1
|
Chen YF, Li JW, Li FF, Bo L, Xiao Y, Jin QX, Jin GH, Meng FP, Huang XZ, Jin D. Therapeutic potential of Inonotus obliquus polysaccharide-induced tolerogenic bone marrow-derived dendritic cells via regulation of CD4 + T cell differentiation in a colitis mouse model. Int J Biol Macromol 2025; 306:141505. [PMID: 40015397 DOI: 10.1016/j.ijbiomac.2025.141505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Over-proliferation, activation, or aberrant CD4+ T cell differentiation causes various immune-related diseases. DCs are significant professional APCs that regulate the differentiation of CD4+ T cells to participate in an inflammatory response. IOP is an edible fungal polysaccharide with immunoregulatory and anti-inflammatory bioactivities, however, the cellular mechanisms by which they regulate the immune system to exert their anti-inflammatory effects remain unclear. The present study aimed to investigate the effects of IOP on the regulation of CD4+ T cell differentiation and the correlative mechanisms related to DCs. IOP did not regulate the proliferation and activation of CD4+ T cells. However, it inhibited the differentiation of Th1 and Th17 cells and promoted the differentiation of Treg cells. IOP maintained the immature phenotype of BMDCs, which induces immune tolerance and promotes the differentiation of CD4+ T cells into Treg cells. Transfusion of IOPL-BMDC into colitis mice markedly alleviated colitis-associated inflammation and maintained the colon's integrity. IOPL-BMDCs inhibited the differentiation of CD4+ T cells into inflammatory effective Th1 cells in the spleen and MLN while promoting their differentiation into immune-tolerant, anti-inflammatory Treg cells. In conclusion, this research demonstrated that IOP strongly regulates the polarization of CD4+ T cells to Treg subsets with inflammatory suppressive effects by inducing immature tolerant DCs, which provides strategic evidence for the therapeutic application of IOP in colitis, and IOP-induced tolerant DCs provide a new therapeutic approach to the development of a DC vaccine for colitis.
Collapse
Affiliation(s)
- Yi-Fang Chen
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Jia-Wei Li
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Fang-Fang Li
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Lin Bo
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Yao Xiao
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Quan-Xin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Gui-Hua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Fan-Ping Meng
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China
| | - Xue-Zhu Huang
- Department of Anaesthesiology, The Affiliated Hospital of Yanbian University, Yan Ji 133000, China.
| | - Dan Jin
- Department of Immunology and Pathogenic Biology, Yanbian University, Yanji 133000, China.
| |
Collapse
|
2
|
Matossian MD, Shiang C, Dolcen DN, Dreyer M, Hatogai K, Hall K, Saha P, Biernacka A, Sweis RF, Karrison T, Chen N, Nanda R, Conzen SD. High tumor glucocorticoid receptor expression in early-stage, triple-negative breast cancer is associated with increased T-regulatory cell infiltration. Breast Cancer Res Treat 2025; 209:563-572. [PMID: 39579248 PMCID: PMC11785596 DOI: 10.1007/s10549-024-07515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE In early-stage, triple-negative breast cancer (TNBC), immune cell infiltration contributes to cancer cell survival, tumor invasion, and metastasis. High TNBC glucocorticoid receptor (GR) expression in early-stage TNBC is associated with poor long-term outcomes; it is unknown if high GR expression is associated with an immunosuppressed tumor microenvironment. We hypothesized that high tumor GR expression would be associated with an immune-suppressed tumor microenvironment, which could thus account for the poor prognosis observed in GR-positive TNBC. METHODS Formalin fixed-paraffin embedded tissue (n = 47) from patients diagnosed with early-stage TNBC from The University of Chicago (2002-2014) were evaluated for both tumor cell anti-GR immunohistochemistry and for infiltrating immune cells by immunofluorescence. Multiplexed antibodies were used to enumerate CD8+, FOXP3+, and BATF3+ immune cells infiltrating within pan-cytokeratin positive tumor cell regions of interest, and nonparametric tests compared absolute counts of each of these tumor-infiltrating immune cell types. RESULTS The average age of patients represented in this study was 52 years, and 63% self-identified as Black. There was no significant association between tumor GR expression and age, race, or clinical stage at diagnosis. Compared to GR-low tumors, high GR expression in early-stage, treatment-naïve TNBC was associated with relatively increased numbers of immunosuppressive FOXP3 + regulatory T cells (p = 0.046) and BATF3+immune cells (p = 0.021). While there was a positive correlation with high GR expression and CD8+ cell infiltration, it was not significant (p = 0.068). The ratio of CD8+/FOXP3+cells was also not significant (p = 0.24). CONCLUSIONS These data support the hypothesis that in early-stage TNBC, high GR expression is significantly associated with infiltration of immunosuppressive regulatory T cells, suggesting a tumor-intrinsic role in shaping the immunosuppressive immune cell milieu. Furthermore, suppression of GR activity may regulate the tumor immune microenvironment and improve long-term outcomes in GR-high TNBC.
Collapse
Affiliation(s)
- Margarite D Matossian
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Christine Shiang
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deniz Nesli Dolcen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Marie Dreyer
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ken Hatogai
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Katie Hall
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Poornima Saha
- Division of Hematology and Oncology, Department of Medicine, Endeavor Health, Evanston, IL, 60201, USA
| | - Anna Biernacka
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Randy F Sweis
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Nan Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Rita Nanda
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Suzanne D Conzen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Stanisavljević S, Stegnjaić G, Jevtić B, Dimitrijević M, Miljković Đ, Lavrnja I, Nikolovski N. NRF2 Plays a Crucial Role in the Tolerogenic Effect of Ethyl Pyruvate on Dendritic Cells. Int J Mol Sci 2024; 25:6195. [PMID: 38892383 PMCID: PMC11173132 DOI: 10.3390/ijms25116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic cells (DCs). Here, the influence of EP on the signaling pathways in DCs relevant for their tolerogenicity, including anti-inflammatory NRF2 and pro-inflammatory NF-κB, was explored. Specifically, the effects of EP on DCs obtained by GM-CSF-directed differentiation of murine bone marrow precursor cells and matured under the influence of lipopolysaccharide (LPS) were examined via immunocytochemistry and RT-PCR. EP counteracted LPS-imposed morphological changes and down-regulated the LPS-induced expression of pro-inflammatory mediators in DCs. While it reduced the activation of NF-κB, EP potentiated NRF2 and downstream antioxidative molecules, thus implying the regulation of NRF2 signaling pathways as the major reason for the tolerizing effects of EP on DCs.
Collapse
Affiliation(s)
- Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.S.); (G.S.); (B.J.); (M.D.); (N.N.)
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.S.); (G.S.); (B.J.); (M.D.); (N.N.)
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.S.); (G.S.); (B.J.); (M.D.); (N.N.)
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.S.); (G.S.); (B.J.); (M.D.); (N.N.)
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.S.); (G.S.); (B.J.); (M.D.); (N.N.)
| | - Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.S.); (G.S.); (B.J.); (M.D.); (N.N.)
| |
Collapse
|
4
|
Hlavackova E, Krenova Z, Kerekes A, Slanina P, Vlkova M. B cell subsets reconstitution and immunoglobulin levels in children and adolescents with B non-Hodgkin lymphoma after treatment with single anti CD20 agent dose included in chemotherapeutic protocols: single center experience and review of the literature. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:167-176. [PMID: 37227099 DOI: 10.5507/bp.2023.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND RTX, an anti-CD20 monoclonal antibody, added to chemotherapy has proven to be effective in children and adolescents with high-grade, high-risk and matured non-Hodgkin lymphoma. RTX leads to prompt CD19+ B lymphocyte depletion. However, despite preserved immunoglobulin production by long-lived plasmablasts after treatment, patients remain at risk of prolonged hypogammaglobulinemia. Further, there are few general guidelines for immunology laboratories and clinical feature monitoring after B cell-targeted therapies. The aim of this paper is to describe B cell reconstitution and immunoglobulin levels after pediatric B-NHL protocols, that included a single RTX dose and to review the literature. METHODS A retrospective single-center study on the impact of a single RTX dose included in a chemotherapeutic pediatric B Non-Hodgkin Lymphoma (B-NHL) treatment protocols. Immunology laboratory and clinical features were evaluated over an eight hundred days follow-up (FU) period, after completing B-NHL treatment. RESULTS Nineteen patients (fifteen Burkitt lymphoma, three Diffuse large B cell lymphoma, and one Marginal zone B cell lymphoma) fulfilled the inclusion criteria. Initiation of B cell subset reconstitution occurred a median of three months after B-NHL treatment. Naïve and transitional B cells declined over the FU in contrast to the marginal zone and the switched memory B cell increase. The percentage of patients with IgG, IgA, and IgM hypogammaglobulinemia declined consistently over the FU. Prolonged IgG hypogammaglobulinemia was detectable in 9%, IgM in 13%, and IgA in 25%. All revaccinated patients responded to protein-based vaccines by specific IgG antibody production increase. Following antibiotic prophylaxes, none of the patients with hypogammaglobulinemia manifested with either a severe or opportunistic infection course. CONCLUSION The addition of a single RTX dose to the chemotherapeutic treatment protocols was not shown to increase the risk of developing secondary antibody deficiency in B-NHL pediatric patients. Observed prolonged hypogammaglobulinemia remained clinically silent. However interdisciplinary agreement on regular long-term immunology FU after anti-CD20 agent treatment is required.
