1
|
Hatakeyama J, Nakamura K, Kanda N, Kawauchi A, Fujitani S, Oshima T, Kato H, Ota K, Kamijo H, Asahi T, Muto Y, Hori M, Iba A, Hosozawa M, Iso H. Long-term functional prognosis with tocilizumab in severe COVID-19 infection: A multicenter prospective observational study on mechanically ventilated ICU patients in the COVID-19 recovery study II. J Infect Chemother 2025; 31:102708. [PMID: 40250803 DOI: 10.1016/j.jiac.2025.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Tocilizumab, an IL-6 receptor antagonist, may prevent functional impairments in critically ill patients by attenuating the cytokine storm. This study investigated a potential effect of tocilizumab on preventing functional impairments in patients with severe coronavirus infection 2019 (COVID-19). METHODS In a multicenter prospective observational study, patients with COVID-19 ≥ 20 years requiring mechanical ventilation admitted to the intensive care unit between April 2021 and September 2021 and discharged alive were followed for one year. A self-administered questionnaire on sequelae and functional impairments was mailed in August 2022, and data were collected. A multivariate logistic regression was used to assess the impact of tocilizumab on physical function, mental health, and Long COVID. RESULTS Of 157 analyzed patients, 41 received tocilizumab. The tocilizumab group had more severe illness, but a lower prevalence of physical impairment (17.1 % vs. 23.3 %, p = 0.41) and mental disorders (19.5 % vs. 39.7 %, p = 0.009) than the non-tocilizumab group. The prevalence of Long COVID was higher in the tocilizumab group (92.7 % vs. 80.2 %, p = 0.06), whereas fatigue/malaise was significantly lower (19.5 % vs. 37.1 %, p = 0.039). Adjusted odds ratios (95 % confidence interval) for physical impairment, mental disorders, and Long COVID with tocilizumab were 0.70 (0.2-2.1), 0.40 (0.16-1.01), and 2.94 (0.7-12.3), respectively, with no significant difference. CONCLUSIONS Tocilizumab was associated with a lower prevalence of physical impairment and mental disorders at 1 year in patients with severe COVID-19. Furthermore, Long COVID had a weaker impact on physical and cognitive functions.
Collapse
Affiliation(s)
- Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kensuke Nakamura
- Department of Critical Care Medicine, Yokohama City University Hospital, Kanagawa, Japan; Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Ibaraki, Japan.
| | - Naoki Kanda
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Ibaraki, Japan; Division of General Internal Medicine, Jichi Medical University Hospital, Tochigi, Japan
| | - Akira Kawauchi
- Department of Critical Care and Emergency Medicine, Japanese Red Cross Maebashi Hospital, Gunma, Japan
| | - Shigeki Fujitani
- Department of Emergency Medicine and Critical Care Medicine, St. Marianna University, Kanagawa, Japan
| | - Taku Oshima
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Kanagawa, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroshi Kamijo
- Department of Emergency and Critical Care Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Tomohiro Asahi
- Department of Cardiology, Naha City Hospital, Okinawa, Japan
| | - Yoko Muto
- Institute for Global Health Policy Research, Bureau of Global Health Cooperation, Japan Institute for Health Security, Tokyo, Japan
| | - Miyuki Hori
- Institute for Global Health Policy Research, Bureau of Global Health Cooperation, Japan Institute for Health Security, Tokyo, Japan
| | - Arisa Iba
- Institute for Global Health Policy Research, Bureau of Global Health Cooperation, Japan Institute for Health Security, Tokyo, Japan
| | - Mariko Hosozawa
- Institute for Global Health Policy Research, Bureau of Global Health Cooperation, Japan Institute for Health Security, Tokyo, Japan
| | - Hiroyasu Iso
- Institute for Global Health Policy Research, Bureau of Global Health Cooperation, Japan Institute for Health Security, Tokyo, Japan
| |
Collapse
|
2
|
Yang H, Zheng Y, Yu T, Wu B, Liu Z, Liu S, Sun X, Zhou L. A functional role for myostatin in muscle hyperplasia and hypertrophy revealed by comparative transcriptomics in Yesso scallop Patinopecten yessoensis. Int J Biol Macromol 2025; 307:142308. [PMID: 40118415 DOI: 10.1016/j.ijbiomac.2025.142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Elucidating the molecular regulatory mechanisms underlying muscle growth and development is of profound significance in aquaculture. Yesso scallop is a cold-water bivalve of considerable economic importance, having its primary edible component of adductor muscle. In this study, comparative transcriptomics and histological analysis at different sampling times after Myostatin (MSTN) interference were performed to identify the potential candidate genes potentially involved in muscle growth and development. The comparative transcriptomics revealed that growth factors and cytokines, extracellular matrix proteins and ubiquitin-proteasome system are potentially involved in muscle hypertrophy and hyperplasia. After MSTN interference, striated adductor muscle displays significant muscle hypertrophy (51.77 % increase on day 7 and 59.83 % increase on day 21) and muscle hyperplasia (59.36 % increase on day 7 and 61.83 % increase on day 21). WGCNA identifies the key darkolivegreen module, which may play crucial roles in muscle hyperplasia and hypertrophy within the striated muscle of the scallop. Five key transcription factors (zf-CCCH, zf-C2H2, PPP1R10, LRRFIP2, and Gon4) are identified by analyzing the co-expression patterns of core genes within the module. These findings will aid in understanding the regulatory mechanisms of muscle growth in scallops and provide a basis for genetic improvement in shellfish aquaculture.
Collapse
Affiliation(s)
- Hongsu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China; Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Xie Q, Mao L, Xiong N, Cheng Q, Tang W, Li C, Zeng C, Liu Z, Mao L. EPA but not DHA prevents lipid metabolism disorders by regulating myogenic IL-6 in high-fat fed mice. J Nutr Biochem 2025; 139:109815. [PMID: 39662638 DOI: 10.1016/j.jnutbio.2024.109815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Lipid metabolism disorder serve as a critical starting point for the development of chronic non-communicable diseases (NCDs). Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) are known for their lipid-lowering properties, but few studies have revealed their differences from the perspective of skeletal muscle endocrinology. Myogenic IL-6 has garnered significant attention for its role in energy distribution. The primary aim of this study was to investigate the effects and mechanisms of EPA and DHA on myogenic IL-6 and lipid metabolism disorders in mice, and to clarify the association between the alleviation of lipid metabolism disorders and myogenic IL-6 mediated by EPA/DHA. We found that EPA and DHA not only prevented high-fat diet-induced lipid metabolism disorders, but also up-regulated the expression of myogenic IL-6 by activating TRPV1/Ca2+ signaling in skeletal muscle. However, the lipid metabolism prevention effect mediated by EPA was weakened after knockout gene of myogenic IL-6, with its body weight and body fat increased and a large amounts of lipid deposited in the blood, liver, and adipocytes. Meanwhile, there no significantly differences of AMPK/STAT3 signaling in adipose tissue between groups after knockout gene of myogenic IL-6. Based on the results above, we concluded that EPA and DHA can stimulate the production of myogenic IL-6 through TRPV1/Ca2+ signaling in skeletal muscle. The prevention effect of lipid metabolism disorders by EPA, but not DHA, relies on myogenic IL-6, with the underlying mechanism may involving the enhancement of AMPK/STAT3 signaling mediated by myogenic IL-6 in adipose tissues.
Collapse
Affiliation(s)
- Qunying Xie
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ning Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiting Cheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ci Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chongxiang Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhilin Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Curovic I. The role of resistance exercise-induced local metabolic stress in mediating systemic health and functional adaptations: could condensed training volume unlock greater benefits beyond time efficiency? Front Physiol 2025; 16:1549609. [PMID: 40313877 PMCID: PMC12045103 DOI: 10.3389/fphys.2025.1549609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
The majority of "specialised" exercise configurations (e.g., supersets, drop sets, blood flow restriction) are being assessed as "shortcuts" to hypertrophy and strength improvements. However, these advanced training techniques may also offer significant benefits for systemic health and functional outcomes across recreational and clinical populations via locally induced metabolic responses. Stress-regulating mechanisms are known to enhance the body's resilience by facilitating allostasis, the process of coordinating adaptive processes in reaction to stressors such as physical training. Yet, the role of the local metabolic stress provoked by resistance exercise has not gained much research attention despite its wide potential. Positive effects are not only linked to improved muscular endurance, hypertrophy and strength via primary and secondary mechanisms, but also to the release of myokines, hormones, microRNAs, immune factors, inflammatory substances and other endocrine molecules that initiate numerous health-promoting modifications on a systemic level. Resistance exercise strategies that maximise the local accumulation of metabolites are not well defined, although high volume, close proximity to failure and shorter rests seem to be a necessity. Additionally, blood flow restriction training provides a potent alternative for inducing local acidosis, thereby triggering several pathways associated with improved immunity and physical function even in remote muscle tissues. Future research is warranted to further explore advanced resistance training techniques, as these approaches may offer comparable benefits for physical and mental health to those seen with other forms of exercise such as high-intensity interval training and heavy resistance training.
