36903688 PMCID: PMC10005201 DOI: 10.3390/nano13050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Localized surface plasmon resonance (LSPR) is the cause of the photo-thermal effect observed in topological insulator (TI) bismuth selenide (Bi2Se3) nanoparticles. These plasmonic properties, which are thought to be caused by its particular topological surface state (TSS), make the material interesting for application in the field of medical diagnosis and therapy. However, to be applied, the nanoparticles have to be coated with a protective surface layer, which prevents agglomeration and dissolution in the physiological medium. In this work, we investigated the possibility of using silica as a biocompatible coating for Bi2Se3 nanoparticles, instead of the commonly used ethylene-glycol, which, as is presented in this work, is not biocompatible and alters/masks the optical properties of TI. We successfully prepared Bi2Se3 nanoparticles coated with different silica layer thicknesses. Such nanoparticles, except those with a thick, ≈200 nm silica layer, retained their optical properties. Compared to ethylene-glycol coated nanoparticles, these silica coated nanoparticles displayed an improved photo-thermal conversion, which increased with the increasing thickness of the silica layer. To reach the desired temperatures, a 10-100 times lower concentration of photo-thermal nanoparticles was needed. In vitro experiments on erythrocytes and HeLa cells showed that, unlike ethylene glycol coated nanoparticles, silica coated nanoparticles are biocompatible.
Collapse
Affiliation(s)
- Blaž Belec
- Materials Research Laboratory, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department for Material Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Department for Material Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Sandra Gardonio
- Materials Research Laboratory, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Mattia Fanetti
- Materials Research Laboratory, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Matjaž Valant
- Materials Research Laboratory, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| |
Collapse
|
24
|
Trzeciak K, Wielgus E, Kaźmierski S, Khalaji M, Dudek MK, Potrzebowski MJ. Unexpected Factors Affecting the Kinetics of Guest Molecule Release from Investigation of Binary Chemical Systems Trapped in a Single Void of Mesoporous Silica Particles. Chemphyschem 2022; 24:e202200884. [PMID: 36507917 DOI: 10.1002/cphc.202200884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
In this work, we present results for loading of well-defined binary systems (cocrystal, solid solution) and untreated materials (physical mixtures) into the voids of MCM-41 mesoporous silica particles employing three different filling methods. The applied techniques belong to the group of "wet methods" (diffusion supported loading - DiSupLo) and "solvent-free methods" (mechanical ball-mill loading - MeLo, thermal solvent free - TSF). As probes for testing the guest1-guest2 interactions inside the MCM-41 pores we employed the benzoic acid (BA), perfluorobenzoic acid (PFBA), and 4-fluorobenzoic acid (4-FBA). The guests intermolecular contacts and phase changes were monitored employing magic angle spinning (MAS) NMR Spectroscopy techniques and powder X-ray diffraction (PXRD). Since mesoporous silica materials are commonly used in drug delivery system research, special attention has been paid to factors affecting guest release kinetics. It has been proven that not only the content and composition of binary systems, but also the loading technique have a strong impact on the rate of guests release. Innovative methods of visualizing differences in release kinetics are presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Mehrnaz Khalaji
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Łódź, 112, 90-363, Lodz, Poland
| |
Collapse
|
25
|
Pallavi P, Harini K, Alshehri S, Ghoneim MM, Alshlowi A, Gowtham P, Girigoswami K, Shakeel F, Girigoswami A. From Synthetic Route of Silica Nanoparticles to Theranostic Applications. Processes (Basel) 2022; 10:2595. [DOI: 10.3390/pr10122595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The advancements in nanotechnology have quickly developed a new subject with vast applications of nanostructured materials in medicine and pharmaceuticals. The enormous surface-to-volume ratio, ease of surface modification, outstanding biocompatibility, and, in the case of mesoporous nanoparticles, the tunable pore size make the silica nanoparticles (SNPs) a promising candidate for nano-based medical applications. The preparation of SNPs and their contemporary usage as drug carriers, contrast agents for imaging, carrier of photosensitizers (PS) in photodynamic, as well as photothermal treatments are intensely discussed in this review. Furthermore, the potential harmful responses of silica nanoparticles are reviewed using data obtained from in vitro and in vivo experiments conducted by several studies. Moreover, we showcase the engineering of SNPs for the theranostic applications that can address several intrinsic limitations of conventional therapeutics and diagnostics. In the end, a personal perspective was outlined to state SNPs’ current status and future directions, focusing on SNPs’ significant potentiality and opportunities.
