1
|
Xiao F, Zhong J, Liu G, Liu X, Wu H, Wen X, Zhao H, Wu K. Co-Exposure to Different Zinc Concentrations and High-Fat Diet Modules Endoplasmic Reticulum Stress and Lipotoxicity through the MTF-1/GPx7 Axis in Yellow Catfish ( Pelteobagrus fulvidraco). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10559-10573. [PMID: 40238493 DOI: 10.1021/acs.jafc.4c11635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
As industrialization and societal development accelerate, various organisms, including humans, are exposed to environmental hazards, such as zinc (Zn) and high-fat diet (HFD). These widespread exposures pose significant threats to public health; however, the combined effects and underlying mechanisms of these environmental factors on lipotoxicity remain unclear. In this study, the yellow catfish (Pelteobagrus fulvidraco) was used as a model to investigate the impact of different Zn levels and HFD coexposure on hepatic lipotoxicity. The results indicated that low concentrations of Zn (L-Zn) significantly reduced hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum (ER) stress compared to HFD-only treatment, while high concentrations of Zn (H-Zn) exacerbated these effects. Mechanistically, L-Zn alleviated ER stress by scavenging H2O2 and O2•- within the ER via the MTF-1/GPx7 pathway. Glutathione peroxidase 7 (GPx7), an ER-resident antioxidant enzyme, played a crucial role in mitigating ER stress and lipotoxicity, with metal-responsive transcription factor 1 (MTF-1) identified as its regulator. This study is the first to demonstrate the dual role of Zn in hepatic lipotoxicity, revealing the Zn2+/MTF-1/GPx7 axis as a key modulator of ER stress and lipid metabolism. These findings highlight the importance of considering combined environmental exposures in public health and environmental risk assessments.
Collapse
Affiliation(s)
- Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Juncheng Zhong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Geng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Xuebo Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Hao Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 511400, China
| |
Collapse
|
2
|
Ng MY, Hagen T. A strategy for liver selective NRF2 induction via cytochrome P450-activated prodrugs with low activity in hypoxia. J Biol Chem 2025; 301:108487. [PMID: 40209947 DOI: 10.1016/j.jbc.2025.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Activation of the transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) has been shown to be a promising therapeutic approach in the treatment of hepatosteatosis. NRF2 is believed to exert beneficial effects by upregulating cellular oxidative defense mechanisms and inhibiting inflammation. However, a major concern associated with long-term treatment with NRF2 activators are drug side effects, including the promotion of tumorigenesis. Many NRF2 activators function by forming cysteine adducts with KEAP1, which normally mediates the ubiquitination and degradation of NRF2. In this study, we identified NRF2 activator prodrugs of 4-methylcatechol and tert-butylhydroquinone. These prodrugs are converted into their active metabolites in a liver selective, cytochrome P450-dependent manner and function by inhibiting KEAP1, resulting in NRF2 activation. Unexpectedly, we also found that a number of NRF2-activating compounds, including 4-methylcatechol and tert-butylhydroquinone, show a markedly lower activity under hypoxic conditions than normoxia. Our findings suggest that the lower activity of these NRF2 inducers is a consequence of less potent cysteine adduct formation with KEAP1. The lower activity of NRF2 inducing compounds in hypoxia may limit tumor promoting effects of NRF2 induction. Our study provides an important proof of concept that it is possible to selectively activate NRF2 in the liver for the treatment of hepatosteatosis while avoiding tumorigenic effects as well as side effects of NRF2 activation in other tissues.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Zhou X, Li Z, Ren F, Deng H, Wen J, Xiang Q, Zhou Z, Yang X, Rao C. Endoplasmic reticulum stress and unfolded protein response in renal lipid metabolism. Exp Cell Res 2025; 446:114463. [PMID: 39971174 DOI: 10.1016/j.yexcr.2025.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The endoplasmic reticulum (ER) is a crucial cellular organelle involved in protein synthesis, folding, modification, and transport. Exposure to internal and external stressors can induce endoplasmic reticulum stress (ERS), leading to abnormal protein folding and ER malfunction. This stress can disrupt lipid synthesis, metabolism, and transport processes. Fatty acid oxidation is the primary energy source for the renal system. When energy intake exceeds the storage capacity of adipose tissue, lipids accumulate abnormally in non-adipose tissues, including kidneys, liver, and pancreas. Lipids accumulate in the kidneys of nearly all cell types, including thylakoid membranous, pedunculated, and proximal renal tubular epithelial cells. Intracellular free fatty acids can significantly disrupt renal lipid metabolism, contributing to ischemia-reperfusion acute kidney injury, diabetic nephropathy, renal fibrosis, and lupus nephritis. Consequently, this study delineated the primary signaling pathways and mechanisms of the ERS-induced unfolded protein response, explored the mechanistic link between ERS and lipid metabolism, and elucidated its role in renal lipid metabolism. This study aimed to offer new perspectives on managing and treating renal disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ziyi Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Deng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihui Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiyun Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
4
|
Flury A, Aljayousi L, Park HJ, Khakpour M, Mechler J, Aziz S, McGrath JD, Deme P, Sandberg C, González Ibáñez F, Braniff O, Ngo T, Smith S, Velez M, Ramirez DM, Avnon-Klein D, Murray JW, Liu J, Parent M, Mingote S, Haughey NJ, Werneburg S, Tremblay MÈ, Ayata P. A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron 2025; 113:554-571.e14. [PMID: 39719704 DOI: 10.1016/j.neuron.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct "dark microglia" linked to pathological synapse loss. In AD models, microglial ISR activation exacerbates neurodegenerative pathologies and synapse loss while its inhibition ameliorates them. Mechanistically, we present evidence that ISR activation promotes the secretion of toxic lipids by microglia, impairing neuron homeostasis and survival in vitro. Accordingly, pharmacological inhibition of ISR or lipid synthesis mitigates synapse loss in AD models. Our results demonstrate that microglial ISR activation represents a neurodegenerative phenotype, which may be sustained, at least in part, by the secretion of toxic lipids.
Collapse
Affiliation(s)
- Anna Flury
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Leen Aljayousi
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Hye-Jin Park
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | | | - Jack Mechler
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA
| | - Siaresh Aziz
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Jackson D McGrath
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Colby Sandberg
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | | | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | - Thi Ngo
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Simira Smith
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Matthew Velez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Denice Moran Ramirez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Dvir Avnon-Klein
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - John W Murray
- Columbia Center for Human Development, Center for Stem Cell Therapies, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Martin Parent
- CERVO Brain Research Center, Québec City, QC G1E 1T2, Canada
| | - Susana Mingote
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sebastian Werneburg
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA; Michigan Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC H3A 2B4, Canada; Canada Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada; Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC V8N 5M8, Canada
| | - Pinar Ayata
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA.
| |
Collapse
|
5
|
Liu D, Tian P, Hou Y, Zhang T, Hou X, Liu L, Li X, Zheng K, Wang C, Song G. Free fatty acids may regulate the expression of 11β-hydroxysteroid dehydrogenase type 1 in the liver of high-fat diet golden hamsters through the ERS-CHOP-C/EBPα signaling pathway. Lipids Health Dis 2025; 24:40. [PMID: 39920773 PMCID: PMC11806826 DOI: 10.1186/s12944-025-02461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/01/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE Free fatty acids (FFA) can increase the expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in local tissues and organs. However, the mechanism underlying the effect of FFA on 11β-HSD1 expression remains unclear. METHODS A total of 24 male Syrian golden hamsters (SPF grade) were selected and randomly divided into a control group (Con, n = 8) fed a normal diet, and a high-fat diet group (n = 16) fed for 12 weeks. After successfully establishing the hyperlipidemia hamster model, the high-fat group was further divided into a high-fat group (HF) and a fenofibrate intervention group (Feno). Following an oral fat tolerance test (OFTT), blood lipids and FFA levels were measured. The expression levels of endoplasmic reticulum stress (ERS) marker GRP78, downstream key molecule CHOP, C/EBPα, and 11β-HSD1 were analyzed using Western blot and RT-PCR. RESULTS After OFTT, FFA levels in all three groups initially decreased and then increased, with the highest levels observed in the HF group (Ps < 0.05). FFA levels in the Feno group were comparable to those in the Con group (P > 0.05). Hepatic FFA, 11β-HSD1, and corticosterone levels were highest in the HF group (Ps < 0.05), while the Feno group showed no significant difference compared to the Con group (Ps > 0.05). Hepatic 11β-HSD1 and corticosterone levels were positively correlated with FFA levels (Ps < 0.05). Western blot and RT-PCR results indicated higher GRP78, CHOP, C/EBPα, and 11β-HSD1 protein and mRNA expression in the HF group compared to the Con group (Ps < 0.05). Fenofibrate intervention reduced FFA levels and downregulated these indicators in the Feno group compared to the HF group (Ps < 0.05). CONCLUSION FFA may regulate the expression of hepatic 11β-HSD1 in high-fat-fed golden hamsters via the ERS-CHOP-C/EBPα signaling pathway, thereby affecting local corticosterone levels. Fenofibrate may downregulate the levels of 11β-HSD1 and corticosterone in local tissues by reducing FFA levels.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Peipei Tian
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
- Second Department of Endocrinology and Metabolism, Cangzhou Central Hospital, Cangzhou, Hebei, 061001, People's Republic of China
| | - Yilin Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Tingxue Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Lifang Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, 071000, People's Republic of China
| | - Xiaolong Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, 053000, People's Republic of China
| | - Kunjie Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, 053000, People's Republic of China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China.