Collapse
Affiliation(s)
- Ivan Curovic
- Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
5
|
Odria R, Cardús A, Gomis-Coloma C, Balanyà-Segura M, Mercado-Amarilla A, Maestre-Mora P, Poveda-Sabuco A, Domingo JC, Nogales-Gadea G, Gomez-Sanchez JA, Hurtado E, Suelves M. HDAC11 deficiency regulates age-related muscle decline and sarcopenia. GeroScience 2025:10.1007/s11357-025-01611-y. [PMID: 40220154 DOI: 10.1007/s11357-025-01611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/09/2025] [Indexed: 04/14/2025] Open
Abstract
Sarcopenia, defined as the progressive loss of skeletal muscle mass and function associated with ageing, has devastating effects in terms of reducing the quality of life of older people. Muscle ageing is characterised by muscle atrophy and decreased capacity for muscle repair, including a reduction in the muscle stem cell pool that impedes recovery after injury. Histone deacetylase 11 (HDAC11) is the newest member of the HDAC family and it is highly expressed in skeletal muscle. Our group recently showed that genetic deficiency in HDAC11 increases skeletal muscle regeneration, mitochondrial function and globally improves muscle performance in young mice. Here, we explore for the first time the functional consequences of HDAC11 deficiency in old mice, in homeostasis and during muscle regeneration. Aged mice lacking HDAC11 show attenuated muscle atrophy and postsynaptic fragmentation of the neuromuscular junction, but no significant differences in the number or diameter of myelinated axons of peripheral nerves. Maintenance of the muscle stem cell reservoir and advanced skeletal muscle regeneration after injury are also observed. HDAC11 depletion enhances mitochondrial fatty acid oxidation and attenuates age-associated alterations in skeletal muscle fatty acid composition, reducing drastically the omega-6/omega-3 fatty acid ratio and improving significantly the omega-3 index, providing an explanation for improved muscle strength and fatigue resistance and decreased mortality. Taken together, our results point to HDAC11 as a new target for the treatment of sarcopenia. Importantly, selective HDAC11 inhibitors have recently been developed that could offer a new therapeutic approach to slow the ageing process.
Collapse
Affiliation(s)
- Renato Odria
- Grup de Recerca en Malaties Neuromusculars de Badalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona, 08007, Barcelona, Spain
| | - Aina Cardús
- Grup de Recerca en Malaties Neuromusculars de Badalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
| | - Clara Gomis-Coloma
- Universidad Católica de Valencia San Vicente Mártir, 46001, Valencia, Spain
| | - Marta Balanyà-Segura
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, 43201, Reus, Spain
| | - Alexandra Mercado-Amarilla
- Grup de Recerca en Malaties Neuromusculars de Badalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
| | - Pau Maestre-Mora
- Grup de Recerca en Malaties Neuromusculars de Badalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
| | - Andrea Poveda-Sabuco
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010, Alicante, Spain
| | - Joan Carles Domingo
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gisela Nogales-Gadea
- Grup de Recerca en Malaties Neuromusculars de Badalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010, Alicante, Spain
- Instituto de Neurociencias de Alicante UMH-CSIC, 03550, San Juan de Alicante, Spain
| | - Erica Hurtado
- Grup de Recerca en Malaties Neuromusculars de Badalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain.
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, 43201, Reus, Spain.
| | - Mònica Suelves
- Grup de Recerca en Malaties Neuromusculars de Badalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916, Badalona, Spain.
| |
Collapse
|
6
|
Otsuka T, Yamagata K, Nguyen MP, Ngo UT, Sakai H, Trimova G, Anan J, Okada Y, Nakayamada S, Tanaka Y. Critical roles of IL-6 signaling in myoblast differentiation of human adipose-derived mesenchymal stem cells. Inflamm Regen 2025; 45:9. [PMID: 40211386 PMCID: PMC11983861 DOI: 10.1186/s41232-025-00373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/15/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Ectopic fat is also formed in muscles as well as the liver, where adipose-derived mesenchymal stem cells (ADSCs) promote adipogenesis. On the other hand, after muscle injury, muscle satellite cells (SCs) contribute to muscle repair through myodifferentiation. Human ADSCs are multipotent stem cells, but it remains unclear whether they are involved in myoblast differentiation. The aim is to find a novel myogenic cytokine and its signaling pathway that promotes the differentiation of human ADSCs-a potential source of new muscle precursor cells-into myoblasts. METHODS An array kit was used to detect cytokines produced by ADSCs. After treating ADSCs with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-aza-C) and different JAK inhibitors, MyHC1, a myodifferentiation marker, was detected by immunofluorescence staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression status of signaling molecules was determined by Western blotting and the recruitment of transcription factors to the MYOG promoter by chromatin immunoprecipitation (ChIP). RESULTS IL-6 was detected at high concentrations in the culture supernatant of ADSCs. ADSCs stimulated with 5-aza-C became strongly positive for MyHC1 on day 21 post-stimulation. When co-stimulated with 5-aza-C and IL-6/sIL-6R, ADSCs became positive for MyHC1 protein and upregulated MYOG mRNA as early as day 14 post-stimulation. Co-stimulation with 5-aza-C and IL-6/sIL-6R resulted in phosphorylation of STAT1 and STAT3. The addition of a JAK2 inhibitor, but not JAK1/3 inhibitors, abolished the MyHC1 positivity and phosphorylation of STAT1 and STAT3. Co-stimulation with 5-aza-C and IL-6/sIL-6R during the myogenesis process resulted in the recruitment of STAT1, but not STAT3, to the MYOG promoter. Myoblast differentiation induced by stimulation with 5-aza-C was enhanced by activation of the IL-6/JAK2/STAT1/MYOG pathway. CONCLUSIONS Therefore, sustained IL-6/JAK2/STAT1 activation may serve as an important driver of human ADSC differentiation into myoblast, suggesting an important candidate signaling pathway for ameliorating muscle atrophy.
Collapse
Affiliation(s)
- Takashi Otsuka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kaoru Yamagata
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mai-Phuong Nguyen
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Uyen Thi Ngo
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidenori Sakai
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Gulzhan Trimova
- Department of Internal Medicine, High School of Medicine, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty, 050040, Kazakhstan
| | - Junpei Anan
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa, Japan
| | - Yosuke Okada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
7
|
Stragier S, Duchateau J, Cotton F, Smet J, Wolff F, Tresnie J, Carpentier A. Effect of Metabolic Stress to High-Load Exercise on Muscle Damage, Inflammatory and Hormonal Responses. Sports (Basel) 2025; 13:111. [PMID: 40278737 PMCID: PMC12031578 DOI: 10.3390/sports13040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
To assess the impact of metabolic stress on blood lactate, muscle damage, inflammatory and hormonal responses following a high-load (70% maximum) strength training session, we compared two methods with a similar number of repetitions but that differed by their metabolic demand: the 3/7 method consisting in two series of five sets of an increasing number of repetitions (3 to 7) with a short inter-set interval (15 s) and the 8 × 6 method that comprises eight sets of six repetitions with a longer inter-set interval (2.5 min). Blood concentrations in lactate, creatine kinase (CK), myoglobin (MB), interleukine-6 (IL-6), leukocytes, growth hormone (GH), insulin-like growth factor-1 (IGF-1) and cortisol were determined before and after each session. Lactate concentration increased more (11.9 vs. 3.1 mmol/L; p < 0.001) for the 3/7 method whereas CK and MB concentrations were augmented similarly (p > 0.05) for both methods. Inflammatory markers (leukocytes and IL-6) increased (p < 0.01) more after the 3/7 method. GH and cortisol concentrations also increased more (p < 0.001) after the 3/7 method with no difference in IGF-1 concentrations between methods. Positive associations were found between the change in lactate and changes in IL-6 (r2 = 0.47; p < 0.01), GH (r2 = 0.58; p < 0.001) and cortisol (r2 = 0.61; p < 0.001) concentrations. In conclusion, the greater lactate accumulation induced by short inter-set intervals during a high-load training session is associated with enhanced inflammatory and hormonal responses, suggesting that metabolic stress might contribute to the greater adaptative response previously observed with this method.
Collapse
Affiliation(s)
- Séverine Stragier
- Research Unit in Cardio-Respiratory Physiology, Exercise & Nutrition, Faculty of Human Movement Sciences, Université libre de Bruxelles, 1070 Brussels, Belgium;
- Laboratory of Applied Biology and Neurophysiology, Faculty of Human Movement Sciences, Université libre de Bruxelles, 1070 Brussels, Belgium;
| | - Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, Faculty of Human Movement Sciences, Université libre de Bruxelles, 1070 Brussels, Belgium;
| | - Frédéric Cotton
- Laboratoire Hospitalier Universitaire de Bruxelles, Clinical Chemistry, Université libre de Bruxelles, 1070 Brussels, Belgium; (F.C.); (F.W.)
| | - Julie Smet
- Laboratoire Hospitalier Universitaire de Bruxelles, Immunology, Université libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (J.T.)
| | - Fleur Wolff
- Laboratoire Hospitalier Universitaire de Bruxelles, Clinical Chemistry, Université libre de Bruxelles, 1070 Brussels, Belgium; (F.C.); (F.W.)
| | - Jérémy Tresnie
- Laboratoire Hospitalier Universitaire de Bruxelles, Immunology, Université libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (J.T.)
| | - Alain Carpentier
- Research Unit in Cardio-Respiratory Physiology, Exercise & Nutrition, Faculty of Human Movement Sciences, Université libre de Bruxelles, 1070 Brussels, Belgium;
| |
Collapse
|
8
|
Kračun D, Görlach A, Snedeker JG, Buschmann J. Reactive oxygen species in tendon injury and repair. Redox Biol 2025; 81:103568. [PMID: 40023978 PMCID: PMC11915165 DOI: 10.1016/j.redox.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Reactive oxygen species (ROS) are chemical moieties that in physiological concentrations serve as fast-acting signaling molecules important for cellular homeostasis. However, their excess either due to overproduction or inability of the antioxidant system to inactivate them results in oxidative stress, contributing to cellular dysfunction and tissue damage. In tendons, which are hypovascular, hypocellular, and composed predominantly of extracellular matrix (ECM), particularly collagen I, ROS likely play a dual role: regulating cellular processes such as inflammation, proliferation, and ECM remodeling under physiological conditions, while contributing to tendinopathy and impaired healing when dysregulated. This review explores the sources of ROS in tendons, including NADPH oxidases and mitochondria, and their role in key processes such as tissue adaptation to mechanical load and injury repair, also in systemic conditions such as diabetes. In addition, we integrate the emerging perspective that calcium signaling-mediated by mechanically activated ion channels-plays a central role in tendon mechanotransduction under daily mechanical loads. We propose that mechanical overuse (overload) may lead to hyperactivation of calcium channels, resulting in chronically elevated intracellular calcium levels that amplify ROS production and oxidative stress. Although direct evidence linking calcium channel hyperactivity, intracellular calcium dysregulation, and ROS generation under overload conditions is currently circumstantial, this review aims to highlight these connections and identify them as critical avenues for future research. By framing ROS within the context of both adaptive and maladaptive responses to mechanical load, this review provides a comprehensive synthesis of redox biology in tendon injury and repair, paving the way for future work, including development of therapeutic strategies targeting ROS and calcium signaling to enhance tendon recovery and resilience.
