1
|
Aboulalazm FA, Kazen AB, deLeon O, Müller S, Saravia FL, Lozada-Fernandez V, Hadiono MA, Keyes RF, Smith BC, Kellogg SL, Grobe JL, Kindel TL, Kirby JR. Reutericyclin, a specialized metabolite of Limosilactobacillus reuteri, mitigates risperidone-induced weight gain in mice. Gut Microbes 2025; 17:2477819. [PMID: 40190120 PMCID: PMC11980487 DOI: 10.1080/19490976.2025.2477819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
The role of xenobiotic disruption of microbiota, corresponding dysbiosis, and potential links to host metabolic diseases are of critical importance. In this study, we used a widely prescribed antipsychotic drug, risperidone, known to influence weight gain in humans, to induce weight gain in C57BL/6J female mice. We hypothesized that microbes essential for maintaining gut homeostasis and energy balance would be depleted following treatment with risperidone, leading to enhanced weight gain relative to controls. Thus, we performed metagenomic analyses on stool samples to identify microbes that were excluded in risperidone-treated animals but remained present in controls. We identified multiple taxa including Limosilactobacillus reuteri as a candidate for further study. Oral supplementation with L. reuteri protected against risperidone-induced weight gain (RIWG) and was dependent on cellular production of a specialized metabolite, reutericyclin. Further, synthetic reutericyclin was sufficient to mitigate RIWG. Both synthetic reutericyclin and L. reuteri restored energy balance in the presence of risperidone to mitigate excess weight gain and induce shifts in the microbiome associated with leanness. In total, our results identify reutericyclin production by L. reuteri as a potential probiotic to restore energy balance induced by risperidone and to promote leanness.
Collapse
Affiliation(s)
- Fatima A. Aboulalazm
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexis B. Kazen
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Orlando deLeon
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susanne Müller
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima L. Saravia
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Matthew A. Hadiono
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert F. Keyes
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stephanie L. Kellogg
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tammy L. Kindel
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R. Kirby
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Liu Y, Cheng YY, Thompson J, Zhou Z, Vivas EI, Warren MF, DuClos JM, Anantharaman K, Rey FE, Venturelli OS. Decoding the role of the arginine dihydrolase pathway in shaping human gut community assembly and health-relevant metabolites. Cell Syst 2025; 16:101292. [PMID: 40339579 DOI: 10.1016/j.cels.2025.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
The arginine dihydrolase pathway (arc operon) provides a metabolic niche by transforming arginine into metabolic byproducts. We investigate the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles. By stabilizing environmental pH, the arc operon reduces variability in community composition in response to pH perturbations and frequently enhances butyrate production in synthetic communities. We use a tailored machine learning model for microbiomes to predict community assembly in response to variation in initial media pH and arc operon activity. This model uncovers the pH- and arc operon-dependent interactions shaping community assembly. Human gut species display altered colonization dynamics in response to the arc operon in the murine gut. In sum, our framework to quantify the contribution of a specific pathway to microbial community assembly and metabolite production can reveal new engineering strategies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew F Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie M DuClos
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ophelia S Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Lüthy L, Thies LGS, Beitl KN, Hansen M, McManus J, Afzal M, Schrangl L, Bloch S, Subbiahdoss G, Reimhult E, Schäffer C, Carreira EM. Synthesis, Microbiology, and Biophysical Characterization of Mutanofactins from the Human Oral Microbiome. ACS CENTRAL SCIENCE 2025; 11:601-611. [PMID: 40290153 PMCID: PMC12022917 DOI: 10.1021/acscentsci.4c02184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Mutanofactins are a family of natural products produced by Streptococcus mutans from the human oral microbiome. We report a unified approach to all mutanofactins by developing a total synthesis amenable to diversification. The key to success for the most complex members, mutanofactins 607 and 697, was an acyl ketene based strategy. Access to the family enabled comprehensive biological profiling, where we demonstrate that all mutanofactins are biofilm promoting in Streptococcus mutans. Experiments were extended to other inhabitants of the oral microbiome for the first time: Streptococcus gordonii and Streptococcus oralis, two early colonizers, were similarly affected with mutanofactins being biofilm promoting. Conversely, Veillonella dispar and Fusobacterium nucleatum showed little to no reaction to mutanofactins. Biophysical investigations based on quartz crystal microbalance with dissipation monitoring and atomic force microscopy reveal a previously unknown mucin-mutanofactin 697 interaction. Incubation of a mucin layer with mutanofactin 697 induces a morphology change within the mucin layer, which promotes bacterial adhesion and biofilm formation. This unique property of mutanofactin 697 might be key to early stages of biofilm formation in the human oral microbiome. Combined, an interdisciplinary approach consisting of total synthesis, microbiology and biophysical characterization provides insight into the roles of mutanofactins in the oral microbiome.