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China.
| |
Collapse
|
6
|
Liu CL, Ren T, Ruan PC, Huang YF, Ceccobelli S, Huang DJ, Zhang LP, E GX. Genome-Wide Association Integrating a Transcriptomic Meta-Analysis Suggests That Genes Related to Fat Deposition and Muscle Development Are Closely Associated with Growth in Huaxi Cattle. Vet Sci 2025; 12:109. [PMID: 40005876 PMCID: PMC11860805 DOI: 10.3390/vetsci12020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Growth traits are among the most important economic phenotypes targeted in the genetic improvement of beef cattle. To understand the genetic basis of growth traits in Huaxi cattle, we performed a genome-wide association study (GWAS) on body weight, eye muscle area, and back fat thickness across five developmental stages in a population of 202 Huaxi cattle. Additionally, publicly available RNA-seq data from the longissimus dorsi muscle of both young and adult cattle were analyzed to identify key genes and genetic markers associated with growth in Huaxi cattle. In total, 7.19 million high-quality variant loci (SNPs and INDELs) were identified across all samples. In the GWAS, the three multilocus models (FarmCPU, MLMM, and BLINK) outperformed the conventional single-locus models (CMLM, GLM, and MLM). Consequently, GWAS analysis was conducted using multilocus models, which identified 99 variant loci significantly associated with growth traits and annotated a total of 83 candidate genes (CDGs). Additionally, 23 of the 83 CDGs overlapped with significantly differentially expressed genes identified from public RNA-seq datasets of longissimus dorsi muscle between young and adult cattle. Furthermore, gene functional enrichment (KEGG and GO) analyses revealed that over 30% of the pathways and GO terms were associated with muscle development and fat deposition, crucial factors for beef production. Specifically, key genes identified included MGLL, SGMS1, SNX29 and AKAP6, which are implicated in lipid metabolism, adipogenesis, and muscle growth. In summary, this study provides new insights into the genetic mechanisms underlying growth traits in Huaxi cattle and presents promising markers for future breeding improvements.
Collapse
Affiliation(s)
- Cheng-Li Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Ren
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Peng-Cheng Ruan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - De-Jun Huang
- Chongqing Academy of Animal Science, Chongqing 402460, China;
| | - Lu-Pei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100006, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
8
|
Locke B, Lu R. Establishment of immortalized porcine intramuscular preadipocytes for the study of lipid metabolism. Biochem Cell Biol 2025; 103:1-11. [PMID: 40127467 DOI: 10.1139/bcb-2024-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Intramuscular adipose tissue is associated with an increased risk for the development of metabolic syndrome. A cellular model of adipogenesis in muscular tissues would be an invaluable tool for studying regulatory factors in this important process. Cellular stress can impact the homeostasis of various metabolic pathways, including lipid metabolism. In this study, a porcine intramuscular preadipocyte cell line was established, which displayed mature adipocyte attributes such as lipid accumulation and increased expression of adipogenic gene markers. Since it is well established that endoplasmic reticulum (ER) and Golgi stress impact adipogenesis, we sought to investigate the effects of ER/Golgi stress and an associated protein, CREB3, in this cell line model. We found that this novel model maintains robust adipogenic capabilities, and that ER stress can negatively affect adipogenic markers. Overall, these findings demonstrate the strength of the new cell model for studying adipogenesis, and highlight the impact of ER stress on lipid metabolism.
Collapse
Affiliation(s)
- Briana Locke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Zhao W, Shen Y, Bao Y, Monroig Ó, Zhu T, Sun P, Tocher DR, Zhou Q, Jin M. Fucoidan alleviates hepatic lipid deposition by modulating the Perk-Eif2α-Atf4 axis via Sirt1 activation in Acanthopagrus schlegelii. Int J Biol Macromol 2024; 282:137266. [PMID: 39505163 DOI: 10.1016/j.ijbiomac.2024.137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
With the increasing use of high-fat diets (HFD), fatty liver disease has become common in fish, and fucoidan is of interest as a natural sulfated polysaccharide with lipid-lowering activity. To explore the molecular regulatory mechanisms of fucoidan's alleviation of HFD-induced lipid deposition in liver, black seabream (Acanthopagrus schlegelii) was used to construct in vivo and in vitro HFD models. In vivo HFD stimulated the protein kinase RNA-like endoplasmic reticulum kinase (Perk) pathway, and up-regulated proliferator-activated receptor gamma (Pparγ) nuclear translocation and expression of lipogenic genes, while it down-regulated Ppar alpha (Pparα) nuclear translocation and expression of lipolytic genes. However, fucoidan reversed these effects of HFD and significantly alleviated HFD-induced lipid accumulation in liver. Moreover, after sirtuin 1 (sirt1) knockdown, these effects of fucoidan disappeared. In the in vitro HFD model, GSK2606414 (GSK)-specific inhibition of the Perk pathway, decreased Pparγ nuclear translocation and increased Pparα nuclear translocation. Overall, fucoidan mitigated HFD-induced, Perk pathway-mediated lipid deposition in the liver of black seabream by activating Sirt1. The findings provided a new prospect for the application of green polysaccharides in aquatic animal feeds.
Collapse
Affiliation(s)
- Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Dai Y, Chen J, Fang J, Liang S, Zhang H, Li H, Chen W. Piperlongumine, a natural alkaloid from Piper longum L. ameliorates metabolic-associated fatty liver disease by antagonizing the thromboxane A 2 receptor. Biochem Pharmacol 2024; 229:116518. [PMID: 39236933 DOI: 10.1016/j.bcp.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, including hyperglycemia, hepatic steatosis, and insulin resistance. Piperlongumine (PL), a natural amide alkaloid extracted from the fruits of Piper longum L., exhibited hepatoprotective effects in zebrafish and liver injury mice. This study aimed to investigate the therapeutic potential of PL on MAFLD and its underlying mechanisms. The findings demonstrate that PL effectively combats MAFLD induced by a high-fat diet (HFD) and improves metabolic characteristics in mice. Additionally, our results suggest that the anti-MAFLD effect of PL is attributed to the suppression of excessive hepatic gluconeogenesis, inhibition of de novo lipogenesis, and alleviation of insulin resistance. Importantly, the results indicate that, on the one hand, the hypoglycemic effect of PL is closely associated with CREB-regulated transcriptional coactivators (CRTC2)-dependent cyclic AMP response element binding protein (CREB) phosphorylation; on the other hand, the lipid-lowering effect of PL is attributed to reducing the nuclear localization of sterol regulatory element-binding proteins 1c (Srebp-1c). Mechanistically, PL could alleviate insulin resistance induced by endoplasmic reticulum stress by antagonizing the thromboxane A2 receptor (TP)/Ca2+ signaling, and the TP receptor serves as the potential target for PL in the treatment of MAFLD. Therefore, our results suggested PL effectively improved the major hallmarks of MAFLD induced by HFD, highlighting a potential therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jialong Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Wang D, Zhang D, Zhu Z, Zhang Y, Wan Y, Chen H, Liu J, Ma L. Fagopyrum dibotrys extract improves nonalcoholic fatty liver disease via inhibition of lipogenesis and endoplasmic reticulum stress in high-fat diet-fed mice. BMC Res Notes 2024; 17:310. [PMID: 39415220 PMCID: PMC11484369 DOI: 10.1186/s13104-024-06962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, presenting a treatment challenge due to limited options. Endoplasmic reticulum (ER) stress and associated lipid metabolism disorders are main causes of NAFLD, making it important to inhibit ER stress for effective treatment. Fagopyrum dibotrys has hypolipidemic, anti-inflammatory and hepatoprotective properties, showing promise in treating NAFLD. However, its effects on ER stress in NAFLD remain unclear. This study used a high-fat diet (HFD) to establish NAFLD mouse models and supplemented with Fagopyrum dibotrys extract (FDE) to evaluate its therapeutic effect and underlying mechanisms. RESULTS We showed that FDE supplementation reduced the severity of hepatic steatosis and lowered triglycerides (TG) and total cholesterol (TC) levels in NAFLD mice. At the molecular level, FDE supplementation reduced hepatic lipid deposition by downregulating lipogenic markers (SREBP-1c, SCD1) and upregulating fatty acid oxidase CPT1α expression. Additionally, FDE treatment inhibited the overexpression of ER stress markers (GRP78, CHOP, and P-EIF2α) in NAFLD mice livers, and blocked the activation of the PERK-EIF2α-CHOP pathway, demonstrating its role in maintaining ER homeostasis. Considering that activation of the PERK pathway could exacerbate lipid deposition, our findings suggest that FDE has a protective effect against hepatic steatosis in NAFLD mice by attenuating ER stress, and the potential mechanism is through inhibiting the PERK pathway.