Collapse
Affiliation(s)
- Damir Kračun
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland; University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich, TUM University Hospital, Technical University of Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
9
|
Orioli L, Thissen JP. Myokines as potential mediators of changes in glucose homeostasis and muscle mass after bariatric surgery. Front Endocrinol (Lausanne) 2025; 16:1554617. [PMID: 40171198 PMCID: PMC11958187 DOI: 10.3389/fendo.2025.1554617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Myokines are bioactive peptides released by skeletal muscle. Myokines exert auto-, para-, or endocrine effects, enabling them to regulate many aspects of metabolism in various tissues. However, the contribution of myokines to the dramatic changes in glucose homeostasis and muscle mass induced by bariatric surgery has not been established. Our review highlights that myokines such as brain-derived neurotrophic factor (BDNF), meteorin-like protein (Metrnl), secreted protein acidic and rich in cysteine (SPARC), apelin (APLN) and myostatin (MSTN) may mediate changes in glucose homeostasis and muscle mass after bariatric surgery. Our review also identifies myonectin as an interesting candidate for future studies, as this myokine may regulate lipid metabolism and muscle mass after bariatric surgery. These myokines may provide novel therapeutic targets and biomarkers for obesity, type 2 diabetes and sarcopenia.
Collapse
Affiliation(s)
- Laura Orioli
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
10
|
Zhong P, Li X, Li J. Mechanisms, assessment, and exercise interventions for skeletal muscle dysfunction post-chemotherapy in breast cancer: from inflammation factors to clinical practice. Front Oncol 2025; 15:1551561. [PMID: 40104495 PMCID: PMC11913840 DOI: 10.3389/fonc.2025.1551561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Chemotherapy remains a central component of breast cancer treatment, significantly improving patient survival rates. However, its toxic side effects, along with cancer-related paraneoplastic syndromes, can lead to the loss of skeletal muscle mass and function, impairing physical abilities and increasing the risk of complications during treatment. Chemotherapeutic agents directly impact skeletal muscle cells by promoting protein degradation, inhibiting protein synthesis, and triggering systemic inflammation, all of which contribute to muscle atrophy. Additionally, these drugs can interfere with the proliferation and differentiation of stem cells, such as satellite cells, disrupting muscle regeneration and repair while inducing abnormal differentiation of intermuscular tissue, thereby worsening muscle wasting. These effects not only reduce the effectiveness of chemotherapy but also negatively affect patients' quality of life and disease prognosis. Recent studies have emphasized the role of exercise as an effective non-pharmacological strategy for preventing muscle loss and preserving muscle mass in cancer patients. This review examines the clinical manifestations of muscle dysfunction following breast cancer chemotherapy, the potential mechanisms underlying these changes, and the evidence supporting exercise as a therapeutic approach for improving muscle function.
Collapse
Affiliation(s)
- Pei Zhong
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xizhuang Li
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Stauber T, Moschini G, Hussien AA, Jaeger PK, De Bock K, Snedeker JG. Il-6 signaling exacerbates hallmarks of chronic tendon disease by stimulating reparative fibroblasts. eLife 2025; 12:RP87092. [PMID: 39918402 PMCID: PMC11805502 DOI: 10.7554/elife.87092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Tendinopathies are debilitating diseases currently increasing in prevalence and associated costs. There is a need to deepen our understanding of the underlying cell signaling pathways to unlock effective treatments. In this work, we screen cell signaling pathways in human tendinopathies and find positively enriched IL-6/JAK/STAT signaling alongside signatures of cell populations typically activated by IL-6 in other tissues. In human tendinopathic tendons, we also confirm the strong presence and co-localization of IL-6, IL-6R, and CD90, an established marker of reparative fibroblasts. To dissect the underlying causalities, we combine IL-6 knock-out mice with an explant-based assembloid model of tendon damage to successfully connect IL-6 signaling to reparative fibroblast activation and recruitment. Vice versa, we show that these reparative fibroblasts promote the development of tendinopathy hallmarks in the damaged explant upon IL-6 activation. We conclude that IL-6 activates tendon fibroblast populations which then initiate and deteriorate tendinopathy hallmarks.
Collapse
Affiliation(s)
- Tino Stauber
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Greta Moschini
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
- Laboratory of Exercise and Health Department of Health Sciences and Technology (D-HEST) ETH Zurich, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Amro A Hussien
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Patrick Klaus Jaeger
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health Department of Health Sciences and Technology (D-HEST) ETH Zurich, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Jess G Snedeker
- Laboratory for Orthopedic Biomechanics, University Hospital Balgrist and ETH ZurichZurichSwitzerland
| |
Collapse
|
12
|
Cheng Y, Lin S, Cao Z, Yu R, Fan Y, Chen J. The role of chronic low-grade inflammation in the development of sarcopenia: Advances in molecular mechanisms. Int Immunopharmacol 2025; 147:114056. [PMID: 39799736 DOI: 10.1016/j.intimp.2025.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
With the exacerbation of global population aging, sarcopenia has become an increasingly recognized public health issue. Sarcopenia, characterized by a progressive decline in skeletal muscle mass, strength, and function, significantly impacts the quality of life in the elderly. Herein, we explore the role of chroniclow-gradeinflammation in the development of sarcopenia and its underlying molecular mechanisms, including chronic inflammation-associated signaling pathways, immunosenescence, obesity and lipid infiltration, gut microbiota dysbiosis and intestinal barrier disruption, and the decline of satellite cells. The interplay and interaction of these molecular mechanisms provide new perspectives on the complexity of the pathogenesis of sarcopenia and offer a theoretical foundation for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Shangjin Lin
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| |
Collapse
|
13
|
Nery NM, Ferreira E Ferreira AA, Santana HM, Serrath SN, Reis VP, Paloschi MV, Silva MDS, Magalhães JGS, Cruz LF, Shibayama TY, Setubal SS, Zuliani JP. Bone marrow-derived dendritic cells play a role in attenuating inflammation on Bothrops jararacussu venom muscle damage. J Biotechnol 2025; 398:29-40. [PMID: 39615791 DOI: 10.1016/j.jbiotec.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
The immune system is regulated by dendritic cells (DCs), which are highly specialized cells for presenting antigens. They are thought of as natural sentinels that start the immune response triggered by naive T cells against invasive infections. DCs participate in the initial stage of muscle damage in conjunction with monocytes, macrophages, and myogenic cells. The goal of this study was to determine whether DCs might mitigate tissue damage and aid in the regeneration of the gastrocnemius muscle following envenomation with Bothrops jararacussu venom (BjV). Mature bone marrow dendritic cells (BMDCs) were used to treat mice in an experimental envenomation model with BjV by activation with lipopolysaccharide (LPS). BMDCs were injected into the gastrocnemius muscle at the same site of the BjV injury, in a single dose, 3 h after envenomation, and envenoming effects were observed at different periods for 7 days. In both untreated (NT) and treated (T) groups tissue necrosis, leukocyte influx, and hemorrhage at the injury site were observed. Results showed an increase in serum and tissue CK as well as IL-6, TNF-α, and IL-1β release in the first hours after envenoming. In contrast, after treatment with BMDCs results obtained demonstrated an attenuated local effect with a small leukocyte influx, decreased or non-existent necrosis and hemorrhage, as well as a reduction in both serum and tissue CK levels as well as cytokine release and, consequently, the onset of a moderate regenerative process. The present study's findings concluded that BjV causes a severe inflammatory reaction at the site of injury and that treating envenoming with BMDCs in the muscle was crucial for minimizing damage to the muscle and the inflammatory reaction and promoting the early onset of the tissue repair process.
Collapse
Affiliation(s)
- N M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - A A Ferreira E Ferreira
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - H M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - S N Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - V P Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - M V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - M D S Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - J G S Magalhães
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - L F Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - T Y Shibayama
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - S S Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - J P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
14
|
Lokwani R, Fertil D, Hartigan DR, Josyula A, Ngo TB, Sadtler K. Eosinophils Respond to Extracellular Matrix Treated Muscle Injuries but are Not Required for Macrophage Polarization. Adv Healthc Mater 2025; 14:e2400134. [PMID: 39072935 PMCID: PMC11834370 DOI: 10.1002/adhm.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/10/2024] [Indexed: 07/30/2024]
Abstract
The immune response to decellularized extracellular matrix (ECM) muscle injury is characterized by Th2 T cells, Tregs, M2-like macrophages, and an abundance of eosinophils. Eosinophils have previously been described as mediators of muscle regeneration but inhibit skin wound healing. In addition to response to wounding, a large number of eosinophils respond to biomaterial-treated muscle injury, specifically in response to decellularized ECM. ECM treatment of muscle wounds has been associated with positive outcomes in tissue regeneration, but the detailed mechanisms of action are still being evaluated. Here, this work investigates the role of these eosinophils in terms of their immunologic phenotype and subsequent effect on the local tissue microenvironment. These cells have a mixed phenotype showing both type-2 and regulatory gene upregulation and but are not required for macrophage polarization. Beyond the local tissue, ECM treatment is seen to induce a transient flux of eosinophils to the lungs but prevented a trauma-associated neutrophilia in the lungs of injured mice. This work believes this local and systemic immunomodulation contributes to the regenerative effects of the material and such distal tissue effects should be considered in therapeutic design and implementation.