Collapse
Affiliation(s)
- Eva Hlavackova
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Zdenka Krenova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Arpad Kerekes
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Vlkova
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Benne N, Ter Braake D, Porenta D, Lau CYJ, Mastrobattista E, Broere F. Autoantigen-Dexamethasone Conjugate-Loaded Liposomes Halt Arthritis Development in Mice. Adv Healthc Mater 2024; 13:e2304238. [PMID: 38295848 DOI: 10.1002/adhm.202304238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Indexed: 02/13/2024]
Abstract
There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach. Here, this work uses anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol liposomes with enhanced loading of human proteoglycan-dexamethasone conjugates by cationic lysine tetramer addition. Antigen-pulsed tolerogenic dendritic cells induced by liposomal dexamethasone in vitro enhanced antigen-specific regulatory T cells to a similar extent as dexamethasone-induced tolerogenic dendritic cells. In an inflammatory adoptive transfer model, mice injected with antigen-dexamethasone liposomes have significantly higher antigen-specific type 1 regulatory T cells than mice injected with antigen only. The liposomes significantly inhibit the progression of arthritis compared to controls in preventative and therapeutic proteoglycan-induced arthritis mouse models. This coincides with systemic tolerance induction and an increase in IL10 expression in the paws of mice. In conclusion, a single administration of autoantigen and dexamethasone-loaded liposomes seems to be a promising antigen-specific treatment strategy for arthritis in mice.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Daniëlle Ter Braake
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Deja Porenta
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Chun Yin Jerry Lau
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| |
Collapse
|
6
|
Wang Y, Guo L, Fan G, Han Y, Zhang Q, Ren L, Zhang H, Wang G, Zhang X, Huang T, Wang W, Chen L, Huang L, Gu X, Wang X, Zhong J, Wang Y, Li H, Yu J, Liu Z, Huang C, Cao B, Wang J. Impact of corticosteroids on initiation and half-year durability of humoral response in COVID-19 survivors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:48-55. [PMID: 39170961 PMCID: PMC11332893 DOI: 10.1016/j.pccm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 08/23/2024]
Abstract
Background The impact of corticosteroids on humoral responses in coronavirus disease 2019 (COVID-19) survivors during the acute phase and subsequent 6-month period remains unknown. This study aimed to determine how the use of corticosteroids influences the initiation and duration of humoral responses in COVID-19 survivors 6 months after infection onset. Methods We used kinetic antibody data from the lopinavir-ritonavir trial conducted at Jin Yin-Tan Hospital in January 2020, which involved adults hospitalized with severe COVID-19 (LOTUS, ChiCTR2000029308). Antibody samples were collected from 192 patients during hospitalization, and kinetic antibodies were monitored at all available time points after recruitment. Additionally, plasma samples were collected from 101 COVID-19 survivors for comprehensive humoral immune measurement at the half-year follow-up visit. The main focus was comparing the humoral responses between patients treated with systemic corticosteroid therapy and the non-corticosteroid group. Results From illness onset to day 30, the median antibody titre areas under the receiver operating characteristic curve (AUCs) of nucleoprotein (N), spike protein (S), and receptor-binding domain (RBD) immunoglobulin G (IgG) were significantly lower in the corticosteroids group. The AUCs of N-, S-, and RBD-IgM as well as neutralizing antibodies (NAbs) were numerically lower in the corticosteroids group compared with the non-corticosteroid group. However, peak titres of N, S, RBD-IgM and -IgG and NAbs were not influenced by corticosteroids. During 6-month follow-up, we observed a delayed decline for most binding antibodies, except N-IgM (β -0.05, 95% CI [-0.10, 0.00]) in the corticosteroids group, though not reaching statistical significance. No significant difference was observed for NAbs. However, for the half-year seropositive rate, corticosteroids significantly accelerated the decay of IgA and IgM but made no difference to N-, S-, and RBD-IgG or NAbs. Additionally, corticosteroids group showed a trend towards delayed viral clearance compared with the non-corticosteroid group, but the results were not statistically significant (adjusted hazard ratio 0.71, 95% CI 0.50-1.00; P = 0.0508). Conclusion Our findings suggested that corticosteroid therapy was associated with impaired initiation of the antibody response but this did not compromise the peak titres of binding and neutralizing antibodies. Throughout the decay phase, from the acute phase to the half-year follow-up visit, short-term and low-dose corticosteroids did not significantly affect humoral responses, except for accelerating the waning of short-lived antibodies.
Collapse
Affiliation(s)
- Yeming Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Guohui Fan
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Respiratory Health and Multimorbidity; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical research and Data management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yang Han
- Jin Yin-tan Hospital, Wuhan, Hubei 430023, China
| | - Qiao Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Geng Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyang Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Tingxuan Huang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiyang Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | | | - Xiaoying Gu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical research and Data management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jingchuan Zhong
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Hui Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiapei Yu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhibo Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | | | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing 100029, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
7
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Scotland BL, Shaw JR, Dharmaraj S, Caprio N, Cottingham AL, Joy Martín Lasola J, Sung JJ, Pearson RM. Cell and biomaterial delivery strategies to induce immune tolerance. Adv Drug Deliv Rev 2023; 203:115141. [PMID: 37980950 PMCID: PMC10842132 DOI: 10.1016/j.addr.2023.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junsik J Sung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States.
| |
Collapse
|
9
|
van Sleen Y, van der Geest KSM, Huckriede ALW, van Baarle D, Brouwer E. Effect of DMARDs on the immunogenicity of vaccines. Nat Rev Rheumatol 2023; 19:560-575. [PMID: 37438402 DOI: 10.1038/s41584-023-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.
Collapse
Affiliation(s)
- Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
11
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
12
|
Johnstone M, Vinaixa D, Turi M, Morelli E, Anderson KC, Gulla A. Promises and Challenges of Immunogenic Chemotherapy in Multiple Myeloma. Cells 2022; 11:2519. [PMID: 36010596 PMCID: PMC9406519 DOI: 10.3390/cells11162519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Immunological tolerance of myeloma cells represents a critical obstacle in achieving long-term disease-free survival for multiple myeloma (MM) patients. Over the past two decades, remarkable preclinical efforts to understand MM biology have led to the clinical approval of several targeted and immunotherapeutic agents. Among them, it is now clear that chemotherapy can also make cancer cells "visible" to the immune system and thus reactivate anti-tumor immunity. This knowledge represents an important resource in the treatment paradigm of MM, whereas immune dysfunction constitutes a clear obstacle to the cure of the disease. In this review, we highlight the importance of defining the immunological effects of chemotherapy in MM with the goal of enhancing the clinical management of patients. This area of investigation will open new avenues of research to identify novel immunogenic anti-MM agents and inform the optimal integration of chemotherapy with immunotherapy.
Collapse
Affiliation(s)
- Megan Johnstone
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Delaney Vinaixa
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marcello Turi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Annamaria Gulla
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Andaluz-Ojeda D, Vidal-Cortes P, Aparisi Sanz Á, Suberviola B, Del Río Carbajo L, Nogales Martín L, Prol Silva E, Nieto del Olmo J, Barberán J, Cusacovich I. Immunomodulatory therapy for the management of critically ill patients with COVID-19: A narrative review. World J Crit Care Med 2022; 11:269-297. [PMID: 36051937 PMCID: PMC9305685 DOI: 10.5492/wjccm.v11.i4.269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. AIM To describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of hyperinflammation and abnormal immune responses to disease progression together with a complete narrative review of the different immunoadjuvant treatments used so far in COVID-19 and their indication in severe and life-threatening subsets. METHODS A comprehensive literature search was developed. Authors reviewed the selected manuscripts following the PRISMA recommendations for systematic review and meta-analysis documents and selected the most appropriate. Finally, a recommendation of the use of each treatment was established based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors. RESULTS A brief rationale on the SARS-CoV-2 pathogenesis, immune response, and inflammation was developed. The usefulness of 10 different families of treatments related to inflammation and immunopathogenesis of COVID-19 was reviewed and discussed. Finally, based on the level of scientific evidence, a recommendation was established for each of them. CONCLUSION Although several promising therapies exist, only the use of corticosteroids and tocilizumab (or sarilumab in absence of this) have demonstrated evidence enough to recommend its use in critically ill patients with COVID-19. Endotypes including both, clinical and biological characteristics can constitute specific targets for better select certain therapies based on an individualized approach to treatment.