Collapse
Affiliation(s)
- Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Dan Zhang
- Department of Gastroenterology, Dali Prefecture People's Hospital (The Third Affiliated Hospital of Dali University), Dali, 671003, Yunnan, China
| | - Ziyun Zhu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yini Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Ying Wan
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
12
|
Labbé K, LeBon L, King B, Vu N, Stoops EH, Ly N, Lefebvre AEYT, Seitzer P, Krishnan S, Heo JM, Bennett B, Sidrauski C. Specific activation of the integrated stress response uncovers regulation of central carbon metabolism and lipid droplet biogenesis. Nat Commun 2024; 15:8301. [PMID: 39333061 PMCID: PMC11436933 DOI: 10.1038/s41467-024-52538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The integrated stress response (ISR) enables cells to cope with a variety of insults, but its specific contribution to downstream cellular outputs remains unclear. Using a synthetic tool, we selectively activate the ISR without co-activation of parallel pathways and define the resulting cellular state with multi-omics profiling. We identify time- and dose-dependent gene expression modules, with ATF4 driving only a small but sensitive subgroup that includes amino acid metabolic enzymes. This ATF4 response affects cellular bioenergetics, rerouting carbon utilization towards amino acid production and away from the tricarboxylic acid cycle and fatty acid synthesis. We also find an ATF4-independent reorganization of the lipidome that promotes DGAT-dependent triglyceride synthesis and accumulation of lipid droplets. While DGAT1 is the main driver of lipid droplet biogenesis, DGAT2 plays an essential role in buffering stress and maintaining cell survival. Together, we demonstrate the sufficiency of the ISR in promoting a previously unappreciated metabolic state.
Collapse
Affiliation(s)
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Bryan King
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Nina Ly
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | - Jin-Mi Heo
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | |
Collapse
|
13
|
Chen K, Wang Y, Yang J, Klöting N, Liu C, Dai J, Jin S, Chen L, Liu S, Liu Y, Yu Y, Liu X, Miao Q, Liew CW, Wang Y, Dietrich A, Blüher M, Wang X. EMC10 modulates hepatic ER stress and steatosis in an isoform-specific manner. J Hepatol 2024; 81:479-491. [PMID: 38599383 DOI: 10.1016/j.jhep.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) membrane protein complex subunit 10 (EMC10) has been implicated in obesity. Here we investigated the roles of the two isoforms of EMC10, including a secreted isoform (scEMC10) and an ER membrane-bound isoform (mEMC10), in metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Manifold steatotic mouse models and HepG2 cells were employed to investigate the role of EMC10 in the regulation of hepatic PERK-eIF2α-ATF4 signaling and hepatosteatosis. The therapeutic effect of scEMC10-neutralizing antibody on mouse hepatosteatosis was explored. Associations of MASLD with serum scEMC10 and hepatic mEMC10 were determined in two cohorts of participants with MASLD. RESULTS scEMC10 promoted, while mEMC10 suppressed, the activation of hepatic PERK-eIF2α-ATF4 signaling. Emc10 gene knockout exacerbated, while hepatic overexpression of mEMC10 ameliorated, hepatic ER stress and steatosis in mice challenged with either a methionine- and choline-deficient diet or tunicamycin, highlighting a direct, suppressive role of mEMC10 in MASLD via modulation of hepatic ER stress. Overexpression of scEMC10 promoted, whereas neutralization of circulating scEMC10 prevented, hepatosteatosis in mice with fatty liver, suggesting a role of scEMC10 in MASLD development. Clinically, serum scEMC10 was increased, while hepatic mEMC10 was decreased, in participants with MASLD. Correlative analysis indicated that serum scEMC10 positively, whereas hepatic mEMC10 negatively, correlated with liver fat content and serum ALT, AST, and GGT. CONCLUSIONS These findings demonstrate a novel isoform-specific role for EMC10 in the pathogenesis of MASLD and identify the secreted isoform as a tractable therapeutic target for MASLD via antibody-based neutralization. IMPACT AND IMPLICATIONS We have shown the role of EMC10 in the regulation of energy homeostasis and obesity. In this study, we determine the distinct roles of the two isoforms of EMC10 in the regulation of hepatic endoplasmic reticulum stress and steatosis in mice, and report on the associations of the different EMC10 isoforms with metabolic dysfunction-associated steatotic liver disease in humans. Our findings delineate a novel regulatory axis for hepatosteatosis and identify EMC10 as a modulator of the PERK-eIF2α-ATF4 signaling cascade that may be of broad physiological significance. Moreover, our pre-clinical and clinical studies provide evidence of the therapeutic potential of targeting scEMC10 in MASLD.
Collapse
Affiliation(s)
- Kuangyang Chen
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yahao Wang
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Yang
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Chuanfeng Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiarong Dai
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuoshuo Jin
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijiao Chen
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Liu
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuzhao Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongzhuo Yu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Liu
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Miao
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chong Wee Liew
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Xuanchun Wang
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Sharma V, Patial V. Insights into the molecular mechanisms of malnutrition-associated steatohepatitis: A review. Liver Int 2024; 44:2156-2173. [PMID: 38775001 DOI: 10.1111/liv.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 08/10/2024]
Abstract
Malnutrition is a public health epidemic mainly targeting poverty-stricken people, young ones, older people, pregnant women, and individuals with metabolic disorders. Severe malnutrition is linked with several metabolic defects, such as hepatic dysfunction, hypertension, cardiovascular disease, and osteoarthritis. The proper functioning of the liver plays a crucial role in ensuring the supply of nutrients to the body. Consequently, inadequate nutrition can lead to severe periportal hepatic steatosis due to compromised mitochondrial and peroxisome functions. Reduced protein intake disrupts essential metabolic processes like the TCA cycle, oxidative phosphorylation, and β-oxidation, ultimately affecting ATP production. Furthermore, this can trigger a cascade of events, including disturbances in amino acid metabolism, iron metabolism, and gut microbiota, which activate genes involved in de novo lipogenesis, leading to the accumulation of lipids in the liver. The condition, in prolonged cases, progresses to steatohepatitis and liver fibrosis. Limited therapeutic solutions are available; however, few dietary supplements and drugs have demonstrated positive effects on the growth and health of malnourished individuals. These supplements improve parameters such as inflammatory and oxidative status, reduce triglyceride accumulation, enhance insulin sensitivity, and downregulate gene expression in hepatic lipid metabolism. This review elucidates the various mechanisms involved in malnutrition-associated steatohepatitis and provides an overview of the available approaches for treating this condition.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Liu Y, Cui F, Xu A, Wang B, Ma Y, Zhang Q, Sun Q, Zheng Y, Xue Y, Sun Y, Bian L. Interaction Between the PERK/ATF4 Branch of the Endoplasmic Reticulum Stress and Mitochondrial One-Carbon Metabolism Regulates Neuronal Survival After Intracerebral Hemorrhage. Int J Biol Sci 2024; 20:4277-4296. [PMID: 39247810 PMCID: PMC11379068 DOI: 10.7150/ijbs.93787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/21/2024] [Indexed: 09/10/2024] Open
Abstract
Recent investigations have revealed that oxidative stress can lead to neuronal damage and disrupt mitochondrial and endoplasmic reticulum functions after intracerebral hemorrhage (ICH). However, there is limited evidence elucidating their role in maintaining neuronal homeostasis. Metabolomics analysis, RNA sequencing, and CUT&Tag-seq were performed to investigate the mechanism underlying the interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress (ERS) and mitochondrial one-carbon (1C) metabolism during neuronal resistance to oxidative stress. The association between mitochondrial 1C metabolism and the PERK/ATF4 branch of the ERS after ICH was investigated using transcription factor motif analysis and co-immunoprecipitation. The findings revealed interactions between the GRP78/PERK/ATF4 and mitochondrial 1C metabolism, which are important in preserving neuronal homeostasis after ICH. ATF4 is an upstream transcription factor that directly regulates the expression of 1C metabolism genes. Additionally, the GRP78/PERK/ATF4 forms a negative regulatory loop with MTHFD2 because of the interaction between GRP78 and MTHFD2. This study presents evidence of disrupted 1C metabolism and the occurrence of ERS in neurons post-ICH. Supplementing exogenous NADPH or interfering with the PERK/ATF4 could reduce symptoms related to neuronal injuries, suggesting new therapeutic prospects for ICH.