Collapse
Affiliation(s)
- Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Areej Alshlowi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| |
Collapse
|
26
|
Dhayal SK, Lund M, van den Brink J, Medjahdi G, Celzard A, Fierro V, Gardiennet C, Pasc A, Canilho N. Enhancing the activity of biocatalysts supported on calcium phosphate by inducing mesoporosity with phosphopeptides. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Zarinwall A, Maurer V, Pierick J, Oldhues VM, Porsiel JC, Finke JH, Garnweitner G. Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels. Drug Deliv 2022; 29:2086-2099. [PMID: 35838584 PMCID: PMC9291651 DOI: 10.1080/10717544.2022.2092237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.
Collapse
Affiliation(s)
- Ajmal Zarinwall
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jennifer Pierick
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Victor Marcus Oldhues
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Julian Cedric Porsiel
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
28
|
Preparation and evaluation of ibrutinib lipid-based formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Sala-Jarque J, García-Lara E, Carreras-Domínguez P, Zhou C, Rabaneda-Lombarte N, Solà C, M Vidal-Taboada J, Feiler A, Abrahamsson N, N Kozlova E, Saura J. Mesoporous silica particles are phagocytosed by microglia and induce a mild inflammatory response in vitro. Nanomedicine (Lond) 2022; 17:1077-1094. [PMID: 35997151 DOI: 10.2217/nnm-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Mesoporous silica particles (MSPs) are broadly used drug delivery carriers. In this study, the authors analyzed the responses to MSPs of astrocytes and microglia, the two main cellular players in neuroinflammation. Materials & methods: Primary murine cortical mixed glial cultures were treated with rhodamine B-labeled MSPs. Results: MSPs are avidly internalized by microglial cells and remain inside the cells for at least 14 days. Despite this, MSPs do not affect glial cell viability or morphology, basal metabolic activity or oxidative stress. MSPs also do not affect mRNA levels of key proinflammatory genes; however, in combination with lipopolysaccharide, they significantly increase extracellular IL-1β levels. Conclusion: These results suggest that MSPs could be novel tools for specific drug delivery to microglial cells.
Collapse
Affiliation(s)
- Júlia Sala-Jarque
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Elisa García-Lara
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Paula Carreras-Domínguez
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | | | - Neus Rabaneda-Lombarte
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Department of Cerebral Ischemia and Neurodegeneration, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Peripheral Nervous System, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Catalonia, Spain
| | - Adam Feiler
- Nanologica AB, Södertälje, Sweden.,KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Espinoza MJC, Lin KS, Weng MT, Kunene SC, Liu SY, Lin YS. In vivo and in vitro studies of magnetic silica nanocomposites decorated with Pluronic F127 for controlled drug delivery system. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, Fu X, Wang X, Luo R, Wang R, Zhang Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother 2022; 151:113053. [PMID: 35594717 DOI: 10.1016/j.biopha.2022.113053] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Silica nanoparticles (SiNPs) are composed of silicon dioxide, the most abundant compound on Earth, and are used widely in many applications including the food industry, synthetic processes, medical diagnosis, and drug delivery due to their controllable particle size, large surface area, and great biocompatibility. Building on basic synthetic methods, convenient and economical strategies have been developed for the synthesis of SiNPs. Numerous studies have assessed the biomedical applications of SiNPs, including the surface and structural modification of SiNPs to target various cancers and diagnose diseases. However, studies on the in vitro and in vivo toxicity of SiNPs remain in the exploratory stage, and the toxicity mechanisms of SiNPs are poorly understood. This review covers recent studies on the biomedical applications of SiNPs, including their uses in drug delivery systems to diagnose and treat various diseases in the human body. SiNP toxicity is discussed in terms of the different systems of the human body and the individual organs in those systems. This comprehensive review includes both fundamental discoveries and exploratory progress in SiNP research that may lead to practical developments in the future.