Collapse
Affiliation(s)
- David Andaluz-Ojeda
- Department of Critical Care, Hospital Universitario HM Sanchinarro, Hospitales Madrid, Madrid 28050, Spain
| | - Pablo Vidal-Cortes
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | | | - Borja Suberviola
- Department of Intensive Care, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain
| | - Lorena Del Río Carbajo
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | - Leonor Nogales Martín
- Department of Intensive Care, Hospital Clínico Universitario de Valladolid, Valladolid 47005, Spain
| | - Estefanía Prol Silva
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | - Jorge Nieto del Olmo
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | - José Barberán
- Department of Internal Medicine, Hospital Universitario HM Montepríncipe, Hospitales Madrid, Boadilla del Monte 28860, Madrid, Spain
| | - Ivan Cusacovich
- Department of Internal Medicine, Hospital Clínico Universitario de Valladolid, Valladolid 47005, Spain
| |
Collapse
|
14
|
Funt SA, Lattanzi M, Whiting K, Al-Ahmadie H, Quinlan C, Teo MY, Lee CH, Aggen D, Zimmerman D, McHugh D, Apollo A, Durdin TD, Truong H, Kamradt J, Khalil M, Lash B, Ostrovnaya I, McCoy AS, Hettich G, Regazzi A, Jihad M, Ratna N, Boswell A, Francese K, Yang Y, Folefac E, Herr HW, Donat SM, Pietzak E, Cha EK, Donahue TF, Goh AC, Huang WC, Bajorin DF, Iyer G, Bochner BH, Balar AV, Mortazavi A, Rosenberg JE. Neoadjuvant Atezolizumab With Gemcitabine and Cisplatin in Patients With Muscle-Invasive Bladder Cancer: A Multicenter, Single-Arm, Phase II Trial. J Clin Oncol 2022; 40:1312-1322. [PMID: 35089812 PMCID: PMC9797229 DOI: 10.1200/jco.21.01485] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Neoadjuvant gemcitabine and cisplatin (GC) followed by radical cystectomy (RC) is standard for patients with muscle-invasive bladder cancer (MIBC). On the basis of the activity of atezolizumab (A) in metastatic BC, we tested neoadjuvant GC plus A for MIBC. METHODS Eligible patients with MIBC (cT2-T4aN0M0) received a dose of A, followed 2 weeks later by GC plus A every 21 days for four cycles followed 3 weeks later by a dose of A before RC. The primary end point was non-muscle-invasive downstaging to < pT2N0. RESULTS Of 44 enrolled patients, 39 were evaluable. The primary end point was met, with 27 of 39 patients (69%) < pT2N0, including 16 (41%) pT0N0. No patient with < pT2N0 relapsed and four (11%) with ≥ pT2N0 relapsed with a median follow-up of 16.5 months (range: 7.0-33.7 months). One patient refused RC and two developed metastatic disease before RC; all were considered nonresponders. The most common grade 3-4 adverse event (AE) was neutropenia (n = 16; 36%). Grade 3 immune-related AEs occurred in five (11%) patients with two (5%) requiring systemic steroids. The median time from last dose of chemotherapy to surgery was 7.8 weeks (range: 5.1-17 weeks), and no patient failed to undergo RC because of AEs. Four of 39 (10%) patients had programmed death-ligand 1 (PD-L1)-positive tumors and were all < pT2N0. Of the patients with PD-L1 low or negative tumors, 23 of 34 (68%) achieved < pT2N0 and 11 of 34 (32%) were ≥ pT2N0 (P = .3 for association between PD-L1 and < pT2N0). CONCLUSION Neoadjuvant GC plus A is a promising regimen for MIBC and warrants further study. Patients with < pT2N0 experienced improved relapse-free survival. The PD-L1 positivity rate was low compared with published data, which limits conclusions regarding PD-L1 as a predictive biomarker.
Collapse
Affiliation(s)
- Samuel A. Funt
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | | | | | | | - Min Yuen Teo
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Chung-Han Lee
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - David Aggen
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Danielle Zimmerman
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Deaglan McHugh
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Arlyn Apollo
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | - Hong Truong
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Asia S. McCoy
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Grace Hettich
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Marwah Jihad
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neha Ratna
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Yuanquan Yang
- Ohio State University Wexner Medical Center, Columbus, OH
| | - Edmund Folefac
- Ohio State University Wexner Medical Center, Columbus, OH
| | - Harry W. Herr
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Eugene K. Cha
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Alvin C. Goh
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Dean F. Bajorin
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Gopa Iyer
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | - Arjun V. Balar
- New York University Langone Medical Center, New York, NY
| | - Amir Mortazavi
- Ohio State University Wexner Medical Center, Columbus, OH
| | - Jonathan E. Rosenberg
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
15
|
Pro-and anti-inflammatory effects of glucocorticoid Fluticasone on ovarian and immune functions in commercial-aged laying hens. Sci Rep 2021; 11:21603. [PMID: 34732778 PMCID: PMC8566555 DOI: 10.1038/s41598-021-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Ovarian chronic inflammation has been created and extended in the laying hen mainly via increasing laying frequency and microbial infection, especially during the late stage of production period. This study was aimed to evaluate glucocorticoid (GC) Fluticasone as an anti-inflammatory agent on the gene expression of the ovarian pro-and anti-inflammatory mediators (follicular cyclooxygenases COX 1, 2, and cytokines), inflammatory responses of the immune system, ovarian functions (ovulation rate and follicular growths), and hormones in the commercial-aged laying hens. White Leghorn hens aged 92-weeks were used for four weeks to be supplemented by 2 ppm Fluticasone as an optimum dose obtained in a pre-trial base on ovulation rate. As compared to control, Fluticasone resulted in a significant decrease in the mRNA expression of COX-1 and pro-and anti-inflammatory cytokines, and increase in COX-2 mRNA expression and heterophil to lymphocyte ratio (P < 0.001). A significant reduction was observed in the ovulation rate, follicular size (P < 0.001), ovarian hormones, immunoglobulins, body weight, and food consummation (P ≤ 0.05) by administering GC Fluticasone. Although a relative anti-inflammatory improvement was created by Fluticasone in the ovarian condition, the administration of this glucocorticoid resulted in a considerable reduction in ovarian hormones and functions of commercial aged laying hens.
Collapse
|
16
|
Levian B, Chan J, DeLeo VA, Adler BL. Patch Testing and Immunosuppression: a Comprehensive Review. CURRENT DERMATOLOGY REPORTS 2021. [DOI: 10.1007/s13671-021-00346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Ricci E, Roselletti E, Gentili M, Sabbatini S, Perito S, Riccardi C, Migliorati G, Monari C, Ronchetti S. Glucocorticoid-Induced Leucine Zipper-Mediated TLR2 Downregulation Accounts for Reduced Neutrophil Activity Following Acute DEX Treatment. Cells 2021; 10:2228. [PMID: 34571877 PMCID: PMC8472062 DOI: 10.3390/cells10092228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are the most powerful anti-inflammatory and immunosuppressive pharmacological drugs available, despite their adverse effects. Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced gene that shares several anti-inflammatory properties with glucocorticoids. Although immunosuppressive effects of glucocorticoids on neutrophils remain poorly understood, we previously demonstrated that GILZ suppresses neutrophil activation under glucocorticoid treatment. Here, we sought to explore the regulation of Toll-like receptor 2 (TLR2) by the synthetic glucocorticoid dexamethasone (DEX) on neutrophils and the associated GILZ involvement. Peripheral blood neutrophils were isolated from wild type and GILZ-knock-out (KO) mice. TLR2 was found to be downregulated by the in vivo administration of glucocorticoids in wild type but not in GILZ-KO neutrophils, suggesting the involvement of GILZ in TLR2 downregulation. Accordingly, the TLR2-associated anti-fungal activity of neutrophils was reduced by DEX treatment in wild type but not GILZ-KO neutrophils. Furthermore, GILZ did not interact with NF-κB but was found to bind with STAT5, a pivotal factor in the regulation of TLR2 expression. A similar modulation of TLR2 expression, impaired phagocytosis, and killing activity was observed in circulating human neutrophils treated in vitro with DEX. These results demonstrate that glucocorticoids reduce the ability of neutrophils to respond to infections by downregulating TLR2 via GILZ, thereby reducing critical functions.
Collapse
Affiliation(s)
- Erika Ricci
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Elena Roselletti
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Stefano Perito
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (S.S.); (S.P.); (C.M.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy; (E.R.); (M.G.); (C.R.); (G.M.)
| |
Collapse
|
18
|
Singh AK, Chatterjee U, MacDonald CR, Repasky EA, Halbreich U. Psychosocial stress and immunosuppression in cancer: what can we learn from new research? BJPSYCH ADVANCES 2021; 27:187-197. [PMID: 34295535 PMCID: PMC8294471 DOI: 10.1192/bja.2021.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is generally believed that the physiological consequences of stress could contribute to poor outcomes for patients being treated for cancer. However, despite preclinical and clinical evidence suggesting that stress promotes increased cancer-related mortality, a comprehensive understanding of the mechanisms involved in mediating these effects does not yet exist. We reviewed 47 clinical studies published between 2007 and 2020 to determine whether psychosocial stress affects clinical outcomes in cancer: 6.4% of studies showed a protective effect; 44.6% showed a harmful effect; 48.9% showed no association. These data suggest that psychosocial stress could affect cancer incidence and/or mortality, but the association is unclear. To shed light on this potentially important relationship, objective biomarkers of stress are needed to more accurately evaluate levels of stress and its downstream effects. As a potential candidate, the neuroendocrine signalling pathways initiated by stress are known to affect anti-tumour immune cells, and here we summarise how this may promote an immunosuppressive, pro-tumour microenvironment. Further research must be done to understand the relationships between stress and immunity to more accurately measure how stress affects cancer progression and outcome.