Collapse
Affiliation(s)
- Lukas Lüthy
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Leon Gabor Sacha Thies
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | | | - Moritz Hansen
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Joshua McManus
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Muhammad Afzal
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | - Lukas Schrangl
- Institute
of Biophysics, BOKU University, 1190 Vienna, Austria
| | - Susanne Bloch
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | | | - Erik Reimhult
- Institute
of Colloid and Biointerface Science, BOKU
University, 1190 Vienna, Austria
| | - Christina Schäffer
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | - Erick M. Carreira
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Ur Rahman Shah SA, Hao Y, Tang B, Ahmad M, He D, Nabi G, Zheng J, Wan X, Wang C, Wang K. The association of seasonal dietary shift with fecal metabolome and microbiota in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). ENVIRONMENTAL RESEARCH 2025; 271:121082. [PMID: 39929417 DOI: 10.1016/j.envres.2025.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
The gut microbiota can act as a buffer against changes in energy and food availability and adapt plastically to fluctuations in the host's diet. However, it is unknown how changes in the gut microbiome with the seasons impact microbial metabolism and the accessibility of nutrients to hosts. The study utilized 16S rRNA and UHPLC-MS/MS approaches to examine seasonal fecal metabolome variations in the captive Yangtze finless porpoises (YFPs) to determine if these variations are linked to nutrient intake or gut microbiome composition changes. The YFPs were mostly fed a frozen and live fish diet, with different food intakes yearly. We found that gut microbial diversity remained constant, but community structure varied seasonally. Firmicutes and Cyanobacteria were higher in winter, Actinobacteria in spring and fall, and proteobacteria in summer. The genus Paeniclostridium was significantly higher in the spring season, Romboutsia and Clostridium_sensu_stricto_13 were significantly higher in the summer, while Terrisporobacter and Macrococcus were significantly higher in the fall group. The study reported that seasonal dietary variation significantly impacted the fecal metabolome by affecting the metabolism, including energy, amino acid, carbohydrate, and nucleotide metabolism of the captive YFP. Moreover, significant correlations between metabolome and microbiome were found, and these correlations may indicate that the captive YFP has adapted to cope with dietary variations and enhance energy acquisition. These findings improve our knowledge of the link between microbiota, diet, metabolites, and the physiology of the host and suggest that gut microbial populations may adapt continuously to changes in diet.
Collapse
Affiliation(s)
- Syed Ata Ur Rahman Shah
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China.
| | - Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, China; National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| | - Maaz Ahmad
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dekui He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Pakistan
| | - Jinsong Zheng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| | - Xiaoling Wan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| |
Collapse
|
5
|
Xu J, Liu T, Pan F, Ao X, Wang L, Liang R, Lei Y, Ding Y, Yu M, Li L, Yang H. Rhubarb with Different Cooking Methods Restored the Gut Microbiota Dysbiosis and SCFAs in Ischemic Stroke Mice. Mol Neurobiol 2025:10.1007/s12035-025-04865-x. [PMID: 40195217 DOI: 10.1007/s12035-025-04865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
Ischemic stroke is a significant public health problem worldwide. Growing evidence has shown gut microbiota served a vital function in ischemic stroke. Rhubarb, always used after processing, is a promising therapy for ischemic stroke. However, the possible mechanism of rhubarb with different cooking methods has remained unclear. Herein, the constitutes of steaming rhubarb (SP), raw rhubarb (RP), and nine steaming nine sun-drying rhubarb (NSP) were identified via LC-QTOF-MS. The middle cerebral artery occlusion (MCAO) mice model was constructed. Infarction area, neurological score, Nissl staining, IBA-1 immunofluorescence, and ELISA were performed to confirm the neuroprotective effect of SP, RP, and NSP. The gut microbiota in fetal was studied via 16sRNA sequencing, and the level of short-chain fatty acids (SCFAs) in brain and gut were measured via GC-MS. The function of microbiota signature was identified through PICRUSt2; the possible mechanism was studied. SP, RP, and NSP alleviated the neurological dysfunction, decreased the inflammation, suppressed dysbiosis of gut microbiota, restored SCFA-producing bacteria, and enhanced the SCFA level in MCAO mice. Moreover, the NSP and SP enriched the proportion of anti-inflammation and beneficial bacteria, deleted the proportion of pro-inflammation. It observed energy metabolism was involved in the possible mechanism of rhubarb; activities of COXI and Na+-K+-ATPase were increased in the brain of NSP and SP treatment mice. Furthermore, the expression of GLUT4 and PFK1 (the energy metabolism-related genes) was elevated in the brain after RP, NSP and SP administration. In this study, it provided proof for the treatment of ischemic stroke with rhubarb. Rhubarb restored the gut microbiota and regulated the expression of GLUT4 and PFK1 to alleviate ischemic stroke.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Taotao Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