Collapse
Affiliation(s)
- Ravi Lokwani
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Daphna Fertil
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Devon R. Hartigan
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Aditya Josyula
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Tran B. Ngo
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Kaitlyn Sadtler
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
15
|
Lee CW, Wang BYH, Wong SH, Chen YF, Cao Q, Hsiao AWT, Fung SH, Chen YF, Wu HH, Cheng PY, Chou ZH, Lee WYW, Tsui SKW, Lee OKS. Ginkgolide B increases healthspan and lifespan of female mice. NATURE AGING 2025; 5:237-258. [PMID: 39890935 DOI: 10.1038/s43587-024-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Various anti-aging interventions show promise in extending lifespan, but many are ineffective or even harmful to healthspan. Ginkgolide B (GB), derived from Ginkgo biloba, reduces aging-related morbidities such as osteoporosis, yet its effects on healthspan and longevity have not been fully understood. In this study, we found that continuous oral administration of GB to female mice beginning at 20 months of age extended median survival and median lifespan by 30% and 8.5%, respectively. GB treatment also decreased tumor incidence; enhanced muscle quality, physical performance and metabolism; and reduced systemic inflammation and senescence. Single-nucleus RNA sequencing of skeletal muscle tissue showed that GB ameliorated aging-associated changes in cell type composition, signaling pathways and intercellular communication. GB reduced aging-induced Runx1+ type 2B myonuclei through the upregulation of miR-27b-3p, which suppresses Runx1 expression. Using functional analyses, we found that Runx1 promoted senescence and cell death in muscle cells. Collectively, these findings suggest the translational potential of GB to extend healthspan and lifespan and to promote healthy aging.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Fan Chen
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Allen Wei-Ting Hsiao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Cheng
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Zong-Han Chou
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
16
|
Branine M, Schilling-Hazlett AK, Carvalho PHV, Stackhouse-Lawson KR, Martins EC, da Silva JT, Amundson L, Ashworth C, Socha M, Dridi S. Effects of Production System With or Without Growth-Promoting Technologies on Growth and Blood Expression of (Cyto)Chemokines and Heat Shock and Tight Junction Proteins in Bos taurus and indicus Breeds During Summer Season. Vet Sci 2025; 12:65. [PMID: 39852940 PMCID: PMC11769308 DOI: 10.3390/vetsci12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Heat stress (HS) induced by global warming is a real welfare, productivity, and economic burden of cattle production. However, some cattle breeds have superior physiological adaptive traits to others, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the expression profile of stress-related molecular signatures in the blood of thermosensitive Angus (Bos taurus) and thermotolerant Brahman (Bos indicus) cattle breeds managed without (CON) or with growth-promoting technology (TRT) during the summer (April-October, 2023) season in Colorado, US. Body weight (BW) was significantly increased from April to October, and the amplitude was greater for the Angus compared to the Brahman breed. The TRT system slightly increased BW, mainly in the Angus breed. Molecular analyses showed that all tested genes were expressed in beef cattle blood. When comparing production systems, the expression of HSP1A1 was significantly upregulated, and HSP90 was downregulated in CON compared to TRT cattle. The expression of IL6, CCL20, and OCLN was induced by the CON system only in the Angus and not in the Brahman breed. At the breed level, Angus cattle exhibited greater expression of IL10, CCL20, and CLDN1 compared to their Brahman counterparts. There was a significant period by production system as well as period by breed interactions. The expression of HSP1A1 increased in both breeds during October. The expression of IL10, CXCL14, CXCR2, and CLDN1 was affected by the production systems in a period-dependent manner. However, the expression of IL6, CXCL14, CCL5, and CXCR2 was upregulated in Angus cattle in a period-sensitive manner. In summary, HSPs, (chemo)cytokines, and tight junction proteins are expressed in the whole blood of beef cattle, and their expression is regulated in a breed-, period-, and/or production system-dependent manner. This could open new vistas for future research to identify molecular signatures for non-invasive stress monitoring and/or marker-assisted genetic selection for robustness and resilience to HS.
Collapse
Affiliation(s)
- Mark Branine
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Ashley K. Schilling-Hazlett
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Pedro H. V. Carvalho
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Kim R. Stackhouse-Lawson
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Edilane C. Martins
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Julia T. da Silva
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Laura Amundson
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Chris Ashworth
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Mike Socha
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR 72701, USA
| |
Collapse
|
17
|
Aldrete CA, Call CC, Sant'Anna LE, Vlahos AE, Pei J, Cong Q, Gao XJ. Orthogonalized human protease control of secreted signals. Nat Chem Biol 2025:10.1038/s41589-024-01831-x. [PMID: 39814991 DOI: 10.1038/s41589-024-01831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. Although protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. In this study, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6 and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We used species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies, such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.
Collapse
Affiliation(s)
- Carlos A Aldrete
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Lucas E Sant'Anna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alexander E Vlahos
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Aguirre F, Tacchi F, Valero-Breton M, Orozco-Aguilar J, Conejeros-Lillo S, Bonicioli J, Iturriaga-Jofré R, Cabrera D, Soto JA, Castro-Sepúlveda M, Portal-Rodríguez M, Elorza ÁA, Matamoros A, Simon F, Cabello-Verrugio C. CCL5 Induces a Sarcopenic-like Phenotype via the CCR5 Receptor. Antioxidants (Basel) 2025; 14:84. [PMID: 39857418 PMCID: PMC11760477 DOI: 10.3390/antiox14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Sarcopenia corresponds to a decrease in muscle mass and strength. CCL5 is a new myokine whose expression, along with the CCR5 receptor, is increased in sarcopenic muscle. Therefore, we evaluated whether CCL5 and CCR5 induce a sarcopenic-like effect on skeletal muscle tissue and cultured muscle cells. Electroporation in the tibialis anterior (TA) muscle of mice was used to overexpress CCL5. The TA muscles were analyzed by measuring the fiber diameter, the content of sarcomeric proteins, and the gene expression of E3-ligases. C2C12 myotubes and single-isolated flexor digitorum brevis (FDB) fibers were also treated with recombinant CCL5 (rCCL5). The participation of CCR5 was evaluated using the antagonist maraviroc (MVC). Protein and structural analyses were performed. The results showed that TA overexpression of CCL5 led to sarcopenia by reducing muscle strength and mass, muscle-fiber diameter, and sarcomeric protein content, and by upregulating E3-ligases. The same sarcopenic phenotype was observed in myotubes and FDB fibers. We showed increased reactive oxygen species (ROS) production and carbonylated proteins, denoting oxidative stress induced by CCL5. When the CCR5 was antagonized, the effects produced by rCCL5 were prevented. In conclusion, we report for the first time that CCL5 is a novel myokine that exerts a sarcopenic-like effect through the CCR5 receptor.
Collapse
Affiliation(s)
- Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Sabrina Conejeros-Lillo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josefa Bonicioli
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Renata Iturriaga-Jofré
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Daniel Cabrera
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile;
- Facultad de Ciencias de la Salud, Escuela de Kinesiología, Universidad Bernardo O Higgins, Santiago 8370993, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Translational Immunology Laboratory, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Mauricio Castro-Sepúlveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago 7501014, Chile;
| | - Marianny Portal-Rodríguez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Álvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Andrea Matamoros
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| |
Collapse
|
19
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
20
|
Hogarth MW, Kurukunda MP, Ismat K, Uapinyoying P, Jaiswal JK. Exploring the therapeutic potential of fibroadipogenic progenitors in muscle disease. J Neuromuscul Dis 2025; 12:22143602241298545. [PMID: 39973455 PMCID: PMC11949306 DOI: 10.1177/22143602241298545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Skeletal muscle relies on its inherent self-repair ability to withstand continuous mechanical damage. Myofiber-intrinsic processes facilitate the repair of damage to sarcolemma and sarcomeres, but it is the coordinated interaction between muscle-resident satellite and stromal cells that are crucial in the regeneration of muscles to replace the lost muscle fibers. Fibroadipogenic progenitors (FAPs), are muscle-resident mesenchymal cells that are notable for their role in creating the dynamic stromal niche required to support long-term muscle homeostasis and regeneration. While FAP-mediated extracellular matrix formation and the establishment of a homeostatic muscle niche are essential for maintaining muscle health, excessive accumulation of FAPs and their aberrant differentiation leads to the fibrofatty degeneration that is a hallmark of myopathies and muscular dystrophies. Recent advancements, including single-cell RNA sequencing and in vivo analysis of FAPs, are providing deeper insights into the functions and specialization of FAPs, shedding light on their roles in both health and disease. This review will explore the above insights, discussing how FAP dysregulation contributes to muscle diseases. It will offer a concise overview of potential therapeutic interventions targeting FAPs to restore disrupted interactions among FAPs and muscle-resident cells, ultimately addressing degenerative muscle loss in neuromuscular diseases.