Collapse
Affiliation(s)
- Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Li
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264005, Shandong, PR China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaojie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
32
|
Fuentes C, Verdú S, Fuentes A, Ruiz MJ, Barat JM. In vivo toxicity assessment of eugenol and vanillin-functionalised silica particles using Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113601. [PMID: 35533449 DOI: 10.1016/j.ecoenv.2022.113601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The toxicological properties of different silica particles functionalised with essential oil components (EOCs) were herein assessed using the in vivo model C. elegans. In particular, the effects of the acute and long-term exposure to three silica particle types (SAS, MCM-41 micro, MCM-41 nano), either bare or functionalised with eugenol or vanillin, were evaluated on different biological parameters of nematodes. Acute exposure to the different particles did not reduce nematodes survival, brood growth or locomotion, but reproduction was impaired by all the materials, except for vanillin-functionalised MCM-41 nano. Moreover, long-term exposure to particles led to strongly inhibited nematodes growth and reproduction. The eugenol-functionalised particles exhibited higher functionalisation yields and had the strongest effects during acute and long-term exposures. Overall, the vanillin-functionalised particles displayed milder acute toxic effects on reproduction than pristine materials, but severer toxicological responses for the 96-hour exposure assays. Our findings suggest that the EOC type anchored to silica surfaces and functionalisation yield are crucial for determining the toxicological effects of particles on C. elegans. The results obtained with this alternative in vivo model can help to anticipate potential toxic responses to these new materials for human health and the environment.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain.
| | - Samuel Verdú
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
33
|
Kamanina OA, Saverina EA, Rybochkin PV, Arlyapov VA, Vereshchagin AN, Ananikov VP. Preparation of Hybrid Sol-Gel Materials Based on Living Cells of Microorganisms and Their Application in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1086. [PMID: 35407203 PMCID: PMC9000353 DOI: 10.3390/nano12071086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Microorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization. This review focuses on the synthesis and application of hybrid sol-gel materials obtained by encapsulation of microorganism cells in an inorganic matrix based on silicon, aluminum, and transition metals. The type of immobilized cells, precursors used, types of nanomaterials obtained, and their practical applications were analyzed in detail. In addition, techniques for increasing the microorganism effective time of functioning and the possibility of using sol-gel hybrid materials in catalysis are discussed.
Collapse
Affiliation(s)
- Olga A. Kamanina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Evgeniya A. Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Pavel V. Rybochkin
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Vyacheslav A. Arlyapov
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
34
|
Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. COATINGS 2022. [DOI: 10.3390/coatings12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanotechnology has transformed engineering designs across a wide spectrum of materials and applications. Mesoporous Silica Nanoparticles (MSNs) are one of the new fabrications of nanostructures as medication delivery systems. MSNs have pore sizes varying from 2 to 50 nm, making them ideal for a variety of biological applications. They offer unique characteristics such as a tunable surface area, well-defined surface properties, and the ability to improve drug pharmacokinetic characteristics. Moreover, they have the potential to reduce adverse effects by delivering a precise dose of medications to a specific spot rather than the more frequent systemic delivery, which diffuses across tissues and organs. In addition, the vast number of pores allow drug incorporation and transportation of drugs to various sites making MSNs a feasible platform for orally administered drugs. Though the oral route is the most suitable and convenient platform for drug delivery, conventional oral drug delivery systems are associated with several limitations. Surpassing gastrointestinal barriers and the low oral bioavailability of poorly soluble medicines pose a major challenge in the pharmaceutical industry. This review provides insights into the role of MSNs and its mechanism as an oral drug delivery system.