- Tongjunge Health, Chongqing Taiji Industry (Group) Co. Ltd, Chongqing, 408000, China
| | - Fuzhu Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
- School of Pharmacy, Zunyi Medical University, Zunyi City Xuefu West Road, Honghuagang District No. 6, Zunyi, 563000, China
| | - Xuan Ao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou City Heping North Road, Tianning District No. 25, Changzhou, 213003, China
| | - Yurong Ding
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Miao Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Li Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| |
Collapse
|
6
|
Li Q, Wang X, Guo S, Wang T, Cao H, Cao Y, Dong B. Galacto-oligosaccharides alleviate experimental lactose intolerance associated with gut microbiota in mice. Front Microbiol 2025; 16:1530156. [PMID: 40201439 PMCID: PMC11975899 DOI: 10.3389/fmicb.2025.1530156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Galacto-oligosaccharides (GOS) are beneficial for alleviating lactose intolerance (LI). GOS have the ability to modify the composition of the intestinal microbiota. The development of intestinal diseases could be influenced by the composition of the gut microbiota. Nevertheless, it remains unclear whether gut microbiota exerts an effect when GOS alleviate LI, whether alterations in composition of the intestinal microbiota influence inflammatory response and lactose digestion. Methods We first investigated the effects of GOS on mice with established lactose intolerance. Next, we demonstrated that prophylactic supplementation with GOS also conferred similar benefits. Results The results showed that GOS enhanced anti-inflammatory, antioxidant, and gut barrier function. We observed that GOS mediated a change in the gut microbiome by increasing the abundance of Lactobacillus. GOS pre-supplementation reduced incident LI, enhanced anti-inflammatory, antioxidant, and gut barrier function, and markedly altered the gut microbiome by significantly enriching Bifidobacterium. Collectively, the alleviation of LI by GOS suggests an intimate involvement of probiotics. Discussion This study demonstrates that GOS ameliorated LI in a gut microbiota-dependent manner. Our findings provide novel evidence that GOS substitute for lactase and serve as a potential modulator of the gut microbiota for the prevention of LI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bing Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Monaghan J, Nguyen K, Woytowich N, Keyowski A, Duncan KD. imzML Writer: An Easy-to-Use Python Pipeline for Conversion of Continuously Acquired Raw Mass Spectrometry Imaging Data to imzML Format. Anal Chem 2025; 97:5932-5937. [PMID: 40084954 DOI: 10.1021/acs.analchem.4c06520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mass spectrometry imaging (MSI) is a technique that uncovers the contextual distribution of biomolecules in tissue. This involves collecting large data sets with information-rich mass spectra in each pixel. To streamline image processing and interpretation, the MSI community has developed toolboxes for image preprocessing, segmentation, statistical analysis, and visualization. These generally require data to be input as imzML files, an Extensible Markup Language file with vocabulary for mass spectrometry and imaging-specific parameters. While commercial systems (e.g., MALDI) come with proprietary file converters, to our knowledge, no open-access user-friendly converters exist for continuously acquired imaging data (e.g., nano-DESI, DESI). Here, we present imzML Writer, an easy-to-use Python application with a graphical user interface to convert data from vendor format into pixel-aligned imzML files. We package this application with imzML Scout, allowing visualization of the resulting file(s) and batch export of ion images across a range of image and data formats (e.g., PNG, TIF, CSV). To demonstrate the utility of files generated by imzML Writer, we processed nano-DESI data with popular tools such as Cardinal MSI and METASPACE. Overall, this work provides a simple open-access tool for emerging MSI modality users to access advanced MSI processing tools reliant on imzML format. ImzML Writer is available as a distributable Python package via pip or as a standalone program for Mac and PC at https://github.com/VIU-Metabolomics/imzML_Writer.