Collapse
Affiliation(s)
- Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Udit Chatterjee
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | | | - Uriel Halbreich
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA
| |
Collapse
|
19
|
Cusacovich I, Aparisi Á, Marcos M, Ybarra-Falcón C, Iglesias-Echevarria C, Lopez-Veloso M, Barraza-Vengoechea J, Dueñas C, Juarros Martínez SA, Rodríguez-Alonso B, Martín-Oterino JÁ, Montero-Baladia M, Moralejo L, Andaluz-Ojeda D, Gonzalez-Fuentes R. Corticosteroid Pulses for Hospitalized Patients with COVID-19: Effects on Mortality. Mediators Inflamm 2021; 2021:6637227. [PMID: 33776574 PMCID: PMC7955656 DOI: 10.1155/2021/6637227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To assess the influence of corticosteroid pulses on 60-day mortality in hospitalized patients with severe COVID-19. METHODS We designed a multicenter retrospective cohort study in three teaching hospitals of Castilla y León, Spain (865,096 people). We selected patients with confirmed COVID-19 and lung involvement with a pO2/FiO2<300, excluding those exposed to immunosuppressors before or during hospitalization, patients terminally ill at admission, or those who died in the first 24 hours. We performed a propensity score matching (PSM) adjusting covariates that modify the probability of being treated. Then, we used a Cox regression model in the PSM group to consider factors affecting mortality. RESULTS From 2933 patients, 257 fulfilled the inclusion and exclusion criteria. 124 patients were on corticosteroid pulses (250 mg of methylprednisolone for three days), and 133 were not. 30.3% (37/122) of patients died in the corticosteroid pulse group and 42.9% (57/133) in the nonexposed cohort. These differences (12.6%, 95% CI [8·54-16.65]) were statically significant (log-rank 4.72, p = 0, 03). We performed PSM using the exact method. Mortality differences remained in the PSM group (log-rank 5.31, p = 0.021) and were still significant after a Cox regression model (HR for corticosteroid pulses 0.561; p = 0.039). CONCLUSIONS This study provides evidence about treatment with corticosteroid pulses in severe COVID-19 that might significantly reduce mortality. Strict inclusion and exclusion criteria with that selection process set a reliable frame to compare mortality in both the exposed and nonexposed groups.
Collapse
Affiliation(s)
- Ivan Cusacovich
- Internal Medicine Department, Hospital Clínico Universitario de Valladolid, Spain
| | - Álvaro Aparisi
- Cardiology Department, Hospital Clínico Universitario, Valladolid, Spain
| | - Miguel Marcos
- Internal Medicine Department, Hospital Universitario de Salamanca-IBSAL-Universidad de Salamanca, Spain
| | | | | | | | | | - Carlos Dueñas
- Internal Medicine Department, Hospital Clínico Universitario de Valladolid, Spain
| | | | - Beatriz Rodríguez-Alonso
- Internal Medicine Department, Hospital Universitario de Salamanca-IBSAL-Universidad de Salamanca, Spain
| | - José-Ángel Martín-Oterino
- Internal Medicine Department, Hospital Universitario de Salamanca-IBSAL-Universidad de Salamanca, Spain
| | | | - Leticia Moralejo
- Internal Medicine Department, Hospital Universitario de Salamanca-IBSAL-Universidad de Salamanca, Spain
| | - David Andaluz-Ojeda
- Intensive Care Unit Department, Hospital Clínico Universitario de Valladolid, Spain
| | | |
Collapse
|
20
|
Drasler B, Karakocak BB, Tankus EB, Barosova H, Abe J, Sousa de Almeida M, Petri-Fink A, Rothen-Rutishauser B. An Inflamed Human Alveolar Model for Testing the Efficiency of Anti-inflammatory Drugs in vitro. Front Bioeng Biotechnol 2020; 8:987. [PMID: 32974315 PMCID: PMC7471931 DOI: 10.3389/fbioe.2020.00987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
A large number of prevalent lung diseases is associated with tissue inflammation. Clinically, corticosteroid therapies are applied systemically or via inhalation for the treatment of lung inflammation, and a number of novel therapies are being developed that require preclinical testing. In alveoli, macrophages and dendritic cells play a key role in initiating and diminishing pro-inflammatory reactions and, in particular, macrophage plasticity (M1 and M2 phenotypes shifts) has been reported to play a significant role in these reactions. Thus far, no studies with in vitro lung epithelial models have tested the comparison between systemic and direct pulmonary drug delivery. Therefore, the aim of this study was to develop an inflamed human alveolar epithelium model and to test the resolution of LPS-induced inflammation in vitro with a corticosteroid, methylprednisolone (MP). A specific focus of the study was the macrophage phenotype shifts in response to these stimuli. First, human monocyte-derived macrophages were examined for phenotype shifts upon exposure to lipopolysaccharide (LPS), followed by treatment with MP. A multicellular human alveolar model, composed of macrophages, dendritic cells, and epithelial cells, was then employed for the development of inflamed models. The models were used to test the anti-inflammatory potency of MP by monitoring the secretion of pro-inflammatory mediators (interleukin [IL]-8, tumor necrosis factor-α [TNF-α], and IL-1β) through four different approaches, mimicking clinical scenarios of inflammation and treatment. In macrophage monocultures, LPS stimulation shifted the phenotype towards M1, as demonstrated by increased release of IL-8 and TNF-α and altered expression of phenotype-associated surface markers (CD86, CD206). MP treatment of inflamed macrophages reversed the phenotype towards M2. In multicellular models, increased pro-inflammatory reactions after LPS exposure were observed, as demonstrated by protein secretion and gene expression measurements. In all scenarios, among the tested mediators the most pronounced anti-inflammatory effect of MP was observed for IL-8. Our findings demonstrate that our inflamed multicellular human lung model is a promising tool for the evaluation of anti-inflammatory potency of drug candidates in vitro. With the presented setup, our model allows a meaningful comparison of the systemic vs. inhalation administration routes for the evaluation of the efficacy of a drug in vitro.
Collapse
Affiliation(s)
- Barbara Drasler
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Esma Bahar Tankus
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Hana Barosova
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Mauro Sousa de Almeida
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland.,Département de Chimie, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Yang X, Geng J, Meng H. Glucocorticoid receptor modulates dendritic cell function in ulcerative colitis. Histol Histopathol 2020; 35:1379-1389. [PMID: 32706033 DOI: 10.14670/hh-18-241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ulcerative colitis (UC) is a serious form of inflammatory bowel disease (IBD) occurring worldwide. Although anti-TNF therapy is found to be effective in over 70% of patients with UC, nearly one-third are still deprived of effective treatment. Because glucocorticoids (GC) can effectively inhibit granulocyte-recruitment into the mucosa, cytokine secretion and T cell activation, they are used widely in the treatment of UC. However, remission is observed in only 55% of the patients after one year of steroid use due to a condition known as steroid response. Additionally, it has been noted that 20%-40% of the patients with UC do not respond to GC treatment. Researchers have revealed that the number of dendritic cells (DCs) in patients with UC tends to increase in the colonic mucosa. Many studies have determined that the removal of peripheral DCs through the adsorption and separation of granulocytes and monocytes could improve tolerance of the intestine to its symbiotic flora. Based on these results, further insights regarding the beneficial effects of Adacolumn apheresis in patients subjected to this treatment could be revealed. GC can effectively inhibit the activation of DCs by reducing the levels of major histocompatibility complex class II (MHC II) molecules, which is critical for controlling the recruitment of granulocytes. Therefore, alternative biological and new individualized therapies based on these approaches need to be evaluated to counter UC. In this review, progress in research associated with the regulatory effect of glucocorticoid receptors on DCs under conditions of UC is discussed, thus providing insights and identifying potential targets which could be employed in the treatment strategies against UC.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
22
|
Schmidt S, Ebner F, Rosen K, Kniemeyer O, Brakhage AA, Löffler J, Seif M, Springer J, Schlosser J, Scharek-Tedin L, Scheffold A, Bacher P, Kühl AA, Rösler U, Hartmann S. The domestic pig as human-relevant large animal model to study adaptive antifungal immune responses against airborne Aspergillus fumigatus. Eur J Immunol 2020; 50:1712-1728. [PMID: 32558930 DOI: 10.1002/eji.201948524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/16/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023]
Abstract
Pulmonary mucosal immune response is critical for preventing opportunistic Aspergillus fumigatus infections. Although fungus-specific CD4+ T cells in blood are described to reflect the actual host-pathogen interaction status, little is known about Aspergillus-specific pulmonary T-cell responses. Here, we exploit the domestic pig as human-relevant large animal model and introduce antigen-specific T-cell enrichment in pigs to address Aspergillus-specific T cells in the lung compared to peripheral blood. In healthy, environmentally Aspergillus-exposed pigs, the fungus-specific T cells are detectable in blood in similar frequencies as observed in healthy humans and exhibit a Th1 phenotype. Exposing pigs to 106 cfu/m3 conidia induces a long-lasting accumulation of Aspergillus-specific Th1 cells locally in the lung and also systemically. Temporary immunosuppression during Aspergillus-exposure showed a drastic reduction in the lung-infiltrating antifungal T-cell responses more than 2 weeks after abrogation of the suppressive treatment. This was reflected in blood, but to a much lesser extent. In conclusion, by using the human-relevant large animal model the pig, this study highlights that the blood clearly reflects the mucosal fungal-specific T-cell reactivity in environmentally exposed as well as experimentally exposed healthy pigs. But, immunosuppression significantly impacts the mucosal site in contrast to the initial systemic immune response.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Rosen
- Institute for Animal Hygiene and Environmental Health, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Jürgen Löffler
- Department of Microbiology and Molecular Biology, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Michelle Seif
- Department of Microbiology and Molecular Biology, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Jan Springer
- Department of Microbiology and Molecular Biology, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Josephine Schlosser
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lydia Scharek-Tedin
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alexander Scheffold
- Medizinische Klinik & Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Petra Bacher
- Medizinische Klinik & Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Institute for Immunology, Christian-Albrechts-Universität zu Kiel and Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Anja A Kühl
- Institute for Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and Universitätsklinikum Schleswig-Holstein, Kiel, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, iPATH.Berlin, Berlin, Germany
| | - Uwe Rösler
- Institute for Animal Hygiene and Environmental Health, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Srinivasan S, Babensee JE. Controlled Delivery of Immunomodulators from a Biomaterial Scaffold Niche to Induce a Tolerogenic Phenotype in Human Dendritic Cells. ACS Biomater Sci Eng 2020; 6:4062-4076. [DOI: 10.1021/acsbiomaterials.0c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sangeetha Srinivasan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Julia E. Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Adhikaree J, Moreno-Vicente J, Kaur AP, Jackson AM, Patel PM. Resistance Mechanisms and Barriers to Successful Immunotherapy for Treating Glioblastoma. Cells 2020; 9:E263. [PMID: 31973059 PMCID: PMC7072315 DOI: 10.3390/cells9020263] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is inevitably refractory to surgery and chemoradiation. The hope for immunotherapy has yet to be realised in the treatment of GBM. Immune checkpoint blockade antibodies, particularly those targeting the Programme death 1 (PD-1)/PD-1 ligand (PD-L1) pathway, have improved the prognosis in a range of cancers. However, its use in combination with chemoradiation or as monotherapy has proved unsuccessful in treating GBM. This review focuses on our current knowledge of barriers to immunotherapy success in treating GBM, such as diminished pre-existing anti-tumour immunity represented by low levels of PD-L1 expression, low tumour mutational burden and a severely exhausted T-cell tumour infiltrate. Likewise, systemic T-cell immunosuppression is seen driven by tumoural factors and corticosteroid use. Furthermore, unique anatomical differences with primary intracranial tumours such as the blood-brain barrier, the type of antigen-presenting cells and lymphatic drainage contribute to differences in treatment success compared to extracranial tumours. There are, however, shared characteristics with those known in other tumours such as the immunosuppressive tumour microenvironment. We conclude with a summary of ongoing and future immune combination strategies in GBM, which are representative of the next wave in immuno-oncology therapeutics.