Collapse
|
35
|
Almasri R, Schultz HB, Møller A, Bremmell KE, Garcia-Bennett A, Joyce P, Prestidge CA. Role of Silica Intrawall Microporosity on Abiraterone Acetate Solubilization and In Vivo Oral Absorption. Mol Pharm 2022; 19:1091-1103. [PMID: 35238208 DOI: 10.1021/acs.molpharmaceut.1c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SBA-15 mesoporous silica (MPS) has been widely used in oral drug delivery; however, it has not been utilized for solidifying lipid-based formulations, and the impact of their characteristic intrawall microporosity remains largely unexplored. Here, we derive the impact of the MPS microporosity on the in vitro solubilization and in vivo oral pharmacokinetics of the prostate cancer drug abiraterone acetate (AbA) when coencapsulated along with medium chain lipids into the pores. AbA in lipid (at 80% equilibrium solubility) was imbibed within a range of MPS particles (with comparable morphology and mesoporous structure but contrasting microporosity ranging from 0-247 m2/g), and their solid-state properties were characterized. Drug solubilization studies during in vitro lipolysis revealed that microporosity was the key factor in facilitating AbA solubilization by increasing the surface area available for drug-lipid diffusion. Interestingly, microporosity hindered hydrolysis of AbA to its active metabolite, abiraterone (Ab), under simulated intestinal conditions. This unique relationship between microporosity and AbA/Ab aqueous solubilization behavior was hypothesized to have significant implications on the subsequent bioavailability of the active metabolite. In vivo oral pharmacokinetics studies in male Sprague-Dawley rats revealed that MPS with moderate microporosity attained the highest relative bioavailability, while poor in vitro-in vivo correlations (IVIVC) existed between in vitro drug solubilization during lipolysis and in vivo AUC. Despite this, a reasonable IVIVC was established between the in vitro solubilization and in vivo Cmax, providing evidence for an association between silica microporosity and oral drug absorption.
Collapse
Affiliation(s)
- Ruba Almasri
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Hayley B Schultz
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Amalie Møller
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristen E Bremmell
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - Paul Joyce
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
36
|
Fuentes C, Fuentes A, Byrne HJ, Barat JM, Ruiz MJ. In vitro toxicological evaluation of mesoporous silica microparticles functionalised with carvacrol and thymol. Food Chem Toxicol 2021; 160:112778. [PMID: 34958804 DOI: 10.1016/j.fct.2021.112778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
The cytotoxicity of carvacrol- and thymol-functionalised mesoporous silica microparticles (MCM-41) was assessed in the human hepatocarcinoma cell line (HepG2). Cell viability, lactate dehydrogenase (LDH) activity, reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), lipid peroxidation (LPO) and apoptosis/necrosis analyses were used as endpoints. The results showed that both materials induced cytotoxicity in a time- and concentration-dependent manner, and were more cytotoxic than free essential oil components and bare MCM-41. This effect was caused by cell-particle interactions and not by degradation products released to the culture media, as demonstrated in the extract dilution assays. LDH release was a less sensitive endpoint than the MTT (thiazolyl blue tetrazolium bromide) assay, which suggests the impairment of the mitochondrial function as the primary cytotoxic mechanism. In vitro tests on specialised cell functions showed that exposure to sublethal concentrations of these materials did not induce ROS formation during 2 h of exposure, but produced LPO and ΔΨm alterations in a concentration-dependent manner when cells were exposed for 24 h. The obtained results generally support the hypothesis that the carvacrol- and thymol-functionalised MCM-41 microparticles induced toxicity in HepG2 cells by an oxidative stress-related mechanism that resulted in apoptosis through the mitochondrial pathway.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Hugh J Byrne
- FOCAS Research Institute, City Campus, Technological University Dublin, Dublin 8, Ireland
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
37
|
Baumgartner A, Planinšek O. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery. Eur J Pharm Sci 2021; 167:106015. [PMID: 34547382 DOI: 10.1016/j.ejps.2021.106015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Due to the high number of poorly water-soluble active pharmaceutical ingredients, oral drug delivery development has become challenging. One of the strategies to enhance drug solubility and to achieve high oral bioavailability is to formulate such compounds into amorphous solid dispersions. In recent years, porous materials have been investigated as possible carriers into which a drug can be adsorbed, such as mesoporous silica, in particular. Unlike the ordered mesoporous network of silica, non-ordered silica already has a "generally regarded as safe" status, and is already used as an excipient in pharmaceutical and cosmetic products. Thus, it is reasonable to expect that products that contain solid dispersions with non-ordered carriers will reach the market sooner and more easily than those with ordered mesoporous carriers. The emphasis of this review is therefore on non-ordered commercially available mesoporous silica and the progress that has been made in development of the use of these materials for improved dissolution rates in oral drug delivery. First, a thorough categorisation of the drug loading methods is presented, followed by discussion on the most important characteristics of solid dispersions (i.e., physical state, stability, drug release). Finally, manufacturability and production of a final solid dosage form are considered.