Collapse
Affiliation(s)
- Joseph Monaghan
- Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Kiera Nguyen
- Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Nicholas Woytowich
- Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department of Chemistry, University of Victoria, P.O. Box 3055, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C2
| | - Alora Keyowski
- Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department of Chemistry, University of Victoria, P.O. Box 3055, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C2
| | - Kyle D Duncan
- Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department of Chemistry, University of Victoria, P.O. Box 3055, 3800 Finnerty Road, Victoria, British Columbia, Canada V8P 5C2
| |
Collapse
|
8
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Amir S, Kumar M, Kumar V, Mohanty D. HgutMgene-Miner: In silico genome mining tool for deciphering the drug-metabolizing potential of human gut microbiome. Comput Biol Med 2025; 186:109679. [PMID: 39862468 DOI: 10.1016/j.compbiomed.2025.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining. HgutMgene-Miner derives its predictive power from the MicrobiomeMetDB database, which systematically catalogs all known biotransformation reactions of xenobiotics and primary metabolites mediated by host-associated microbial enzymes. Over 10,000 isolate genomes from 830 different bacterial species found in the Unified Human Gastrointestinal Genome (UHGG) collection have been analyzed by HgutMgene-Miner. This led to the identification of 89,377 xenobiotic metabolizing enzymes (XMEs) across 13 phyla, with the greatest diversity in Bacteroidota, Firmicutes_A, Firmicutes, and Proteobacteria. Bacteroides, Clostridium, and Alitsipes were found to be the richest genera, while Actinomyces were found to encode the fewest XMEs, primarily metabolizing Diclofenac, a nonsteroidal anti-inflammatory drug. Overall, we discovered XMEs in 220 genera, exceeding the number experimentally reported in fewer than 10 genera. Notably, Eggerthella lenta's cgr2 involved in Digoxin inactivation was identified in very distant Holdemania genera, likewise Clostridium leptum's nitroreductase, involved in Nitrazepam metabolism, was found in Fusobacterium. These findings highlight the extensive and diverse distribution of XMEs across microbial taxa.
Collapse
Affiliation(s)
- Sana Amir
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Manish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vikas Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Bibi A, Zhang F, Shen J, Din AU, Xu Y. Behavioral alterations in antibiotic-treated mice associated with gut microbiota dysbiosis: insights from 16S rRNA and metabolomics. Front Neurosci 2025; 19:1478304. [PMID: 40092066 PMCID: PMC11906700 DOI: 10.3389/fnins.2025.1478304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The gut and brain interact through various metabolic and signaling pathways, each of which influences mental health. Gut dysbiosis caused by antibiotics is a well-known phenomenon that has serious implications for gut microbiota-brain interactions. Although antibiotics disrupt the gut microbiota's fundamental structure, the mechanisms that modulate the response and their impact on brain function are still unclear. It is imperative to comprehend and investigate crucial regulators and factors that play important roles. We aimed to study the effect of long-term antibiotic-induced disruption of gut microbiota, host metabolomes, and brain function and, particularly, to determine the basic interactions between them by treating the C57BL/6 mice with two different, most commonly used antibiotics, ciprofloxacin and amoxicillin. Anxiety-like behavior was confirmed by the elevated plus-maze test and open field test. Gut microbes and their metabolite profiles in fecal, serum, and brain samples were determined by 16S rRNA sequencing and untargeted metabolomics. In our study, long-term antibiotic treatment exerted anxiety-like effects. The fecal microbiota and metabolite status revealed that the top five genera found were Lactobacillus, Bacteroides, Akkermansia, Ruminococcus_gnavus_group, and unclassified norank_f_Muribaculaceae. The concentration of serotonin, L-Tyrosine, 5-Hydroxy-L-tryptophan, L-Glutamic acid, L-Glutamate, 5-Hydroxyindole acetic acid, and dopaminergic synapsis was comparatively low, while adenosine was high in antibiotic-treated mice. The KEGG enrichment analysis of serum and brain samples showed that amino acid metabolism pathways, such as tryptophan metabolism, threonine metabolism, serotonergic synapsis, methionine metabolism, and neuroactive ligand-receptor interaction, were significantly decreased in antibiotic-treated mice. Our study demonstrates that long-term antibiotic use induces gut dysbiosis and alters metabolic responses, leading to the dysregulation of brain signaling molecules and anxiety-like behavior. These findings highlight the complex interactions between gut microbiota and metabolic functions, providing new insights into the influence of microbial communities on gut-brain communication.