Collapse
Affiliation(s)
- Yikui Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengzhen Cui
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Aoqian Xu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Ma
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixiang Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Xue
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
17
|
Potolitsyna E, Pickering SH, Bellanger A, Germier T, Collas P, Briand N. Cytoskeletal rearrangement precedes nucleolar remodeling during adipogenesis. Commun Biol 2024; 7:458. [PMID: 38622242 PMCID: PMC11018602 DOI: 10.1038/s42003-024-06153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
Differentiation of adipose progenitor cells into mature adipocytes entails a dramatic reorganization of the cellular architecture to accommodate lipid storage into cytoplasmic lipid droplets. Lipid droplets occupy most of the adipocyte volume, compressing the nucleus beneath the plasma membrane. How this cellular remodeling affects sub-nuclear structure, including size and number of nucleoli, remains unclear. We describe the morphological remodeling of the nucleus and the nucleolus during in vitro adipogenic differentiation of primary human adipose stem cells. We find that cell cycle arrest elicits a remodeling of nucleolar structure which correlates with a decrease in protein synthesis. Strikingly, triggering cytoskeletal rearrangements mimics the nucleolar remodeling observed during adipogenesis. Our results point to nucleolar remodeling as an active, mechano-regulated mechanism during adipogenic differentiation and demonstrate a key role of the actin cytoskeleton in defining nuclear and nucleolar architecture in differentiating human adipose stem cells.
Collapse
Affiliation(s)
- Evdokiia Potolitsyna
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sarah Hazell Pickering
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Thomas Germier
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Nolwenn Briand
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway.
| |
Collapse
|
18
|
Zhang J, Chen Y, Chen B, Sun D, Sun Z, Liang J, Liang J, Xiong X, Yan H. The dual effect of endoplasmic reticulum stress in digestive system tumors and intervention of Chinese botanical drug extracts: a review. Front Pharmacol 2024; 15:1339146. [PMID: 38449811 PMCID: PMC10917068 DOI: 10.3389/fphar.2024.1339146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for maintaining human health, and once imbalanced, it will trigger endoplasmic reticulum stress (ERS), which participates in the development of digestive system tumors and other diseases. ERS has dual effect on tumor cells, activating adaptive responses to promote survival or inducing apoptotic pathways to accelerate cell death of the tumor. Recent studies have demonstrated that Chinese botanical drug extracts can affect the tumor process of the digestive system by regulating ERS and exert anticancer effects. This article summarizes the dual effect of ERS in the process of digestive system tumors and the intervention of Chinese botanical drug extracts in recent years, as reference for the combined treatment of digestive system tumors with Chinese and modern medicine.
Collapse
Affiliation(s)
- Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanyu Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Junwei Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Xiong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hua Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
19
|
Yang M, Yao X, Xia F, Xiang S, Tang W, Zhou B. Hugan Qingzhi tablets attenuates endoplasmic reticulum stress in nonalcoholic fatty liver disease rats by regulating PERK and ATF6 pathways. BMC Complement Med Ther 2024; 24:36. [PMID: 38216941 PMCID: PMC10785447 DOI: 10.1186/s12906-024-04336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Shijian Xiang
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Waijiao Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
20
|
Wang R, Feng W, Wang Y, Jiang Y, Lin Y, Chen X. Maternal obstructive sleep apnea aggravates metabolic dysfunction-associated fatty liver disease via HMGB1-TLR4 signaling-mediated endoplasmic reticulum stress in male offspring rats. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166889. [PMID: 37730152 DOI: 10.1016/j.bbadis.2023.166889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
AIMS/HYPOTHESIS Maternal obstructive sleep apnea (MOSA) may inflict long-term metabolic effects on offspring. We hypothesize that MOSA increases the propensity for metabolic dysregulation in offspring and thus facilitates the development of metabolic dysfunction-associated fatty liver disease (MAFLD). This study aims to test the hypothesis and explore the underlying mechanism. METHODS The MOSA rat model of upper airway obstruction was established and fecundated. The postweaning male offspring (n = 171) from both the control group and MOSA group were randomly fed the normal chow diet (NCD, n = 89) or high-fat diet (HFD, n = 82) for the next 5 months. Liver function, lipid profile, glucose, and insulin levels were measured. Expression levels of fibrosis-related proteins and endoplasmic reticulum (ER) stress-related proteins in liver tissues were assessed using immunohistochemistry and western blotting. RESULTS MOSA increased body and liver weight in male offspring, along with augmented liver organ coefficient. Serum levels of aminotransferases, low-density lipoprotein, high-density lipoprotein, triglycerides, total cholesterol, total bile acid, fasting glucose, and insulin increased significantly. MOSA exacerbated HFD-induced hepatic steatosis and fibrosis. These effects were driven by the overactivated double-stranded RNA-activated protein kinase (PKR)-like eukaryotic initiation factor 2(PERK)-activating transcription factor (ATF)4-C/EBP homologous protein (CHOP) signaling pathway-induced ER stress, and hyperacetylation and release of high mobility group box-1(HMGB1) elicited above signaling in a TLR4-dependent manner. CONCLUSIONS These findings indicate that MOSA can exert prolonged adverse effects manifested as metabolic dysfunction in male offspring. Therefore, surveillance and management of OSA during pregnancy may be necessary to prevent and alleviate MAFLD in offspring.
Collapse
Affiliation(s)
- Ruhua Wang
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Wei Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yonghong Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yiguang Lin
- Central Laboratory, Fist Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China..
| | - Xueqing Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
21
|
Islam T, Scoggin S, Gong X, Zabet-Moghaddam M, Kalupahana NS, Moustaid-Moussa N. Anti-Inflammatory Mechanisms of Curcumin and Its Metabolites in White Adipose Tissue and Cultured Adipocytes. Nutrients 2023; 16:70. [PMID: 38201900 PMCID: PMC10780365 DOI: 10.3390/nu16010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The plant-derived polyphenol curcumin alleviates the inflammatory and metabolic effects of obesity, in part, by reducing adipose tissue inflammation. We hypothesized that the benefits of curcumin supplementation on diet-induced obesity and systemic inflammation in mice occur through downregulation of white adipose tissue (WAT) inflammation. The hypothesis was tested in adipose tissue from high-fat diet-induced obese mice supplemented with or without curcumin and in 3T3-L1 adipocytes treated with or without curcumin. Male B6 mice were fed a high-fat diet (HFD, 45% kcal fat) with or without 0.4% (w/w) curcumin supplementation (HFC). Metabolic changes in these mice have been previously reported. Here, we determined the serum levels of the curcumin metabolites tetrahydrocurcumin (THC) and curcumin-O-glucuronide (COG) using mass spectrometry. Moreover, we determined interleukin 6 (IL-6) levels and proteomic changes in LPS-stimulated 3T3-L1 adipocytes treated with or without curcumin by using immunoassays and mass spectrometry, respectively, to gain further insight into any altered processes. We detected both curcumin metabolites, THC and COG, in serum samples from the curcumin-fed mice. Both curcumin and its metabolites reduced LPS-induced adipocyte IL-6 secretion and mRNA levels. Proteomic analyses indicated that curcumin upregulated EIF2 and mTOR signaling pathways. Overall, curcumin exerted anti-inflammatory effects in adipocytes, in part by reducing IL-6, and these effects may be linked to the upregulation of the mTOR signaling pathway, warranting additional mechanistic studies on the effects of curcumin and its metabolites on metabolic health.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Xiaoxia Gong
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nishan S. Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
22
|
Li N, Li X, Ding Y, Liu X, Diggle K, Kisseleva T, Brenner DA. SREBP Regulation of Lipid Metabolism in Liver Disease, and Therapeutic Strategies. Biomedicines 2023; 11:3280. [PMID: 38137501 PMCID: PMC10740981 DOI: 10.3390/biomedicines11123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are master transcription factors that play a crucial role in regulating genes involved in the biogenesis of cholesterol, fatty acids, and triglycerides. As such, they are implicated in several serious liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). SREBPs are subject to regulation by multiple cofactors and critical signaling pathways, making them an important target for therapeutic interventions. In this review, we first introduce the structure and activation of SREBPs, before focusing on their function in liver disease. We examine the mechanisms by which SREBPs regulate lipogenesis, explore how alterations in these processes are associated with liver disease, and evaluate potential therapeutic strategies using small molecules, natural products, or herb extracts that target these pathways. Through this analysis, we provide new insights into the versatility and multitargets of SREBPs as factors in the modulation of different physiological stages of liver disease, highlighting their potential targets for therapeutic treatment.