Collapse
Affiliation(s)
- Marshall W Hogarth
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Medha P Kurukunda
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Karim Ismat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
| | - Prech Uapinyoying
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, U.S.A
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, U.S.A
| |
Collapse
|
21
|
Iwamori K, Kubota M, Zhang L, Kodama K, Kubo A, Kokubo H, Akimoto T, Fukada SI. Decreased number of satellite cells-derived myonuclei in both fast- and slow-twitch muscles in HeyL-KO mice during voluntary running exercise. Skelet Muscle 2024; 14:25. [PMID: 39449015 PMCID: PMC11515490 DOI: 10.1186/s13395-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Skeletal muscles possess unique abilities known as adaptation or plasticity. When exposed to external stimuli, such as mechanical loading, both myofiber size and myonuclear number increase. Muscle stem cells, also known as muscle satellite cells (MuSCs), play vital roles in these changes. HeyL, a direct target of Notch signaling, is crucial for efficient muscle hypertrophy because it ensures MuSC proliferation in surgically overloaded muscles by inhibiting the premature differentiation. However, it remains unclear whether HeyL is essential for MuSC expansion in physiologically exercised muscles. Additionally, the influence of myofiber type on the requirement for HeyL in MuSCs within exercised muscles remains unclear. METHODS We used a voluntary wheel running model and HeyL-knockout mice to investigate the impact of HeyL deficiency on MuSC-derived myonuclei, MuSC behavior, muscle weight, myofiber size, and myofiber type in the running mice. RESULTS The number of new MuSC-derived myonuclei was significantly lower in both slow-twitch soleus and fast-twitch plantaris muscles from exercised HeyL-knockout mice than in control mice. However, expect for the frequency of Type IIb myofiber in plantaris muscle, exercised HeyL-knockout mice exhibited similar responses to control mice regarding myofiber size and type. CONCLUSIONS HeyL expression is crucial for MuSC expansion during physiological exercise in both slow and fast muscles. The frequency of Type IIb myofiber in plantaris muscle of HeyL-knockout mice was not significantly reduced compared to that of control mice. However, the absence of HeyL did not affect the increased size and frequency of Type IIa myofiber in plantaris muscles. In this model, no detectable changes in myofiber size or type were observed in the soleus muscles of either control or HeyL-knockout mice. These findings imply that the requirement for MuSCs in the wheel-running model is difficult to observe due to the relatively low degree of hypertrophy compared to surgically overloaded models.
Collapse
Affiliation(s)
- Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Manami Kubota
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Lidan Zhang
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 40016, China
| | - Kazuki Kodama
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, 359-1192, Saitama, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
22
|
Aldrete CA, Call CC, Sant'Anna LE, Vlahos AE, Pei J, Cong Q, Gao XJ. Orthogonalized human protease control of secreted signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576308. [PMID: 39484520 PMCID: PMC11526856 DOI: 10.1101/2024.01.18.576308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. While protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. Here, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6, and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We utilized species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.
Collapse
Affiliation(s)
- Carlos A Aldrete
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Lucas E Sant'Anna
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Alexander E Vlahos
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
23
|
Moro T, Monaco L, Naro F, Reggiani C, Paoli A. Exercise Intensity and Rest Intervals Effects on Intracellular Signals and Anabolic Response of Skeletal Muscle to Resistance Training. J Strength Cond Res 2024; 38:1695-1703. [PMID: 40168063 DOI: 10.1519/jsc.0000000000004209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
ABSTRACT Moro, T, Monaco, L, Naro, F, Reggiani, C, and Paoli, A. Exercise intensity and rest intervals effects on intracellular signals and anabolic response of skeletal muscle to resistance training. J Strength Cond Res 38(10): 1695-1703, 2024-Resistance training (RT) is one of the most important stimuli for muscle hypertrophy, and it may play also an important role on weight loss and fatty acids oxidation. Clearly, RT affects anabolic pathways, but the differences among various training techniques has been poorly investigated. We sought to compare the effect of 2 different intensities of training: high-intensity interval resistance training (HIIRT) and traditional resistance training (TRT), on muscle signaling pathway. Nine young healthy subjects performed HIIRT and TRT protocol on 2 different occasions and with different legs on leg extension. High-intensity interval resistance training technique consisted of 3 sets of 6 repetitions (reps) at 6 repetition maximum and then 20 seconds of rest and 2 or 3 repetitions (until exhaustion) repeated for 3 times with 2'30″ rest between sets, whereas TRT consisted of 3 sets of 15 reps with 75 seconds of rest between sets. Biopsies from the vastus lateralis were taken at baseline (pre), immediately (0 hours) at the end of training, and 6 hours (6 h) and 24 hours (24 h) after training. Western blot and real-time polymerase chain reaction messenger RNA (mRNA) analysis were performed to assess muscle signaling pathway activation. In both protocols, rpS6 phosphorylation significantly increased at 6 hours (p < 0.05). Traditional resistance training showed a significant increase at 24 hours of AMPK phosphorylation compared with HIIRT (p < 0.05), whereas no significant differences between groups were found for other proteins. mRNA analysis showed no differences between protocols except for striated muscle activator of Rho signaling. The manipulation of resistance training intensity through incomplete/short recovery does not induce different molecular anabolic and metabolic responses compared with a TRT method.Trial Registration number: NCT04163120 retrospectively registered.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padova, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy; and
| | - Fabio Naro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University, Roma, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
25
|
Calcaterra V, Magenes VC, Bianchi A, Rossi V, Gatti A, Marin L, Vandoni M, Zuccotti G. How Can Promoting Skeletal Muscle Health and Exercise in Children and Adolescents Prevent Insulin Resistance and Type 2 Diabetes? Life (Basel) 2024; 14:1198. [PMID: 39337980 PMCID: PMC11433096 DOI: 10.3390/life14091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Skeletal muscle secretome, through its paracrine and endocrine functions, contributes to the maintenance and regulation of overall physiological health. We conducted a narrative review on the role of skeletal muscle and exercise in maintaining glucose homeostasis, driving insulin resistance (IR), and preventing type 2 diabetes in pediatric populations, especially in the context of overweight and obesity. Myokines such as interleukin (IL)-6, IL-8, and IL-15, as well as irisin, myonectin, and myostatin, appear to play a crucial role in IR. Skeletal muscle can also become a target of obesity-induced and IR-induced inflammation. In the correlation between muscle, IR, and inflammation, the role of infiltration of the immune cells and the microvasculature may also be considered. It remains unclear which exercise approach is the best; however, combining aerobic exercise with resistance training seems to be the most effective strategy for managing IR, with high-intensity activities offering superior metabolic benefits and long-term adherence. Encouraging daily participation in enjoyable and engaging exercise is key for long-term commitment and effective glucose metabolism management. Promoting physical activity in children and adolescents must be a top priority for public health, not only in terms of individual quality of life and well-being but also for community health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Vittoria Carlotta Magenes
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alessandro Gatti
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Luca Marin
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
26
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
27
|
Guo M, Shen F, Guo X, Zhang J, Ma Y, Wu X, Zuo H, Yao J, Hu Y, Wang D, Li Y, Li J, Qiu J, Yu J, Meng M, Zheng Y, Chen X, Gong M, Liu K, Jin L, Ren X, Zhang Q, Zhao Y, Gu X, Shen F, Li D, Gao L, Liu C, Zhou F, Li M, Wang J, Ding S, Ma X, Lu J, Xie C, Xiao J, Xu L. BMAL1/PGC1α4-FNDC5/irisin axis impacts distinct outcomes of time-of-day resistance exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100968. [PMID: 39187065 PMCID: PMC11863284 DOI: 10.1016/j.jshs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Zhou
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Mian Li
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
28
|
Machado-Pereira NAMM, do Nascimento PS, de Freitas GR, Bobinski F, do Espírito Santo CC, Ilha J. Electrical Stimulation Prevents Muscular Atrophy and the Decrease of Interleukin-6 in Paralyzed Muscles after Spinal Cord Injury in Rats. Rev Bras Ortop 2024; 59:e526-e531. [PMID: 39239572 PMCID: PMC11374404 DOI: 10.1055/s-0044-1787767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/20/2024] [Indexed: 09/07/2024] Open
Abstract
Objective To analyze the muscle trophism and expression of interleukin-6 in the biceps brachii muscle of rats with incomplete cervical spinal cord injury treated with neuromuscular electrical stimulation (NMES). Methods Adult rats underwent C5-C7 spinal cord hemisection and a 5-week NMES protocol. Trophism of the biceps brachii was assessed using muscle weight/body weight ratio and histological analysis. Interleukin-6 expression from biceps brachii was measured using the enzyme-linked immunosorbent assay technique. Results Preservation of the biceps brachii muscle trophism was found in the NMES treated group, along with prevention of the reduction of interleukin-6 levels. Conclusion Spinal cord injury causes muscle atrophy and decreases interleukin-6 levels. These alterations are partially prevented by NMES. The results suggest a possible NMES action mechanism and underscore the clinical use of this therapeutic tool.