Collapse
Affiliation(s)
- Ana Baumgartner
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Odon Planinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
38
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Parodi A, Buzaeva P, Nigovora D, Baldin A, Kostyushev D, Chulanov V, Savvateeva LV, Zamyatnin AA. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021; 19:354. [PMID: 34717658 PMCID: PMC8557561 DOI: 10.1186/s12951-021-01100-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
Abstract Oral administration is an appealing route of delivering cancer treatments. However, the gastrointestinal tract is characterized by specific and efficient physical, chemical, and biological barriers that decrease the bioavailability of medications, including chemotherapeutics. In recent decades, the fields of material science and nanomedicine have generated several delivery platforms with high potential for overcoming multiple barriers associated to oral administration. This review describes the properties of several nanodelivery systems that improve the bioavailability of orally administered therapeutics, highlighting their advantages and disadvantages in generating successful anticancer oral nanomedicines. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.
| | - Polina Buzaeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Daria Nigovora
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Alexey Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry Kostyushev
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia
| | - Vladimir Chulanov
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia.,Department of Infectious Diseases, Sechenov University, 119991, Moscow, Russia
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia. .,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7X, UK.
| |
Collapse
|
40
|
Iranpour S, Bahrami AR, Nekooei S, Sh Saljooghi A, Matin MM. Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J Nanobiotechnology 2021; 19:314. [PMID: 34641857 PMCID: PMC8507230 DOI: 10.1186/s12951-021-01056-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Improving anti-cancer drug delivery performance can be achieved through designing smart and targeted drug delivery systems (DDSs). For this aim, it is important to evaluate overexpressed biomarkers in the tumor microenvironment (TME) for optimizing DDSs. MATERIALS AND METHODS Herein, we designed a novel DDS based on magnetic mesoporous silica core-shell nanoparticles (SPION@MSNs) in which release of doxorubicin (DOX) at the physiologic pH was blocked with gold gatekeepers. In this platform, we conjugated heterofunctional polyethylene glycol (PEG) onto the outer surface of nanocarriers to increase their biocompatibility. At the final stage, an epithelial cell adhesion molecule (EpCAM) aptamer as an active targeting moiety was covalently attached (Apt-PEG-Au@NPs-DOX) for selective drug delivery to colorectal cancer (CRC) cells. The physicochemical properties of non-targeted and targeted nanocarriers were fully characterized. The anti-cancer activity, cellular internalization, and then the cell death mechanism of prepared nanocarriers were determined and compared in vitro. Finally, tumor inhibitory effects, biodistribution and possible side effects of the nanocarriers were evaluated in immunocompromised C57BL/6 mice bearing human HT-29 tumors. RESULTS Nanocarriers were successfully synthesized with a mean final size diameter of 58.22 ± 8.54 nm. Higher cytotoxicity and cellular uptake of targeted nanocarriers were shown in the EpCAM-positive HT-29 cells as compared to the EpCAM-negative CHO cells, indicating the efficacy of aptamer as a targeting agent. In vivo results in a humanized mouse model showed that targeted nanocarriers could effectively increase DOX accumulation in the tumor site, inhibit tumor growth, and reduce the adverse side effects. CONCLUSION These results suggest that corporation of a magnetic core, gold gatekeeper, PEG and aptamer can strongly improve drug delivery performance and provide a theranostic DDS for efficient CRC therapy.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
41
|
Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021; 338:224-243. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