Collapse
Affiliation(s)
- Jason Adhikaree
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Julia Moreno-Vicente
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton General Hospital, Southampton, Hants SO16 6YD, UK;
| | - Aanchal Preet Kaur
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Andrew Mark Jackson
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Poulam M. Patel
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| |
Collapse
|
25
|
Yakimchuk K. Mathematical modeling of immune modulation by glucocorticoids. Biosystems 2020; 187:104066. [DOI: 10.1016/j.biosystems.2019.104066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/25/2019] [Indexed: 12/15/2022]
|
26
|
Zaza G, Leventhal J, Signorini L, Gambaro G, Cravedi P. Effects of Antirejection Drugs on Innate Immune Cells After Kidney Transplantation. Front Immunol 2019; 10:2978. [PMID: 31921213 PMCID: PMC6930910 DOI: 10.3389/fimmu.2019.02978] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, our understanding of adaptive immune responses to solid organ transplantation increased considerably and allowed development of immunosuppressive drugs targeting key alloreactive T cells mechanism. As a result, rates of acute rejection dropped and short-term graft survival improved significantly. However, long-term outcomes are still disappointing. Recently, increasing evidence supports that innate immune responses plays roles in allograft rejection and represents a valuable target to further improve long-term allograft survival. Innate immune cells are activated by molecules with stereotypical motifs produced during injury (i.e., damage-associated molecular patterns, DAMPS) or infection (i.e., pathogen-associated molecular patterns, PAMPs). Activated innate immune cells can exert direct pro- and anti-inflammatory effects, while also priming adaptive immune responses. These cells are activated after transplantation by multiple stimuli, including ischemia-reperfusion injury, rejection, and infections. Data from animal models of graft rejection, show that inhibition of innate immunity promotes development of tolerance. Therefore, understanding mechanisms of innate immunity is important to improve graft outcomes. This review discusses effects of currently used immunosuppressive agents on innate immune responses in kidney transplantation.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Jeremy Leventhal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lorenzo Signorini
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Dendritic cells generated in the presence of interferon-α and modulated with dexamethasone as a novel tolerogenic vaccine platform. Inflammopharmacology 2019; 28:311-319. [PMID: 31552546 DOI: 10.1007/s10787-019-00641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Tolerogenic dendritic cells (tDCs) are considered a novel therapeutic tool in treating autoimmune diseases, allergies, and transplantation reactions. Among numerous pharmacological immune modulators, dexamethasone (Dex) is known to induce potent tolerogenicity in DCs generated from human monocytes with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), and these cells (IL-4-DCs/Dex) are being appraised as a tDC-based platform in clinical settings. Interferon-α (IFNα) represents another powerful inducer of monocyte-derived DCs, which possess higher migratory activity and stability. However, the functions of IFN-DCs/Dex have not been sufficiently analyzed and there are no comparative studies of the tolerogenicity of IFN-DCs/Dex and IL-4-DCs/Dex. This study aimed to investigate the properties of IFN-DCs/Dex in comparison with IL-4-DCs/Dex. RESULTS DCs were obtained by cultivation of an adherent fraction of peripheral blood mononuclear cells (MNCs) in the presence of GM-CSF and IFNα or IL-4 with subsequent lipopolysaccharide-driven maturation. Dex (10-6 M) was added to the cultures at day 3. We showed that generation of IFN-DCs with Dex resulted in decrease in percentage of CD83+ and CD86+ DCs and increase in numbers of CD14+, B7-H1+, and Toll-like receptor 2 (TLR2+) DCs. Treatment with Dex downregulated pro-inflammatory cytokine production, reduced DC allostimulatory activity, and inhibited DC capacity to stimulate Th1/pro-inflammatory cytokine production, altogether evidencing the induction of a tolerogenic phenotype. As compared to IL-4-DCs/Dex, IFN-DCs/Dex were characterized by larger proportion of TLR2+ and CD14+ cells, higher production of IL-10 and lower TNFα/IL-10 ratio, more potent capacity to induce T cell anergy, and more efficiently skewed T cell cytokine balance towards Th2/anti-inflammatory profile. CONCLUSIONS The data obtained indicate that potent tDCs could be generated by treating IFN-DCs with dexamethasone. The tolerogenic properties of IFN-DCs/Dex are better than or at least equal to those of the IL-4-DCs/Dex, as assessed by in vitro phenotypic and functional assays, suggesting these cells as a new tolerogenic vaccine platform.
Collapse
|
28
|
Hoppstädter J, Dembek A, Linnenberger R, Dahlem C, Barghash A, Fecher-Trost C, Fuhrmann G, Koch M, Kraegeloh A, Huwer H, Kiemer AK. Toll-Like Receptor 2 Release by Macrophages: An Anti-inflammatory Program Induced by Glucocorticoids and Lipopolysaccharide. Front Immunol 2019; 10:1634. [PMID: 31396208 PMCID: PMC6664002 DOI: 10.3389/fimmu.2019.01634] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are widely prescribed therapeutics for the treatment of inflammatory diseases, and endogenous GCs play a key role in immune regulation. Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, thereby promoting inflammation. The interaction of GCs with macrophages in the immunosuppressive resolution phase upon prolonged TLR activation is widely unknown. Treatment of human alveolar macrophages (AMs) with the synthetic GC dexamethasone (Dex) did not alter the expression of TLRs −1, −4, and −6. In contrast, TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. Furthermore, long-term lipopolysaccharide (LPS) exposure mimicking immunosuppression in the resolution phase of inflammation synergistically increased Dex-mediated TLR2 upregulation. Analyses of publicly available datasets suggested that TLR2 is induced during the resolution phase of inflammatory diseases, i.e., under conditions associated with high endogenous GC production. TLR2 induction did not enhance TLR2 signaling, as indicated by reduced cytokine production after treatment with TLR2 ligands in Dex- and/or LPS-primed AMs. Thus, we hypothesized that the upregulated membrane-bound TLR2 might serve as a precursor for soluble TLR2 (sTLR2), known to antagonize TLR2-dependent cell actions. Supernatants of LPS/Dex-primed macrophages contained sTLR2, as demonstrated by Western blot analysis. Activation of metalloproteinases resulted in enhanced sTLR2 shedding. Additionally, we detected full-length TLR2 and assumed that this might be due to the production of TLR2-containing extracellular vesicles (EVs). EVs from macrophage supernatants were isolated by sequential centrifugation. Both untreated and LPS/Dex-treated cells produced vesicles of various sizes and shapes, as shown by cryo-transmission electron microscopy. These vesicles were identified as the source of full-length TLR2 in macrophage supernatants by Western blot and mass spectrometry. Flow cytometric analysis indicated that TLR2-containing EVs were able to bind the TLR2 ligand Pam3CSK4. In addition, the presence of EVs reduced inflammatory responses in Pam3CSK4-treated endothelial cells and HEK Dual reporter cells, demonstrating that TLR2-EVs can act as decoy receptors. In summary, our data show that sTLR2 and full-length TLR2 are released by macrophages under anti-inflammatory conditions, which may contribute to GC-induced immunosuppression.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Anna Dembek
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Rebecca Linnenberger
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ahmad Barghash
- Department of Computer Science, German Jordanian University, Amman, Jordan
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | | | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
29
|
Kim SH, Moon JH, Jeong SU, Jung HH, Park CS, Hwang BY, Lee CK. Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone. Int J Nanomedicine 2019; 14:5229-5242. [PMID: 31371958 PMCID: PMC6636315 DOI: 10.2147/ijn.s210546] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023] Open
Abstract
Purpose Dexamethasone (Dex) has long been used as a potent immunosuppressive agent in the treatment of inflammatory and autoimmune diseases, despite serious side effects. In the present study, Dex and model antigen ovalbumin (OVA) were encapsulated with poly(lactic-co-glycolic acid) to deliver Dex and OVA preferentially to phagocytic cells, reducing systemic side effects of Dex. The OVA-specific immune tolerance-inducing activity of the nanoparticles (NPs) was examined. Methods Polymeric NPs containing OVA and Dex (NP[OVA+Dex]) were prepared by the water-in-oil-in-water double emulsion solvent evaporation method. The effects of NP[OVA+Dex] on the maturation and function of immature dendritic cells (DCs) were examined in vitro. Furthermore, the OVA-specific immune tolerizing effects of NP[OVA+Dex] were confirmed in mice that were intravenously injected or orally fed with the NPs. Results Immature DCs treated in vitro with NP[OVA+Dex] did not mature into immunogenic DCs but instead were converted into tolerogenic DCs. Furthermore, profoundly suppressed generation of OVA-specific cytotoxic T cells and production of OVA-specific IgG were observed in mice injected with NP[OVA+Dex], whereas regulatory T cells were concomitantly increased. Feeding of mice with NP[OVA+Dex] also induced OVA-specific immune tolerance. Conclusion The present study demonstrates that oral feeding as well as intravenous injection of poly(lactic-co-glycolic acid) NPs encapsulating both antigen and Dex is a useful means of inducing antigen-specific immune tolerance, which is crucial for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Jun-Hyeok Moon