Collapse
Affiliation(s)
- Na Li
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodan Li
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifu Ding
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China;
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - Karin Diggle
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
| | - David A. Brenner
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA (T.K.)
- Sanford Burnham Prebys, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Iyyappan R, Aleshkina D, Ming H, Dvoran M, Kakavand K, Jansova D, del Llano E, Gahurova L, Bruce AW, Masek T, Pospisek M, Horvat F, Kubelka M, Jiang Z, Susor A. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res 2023; 51:12076-12091. [PMID: 37950888 PMCID: PMC10711566 DOI: 10.1093/nar/gkad996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023] Open
Abstract
Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.
Collapse
Affiliation(s)
- Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Hao Ming
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Edgar del Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Lenka Gahurova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology & Genetics, Faculty of Science, University of South Bohemia in České Budějovice, Branisovšká 31a, České Budějovice, Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Martin Pospisek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Filip Horvat
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
25
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
26
|
Venkatesan N, Doskey LC, Malhi H. The Role of Endoplasmic Reticulum in Lipotoxicity during Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1887-1899. [PMID: 37689385 PMCID: PMC10699131 DOI: 10.1016/j.ajpath.2023.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Perturbations in lipid and protein homeostasis induce endoplasmic reticulum (ER) stress in metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease. Lipotoxic and proteotoxic stress can activate the unfolded protein response (UPR) transducers: inositol requiring enzyme1α, PKR-like ER kinase, and activating transcription factor 6α. Collectively, these pathways induce expression of genes that encode functions to resolve the protein folding defect and ER stress by increasing the protein folding capacity of the ER and degradation of misfolded proteins. The ER is also intimately connected with lipid metabolism, including de novo ceramide synthesis, phospholipid and cholesterol synthesis, and lipid droplet formation. Following their activation, the UPR transducers also regulate lipogenic pathways in the liver. With persistent ER stress, cellular adaptation fails, resulting in hepatocyte apoptosis, a pathological marker of liver disease. In addition to the ER-nucleus signaling activated by the UPR, the ER can interact with other organelles via membrane contact sites. Modulating intracellular communication between ER and endosomes, lipid droplets, and mitochondria to restore ER homeostasis could have therapeutic efficacy in ameliorating liver disease. Recent studies have also demonstrated that cells can convey ER stress by the release of extracellular vesicles. This review discusses lipotoxic ER stress and the central role of the ER in communicating ER stress to other intracellular organelles in MASLD pathogenesis.
Collapse
Affiliation(s)
- Nanditha Venkatesan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Luke C Doskey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
27
|
Souza LL, Rossetti CL, Peixoto TC, Manhães AC, de Moura EG, Lisboa PC. Neonatal nicotine exposure affects adult rat hepatic pathways involved in endoplasmic reticulum stress and macroautophagy in a sex-dependent manner. J Dev Orig Health Dis 2023; 14:639-647. [PMID: 38037831 DOI: 10.1017/s2040174423000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) involves changes in hepatic pathways, as lipogenesis, oxidative stress, endoplasmic reticulum (ER) stress, and macroautophagy. Maternal nicotine exposure exclusively during lactation leads to fatty liver (steatosis) only in the adult male offspring, not in females. Therefore, our hypothesis is that neonatal exposure to nicotine sex-dependently affects the signaling pathways involved in hepatic homeostasis of the offspring, explaining the hepatic lipid accumulation phenotype only in males. For this, between postnatal days 2 and 16, Wistar rat dams were implanted with osmotic minipumps, which released nicotine (NIC; 6 mg/Kg/day) or vehicle. The livers of offspring were evaluated at postnatal day 180. Only the male offspring that had been exposed to nicotine neonatally showed increased protein expression of markers of unfolded protein response (UPR), highlighting the presence of ER stress, as well as disruption of the activation of the macroautophagy repair pathway. These animals also had increased expression of diacylglycerol O-acyltransferase 1 and 4-hydroxynonenal, suggesting increased triglyceride esterification and oxidative stress. These parameters were not altered in the female offspring that had been neonatally exposed to nicotine, however they exhibited increased phospho adenosine monophosphate-activated protein kinase pAMPK expression, possibly as a protective mechanism. Thus, the disturbance in the hepatic homeostasis by UPR, macroautophagy, and oxidative stress modifications seem to be the molecular mechanisms underlying the liver steatosis in the adult male offspring of the nicotine-programming model. This highlights the importance of maternal smoking cessation during breastfeeding to decrease the risk of NAFLD development, especially in males.
Collapse
Affiliation(s)
- Luana Lopes Souza
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Lüdke Rossetti
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara Cherem Peixoto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Wang W, Mao X, Zhang R, Zhou XX, Liu Y, Zhou H, Jia J, Yan B. Nanoplastic Exposure at Environmental Concentrations Disrupts Hepatic Lipid Metabolism through Oxidative Stress Induction and Endoplasmic Reticulum Homeostasis Perturbation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14127-14137. [PMID: 37683116 DOI: 10.1021/acs.est.3c02769] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this study, we investigated the mechanism underlying the perturbation of hepatic lipid metabolism in response to micro/nanoplastic (MP/NP) exposure at environmentally relevant concentrations. Polystyrene (PS) MPs/NPs with different sizes (0.1, 0.5, and 5.0 μm) were studied for their effects on the homeostasis and function of Nile tilapia (Oreochromis niloticus) liver. Results showed that PS MPs/NPs were readily internalized and accumulated in various internal organs/tissues, especially in fish liver and muscle. Smaller-sized NPs caused more severe toxicity than larger MPs, including hepatic steatosis, inflammatory response, and disturbed liver function. Mechanistically, PS NPs with a particle size of 100 nm perturbed protein homeostasis in the endoplasmic reticulum (ER) by inhibiting the expression of chaperone proteins and genes involved in ER-associated degradation. This led to the activation of the PERK-eIF2α pathway, which caused dysfunction of hepatic lipid metabolism. Induction of oxidative stress and activation of the Nrf2/Keap1 pathway were also involved in the PS NP-induced hepatic lipid accumulation. These findings highlight the potential adverse effects of environmental MPs/NPs on aquatic organisms, raising concerns about their ecotoxicity and food safety.