There are numerous investigated factors that limit brain cancer treatment efficacy such as ability of prescribed therapy to cross the blood-brain barrier (BBB), tumor specific delivery of a therapeutics, transport within brain interstitium, and resistance of tumor cells against therapies. Recent breakthroughs in the field of nano-biotechnology associated with developing multifunctional nano-theranostic emerged as an effective way to manage brain cancer in terms of higher efficacy and least possible adverse effects. Keeping challenges and state-of-art accomplishments into consideration, this review proposes a comprehensive, careful, and critical discussion focused on efficient nano-enabled platforms including nanocarriers for drug delivery across the BBB and nano-assisted therapies (e.g., nano-immunotherapy, nano-stem cell therapy, and nano-gene therapy) investigated for brain cancer treatment. Besides therapeutic efficacy point-of-view, efforts are being made to explore ways projected to tune such developed nano-therapeutic for treating patients in personalized manner via controlling size, drug loading, delivery, and retention. Personalized brain tumor management based on advanced nano-therapies can potentially lead to excellent therapeutic benefits based on unique genetic signatures in patients and their individual disease profile. Moreover, applicability of nano-systems as stimulants to manage the brain cancer growth factors has also been discussed in photodynamic therapy and radiotherapy. Overall, this review offers a comprehensive information on emerging opportunities in nanotechnology for advancing the brain cancer treatment.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - U T Uthappa
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Chandra Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, United States.
| |
Collapse
|
42
|
Cao Y, Rewatkar P, Wang R, Hasnain SZ, Popat A, Kumeria T. Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends Pharmacol Sci 2021; 42:957-972. [PMID: 34593258 DOI: 10.1016/j.tips.2021.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Macromolecular therapeutics of biological origin, also known as biologics, have become one of the fastest-growing classes of drugs for management of a range of chronic and acute conditions. The majority of approved biologics are administered via the parenteral route and are thus expensive, have low patient compliance, and have high systemic toxicity. Therefore, tremendous efforts have been devoted to the development of carriers for oral delivery of biologics. This review evaluates key chemical (e.g. pH and enzymes) and physiological challenges to oral biologics delivery. We review the conventional formulation strategies and their limitations, followed by a detailed account of the progress on the use of nanocarriers used for oral biologics delivery, covering organic and inorganic nanocarriers. Lastly, we discuss limitations and opportunities presented by these emerging nanomaterials in oral biologics delivery.
Collapse
Affiliation(s)
- Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Prarthana Rewatkar
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ran Wang
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
43
|
Šoltys M, Zůza D, Boleslavská T, Machač Akhlasová S, Balouch M, Kovačík P, Beránek J, Škalko-Basnet N, Flaten GE, Štěpánek F. Drug loading to mesoporous silica carriers by solvent evaporation: A comparative study of amorphization capacity and release kinetics. Int J Pharm 2021; 607:120982. [PMID: 34371148 DOI: 10.1016/j.ijpharm.2021.120982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/22/2023]
Abstract
The sorption of poorly aqueous soluble active pharmaceutical ingredients (API) to mesoporous silica carriers is an increasingly common formulation strategy for dissolution rate enhancement for this challenging group of substances. However, the success of this approach for a particular API depends on an array of factors including the properties of the porous carrier, the loading method, or the attempted mass fraction of the API. At present, there is no established methodology for the rational selection of these parameters. In the present work, we report a systematic comparison of four well-characterised silica carriers and seven APIs loaded by the same solvent evaporation method. In each case, we find the maximum amorphization capacity by x-ray powder diffraction analysis and measure the in vitro drug release kinetics. For a selected case, we also demonstrate the potential for bioavailability enhancement by a permeation essay.