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Seong-Un Jeong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Ho-Hyun Jung
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chan-Su Park
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
30
|
Adhikaree J, Franks HA, Televantos C, Vaghela P, Kaur AP, Walker D, Schmitz M, Jackson AM, Patel PM. Impaired circulating myeloid CD1c+ dendritic cell function in human glioblastoma is restored by p38 inhibition - implications for the next generation of DC vaccines. Oncoimmunology 2019; 8:1593803. [PMID: 31143512 PMCID: PMC6527277 DOI: 10.1080/2162402x.2019.1593803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Current treatments for glioblastoma (GBM) have limited efficacy and significant morbidity and therefore new strategies are urgently needed. Dendritic cells have the power to create anti-tumor immune responses. The greater potency of circulating dendritic cells (DC) over laboratory-generated monocyte-derived DC makes them exciting new immunotherapeutic candidates. To determine the immune status of GBM patients we initially investigated the frequency and function of circulating DC subsets. Furthermore, we tested the therapeutic potential of inhibiting the p38 mitogen-activated protein kinase pathway (p38i) in circulating DC to overcome DC dysfunction. GBM patients (n = 16) had significantly reduced numbers of the major myeloid circulating dendritic cell (cDC2) and plasmacytoid DC vs healthy controls; 1736 vs 4975 (p = 0.028) and 893 vs 2287 cells/mL (P = <0.001) respectively. This inversely correlated with dexamethasone (Dex) dose in a log-linear model, and disease status. Patients' cDC2 were immature with impaired interleukin (IL)-12 secretion, reduced IL-12:IL-10 ratio, and low HLA-DR and CD86 expression. Exposure of healthy donor cDC2 to Dex or GBM cell lysate resulted in a similar low IL-12:IL-10 ratio. Inhibition of p38 restored the IL-12:IL-10 balance in Dex or tumor lysate-conditioned healthy cDC2 and enhanced T-cell proliferation and interferon-gamma (IFNγ) production. Importantly, patient-derived cDC2 showed a similar reversal of DC dysfunction with p38i. This study demonstrates the therapeutic potential of developing the next generation of DC vaccines using enhanced p38i-conditioned cDC2. We will therefore shortly embark on a clinical trial of adoptively transferred, p38 MAPK-inhibited cDC2 in adults with GBM.
Collapse
Affiliation(s)
- Jason Adhikaree
- Division of Cancer and Stem Cells, Host-Tumour Interactions Group, UK
| | - Hester Ann Franks
- Division of Cancer and Stem Cells, Host-Tumour Interactions Group, UK
| | | | - Poonam Vaghela
- Division of Cancer and Stem Cells, Host-Tumour Interactions Group, UK
| | | | - David Walker
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
31
|
Abstract
The goal of this review is to present a concise and critical assessment of the literature related to physiologic responses in cattle that are subjected to transportation. Over two-thirds of US cattle are transported. Understanding trends in circulating physiologic parameters is an important part of mitigating the negative effects of transportation. For the producer, linking these effects after transportation to morbidity outcomes within the first 45 days on feed (i.e. especially development of bovine respiratory disease) is critical. Physiologic parameters in circulation are of primary importance and may have value for prediction of bovine respiratory disease on arrival and for the understanding of disease pathogenesis. The results of our literature survey indicated that post-transportation immune function, increased acute phase proteins, glucocorticoids, and inflammation are a pivotal starting point for understanding disease. These potential biomarkers may have utility in identifying disease for targeted therapeutics so that traditional protocols that rely heavily on metaphylaxis can be avoided. Additional research is needed to develop strategies for physiological marker identification, treatment methods, or predictive behaviors to prevent respiratory disease before and after transport. This review examines the significant deleterious effects of transportation handling and stress, and current immune system translation and non-antimicrobial mitigation strategies.
Collapse
|
32
|
Švajger U, Rožman P. Induction of Tolerogenic Dendritic Cells by Endogenous Biomolecules: An Update. Front Immunol 2018; 9:2482. [PMID: 30416505 PMCID: PMC6212600 DOI: 10.3389/fimmu.2018.02482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The importance of microenvironment on dendritic cell (DC) function and development has been strongly established during the last two decades. Although DCs with general tolerogenic characteristics have been isolated and defined as a particular sub-population, it is predominantly their unequivocal biological plasticity, which allows for unparalleled responsiveness to environmental ques and shaping of their tolerogenic characteristics when interacting with tolerance-inducing biomolecules. Dendritic cells carry receptors for a great number of endogenous factors, which, after ligation, can importantly influence the development of their activation state. For this there is ample evidence merely by observation of DC characteristics isolated from various anatomical niches, e.g., the greater immunosuppressive potential of DCs isolated from intestine compared to conventional blood DCs. Endogenous biomolecules present in these environments most likely play a major role as a determinant of their phenotype and function. In this review, we will concisely summarize in what way various, tolerance-inducing endogenous factors influence DC biology, the development of their particular tolerogenic state and their subsequent actions in context of immune response inhibition and induction of regulatory T cells.
Collapse
Affiliation(s)
- Urban Švajger
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Rožman
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
33
|
A new hypothesis for the pathophysiology of complex regional pain syndrome. Med Hypotheses 2018; 119:41-53. [DOI: 10.1016/j.mehy.2018.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022]
|
34
|
Kröll P, Knoke K, Steiger J, Fabri M. IFN-γ Promotes, but Dexamethasone Dissociates, Toll-Like Receptor 2/1-Induced Host Responses in Human Macrophages. J Invest Dermatol 2018; 139:488-491. [PMID: 30193757 DOI: 10.1016/j.jid.2018.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Philipp Kröll
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Kristin Knoke
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Julia Steiger
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Mario Fabri
- Department of Dermatology, University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Chung C. To do or not to do: A concise update of current clinical controversies in immune checkpoint blockade. J Oncol Pharm Pract 2018; 25:663-673. [PMID: 29996738 DOI: 10.1177/1078155218786365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although programmed death-ligand 1 is currently the best available biomarker for first-line therapy with pembrolizumab for patients with non-small cell lung cancer and is a required companion test approved by the US Food and Drug Administration, programmed death-ligand 1 testing is an option (as a complementary test) for patients treated with nivolumab, atezolizumab, and durvalumab. Programmed death-ligand 1 expression is continuously variable and dynamic in the tumor microenvironment. Due to the complex molecular and cellular interactions involved in immune response, a single biomarker may not be sufficient to predict response to cancer immunotherapy. Integration of multiple tumor, immune response, and genomic parameters is likely to influence the future interpretation of biomarker-based treatment outcomes. This article, in a case-based format, concisely summarizes most up-to-date evidence in answering some commonly seen clinical controversies of cancer immunotherapy, in terms of (i) the predictive value of programmed death-ligand 1 as a biomarker; (ii) whether the use of steroids with checkpoint inhibitors will decrease efficacy of the latter; (iii) selection of patients for cancer immunotherapy based on immune-based response criteria, and (iv) whether the use of influenza vaccine with checkpoint inhibitors is considered safe. Until more robust, long-term prospective clinical data are available, these discussions may serve as a starting point for pharmacists to gain timely and effective management of these realistic issues.