Collapse
Affiliation(s)
- Nicolas A M M Machado-Pereira
- Núcleo de Pesquisa em Lesão da Medula Espinal (NULEME), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brasil
| | - Patrícia S do Nascimento
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (CCS), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Gabriel R de Freitas
- Núcleo de Pesquisa em Lesão da Medula Espinal (NULEME), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brasil
| | - Franciane Bobinski
- Laboratório Experimental de Neurociências (LANEX), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, Brasil
| | | | - Jocemar Ilha
- Núcleo de Pesquisa em Lesão da Medula Espinal (NULEME), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brasil
| |
Collapse
|
29
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
30
|
Jønck S, Løk M, Durrer C, Wedell‐Neergaard A, Lehrskov LL, Legaard GE, Krogh‐Madsen R, Rosenmeier J, Lund MAV, Pedersen BK, Ellingsgaard H, Berg RMG, Christensen RH. Exercise-induced changes in left ventricular strain are affected by interleukin-6 activity: An exploratory analysis of a randomised-controlled trial in humans with abdominal obesity. Exp Physiol 2024; 109:1134-1144. [PMID: 38803062 PMCID: PMC11215489 DOI: 10.1113/ep091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Whilst the exercise-induced myokine interleukin-6 (IL-6) plays a beneficial role in cardiac structural adaptations, its influence on exercise-induced functional cardiac outcomes remains unknown. We hypothesised that IL-6 activity is required for exercise-induced improvements in left ventricular global longitudinal strain (LV GLS). In an exploratory study 52 individuals with abdominal obesity were randomised to 12 weeks' high-intensity exercise or no exercise in combination with IL-6 receptor inhibition (IL-6i) or placebo. LV strain and volume measurements were assessed by cardiac magnetic resonance. Exercise improved LV GLS by -5.4% [95% CI: -9.1% to -1.6%] (P = 0.007). Comparing the change from baseline in LV GLS in the exercise + placebo group (-4.8% [95% CI: -7.4% to -2.2%]; P < 0.0004) to the exercise + IL-6i group (-1.1% [95% CI: -3.8% to 1.6%]; P = 0.42), the exercise + placebo group changed -3.7% [95% CI: -7.4% to -0.02%] (P = 0.049) more than the exercise + IL6i group. However, the interaction effect between exercise and IL-6i was insignificant (4.5% [95% CI: -0.8% to 9.9%]; P = 0.09). Similarly, the exercise + placebo group improved LV global circumferential strain by -3.1% [95% CI: -6.0% to -0.1%] (P = 0.04) more compared to the exercise + IL-6i group, yet we found an insignificant interaction between exercise and IL-6i (4.2% [95% CI: -1.8% to 10.3%]; P = 0.16). There was no effect of IL-6i on exercise-induced changes to volume rates. This study underscores the importance of IL-6 in improving LV GLS in individuals with abdominal obesity suggesting a role for IL-6 in cardiac functional exercise adaptations.
Collapse
Affiliation(s)
- Simon Jønck
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Mathilde Løk
- Department of CardiologyCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cody Durrer
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Anne‐Sophie Wedell‐Neergaard
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
- Department of Dermatology and AllergyCopenhagen University Hospital ‐ Herlev and GentofteCopenhagenDenmark
| | - Louise Lang Lehrskov
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
- Department of OncologyCopenhagen University Hospital – Herlev and GentofteCopenhagenDenmark
| | - Grit Elster Legaard
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Rikke Krogh‐Madsen
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
- Department of Infectious DiseasesCopenhagen University Hospital ‐ HvidovreCopenhagenDenmark
| | - Jaya Rosenmeier
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Morten Asp Vonsild Lund
- Department of CardiologyCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bente Klarlund Pedersen
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Helga Ellingsgaard
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Ronan M. G. Berg
- Centre for Physical Activity ResearchCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Physiology and Nuclear MedicineCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | | |
Collapse
|
31
|
Pryor JL, Sweet D, Rosbrook P, Qiao J, Hess HW, Looney DP. Resistance Training in the Heat: Mechanisms of Hypertrophy and Performance Enhancement. J Strength Cond Res 2024; 38:1350-1357. [PMID: 38775794 DOI: 10.1519/jsc.0000000000004815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Pryor, JL, Sweet, D, Rosbrook, P, Qiao, J, Hess, HW, and Looney, DP. Resistance training in the heat: Mechanisms of hypertrophy and performance enhancement. J Strength Cond Res 38(7): 1350-1357, 2024-The addition of heat stress to resistance exercise or heated resistance exercise (HRE) is growing in popularity as emerging evidence indicates altered neuromuscular function and an amplification of several mechanistic targets of protein synthesis. Studies demonstrating increased protein synthesis activity have shown temperature-dependent mammalian target of rapamycin phosphorylation, supplemental calcium release, augmented heat shock protein expression, and altered immune and hormone activity. These intriguing observations have largely stemmed from myotube, isolated muscle fiber, or rodent models using passive heating alone or in combination with immobilization or injury models. A growing number of translational studies in humans show comparable results employing local tissue or whole-body heat with and without resistance exercise. While few, these translational studies are immensely valuable as they are most applicable to sport and exercise. As such, this brief narrative review aims to discuss evidence primarily from human HRE studies detailing the neuromuscular, hormonal, and molecular responses to HRE and subsequent strength and hypertrophy adaptations. Much remains unknown in this exciting new area of inquiry from both a mechanistic and functional perspective warranting continued research.
Collapse
Affiliation(s)
- J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Daniel Sweet
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Paul Rosbrook
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - JianBo Qiao
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Hayden W Hess
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| |
Collapse
|
32
|
Cha M, Bak H, Bai SJ, Lee BH, Jang JH. Quadriceps recovery and pain relief in knee osteoarthritis rats by cog polydioxanone filament insertion. Regen Biomater 2024; 11:rbae077. [PMID: 38974667 PMCID: PMC11226885 DOI: 10.1093/rb/rbae077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Quadriceps muscles play a pivotal role in knee osteoarthritis (OA) progression and symptom manifestation, particularly pain. This research investigates the therapeutic effectiveness of muscle enhancement and support therapy (MEST), a recently developed device intended for intramuscular insertion of cog polydioxanone filaments, in quadriceps restoration to alleviate OA pain. Knee OA was induced in Sprague Dawley rats via monoiodoacetate injections. MEST or sham treatment was performed in OA or Naive rat quadriceps. Pain was assessed using paw withdrawal threshold and weight bearing. Quadriceps injury and recovery via MEST were evaluated using biomarkers, tissue morphology, muscle mass, contractile force and hindlimb torque. Satellite cell and macrophage activation, along with their activators, were also assessed. Data were compared at 1- and 3-weeks post-MEST treatment (M-W1 and M-W3). MEST treatment in OA rats caused muscle injury, indicated by elevated serum aspartate transferase and creatinine kinase levels, and local β-actin changes at M-W1. This injury triggered pro-inflammatory macrophage and satellite cell activation, accompanied by heightened interleukin-6 and insulin-like growth factor-1 levels. However, by M-W3, these processes gradually shifted toward inflammation resolution and muscle restoration. This was seen in anti-inflammatory macrophage phenotypes, sustained satellite cell activation and injury markers regressing to baseline. Quadriceps recovery in mass and strength from atrophy correlated with substantial OA pain reduction at M-W3. This study suggests that MEST-induced minor muscle injury triggers macrophage and satellite cell activation, leading to recovery of atrophied quadriceps and pain relief in OA rats.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heyji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sun Joon Bai
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun Ho Jang
- R&D Center, OV MEDI Co., Ltd, Gunpo 15847, Republic of Korea
| |
Collapse
|
33
|
Lee J, Lho T, Lee J, Lee J, Chung SW. Influence of Frequent Corticosteroid Local Injections on the Expression of Genes and Proteins Related to Fatty Infiltration, Muscle Atrophy, Inflammation, and Fibrosis in Patients With Chronic Rotator Cuff Tears: A Pilot Study. Orthop J Sports Med 2024; 12:23259671241252421. [PMID: 38840789 PMCID: PMC11151761 DOI: 10.1177/23259671241252421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 06/07/2024] Open
Abstract
Background The effect of local corticosteroid (CS) injections on rotator cuff muscles remains poorly defined, despite the significance of muscle quality as a crucial prognostic factor for patients with rotator cuff tears (RCTs). Purpose To compare alterations in gene and protein expression patterns in the rotator cuff muscles of patients with RCTs who received frequent joint CS injections with alterations in those without a history of CS injections. Study Design Controlled laboratory study. Methods A total of 24 rotator cuff muscle samples with medium-sized tears from 12 patients with a frequent joint CS injection history (steroid group; 7 men and 5 women who had received ≥5 injections with at least 1 within the previous 3 months; mean age, 63.0 ± 7.2 years) and 12 age- and sex-matched control patients without a history of CS injections (no-steroid group) were acquired. Alterations in the expression of genes and proteins associated with adipogenesis, myogenesis, inflammation, and muscle fibrosis were compared between the groups using quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. Statistical analysis included comparison of group means using the Mann-Whitney U test, chi-square test, or Fisher exact test and logistic regression for multivariate analysis. Results In the steroid group, the mRNA expression levels of adipogenic CCAAT/enhancer-binding protein alpha (C/EBPα; P = .008) and muscle atrophy-related genes (atrogin; P = .019) were significantly higher, and those of myogenic differentiation 1 (MyoD; P = .035), inflammatory interleukin 6 (IL-6; P = .035), and high mobility group box 1 (P = .003) were significantly lower compared with the no-steroid group. In addition, MyoD (P = .041) and IL-6 (P = .026) expression were decreased in the steroid versus no-steroid group. Immunohistochemistry revealed increased expression of C/EBPα and atrogin and decreased expression of MyoD and IL-6 in the steroid versus no-steroid group. Conclusion Patients with RCTs and a history of frequent CS injections exhibited an upregulation of adipogenic and muscle atrophy-related genes and proteins within the rotator cuff muscles and a downregulation in the expression of myogenic and inflammatory genes and proteins in the same muscles. Clinical Relevance These altered gene and protein expressions by frequent local CS injections may cause poor outcomes in patients with RCTs.