Collapse
Affiliation(s)
- Marek Šoltys
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; Zentiva, k.s., U Kabelovny 130, 102 00 Praha 10, Czech Republic; Department of Pharmacy, UiT The Arctic University of Norway, Norway
| | - David Zůza
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tereza Boleslavská
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; Zentiva, k.s., U Kabelovny 130, 102 00 Praha 10, Czech Republic
| | - Sarah Machač Akhlasová
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; Zentiva, k.s., U Kabelovny 130, 102 00 Praha 10, Czech Republic
| | - Martin Balouch
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; Zentiva, k.s., U Kabelovny 130, 102 00 Praha 10, Czech Republic
| | - Pavel Kovačík
- Zentiva, k.s., U Kabelovny 130, 102 00 Praha 10, Czech Republic
| | - Josef Beránek
- Zentiva, k.s., U Kabelovny 130, 102 00 Praha 10, Czech Republic
| | | | | | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
44
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
45
|
Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical agencies yet. In the present review, we highlight the frustule formation process, the most common purification techniques, as well as advantages and bottlenecks related to the employment of diatom-derived silica for medical purposes, suggesting possible solutions for a large-scale biosilica production.
Collapse
|
46
|
Texture and surface feature-mediated striking improvements on multiple direct compaction properties of Zingiberis Rhizoma extracted powder by coprocessing with nano-silica. Int J Pharm 2021; 603:120703. [PMID: 33989749 DOI: 10.1016/j.ijpharm.2021.120703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The study aims to markedly improve direct compaction (DC) properties of Zingiberis Rhizoma extracted powder (ZR) by modifying its texture and surface properties with nano-silica (NS). A wet coprocessing method was applied to evenly distribute up to 33.3% NS to ZR. To clarify uniqueness of NS, microcrystalline cellulose (MCC), a superior filler-binder in DC, was used as control. Coprocessed particles and physical mixtures (PMs) were comprehensively evaluated for surface features, micromeritic properties, and texture and compacting parameters. Compared to MCC, NS could more significantly modify the texture and surface features of ZR (e.g., hardness, cohesiveness, yield pressure, and nanoscaled surface roughness) via coprocessing, resulting in more striking improvements on multiple DC properties of ZR, including tabletability, flowability, lubricant sensitivity, hygroscopicity, etc. Especially, tensile strength (σt) of coprocessed ZR-NS (1:0.5) tablets was 4.62 and 3.22 times that of ZR and ZR-MCC counterparts pressed at 210 MPa, respectively. Moreover, percolation thresholds of σt enhancement were observed for ZR-NSs, but not for ZR-MCCs. Evaluation by the SeDeM expert system indicated that some ZR-NSs (but no ZR-MCCs) were qualified for DC. Collectively, coprocessing with NS by liquid dispersion appears to be a novel, effective, and pragmatic option for DC of drugs like ZR.