Collapse
Affiliation(s)
- Weiyu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Rui Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yujiao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
29
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
30
|
Shreya S, Grosset CF, Jain BP. Unfolded Protein Response Signaling in Liver Disorders: A 2023 Updated Review. Int J Mol Sci 2023; 24:14066. [PMID: 37762367 PMCID: PMC10531763 DOI: 10.3390/ijms241814066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endoplasmic reticulum (ER) is the site for synthesis and folding of secreted and transmembrane proteins. Disturbance in the functioning of ER leads to the accumulation of unfolded and misfolded proteins, which finally activate the unfolded protein response (UPR) signaling. The three branches of UPR-IRE1 (Inositol requiring enzyme 1), PERK (Protein kinase RNA-activated (PKR)-like ER kinase), and ATF6 (Activating transcription factor 6)-modulate the gene expression pattern through increased expression of chaperones and restore ER homeostasis by enhancing ER protein folding capacity. The liver is a central organ which performs a variety of functions which help in maintaining the overall well-being of our body. The liver plays many roles in cellular physiology, blood homeostasis, and detoxification, and is the main site at which protein synthesis occurs. Disturbance in ER homeostasis is triggered by calcium level imbalance, change in redox status, viral infection, and so on. ER dysfunction and subsequent UPR signaling participate in various hepatic disorders like metabolic (dysfunction) associated fatty liver disease, liver cancer, viral hepatitis, and cholestasis. The exact role of ER stress and UPR signaling in various liver diseases is not fully understood and needs further investigation. Targeting UPR signaling with drugs is the subject of intensive research for therapeutic use in liver diseases. The present review summarizes the role of UPR signaling in liver disorders and describes why UPR regulators are promising therapeutic targets.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, Bihar, India;
| | - Christophe F. Grosset
- MIRCADE Team, U1312, Bordeaux Institute in Oncology, BRIC, Université de Bordeaux, 146 Rue Léo Saignat, F-33000 Bordeaux, France
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, Bihar, India;
| |
Collapse
|
31
|
Mao Z, Ma X, Jing Y, Shen M, Ma X, Zhu J, Liu H, Zhang G, Chen F. Ufmylation on UFBP1 alleviates non-alcoholic fatty liver disease by modulating hepatic endoplasmic reticulum stress. Cell Death Dis 2023; 14:584. [PMID: 37660122 PMCID: PMC10475044 DOI: 10.1038/s41419-023-06095-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease characterized by lipid accumulation and endoplasmic reticulum (ER) stress, while effective therapies targeting the specific characteristics of NAFLD are limited. Ufmylation is a newly found post-translational modification process that involves the attachment of the Ubiquitin-fold modifier 1 (UFM1) protein to its substrates via ufmylation modification system. Ufmylation regulates ER stress via modifying UFM1 binding protein 1 (UFBP1), suggesting a potential role for ufmylation in NAFLD pathogenesis. However, the precise role of ufmylation in NAFLD remains unclear. Herein, we aim to elucidate the impact of ufmylation on UFBP1 in NAFLD and explore the underlying mechanisms involved. We observed increased expression of UFM1-conjugated proteins and ufmylation modification system components in livers with steatosis derived from NAFLD patients and NAFLD models. Upregulation of ufmylation on hepatic proteins appeared to be an adaptive response to hepatic ER stress in NAFLD. In vitro, knocking down UFBP1 resulted in increased lipid accumulation and lipogenesis in hepatocytes treated with free fatty acids (FFA), which could be rescued by wild-type UFBP1 (WT UFBP1) but not by a mutant form of UFBP1 lacking the main ufmylation site lys267 (UFBP1 K267R). In vivo, ufmylation on UFBP1 ameliorated obesity, hepatic steatosis, hepatic lipogenesis, dyslipidemia, insulin resistance and liver damage in mice with NAFLD induced by a high fat diet (HFD). We also demonstrated that the downregulation of UFBP1 induced ER stress, whereas the reintroduction or overexpression of UFBP1 alleviated ER stress in a manner dependent on ufmylation in NAFLD. This mechanism could be responsible for the amelioration of aberrant hepatic lipogenesis and insulin resistance in NAFLD. Our data reveal a protective role of ufmylation on UFBP1 against NAFLD and offer a specific target for NAFLD treatment.
Collapse
Affiliation(s)
- Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaowen Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Minyan Shen
- School of Graduate, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| | - Guangya Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200233, China.
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
32
|
Cui X, Yao M, Feng Y, Li C, Li Y, Guo D, He S. Exogenous hydrogen sulfide alleviates hepatic endoplasmic reticulum stress via SIRT1/FoxO1/PCSK9 pathway in NAFLD. FASEB J 2023; 37:e23027. [PMID: 37410029 DOI: 10.1096/fj.202201705rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
High-fat-induced endoplasmic reticulum (ER) stress has been the main reason for the occurrence and development of nonalcoholic fatty liver disease (NAFLD). Hydrogen sulfide (H2 S) produces a marked effect on regulating lipid metabolism and antioxidation, whose effects on ER stress of NAFLD are still unclear. Here, we studied the influence of exogenous H2 S on NAFLD and its potential mechanism. In vivo, NAFLD model was induced by high-fat diet (HFD) for 12 weeks, followed by intraperitoneal injection of exogenous H2 S intervention for 4 weeks. HepG2 cells exposure to lipid mixture (LM) were used as vitro model to explore the potential mechanism. We found exogenous H2 S significantly inhibited the hepatic ER stress and improved the liver fat deposition of HFD-fed mice. These similar results were also observed in HepG2 cells dealt with LM after exogenous H2 S treatment. Further mechanism studies showed exogenous H2 S strengthened the combination of FoxO1 with the PCSK9 promoter gene through SIRT1-mediated deacetylation, thereby inhibiting the PCSK9 expression to relieve the hepatic ER stress. However, SIRT1 knockout eliminated the effects of exogenous H2 S on FoxO1 deacetylation, PCSK9 inhibition, and remission of hepatic ER stress and steatosis. In conclusion, exogenous H2 S improved NAFLD by inhibiting hepatic ER stress through SIRT1/FoxO1/PCSK9 pathway. Exogenous H2 S and ER stress may be potential drug and target for the treatment of NAFLD, respectively.
Collapse
Affiliation(s)
- Xiaomeng Cui
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Menglin Yao
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanjing Feng
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengjun Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Lidsky PV, Yuan J, Lashkevich KA, Dmitriev SE, Andino R. Monitoring integrated stress response in live Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548942. [PMID: 37502856 PMCID: PMC10369977 DOI: 10.1101/2023.07.13.548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cells exhibit stress responses to various environmental changes. Among these responses, the integrated stress response (ISR) plays a pivotal role as a crucial stress signaling pathway. While extensive ISR research has been conducted on cultured cells, our understanding of its implications in multicellular organisms remains limited, largely due to the constraints of current techniques that hinder our ability to track and manipulate the ISR in vivo. To overcome these limitations, we have successfully developed an internal ribosome entry site (IRES)-based fluorescent reporter system. This innovative reporter enables us to label Drosophila cells, within the context of a living organism, that exhibit eIF2 phosphorylation-dependent translational shutoff - a characteristic feature of the ISR and viral infections. Through this methodology, we have unveiled tissue- and cell-specific regulation of stress response in Drosophila flies and have even been able to detect stressed tissues in vivo during virus and bacterial infections. To further validate the specificity of our reporter, we have engineered ISR-null eIF2αS50A mutant flies for stress response analysis. Our results shed light on the tremendous potential of this technique for investigating a broad range of developmental, stress, and infection-related experimental conditions. Combining the reporter tool with ISR-null mutants establishes Drosophila as an exceptionally powerful model for studying the ISR in the context of multicellular organisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- University of California San Francisco, San Francisco, CA, 94158
| | - Jing Yuan
- University of California San Francisco, San Francisco, CA, 94158
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Raul Andino
- University of California San Francisco, San Francisco, CA, 94158
| |
Collapse
|
34
|
Sakai E, Imaizumi T, Suzuki R, Taracena-Gándara M, Fujimoto T, Sakurai F, Mizuguchi H. miR-27b targets MAIP1 to mediate lipid accumulation in cultured human and mouse hepatic cells. Commun Biol 2023; 6:669. [PMID: 37355744 PMCID: PMC10290684 DOI: 10.1038/s42003-023-05049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Non-alcoholic liver disease (NAFLD) is a condition caused by excessive fat accumulation in the liver and developed via multiple pathways. miR-27b has been suggested to play crucial roles in the development of NAFLD, assuming via targeting genes involved in lipid catabolism and anabolism. However, other pathways regulated by miR-27b are largely unknown. Here we show that lipid accumulation was induced in miR-27b-transfected human and mouse hepatic cells and that knockdowns of three miR-27b-target genes, β-1,4-galactosyltransferase 3 (B4GALT3), matrix AAA peptidase interacting protein 1 (MAIP1) and PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2), induced lipid accumulation. We also show that B4GALT3 and MAIP1 were direct targets of miR-27b and overexpression of MAIP1 ameliorated miR-27b-induced lipid accumulation. In addition, we show that hepatic Maip1 expression declined in mice fed a high-fat diet, suggesting the involvement of decreased Maip1 expression in the condition of fatty liver. Overall, we identified MAIP1/miR-27b axis as a mediator of hepatic lipid accumulation, a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Imaizumi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ruruka Suzuki