Collapse
Affiliation(s)
- JiHwan Lee
- Department of Medicine, Korea University Graduate School, Seoul, Republic of Korea
| | - Taewoo Lho
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jongwon Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jeongkun Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
35
|
Fennel ZJ, Bourrant P, Kurian AS, Petrocelli JJ, de Hart NMMP, Yee EM, Boudina S, Keirstead HS, Nistor G, Greilach SA, Berchtold NC, Lane TE, Drummond MJ. Stem cell secretome treatment improves whole-body metabolism, reduces adiposity, and promotes skeletal muscle function in aged mice. Aging Cell 2024; 23:e14144. [PMID: 38500398 PMCID: PMC11296109 DOI: 10.1111/acel.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Aging coincides with the progressive loss of muscle mass and strength, increased adiposity, and diminished physical function. Accordingly, interventions aimed at improving muscle, metabolic, and/or physical health are of interest to mitigate the adverse effects of aging. In this study, we tested a stem cell secretome product, which contains extracellular vesicles and growth, cytoskeletal remodeling, and immunomodulatory factors. We examined the effects of 4 weeks of 2×/week unilateral intramuscular secretome injections (quadriceps) in ambulatory aged male C57BL/6 mice (22-24 months) compared to saline-injected aged-matched controls. Secretome delivery substantially increased whole-body lean mass and decreased fat mass, corresponding to higher myofiber cross-sectional area and smaller adipocyte size, respectively. Secretome-treated mice also had greater whole-body physical function (grip strength and rotarod performance) and had higher energy expenditure and physical activity levels compared to control mice. Furthermore, secretome-treated mice had greater skeletal muscle Pax7+ cell abundance, capillary density, collagen IV turnover, reduced intramuscular lipids, and greater Akt and hormone sensitive lipase phosphorylation in adipose tissue. Finally, secretome treatment in vitro directly enhanced muscle cell growth and IL-6 production, and in adipocytes, it reduced lipid content and improved insulin sensitivity. Moreover, indirect treatment with secretome-treated myotube culture media also enhanced muscle cell growth and adipocyte size reduction. Together, these data suggest that intramuscular treatment with a stem cell secretome improves whole-body metabolism, physical function, and remodels skeletal muscle and adipose tissue in aged mice.
Collapse
Affiliation(s)
- Zachary J. Fennel
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Paul‐Emile Bourrant
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Anu Susan Kurian
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | | | - Elena M. Yee
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Sihem Boudina
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | | | | | | | | - Thomas E. Lane
- Immunis, Inc.IrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
36
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
37
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
38
|
Musgrove L, Russell FD, Ventura T. Considerations for cultivated crustacean meat: potential cell sources, potential differentiation and immortalization strategies, and lessons from crustacean and other animal models. Crit Rev Food Sci Nutr 2024; 65:2431-2455. [PMID: 38733287 DOI: 10.1080/10408398.2024.2342480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Cultivated crustacean meat (CCM) is a means to create highly valued shrimp, lobster, and crab products directly from stem cells, thus removing the need to farm or fish live animals. Conventional crustacean enterprises face increasing pressures in managing overfishing, pollution, and the warming climate, so CCM may provide a way to ensure sufficient supply as global demand for these products grows. To support the development of CCM, this review briefly details crustacean cell culture work to date, before addressing what is presently known about crustacean muscle development, particularly the molecular mechanisms involved, and how this might relate to recent work on cultivated meat production in vertebrate species. Recognizing the current lack of cell lines available to establish CCM cultures, we also consider primary stem cell sources that can be obtained non-lethally including tissues from limbs which are readily released and regrown, and putative stem cells in circulating hemolymph. Molecular approaches to inducing myogenic differentiation and immortalization of putative stem cells are also reviewed. Finally, we assess the current status of tools available to CCM researchers, particularly antibodies, and propose avenues to address existing shortfalls in order to see the field progress.
Collapse
Affiliation(s)
- Lisa Musgrove
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Fraser D Russell
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Health, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| |
Collapse
|
39
|
Addinsall AB, Cacciani N, Moruzzi N, Akkad H, Maestri A, Berggren PO, Widegren A, Bergquist J, Tchkonia T, Kirkland JL, Larsson L. Ruxolitinib: A new hope for ventilator-induced diaphragm dysfunction. Acta Physiol (Oxf) 2024; 240:e14128. [PMID: 38551103 DOI: 10.1111/apha.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/24/2024]
Abstract
AIM Mechanical ventilation (MV) results in diminished diaphragm size and strength, termed ventilator-induced diaphragm dysfunction (VIDD). VID increases dependence, prolongs weaning, and increases discharge mortality rates. The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway is implicated in VIDD, upregulated following MV. JAK/STAT inhibition alleviates chronic muscle wasting conditions. This study aimed to explore the therapeutic potential of Ruxolitinib, an FDA approved JAK1/2 inhibitor (JI) for the treatment of VIDD. METHODS Rats were subjected to 5 days controlled MV (CMV) with and without daily Ruxolitinib gavage. Muscle fiber size and function were assessed. RNAseq, mitochondrial morphology, respirometry, and mass spectrometry were determined. RESULTS CMV significantly reduced diaphragm size and specific force by 45% (p < 0.01), associated with a two-fold P-STAT3 upregulation (p < 0.001). CMV disrupted mitochondrial content and reduced the oxygen consumption rate (p < 0.01). Expression of the motor protein myosin was unaffected, however CMV alters myosin function via post-translational modifications (PTMs). Daily administration of JI increased animal survival (40% vs. 87%; p < 0.05), restricted P-STAT3 (p < 0.001), and preserved diaphragm size and specific force. JI was associated with preserved mitochondrial content and respiratory function (p < 0.01), and the reversal or augmentation of myosin deamidation PTMs of the rod and head region. CONCLUSION JI preserved diaphragm function, leading to increased survival in an experimental model of VIDD. Functional enhancement was associated with maintenance of mitochondrial content and respiration and the reversal of ventilator-induced PTMs of myosin. These results demonstrate the potential of repurposing Ruxolitinib for treatment of VIDD.
Collapse
Affiliation(s)
- Alex B Addinsall
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicola Cacciani
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Noah Moruzzi
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Hazem Akkad
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Alice Maestri
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institute, Sweden
| | - Per-Olof Berggren
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Anna Widegren
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Tamara Tchkonia
- Muscle Biology Program, Viron Molecular Medicine Institute, Boston, Massachusetts, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Muscle Biology Program, Viron Molecular Medicine Institute, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Caballero-Sánchez N, Alonso-Alonso S, Nagy L. Regenerative inflammation: When immune cells help to re-build tissues. FEBS J 2024; 291:1597-1614. [PMID: 36440547 PMCID: PMC10225019 DOI: 10.1111/febs.16693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.
Collapse
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
| | - Sergio Alonso-Alonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
- Departments Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| |
Collapse
|
41
|
Akieda-Asai S, Ma H, Han W, Nagata J, Yamaguchi F, Date Y. Mechanism of muscle atrophy in a normal-weight rat model of type 2 diabetes established by using a soft-pellet diet. Sci Rep 2024; 14:7670. [PMID: 38561446 PMCID: PMC10984920 DOI: 10.1038/s41598-024-57727-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Dietary factors such as food texture affect feeding behavior and energy metabolism, potentially causing obesity and type 2 diabetes. We previously found that rats fed soft pellets (SPs) were neither hyperphagic nor overweight but demonstrated glucose intolerance, insulin resistance, and hyperplasia of pancreatic β-cells. In the present study, we investigated the mechanism of muscle atrophy in rats that had been fed SPs on a 3-h time-restricted feeding schedule for 24 weeks. As expected, the SP rats were normal weight; however, they developed insulin resistance, glucose intolerance, and fat accumulation. In addition, skeletal muscles of SP rats were histologically atrophic and demonstrated disrupted insulin signaling. Furthermore, we learned that the muscle atrophy of the SP rats developed via the IL-6-STAT3-SOCS3 and ubiquitin-proteasome pathways. Our data show that the dietary habit of consuming soft foods can lead to not only glucose intolerance or insulin resistance but also muscle atrophy.
Collapse
Affiliation(s)
- Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan.
| | - Hao Ma
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Wanxin Han
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Junko Nagata
- Department of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Fumitake Yamaguchi
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
- Department of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
42
|
Guo Q, Luo Q, Song G. Control of muscle satellite cell function by specific exercise-induced cytokines and their applications in muscle maintenance. J Cachexia Sarcopenia Muscle 2024; 15:466-476. [PMID: 38375571 PMCID: PMC10995279 DOI: 10.1002/jcsm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 02/21/2024] Open
Abstract
Exercise is recognized to play an observable role in improving human health, especially in promoting muscle hypertrophy and intervening in muscle mass loss-related diseases, including sarcopenia. Recent rapid advances have demonstrated that exercise induces the release of abundant cytokines from several tissues (e.g., liver, muscle, and adipose tissue), and multiple cytokines improve the functions or expand the numbers of adult stem cells, providing candidate cytokines for alleviating a wide range of diseases. Muscle satellite cells (SCs) are a population of muscle stem cells that are mitotically quiescent but exit from the dormancy state to become activated in response to physical stimuli, after which SCs undergo asymmetric divisions to generate new SCs (stem cell pool maintenance) and commit to later differentiation into myocytes (skeletal muscle replenishment). SCs are essential for the postnatal growth, maintenance, and regeneration of skeletal muscle. Emerging evidence reveals that exercise regulates muscle function largely via the exercise-induced cytokines that govern SC potential, but this phenomenon is complicated and confusing. This review provides a comprehensive integrative overview of the identified exercise-induced cytokines and the roles of these cytokines in SC function, providing a more complete picture regarding the mechanism of SC homeostasis and rejuvenation therapies for skeletal muscle.