Collapse
Affiliation(s)
- Clement Chung
- Baylor Scott and White Medical Center-College Station, College Station, TX, USA
| |
Collapse
|
36
|
Down-regulation of inflammatory signaling pathways despite up-regulation of Toll-like receptors; the effects of corticosteroid therapy in brain-dead kidney donors, a double-blind, randomized, controlled trial. Mol Immunol 2017; 94:36-44. [PMID: 29253747 DOI: 10.1016/j.molimm.2017.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND The brain death of a potential organ donor induces a systemic inflammatory response, resulting in inferior organ quality and function. Our study aimed to evaluate the effects of methylprednisolone (MPN) therapy on pattern recognition receptor (PRR) signaling in potential brain-dead (BD) kidney donors. MATERIAL AND METHODS To evaluate the effects of MPN therapy on PRR signaling in BD kidney donors we performed a prospective randomized treatment-versus-control study. Fifty-one potential kidney donors were randomly divided into three groups: brain-dead donors (BDDs) who received 15 mg/kg/d of methylprednisolone (group T1, n = 17), BDDs who received 15 mg/kg/d of MPN at the time of filling consent for kidney donation and 100 mg/2 h until kidney harvest (group T2, n = 17), and normal donors as controls n = 17. Gene expression for Toll-like receptors (TLRs) 1-9 and their signaling pathway molecules including MYD88, TRIF, NF-KB1, IRAK, IRF3, and IRF7, as well as the inflammatory cytokines RANTES, IL-1β, TNF-α, IL-6, CXCL8, IL-18, IFN-α, and IFN-β was determined by PCR array. Due to the crucial role of TLRs 2 and 4 in pattern recognition, surface expression of these molecules was analyzed by flow cytometry. Plasma levels of inflammatory cytokines were measured by immunoassay. Finally, serum creatinine and cystatin C were measured in 100 kidney recipients one week and one, three, and six months after transplant. RESULT Polymerase chain reaction (PCR) array gene expression revealed greater expression of TLRs and signaling molecules in group T1 than in the controls. Surface expression of TLRs 2 and 4 were significantly greater in group T2 than in group T1 (P < .05). Plasma concentrations of inflammatory cytokines were significantly greater in group T1 than in controls (P < .05). The recipients that received kidneys from group T1 had significantly higher levels of creatinine and cystatin C than the recipients of kidneys from both group T1 and controls (P<0.05). CONCLUSION Administration of MPN to BDDs at specified periods until kidney harvest resulted in less systemic inflammation in the BDDs and improved renal function in kidney graft recipients compared with common MPN therapy.
Collapse
|
37
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
The Role of Toll-Like Receptors and Vitamin D in Cardiovascular Diseases-A Review. Int J Mol Sci 2017; 18:ijms18112252. [PMID: 29077004 PMCID: PMC5713222 DOI: 10.3390/ijms18112252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Therefore, a better understanding of their pathomechanisms and the subsequent implementation of optimal prophylactic and therapeutic strategies are of utmost importance. A growing body of evidence states that low-grade inflammation is a common feature for most of the cardiovascular diseases in which the contributing factors are the activation of toll-like receptors (TLRs) and vitamin D deficiency. In this article, available data concerning the association of cardiovascular diseases with TLRs and vitamin D status are reviewed, followed by a discussion of new possible approaches to cardiovascular disease management.
Collapse
|
39
|
Chen L, Hasni MS, Jondal M, Yakimchuk K. Modification of anti-tumor immunity by tolerogenic dendritic cells. Autoimmunity 2017; 50:370-376. [PMID: 28675711 DOI: 10.1080/08916934.2017.1344837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunosuppressive functions of glucocorticoids (GC) can be mediated via various mechanisms, including the modulation of dendritic cells (DC). Our study investigates the effects of tolerogenic GC-treated DCs on NK and T cell anti-tumor responses in OT-1/Rag-/- mice, expressing a transgenic TCR in CD8+ T cells. The effects caused by GC-treated DCs were compared to the responses to immunogenic, CpG-activated DCs. The effects of DCs on anti-tumor immune responses were analyzed using the EG7 tumor model, where the tumor cells express the peptide epitope recognized by OT-1 T cells. We observed that immunization with CpG and peptide-treated DCs protected against tumor growth by activation of NK cell response. Also, immunogenic DCs induced the expansion of cytotoxic CD8+OT-1 cells, expressing activation markers CD44 and CD69 and producing IFNγ. In contrast, the peptide and GC-treated DCs in OT-1 mice increased the numbers of immature Mac-1+CD27- NK cells as well as Foxp3+ and IL-10 secreting CD8+OT-1 cells with suppressive properties. We conclude that the generation of tolerogenic DCs is one of many immunosuppressive mechanisms that can be induced by GC. Our study demonstrated that tolerogenic DCs modify anti-tumor immune response by suppressing NK cell activity and stimulating the formation of IL-10-secreting CD8+ Tregs.
Collapse
Affiliation(s)
- Liying Chen
- a Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockhom , Sweden
| | - Mohammad Sharif Hasni
- b Department of Biosciences and Nutrition , Karolinska Institutet , Novum, Huddinge , Sweden
| | - Mikael Jondal
- a Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockhom , Sweden
| | - Konstantin Yakimchuk
- b Department of Biosciences and Nutrition , Karolinska Institutet , Novum, Huddinge , Sweden
| |
Collapse
|
40
|
Su Q, Pfalzgraff A, Weindl G. Cell type-specific regulatory effects of glucocorticoids on cutaneous TLR2 expression and signalling. J Steroid Biochem Mol Biol 2017; 171:201-208. [PMID: 28377308 DOI: 10.1016/j.jsbmb.2017.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022]
Abstract
Glucocorticoids (GCs) induce Toll-like receptor (TLR) 2 expression and synergistically upregulate TLR2 with pro-inflammatory cytokines or bacteria. These paradoxical effects have drawn attention to the inflammatory initiating or promoting effects of GCs, as GC treatment can provoke inflammatory skin diseases. Here, we aimed to investigate the regulatory effects of GCs in human skin cells of different epidermal and dermal layers. We found that Dex induced TLR2 expression mainly in undifferentiated and less in calcium-induced differentiated keratinocytes but not in HaCaT cells or fibroblasts, however, Dex reduced TLR1/6 expression. Stimulation with Dex under inflammatory conditions further increased TLR2 but not TLR1 or TLR6 levels in keratinocytes. Increased ligand-induced interaction of TLR2 with MyD88 and expression of the adaptor protein TRAF6 indicated enhanced TLR2 signalling, whereas TLR2/1 or TLR2/6 signalling was not increased in Dex-pretreated keratinocytes. GC-increased TLR2 expression was negatively regulated by JNK MAPK signalling when stimulated with Propionibacterium acnes. Our results provide novel insights into the molecular mechanisms of glucocorticoid-mediated expression and function of TLR2 in human skin cells and the understanding of the mechanisms of corticosteroid side effects.
Collapse
Affiliation(s)
- Qi Su
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Anja Pfalzgraff
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
41
|
Christodoulides P, Hirata Y, Domínguez-Hüttinger E, Danby SG, Cork MJ, Williams HC, Aihara K, Tanaka RJ. Computational design of treatment strategies for proactive therapy on atopic dermatitis using optimal control theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0285. [PMID: 28507230 PMCID: PMC5434076 DOI: 10.1098/rsta.2016.0285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/24/2023]
Abstract
Atopic dermatitis (AD) is a common chronic skin disease characterized by recurrent skin inflammation and a weak skin barrier, and is known to be a precursor to other allergic diseases such as asthma. AD affects up to 25% of children worldwide and the incidence continues to rise. There is still uncertainty about the optimal treatment strategy in terms of choice of treatment, potency, duration and frequency. This study aims to develop a computational method to design optimal treatment strategies for the clinically recommended 'proactive therapy' for AD. Proactive therapy aims to prevent recurrent flares once the disease has been brought under initial control. Typically, this is done by using an anti-inflammatory treatment such as a potent topical corticosteroid intensively for a few weeks to 'get control', followed by intermittent weekly treatment to suppress subclinical inflammation to 'keep control'. Using a hybrid mathematical model of AD pathogenesis that we recently proposed, we computationally derived the optimal treatment strategies for individual virtual patient cohorts, by recursively solving optimal control problems using a differential evolution algorithm. Our simulation results suggest that such an approach can inform the design of optimal individualized treatment schedules that include application of topical corticosteroids and emollients, based on the disease status of patients observed on their weekly hospital visits. We demonstrate the potential and the gaps of our approach to be applied to clinical settings.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'.
Collapse
Affiliation(s)
| | - Yoshito Hirata
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | | | - Simon G Danby
- School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Michael J Cork
- School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Hywel C Williams
- Centre of Evidence Based Dermatology, University of Nottingham, Nottingham, UK
| | - Kazuyuki Aihara
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
42
|
Funt SA, Rosenberg JE. Systemic, perioperative management of muscle-invasive bladder cancer and future horizons. Nat Rev Clin Oncol 2017; 14:221-234. [PMID: 27874062 PMCID: PMC6054138 DOI: 10.1038/nrclinonc.2016.188] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many patients diagnosed with muscle-invasive bladder cancer (MIBC) will develop distant metastatic disease. Over the past three decades, perioperative cisplatin-based chemotherapy has been investigated for its ability to reduce the number of deaths from bladder cancer. Insufficient evidence is available to fully support the use of such chemotherapy in the adjuvant setting; however, neoadjuvant cisplatin-based combination chemotherapy has become a standard of care for eligible patients based on the improved disease-specific and overall survival demonstrated in two randomized phase III trials, compared with surgery alone. For patients with disease downstaging to non-MIBC at the time of radical cystectomy as a result of neoadjuvant chemotherapy, outcomes are outstanding, with 5-year overall survival of 80-90%. Nevertheless, the inability to define before treatment the patients who will and those who will not achieve such a response has impeded the achievement of better outcomes for patients with MIBC. High-throughput DNA and RNA profiling technologies might help to overcome this barrier and enable a more-personalized approach to the use of cytotoxic neoadjuvant chemotherapy. In the past 2 years, trial results have demonstrated the unprecedented ability of immune- checkpoint blockade to induce durable remissions in patients with metastatic disease that has progressed after chemotherapy; studies are now urgently needed to determine how best to incorporate this powerful therapeutic modality into the care of patients with MIBC. Herein, we review the evolution of chemotherapy and immunotherapy for muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Samuel A Funt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
43
|
Tworek D, Heroux D, O'Byrne SN, Mitchell P, O'Byrne PM, Denburg JA. Toll-like receptor-induced expression of epithelial cytokine receptors on haemopoietic progenitors is altered in allergic asthma. Clin Exp Allergy 2017; 47:900-908. [PMID: 28252235 DOI: 10.1111/cea.12913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/13/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Haemopoietic progenitor cells (HPC) migrate to sites of allergic inflammation where, upon stimulation with epithelial cytokines, they produce Th2 cytokines and differentiate into mature eosinophils and basophils. They also express Toll-like receptors (TLR) involved in antimicrobial responses. OBJECTIVE The objective of this study was to compare TLR expression on peripheral blood HPC and TLR-induced responses, in particular changes in epithelial cytokine receptors, in healthy and asthmatic subjects at baseline and following allergen challenge. METHODS Ten healthy and 11 allergic asthmatic subjects were studied. HPC-enriched cell populations were stimulated with TLR-2, TLR-4 or TLR-9 ligands. TLR expression by circulating HPC and interleukin (IL)-25 (IL-17RB), IL-33 (ST2) and thymic stromal lymphopoietin receptor (TSLPR) expression after TLR ligation were examined by flow cytometry at baseline and, in asthmatics, following allergen challenge. The effects of dexamethasone (Dex) on TLR-induced responses were also assessed. RESULTS Asthmatics had significantly lower circulating HPC expressing TLR-2 and TLR-9 with a similar trend for TLR-4. TLR-4 stimulation of HPC yielded higher numbers of TSLPR+ cells in asthmatics compared with healthy subjects. A similar trend was seen for TLR-9 ligation, an effect further augmented by allergen inhalation. Allergen challenge also enhanced TLR-induced ST2 expression on HPC. Treatment with Dex in vitro increased TLR-4-induced TSLPR expression but had no effect on other epithelial cytokine receptors. CONCLUSIONS AND CLINICAL RELEVANCE These data demonstrate an interaction between allergen and TLR ligand exposure in asthmatics. Allergen inhalation augments the TLR-induced inflammatory response by HPC, possibly leading to increased "in situ haemopoiesis" through up-regulation of TSLPR. These findings show that HPC may be a part of the pro-inflammatory cascade in pathogen-induced asthma exacerbation through their increased responsiveness to TLR stimulation.