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Marcos Taracena-Gándara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
35
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
36
|
Varghese DS, Oommen D, John A, Ali BR. GRP78/BiP alleviates oxLDL-induced hepatotoxicity in familial hypercholesterolemia caused by missense variants of LDLR in a HepG2 cellular model. Lipids Health Dis 2023; 22:69. [PMID: 37248472 PMCID: PMC10226256 DOI: 10.1186/s12944-023-01835-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND AND AIMS The accumulation of misfolded proteins, encoded by genetic variants of functional genes leads to Endoplasmic Reticulum (ER) stress, which is a critical consequence in human disorders such as familial hypercholesterolemia, cardiovascular and hepatic diseases. In addition to the identification of ER stress as a contributing factor to pathogenicity, extensive studies on the role of oxidized Low-Density Lipoprotein (oxLDL) and its ill effects in expediting cardiovascular diseases and other metabolic comorbidities are well documented. However, the current understanding of its role in hepatic insults needs to be revised. This study elucidates the molecular mechanisms underlying the progression of oxLDL and ER stress-induced cytotoxicity in HepG2. METHODS HepG2 cells stably expressing wild-type Low-Density lipoprotein receptor (WT-LDLR) and missense variants of LDLR that are pathogenically associated with familial hypercholesterolemia were used as the in vitro models. The relative mRNA expression and protein profiles of ER stress sensors, inflammatory and apoptotic markers, together with cytotoxic assays and measurement of mitochondrial membrane potential, were carried out in HepG2 cells treated with 100 µg per ml oxLDL for 24 to 48 h. 1-way or 2-way ANOVA was used for statistical analyses of datasets. RESULTS ER stress responses are elicited along all three arms of the unfolded protein response (UPR), with adverse cytotoxic and inflammatory responses in oxLDL-treated conditions. Interestingly, oxLDL-treated ER-stressed HepG2 cells manifested intriguingly low expression of BiP- the master regulator of ER stress, as observed earlier by various researchers in liver biopsies of Non-Alcoholic Steatohepatitis (NASH) patients. This study shows that overexpression of BiP rescues hepatic cells from cytotoxic and inflammatory mechanisms instigated by ER stress in combination with oxLDL, along the ER and mitochondrial membrane and restores cellular homeostasis. CONCLUSION The data provide interesting leads that identify patients with familial hypercholesterolemia conditions and potentially other Endoplasmic Reticulum Associated Degradation (ERAD) diseases as highly susceptible to developing hepatic insults with molecular signatures like those manifested in Non-Alcoholic Fatty Liver Disease (NAFLD) and NASH. LIMITATIONS AND FUTURE PERSPECTIVES Although the use of HepG2 cells as the model is a major caveat of the study, the findings of this research may be used as the pilot study to expand further investigations in primary hepatocytes or iPSC- derived cellular models.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Deepu Oommen
- Present Address: Indian Institute of Science, C V Raman Road, 560012, Bangalore, India
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
37
|
Huang Z, Ma Y, Xie Y, Zhao D, Li C. Carrageenan in meat: improvement in lipid metabolism due to Sirtuin1-mediated fatty acid oxidation and inhibited lipid bioavailability. Food Funct 2023. [PMID: 37219362 DOI: 10.1039/d3fo00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kappa-carrageenan (κ-CGN) is widely used in the meat industry. However, its impact on the host metabolism is less revealed. The current study investigated the effect of κ-CGN in pork-based diets on the lipid metabolism of male C57BL/6J mice. The κ-CGN supplement significantly suppressed the increase in body weight by 6.79 g on an average. Supplement of κ-CGN in high-fat diets significantly upregulated the genes and protein expression of Sirtuin1, which was accompanied by the increased gene expression of downstream fatty acids oxidation (Cpt1a and Acadl). The sirtuin1-mediated improvement of lipid metabolism was negatively associated with the levels of bile acids, especially for deoxycholic acid, 3β-cholic acid, glycodeoxycholic acid and glycolithocholic acid. Moreover, κ-CGN in high-fat diets inhibited lipid digestion and absorption, being associated with the decrease in lipid accumulation and improved serum lipid profile. These results highlighted the role of κ-CGN in alleviating diet-induced adiposity by promoting energy expenditure and suppressing the bioavailability of ingested lipids.
Collapse
Affiliation(s)
- Zhiji Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Yafang Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| |
Collapse
|
38
|
Huang Z, Zheng X, Chen Z, Zheng Z, Yao D, Yang S, Zhang Y, Aweya JJ. Modulation of SREBP Expression and Fatty Acid Levels by Bacteria-Induced ER Stress Is Mediated by Hemocyanin in Penaeid Shrimp. Mar Drugs 2023; 21:md21030164. [PMID: 36976213 PMCID: PMC10055750 DOI: 10.3390/md21030164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Many environmental and pathogenic insults induce endoplasmic reticulum (ER) stress in animals, especially in aquatic ecosystems, where these factors are crucial for life. In penaeid shrimp, pathogens and environmental stressors induce hemocyanin expression, but the involvement of hemocyanin in ER stress response is unknown. We demonstrate that in response to pathogenic bacteria (Vibrio parahaemolyticus and Streptococcus iniae), hemocyanin, ER stress proteins (Bip, Xbp1s, and Chop), and sterol regulatory element binding protein (SREBP) are induced to alter fatty acid levels in Penaeus vannamei. Interestingly, hemocyanin interacts with ER stress proteins to modulate SREBP expression, while ER stress inhibition with 4-Phenylbutyric acid or hemocyanin knockdown attenuates the expression of ER stress proteins, SREBP, and fatty acid levels. Contrarily, hemocyanin knockdown followed by tunicamycin treatment (ER stress activator) increased their expression. Thus, hemocyanin mediates ER stress during pathogen challenge, which consequently modulates SREBP to regulate the expression of downstream lipogenic genes and fatty acid levels. Our findings reveal a novel mechanism employed by penaeid shrimp to counteract pathogen-induced ER stress.
Collapse
Affiliation(s)
- Zishu Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zeyan Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Defu Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shen Yang
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: (Y.Z.); (J.J.A.); Tel.: +86-13615050594 (J.J.A.); +86-754-86502580 (Y.L.Z.)
| | - Jude Juventus Aweya
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: (Y.Z.); (J.J.A.); Tel.: +86-13615050594 (J.J.A.); +86-754-86502580 (Y.L.Z.)
| |
Collapse
|
39
|
Ssu72 phosphatase is essential for thermogenic adaptation by regulating cytosolic translation. Nat Commun 2023; 14:1097. [PMID: 36841836 PMCID: PMC9968297 DOI: 10.1038/s41467-023-36836-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Brown adipose tissue (BAT) plays a pivotal role in maintaining body temperature and energy homeostasis. BAT dysfunction is associated with impaired metabolic health. Here, we show that Ssu72 phosphatase is essential for mRNA translation of genes required for thermogenesis in BAT. Ssu72 is found to be highly expressed in BAT among adipose tissue depots, and the expression level of Ssu72 is increased upon acute cold exposure. Mice lacking adipocyte Ssu72 exhibit cold intolerance during acute cold exposure. Mechanistically, Ssu72 deficiency alters cytosolic mRNA translation program through hyperphosphorylation of eIF2α and reduces translation of mitochondrial oxidative phosphorylation (OXPHOS) subunits, resulting in mitochondrial dysfunction and defective thermogenesis in BAT. In addition, metabolic dysfunction in Ssu72-deficient BAT returns to almost normal after restoring Ssu72 expression. In summary, our findings demonstrate that cold-responsive Ssu72 phosphatase is involved in cytosolic translation of key thermogenic effectors via dephosphorylation of eIF2α in brown adipocytes, providing insights into metabolic benefits of Ssu72.
Collapse
|
40
|
CHIP Haploinsufficiency Exacerbates Hepatic Steatosis via Enhanced TXNIP Expression and Endoplasmic Reticulum Stress Responses. Antioxidants (Basel) 2023; 12:antiox12020458. [PMID: 36830016 PMCID: PMC9951908 DOI: 10.3390/antiox12020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
TXNIP is a critical regulator of glucose homeostasis, fatty acid synthesis, and cholesterol accumulation in the liver, and it has been reported that metabolic diseases, such as obesity, atherosclerosis, hyperlipidemia, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD), are associated with endoplasmic reticulum (ER) stress. Because CHIP, an E3 ligase, was known to be involved in regulating tissue injury and inflammation in liver, its role in regulating ER stress-induced NAFLD was investigated in two experimental NAFLD models, a tunicamycin (TM)-induced and other diet-induced NAFLD mice models. In the TM-induced NAFLD model, intraperitoneal injection of TM induced liver steatosis in both CHIP+/+ and CHIP+/- mice, but it was severely exacerbated in CHIP+/- mice compared to CHIP+/+ mice. Key regulators of ER stress and de novo lipogenesis were also enhanced in the livers of TM-inoculated CHIP+/- mice. Furthermore, in the diet-induced NAFLD models, CHIP+/- mice developed severely impaired glucose tolerance, insulin resistance and hepatic steatosis compared to CHIP+/+ mice. Interestingly, CHIP promoted ubiquitin-dependent degradation of TXNIP in vitro, and inhibition of TXNIP was further found to alleviate the inflammation and ER stress responses increased by CHIP inhibition. In addition, the expression of TXNIP was increased in mice deficient in CHIP in the TM- and diet-induced models. These findings suggest that CHIP modulates ER stress and inflammatory responses by inhibiting TXNIP, and that CHIP protects against TM- or HF-HS diet-induced NAFLD and serves as a potential therapeutic means for treating liver diseases.