Collapse
Affiliation(s)
- Qian Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
43
|
Ren Y, Toyoshima Y, Vrieze A, Freedman B, Alizad A, Zhao C. In Vivo Ultrasound Shear Wave Elastography Assessment of Acute Compartment Syndrome in a Turkey Model. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:571-579. [PMID: 38281889 DOI: 10.1016/j.ultrasmedbio.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
OBJECTIVE The aim of the work described here was to evaluate the objectivity and reproducibility of non-invasive intra-compartment pressure (ICP) measurement using ultrasound shear wave elastography (SWE) in a turkey model in vivo and to determine the biological and histologic changes in acute compartment syndrome (ACS). METHODS Twenty-four turkeys were randomly divided into four groups based on the duration and fasciotomy of ACS created by infusion of up to 50 mm Hg in the tibialis muscle: group 1, ACS 2 h; group 2, ACS 4 h; group 3, ACS 2 h + fasciotomy 2 h; group 4, ACS 4 h + fasciotomy 2 h. For each turkey, the contralateral limb was considered the control. Time-synchronized measures of SWE and ICP from each leg were collected. Then turkeys were euthanized for histology and quantitative reverse transcription polymerase chain reaction (qRT-PCR) examination. RESULTS All models created reproducible increases in ICP and SWE, which had a strong linear relationship (r = 0.802, p < 0.0001) during phase 1. SWE remained stable (50.86 ± 9.64 kPa) when ICP remained at 50.28 ± 2.17 mm Hg in phase 2. After fasciotomy, SWE declined stepwise and then normalized (r = 0.737, p < 0.0001). Histologically, the myofiber diameter of group 2 (82.31 ± 22.92 μm) and group 4 (90.90 ± 20.48 μm) decreased significantly (p < 0.01) compared with that of the control group (103.1 ± 20.39 μm); the interstitial space of all groups increased significantly (p < 0.01). Multifocal muscle damage revealed neutrophilic infiltration, degeneration, hemorrhage and necrosis, especially in group 4. Quantitative RT-PCR verified that interleukin-6 and heparin-binding EGF-like growth factor were significantly increased in group 4. CONCLUSION SWE provided sensitive measurements correlating to ICP in a clinically relevant ACS animal model. Once ACS time was exceeded, progression to irreversible necrosis continued spontaneously, even after fasciotomy. SWE may help surgeons in the early detection, monitoring, prognosis and decision making on fasciotomy for ACS.
Collapse
Affiliation(s)
- Ye Ren
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yoichi Toyoshima
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alyssa Vrieze
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Brett Freedman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
44
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
45
|
Shira KA, Murdoch BM, Thornton KJ, Reichhardt CC, Becker GM, Chibisa GE, Murdoch GK. Myokines Produced by Cultured Bovine Satellite Cells Harvested from 3- and 11-Month-Old Angus Steers. Animals (Basel) 2024; 14:709. [PMID: 38473094 DOI: 10.3390/ani14050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The myokines interleukin 6 (IL-6), interleukin 15 (IL-15), myonectin (CTRP15), fibronectin type III domain containing protein 5/irisin (FNDC5), and brain-derived neurotrophic factor (BDNF) are associated with skeletal muscle cell proliferation, differentiation, and muscle hypertrophy in biomedical model species. This study evaluated whether these myokines are produced by cultured bovine satellite cells (BSCs) harvested from 3- and 11-month-old commercial black Angus steers and if the expression and secretion of these targets change across 0, 12, 24, and 48 h in vitro. IL-6, IL-15, FNDC5, and BDNF expression were greater (p ≤ 0.05) in the differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. CTRP15 expression was greater (p ≤ 0.03) in the undifferentiated vs. differentiated BSCs at 24 and 48 h. IL-6 and CTRP15 protein from culture media were greater (p ≤ 0.04) in undifferentiated vs. differentiated BSCs at 0, 12, 24, and 48 h. BDNF protein was greater in the media of differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. IL-6, 1L-15, FNDC5, and BDNF are expressed in association with BSC differentiation, and CTRP15 appears to be expressed in association with BSC proliferation. This study also confirms IL-6, IL-15, CTRP15, and BDNF proteins present in media collected from primary cultures of BSCs.
Collapse
Affiliation(s)
- Katie A Shira
- Animal, Veterinary, and Food Science Department, University of Idaho, Moscow, ID 83843, USA
| | - Brenda M Murdoch
- Animal, Veterinary, and Food Science Department, University of Idaho, Moscow, ID 83843, USA
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - Caleb C Reichhardt
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Manoa, 1955 East-West Rd., Honolulu, HI 96822, USA
| | - Gabrielle M Becker
- Animal, Veterinary, and Food Science Department, University of Idaho, Moscow, ID 83843, USA
| | - Gwinyai E Chibisa
- Animal, Veterinary, and Food Science Department, University of Idaho, Moscow, ID 83843, USA
| | - Gordon K Murdoch
- Animal, Veterinary, and Food Science Department, University of Idaho, Moscow, ID 83843, USA
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
46
|
Marr EE, Isenberg BC, Wong JY. Effects of polydimethylsiloxane membrane surface treatments on human uterine smooth muscle cell strain response. Bioact Mater 2024; 32:415-426. [PMID: 37954466 PMCID: PMC10632608 DOI: 10.1016/j.bioactmat.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
In the United States, 1 in 10 infants are born preterm. The majority of neonatal deaths and nearly a third of infant deaths are linked to preterm birth. Preterm birth is initiated when the quiescent state of the uterus ends prematurely, leading to contractions and parturition beginning as early as 32 weeks, though the origins are not well understood. To enable research and discovery of therapeutics with potential to better address preterm birth, the capability to study isolated cell processes of pregnant uterine tissue in vitro is needed. Our development of an in vitro model of the myometrium utilizing human uterine smooth muscle cells (uSMCs) responsible for contractions provides a methodology to examine cellular mechanisms of late-stage pregnancy potentially involved in preterm birth. We discuss culture of uSMCs on a flexible polydimethylsiloxane (PDMS) substrate functionalized with cationic poly-l-lysine (PLL), followed by extracellular matrix (ECM) protein coating. Previous work exploring uSMC behavior on PDMS substrates have utilized collagen-I coatings, however, we demonstrated the first exploration of human uSMC response to strain on fibronectin-coated flexible membranes, importantly reflecting the significant increase of fibronectin content found in the myometrial ECM during late-stage pregnancy. Using the model we developed, we conducted proof-of-concept studies to investigate the impact of substrate strain on uSMC cell morphology and gene expression. It was found that PLL and varied ECM protein coatings (collagen I, collagen III, and fibronectin) altered cell nuclei morphology and density on PDMS substrates. Additionally, varied strain rates applied to uSMC substrates significantly impacted uSMC gene expression of IL-6, a cytokine associated with instances of preterm labor. These results suggest that both surface and mechanical properties of in vitro systems impact primary human uSMC phenotype and offer uSMC culture methodologies that can be utilized to further the understanding of cellular pathways involved in the uterus under mechanical load.
Collapse
Affiliation(s)
- Elizabeth E. Marr
- Boston University, Division of Materials Science and Engineering, United States
- Charles Stark Draper Laboratory, Bioengineering Division, United States
| | - Brett C. Isenberg
- Charles Stark Draper Laboratory, Bioengineering Division, United States
| | - Joyce Y. Wong
- Boston University, Division of Materials Science and Engineering, United States
- Boston University, Department of Biomedical Engineering, United States
| |
Collapse
|
47
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
48
|
O’Brien JG, Willis AB, Long AM, Kwon J, Lee G, Li FW, Page PG, Vo AH, Hadhazy M, Spencer MJ, Crosbie RH, Demonbreun AR, McNally EM. The super-healing MRL strain promotes muscle growth in muscular dystrophy through a regenerative extracellular matrix. JCI Insight 2024; 9:e173246. [PMID: 38175727 PMCID: PMC11143963 DOI: 10.1172/jci.insight.173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
The Murphy Roths Large (MRL) mouse strain has "super-healing" properties that enhance recovery from injury. In mice, the DBA/2J strain intensifies many aspects of muscular dystrophy, so we evaluated the ability of the MRL strain to suppress muscular dystrophy in the Sgcg-null mouse model of limb girdle muscular dystrophy. A comparative analysis of Sgcg-null mice in the DBA/2J versus MRL strains showed greater myofiber regeneration, with reduced structural degradation of muscle in the MRL strain. Transcriptomic profiling of dystrophic muscle indicated strain-dependent expression of extracellular matrix (ECM) and TGF-β signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized myoscaffolds. Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-β1 and TGF-β3 throughout the matrix. Dystrophic myoscaffolds from the MRL background, but not the DBA/2J background, were enriched in myokines like IGF-1 and IL-6. C2C12 myoblasts seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J muscles showed the MRL background induced greater myoblast differentiation compared with dystrophic DBA/2J myoscaffolds. Thus, the MRL background imparts its effect through a highly regenerative ECM, which is active even in muscular dystrophy.
Collapse
Affiliation(s)
- Joseph G. O’Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashlee M. Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jason Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Frank W. Li
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Patrick G.T. Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H. Vo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
49
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
50
|
Han L, Li P, He Q, Yang C, Jiang M, Wang Y, Cao Y, Han X, Liu X, Wu W. Revisiting Skeletal Muscle Dysfunction and Exercise in Chronic Obstructive Pulmonary Disease: Emerging Significance of Myokines. Aging Dis 2023; 15:2453-2469. [PMID: 38270119 PMCID: PMC11567253 DOI: 10.14336/ad.2023.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 01/26/2024] Open
Abstract
Skeletal muscle dysfunction (SMD) is the most significant extrapulmonary complication and an independent prognostic indicator in patients with chronic obstructive pulmonary disease (COPD). Myokines, such as interleukin (IL)-6, IL-15, myostatin, irisin, and insulin-like growth factor (IGF)-1, play important roles in skeletal muscle mitochondrial function, protein synthesis and breakdown balance, and regeneration of skeletal muscles in COPD. As the main component of pulmonary rehabilitation, exercise can improve muscle strength, muscle endurance, and exercise capacity in patients with COPD, as well as improve the prognosis of SMD and COPD by regulating the expression levels of myokines. The mechanisms by which exercise regulates myokine levels are related to microRNAs. IGF-1 expression is upregulated by decreasing the expression of miR-1 or miR-29b. Myostatin downregulation and irisin upregulation are associated with increased miR-27a expression and decreased miR-696 expression, respectively. These findings suggest that myokines are potential targets for the prevention and treatment of SMD in COPD. A comprehensive analysis of the role and regulatory mechanisms of myokines can facilitate the development of new exercise-based therapeutic approaches for patients with COPD.
Collapse
Affiliation(s)
- Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|