Collapse
Affiliation(s)
- D Tworek
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,Department of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - D Heroux
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - S N O'Byrne
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - P Mitchell
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - P M O'Byrne
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - J A Denburg
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Abstract
Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.
Collapse
|
45
|
Moreau A, Alliot-Licht B, Cuturi MC, Blancho G. Tolerogenic dendritic cell therapy in organ transplantation. Transpl Int 2016; 30:754-764. [DOI: 10.1111/tri.12889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/13/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Aurélie Moreau
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| | - Brigitte Alliot-Licht
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| | - Maria-Cristina Cuturi
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| | - Gilles Blancho
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| |
Collapse
|
46
|
Zhou Y, Yu W, Zhong H, Li J, Li H, He F, Zhou J, Tang Y, Yu J, Yu F. Transcriptome analysis reveals that insulin is an immunomodulatory hormone in common carp. FISH & SHELLFISH IMMUNOLOGY 2016; 59:213-219. [PMID: 27742590 DOI: 10.1016/j.fsi.2016.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Common carp (Cyprinus carpio) is a widespread freshwater fish and economically important species in China and other East Asian countries. Recent studies suggest that insulin can alter the expression of immune genes and, thus, can be regarded as an immunomodulatory hormone. To understand the mechanism of the immune response to insulin, we performed a comparative RNA-seq transcriptome analysis using livers from common carp injected with insulin (5 μg/g bodyweight) or saline as a control. After filtering the low-quality reads and removing the adaptors, the clean raw reads were assembled into 60,421 unigenes with mean length of 746.81 bp. Furthermore, 37,107 unigenes were annotated based on homology after blast search in public databases. Differentially expressed genes were identified using the fragments per kb per million fragments method and EdgeR software. In total, 782 differentially expressed genes were found. Thereinto, 444 and 338 genes were upregulated and downregulated, respectively, in the insulin-injected group. A Gene Ontology analysis indicated that these genes were concentrated in glucose metabolism, hormone secretion, andimmune system processes. Moreover, 153 enriched KEGG pathways were associated with the differentially expressed genes, including the Toll-like receptor (TLR) and nuclear factor kappa beta (NF-κB) signaling pathways. Signal transducer and activator of transcription 1 (10.56-fold), TLR3 (0.089-fold), activator protein-1 (0.007-fold), tumor necrosis factor-α (0.139-fold), and macrophage inflammatory protein-1β (0.038-fold) expression were significantly changed after the insulin injection. This study characterized the profile of genes expression response to insulin in common carp liver for the first time and provided new insight into understanding the molecular mechanism of insulin as an immunomodulatory hormone.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Biotechnology and Environmental Science, Changsha University, Changsha 410003, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Wenjuan Yu
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jianlin Li
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongxia Li
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Feng He
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jie Zhou
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yongkai Tang
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Juhua Yu
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Fan Yu
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
47
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
48
|
Chatzopoulou A, Heijmans JPM, Burgerhout E, Oskam N, Spaink HP, Meijer AH, Schaaf MJM. Glucocorticoid-Induced Attenuation of the Inflammatory Response in Zebrafish. Endocrinology 2016; 157:2772-84. [PMID: 27219276 DOI: 10.1210/en.2015-2050] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucocorticoids are steroid hormones that are secreted upon stress. Their effects are mediated by the glucocorticoid receptor, which acts as a transcription factor. Because the antiinflammatory activity of glucocorticoids has been well established, they are widely used clinically to treat many inflammatory and immune-related diseases. However, the exact specificity, mechanisms, and level of regulation of different inflammatory pathways have not been fully elucidated. In the present study, a tail fin amputation assay was used in 3-day-old zebrafish larvae to study the immunomodulatory effects of the synthetic glucocorticoid beclomethasone. First, a transcriptome analysis was performed, which showed that upon amputation mainly immune-related genes are regulated. This regulation was inhibited by beclomethasone for 86% of regulated genes. For two immune-related genes, tlr4bb and alox5ap, the amputation-induced increase was not attenuated by beclomethasone. Alox5ap is involved in eicosanoid biosynthesis, but the increase in leukotriene B4 concentration upon amputation was abolished, and lipoxin A4 levels were unaffected by beclomethasone. Furthermore, we studied the migration of neutrophils and macrophages toward the wound site. Our results show that amputation induced migration of both types of leukocytes and that this migration was dependent on de novo protein synthesis. Beclomethasone treatment attenuated the migratory behavior of neutrophils in a glucocorticoid receptor-dependent manner but left the migration of macrophages unaffected. In conclusion, beclomethasone has a dramatic inhibitory effect on the amputation-induced proinflammatory gene regulation, and this is reflected in an inhibition of the neutrophil migration but not the migration of macrophages, which are likely to be involved in inflammation resolution.
Collapse
Affiliation(s)
| | | | - Erik Burgerhout
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Nienke Oskam
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | | | - Marcel J M Schaaf
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| |
Collapse
|
49
|
Arellano-Orden E, Calero-Acuña C, Moreno-Mata N, Gómez-Izquierdo L, Sánchez-López V, López-Ramírez C, Tobar D, López-Villalobos JL, Gutiérrez C, Blanco-Orozco A, López-Campos JL. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells. PLoS One 2016; 11:e0152737. [PMID: 27058955 PMCID: PMC4825972 DOI: 10.1371/journal.pone.0152737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Conflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer. MATERIALS AND METHODS A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes-including BDCA1-positive myeloid DCs (mDCs), BDCA3-positive mDCs, and plasmacytoid DCs (pDCs)-and determine their maturation markers (CD40, CD80, CD83, and CD86) in all participants. We also identified follicular DCs (fDCs), Langerhans DCs (LDCs), and pDCs in 42 patients by immunohistochemistry. RESULTS COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects. CONCLUSIONS Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.
Collapse
Affiliation(s)
- Elena Arellano-Orden
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
- * E-mail:
| | - Carmen Calero-Acuña
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Nicolás Moreno-Mata
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Gómez-Izquierdo
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Verónica Sánchez-López
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Cecilia López-Ramírez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Daniela Tobar
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - José Luis López-Villalobos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cesar Gutiérrez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Ana Blanco-Orozco
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - José Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
Bernal CE, Zorro MM, Sierra J, Gilchrist K, Botero JH, Baena A, Ramirez-Pineda JR. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism. Front Cell Infect Microbiol 2016; 6:4. [PMID: 26870700 PMCID: PMC4735406 DOI: 10.3389/fcimb.2016.00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.
Collapse
Affiliation(s)
- Carmen E Bernal
- Grupo Inmunomodulación, Universidad de AntioquiaMedellín, Colombia; Grupo de Parasitología, Universidad de AntioquiaMedellín, Colombia
| | - Maria M Zorro
- Grupo Inmunomodulación, Universidad de Antioquia Medellín, Colombia
| | - Jelver Sierra
- Grupo Inmunomodulación, Universidad de Antioquia Medellín, Colombia
| | | | - Jorge H Botero
- Grupo de Parasitología, Universidad de Antioquia Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética, Universidad de AntioquiaMedellín, Colombia; Departamento de Microbiología y Parasitología, Universidad de AntioquiaMedellín, Colombia
| | - Jose R Ramirez-Pineda
- Grupo Inmunomodulación, Universidad de AntioquiaMedellín, Colombia; Corporación Académica para el Estudio de Patologías Tropicales, Facultad de Medicina, Universidad de AntioquiaMedellín, Colombia
| |
Collapse
|