Collapse
|
47
|
Ammar HO, Ghorab MM, Saleh MS, Ghoneim AM. Olanzapine Mesoporous Nanostructured Lipid Carrier: Optimization, Characterization, In Vivo Assessment, and Physiologically Based Pharmacokinetic Modeling. IEEE Trans Nanobioscience 2021; 20:166-174. [PMID: 33493118 DOI: 10.1109/tnb.2021.3052080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A promising approach has been emerging to enhance dissolution of hydrophobicdrugsby encapsulation in mesoporous silica materials. Olanzapine is a practically insoluble antipsychotic drug which is subjected to excessive first pass effect and shows inadequate oral bioavailability. Therefore, mesoporous silica was used to improve bioavailability of olanzapine incorporated in nano-structured lipid carriers (NLCs). These systems were characterized for their particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE) and differential scanning calorimetry (DSC) as well asits release profile. The optimized mesoporous NLC system displayed nano-spherical particles (120.56 nm), possessed high entrapment efficiency (88.46%) and the highest percentage of drug released after six hours (75.13%). The biological performance of the optimized system was assessed in comparison with the drug suspension in healthy albino rabbits. The optimized system showed significantly (P < 0.05) prolonged MRT (8.47 h), higher Cmax (22.12± 0.40 ng/ml) and Tmax (2.0 h) values compared to drug suspension. Physiologically based pharmacokinetic (PBPK) model was simulated and verified. All the predicted results were within 0.6 and 1-fold of the reported data. To set a conclusion, in vitro results as well as in vivo pharmacokinetic study and PBPK data showed an enhancement in bioavailability of the optimized NLCs system over the plain drug suspension. These results proved the potentiality of incorporating olanzapine in mesoporous NLC for a significant improvement in oral bioavailability of olanzapine.
Collapse
|
48
|
Liu Y, Li Z, Wu Y, Jing X, Li L, Fang X. Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Front Immunol 2021; 11:620170. [PMID: 33643302 PMCID: PMC7902919 DOI: 10.3389/fimmu.2020.620170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains thousands of bacterial species essential for optimal health. Aside from their pathogenic effects, these bacteria have been associated with the efficacy of various treatments of diseases. Due to their impact on many human diseases, intestinal bacteria are receiving increasing research attention, and recent studies on intestinal bacteria and their effects on treatments has yielded valuable results. Particularly, intestinal bacteria can affect responses to numerous forms of immunotherapy, especially cancer therapy. With the development of precision medicine, understanding the factors that influence intestinal bacteria and how they can be regulated to enhance immunotherapy effects will improve the application prospects of intestinal bacteria therapy. Further, biomaterials employed for the convenient and efficient delivery of intestinal bacteria to the body have also become a research hotspot. In this review, we discuss the recent findings on the regulatory role of intestinal bacteria in immunotherapy, focusing on immune cells they regulate. We also summarize biomaterials used for their delivery.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiabin Jing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
50
|
Almeida JMFD, Damasceno Júnior E, Silva EMF, Veríssimo LM, Fernandes NS. pH-responsive release system of topiramate transported on silica nanoparticles by melting method. Drug Dev Ind Pharm 2020; 47:126-145. [PMID: 33295812 DOI: 10.1080/03639045.2020.1862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Incorporating drugs into silica matrices by the melting method can be applied to obtain drug delivery systems because they are governed by electrostatic type interactions, hydrogen bonding and hydrophilic-hydrophobic interactions between the drug and the silica surface. the melting method is an environmentally correct tool since it is free of organic solvent, low cost and with easy execution for the incorporation of drugs in silicas. Drugs delivery systems are very important for improving the treatment of chronic diseases. Topiramate (TPM) is a potent antiepileptic used in high daily doses as it has low bioavailability. In this context, silica nanoparticles (NPS) were used as an inorganic matrix for TPM transport in (in vitro) release studies. The TPM was incorporated into the NPS by hot melt loading employing a new carrier preparation methodology (NPS/TPM) using a thermobalance (by Thermogravimetry-TG) with high temperature control system. The release study using dissolution media simulating gastrointestinal at pH 1.2 (stomach) and 7.4 (intestine), showed that NPS release TPM in a prolonged and pH-responsive manner. The drug was released at intestinal pH ensuring greater absorption, allowing fewer daily doses and less adverse effects. The kinetic study demonstrated the best fit to the zero-order model proving the pH-responsive profile of the developed system.
Collapse
Affiliation(s)
- Janiele Mayara Ferreira de Almeida
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elmar Damasceno Júnior
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elania Maria Fernandes Silva
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Lourena Mafra Veríssimo
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal-RN, Brasil
| | - Nedja Suely Fernandes
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| |
Collapse
|