Collapse
|
41
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
42
|
Gao R, Wang H, Li T, Wang J, Ren Z, Cai N, Ai H, Li S, Lu Y, Zhu Y, Shuai X, He X, Shi G, Chen Y. Secreted MUP1 that reduced under ER stress attenuates ER stress induced insulin resistance through suppressing protein synthesis in hepatocytes. Pharmacol Res 2023; 187:106585. [PMID: 36455814 DOI: 10.1016/j.phrs.2022.106585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Disturbed endoplasmic reticulum (ER) stress response driven by the excessive lipid accumulation in the liver is a characteristic feature in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Restoring metabolic homeostasis by targeting ER stress is a potentially therapeutic strategy for NAFLD. Here we aim to identify novel proteins or pathways involved in regulating ER stress response and therapeutic targets for alleviating NAFLD. Proteomic and transcriptomic analysis demonstrated that major urinary proteins (MUPs) were significantly reduced in the livers from NAFLD mouse models. Then we confirmed that MUP1, the major secreted form of MUPs, was reduced at mRNA and protein expression levels in hepatocytes both in vivo and in vitro under ER stress. We further illustrated that MUP1 protein levels in the urine were reduced in mice with NAFLD, which was reversed by GLP-1 receptor agonist treatment. To study the relationship between ER stress and MUP1 biology, our analysis demonstrated that MUP1 was misfolded and trapped in the ER under ER stress in vivo. Interestingly, we discovered that recombinant MUP1 treatment in hepatocytes increased calcium efflux from the ER, which resulted in transient ER stress response, including reduced protein synthesis. These responses facilitated the alleviation of chemical induced ER stress in hepatocytes, which was suggested as "pre-adaptive ER stress". Besides, recombinant MUP1 pretreatment also improved ER stress-induced insulin resistance in hepatocytes. Our findings revealed a novel and critical role of MUP1, and recombinant MUP1 or its potential derivates may serve as a promising therapeutic target for alleviating NAFLD.
Collapse
Affiliation(s)
- Rong Gao
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Heting Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhitao Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Cai
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Heying Ai
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shasha Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xintao Shuai
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
44
|
Comparison between aerobic exercise training and enalapril treatment as tools to improve diet-induced metabolic-associated fatty liver disease: Effects on endoplasmic reticulum stress markers. Life Sci 2022; 311:121136. [PMID: 36349603 DOI: 10.1016/j.lfs.2022.121136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
AIMS Endoplasmic reticulum (ER) stress poses a new pathological mechanism for metabolic-associated fatty liver disease (MAFLD). MAFLD treatment has encompassed renin-angiotensin system (RAS) blockers and aerobic exercise training, but their association with hepatic ER stress is not well known. Therefore, we aimed to compare the effects of hepatic RAS modulation by enalapril and/or aerobic exercise training over ER stress in MAFLD caused by a diet-induced obesity model. MAIN METHODS C57BL/6 mice were fed a standard-chow (CON, n = 10) or a high-fat (HF, n = 40) diet for 8 weeks. HF group was then randomly divided into: HF (n = 10), HF + Enalapril (EN, n = 10), HF + Aerobic exercise training (AET, n = 10), and HF + Enalapril+Aerobic exercise training (EN + AET, n = 10) for 8 more weeks. Body mass (BM) and glucose profile were evaluated. In the liver, ACE and ACE2 activity, morphology, lipid profile, and protein expression of ER stress and metabolic markers were assessed. KEY FINDINGS Both enalapril and aerobic exercise training provided comparable efficacy in improving diet-induced MAFLD through modulation of RAS and ER stress, but the latter was more efficient in improving ER stress, liver damage and metabolism. SIGNIFICANCE This is the first study to evaluate pharmacological (enalapril) and non-pharmacological (aerobic exercise training) RAS modulators associated with ER stress in a diet-induced MAFLD model.
Collapse
|
45
|
Huang CY, Chen HW, Lo CW, Wang YR, Li CC, Liu KL, Lii CK. Luteolin ameliorates palmitate-induced lipotoxicity in hepatocytes by mediating endoplasmic reticulum stress and autophagy. Food Chem Toxicol 2022; 171:113554. [PMID: 36509263 DOI: 10.1016/j.fct.2022.113554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Abnormal accumulation of lipids in liver leads to uncontrolled endoplasmic reticulum (ER) stress and autophagy. Luteolin is known to have antioxidant, anti-inflammatory, and anti-cancer properties, but whether it protects against lipotoxicity in liver remains unclear. In this study, we challenged AML12 liver cells and mouse primary hepatocytes with palmitic acid (PA) with or without luteolin pretreatment. In the presence of PA, reactive oxygen species (ROS) production was increased at 3 h, followed by enhancement of expression of p-PERK, ATF4, p-eIF2α, CHOP, and TXNIP (ER stress markers) and p-p62 and LC3II/LC3I ratio (autophagy markers), in both primary hepatocytes and AML12 cells. When PA treatment was extended up to 24 h, apoptosis was induced as evidenced by an increase in caspase-3 activation. RFP-GFP-LC3B transfection further revealed that the fusion of autophagosomes with lysosomes was damaged by PA. With luteolin treatment, the expression of antioxidant enzymes, i.e., heme oxygenase-1 and glutathione peroxidase, was upregulated, and PA-induced ROS production, ER stress, and cell death were dose-dependently ameliorated. Luteolin could also reverse the damage caused to autophagic flux. These results indicate that luteolin protects hepatocytes against PA assault by enhancing antioxidant defense, which can attenuate ER stress and autophagy as well as promote autophagic flux.
Collapse
Affiliation(s)
- Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Ru Wang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
46
|
Zheng W, Sun Q, Li L, Cheng Y, Chen Y, Lv M, Xiang X. Role of endoplasmic reticulum stress in hepatic glucose and lipid metabolism and therapeutic strategies for metabolic liver disease. Int Immunopharmacol 2022; 113:109458. [DOI: 10.1016/j.intimp.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
47
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
48
|
Raja R, Fonseka O, Ganenthiran H, Andrea-Ruiz-Velasco, Liu W. The multifaceted roles of ER and Golgi in metabolic cardiomyopathy. Front Cardiovasc Med 2022; 9:999044. [PMID: 36119738 PMCID: PMC9479098 DOI: 10.3389/fcvm.2022.999044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Metabolic cardiomyopathy is a significant global financial and health challenge; however, pathophysiological mechanisms governing this entity remain poorly understood. Among the main features of metabolic cardiomyopathy, the changes to cellular lipid metabolism have been studied and targeted for the discovery of novel treatment strategies obtaining contrasting results. The endoplasmic reticulum (ER) and Golgi apparatus (GA) carry out protein modification, sorting, and secretion activities that are more commonly studied from the perspective of protein quality control; however, they also drive the maintenance of lipid homeostasis. In response to metabolic stress, ER and GA regulate the expression of genes involved in cardiac lipid biogenesis and participate in lipid droplet formation and degradation. Due to the varied roles these organelles play, this review will focus on recapitulating the alterations and crosstalk between ER, GA, and lipid metabolism in cardiac metabolic syndrome.
Collapse
Affiliation(s)
| | | | | | - Andrea-Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
Weber AA, Yang X, Mennillo E, Ding J, Watrous JD, Jain M, Chen S, Karin M, Tukey RH. Lactational delivery of Triclosan promotes non-alcoholic fatty liver disease in newborn mice. Nat Commun 2022; 13:4346. [PMID: 35896521 PMCID: PMC9329322 DOI: 10.1038/s41467-022-31947-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Here we show that Triclosan (TCS), a high-volume antimicrobial additive that has been detected in human breastmilk, can be efficiently transferred by lactation to newborn mice, causing significant fatty liver (FL) during the suckling period. These findings are relevant since pediatric non-alcoholic fatty liver disease (NAFLD) is escalating in the United States, with a limited mechanistic understanding. Lactational delivery stimulated hepatosteatosis, triglyceride accumulation, endoplasmic reticulum (ER) stress, signs of inflammation, and liver fibrosis. De novo lipogenesis (DNL) induced by lactational TCS exposure is shown to be mediated in a PERK-eIF2α-ATF4-PPARα cascade. The administration of obeticholic acid (OCA), a potent FXR agonist, as well as activation of intestinal mucosal-regenerative gp130 signaling, led to reduced liver ATF4 expression, PPARα signaling, and DNL when neonates were exposed to TCS. It is yet to be investigated but mother to child transmission of TCS or similar toxicants may underlie the recent increases in pediatric NAFLD.
Collapse
Affiliation(s)
- André A Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeffrey Ding
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
50
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|