Collapse
Affiliation(s)
- Asma Bibi
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Famin Zhang
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ahmad Ud Din
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Yuanhong Xu
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Luo SM, Chen MJ. Lactobacillus acidophilus TW01 Mitigates PM 2.5-Induced Lung Injury and Improves Gut Health in Mice. Nutrients 2025; 17:831. [PMID: 40077701 PMCID: PMC11901689 DOI: 10.3390/nu17050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Exposure to fine particulate matter (PM2.5) causes significant respiratory and gastrointestinal health problems. In our prior research, we identified Lactobacillus acidophilus TW01 as a promising strain for mitigating oxidative damage, enhancing wound healing in intestinal epithelial cells, and protecting bronchial cells from cigarette smoke extract. Building upon these findings, this study examines the protective effects of this strain on lung damage induced by particulate matter (PM) through the gut-lung axis in mouse models. Methods: This study evaluated the protective effects of L. acidophilus TW01 against PM2.5-induced lung injury using two in vivo mouse models (OVA sensitization combined with PM2.5 exposure and DSS-induced colitis). Results: L. acidophilus TW01 exhibited significant protective effects in two in-vivo models, reducing pro-inflammatory cytokines (TNF-α, IL-6, and IL-5), modulating the immune response (IgG subtypes), and improving gut barrier integrity. Importantly, L. acidophilus TW01 increased the abundance of beneficial gut bacteria (Bifidobacterium and Lactobacillus). Conclusions: These findings highlight the significant protective/therapeutic potential of L. acidophilus TW01 in mitigating the adverse health effects of PM2.5 exposure, emphasizing the interplay between the gut and lung microbiomes in overall health. The multi-faceted protective effects of this probiotic suggest a novel, multi-pronged therapeutic strategy for addressing the widespread health consequences of air pollution.
Collapse
Affiliation(s)
- Siou-Min Luo
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Center for Biotechnology, National Taiwan University, Taipei 106038, Taiwan
| |
Collapse
|
12
|
Sampson TR, Tansey MG, West AB, Liddle RA. Lewy body diseases and the gut. Mol Neurodegener 2025; 20:14. [PMID: 39885558 PMCID: PMC11783828 DOI: 10.1186/s13024-025-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation. Experimental LBD models have implicated important contributions from the intrinsic gut microbiome, the intestinal immune system, and environmental toxicants, acting as triggers and modifiers to GI pathologies. Here, we review the primary clinical observations that link GI dysfunctions to LBDs. We first provide an overview of GI anatomy and the cellular repertoire relevant for disease, with a focus on luminal-sensing cells of the intestinal epithelium including enteroendocrine cells that express ⍺-syn and make direct contact with nerves. We describe interactions within the GI tract with resident microbes and exogenous toxicants, and how these may directly contribute to ⍺-syn pathology along with related metabolic and immunological responses. Finally, critical knowledge gaps in the field are highlighted, focusing on pivotal questions that remain some 200 years after the first descriptions of GI tract dysfunction in LBDs. We predict that a better understanding of how pathophysiologies in the gut influence disease risk and progression will accelerate discoveries that will lead to a deeper overall mechanistic understanding of disease and potential therapeutic strategies targeting the gut-brain axis to delay, arrest, or prevent disease progression.
Collapse
Affiliation(s)
- Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Malú Gámez Tansey
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
- Normal Fixel Institute of Neurological Diseases, Gainesville, FL, 32608, USA
| | - Andrew B West
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Center for Neurodegeneration and Neurotherapeutic Research, Department of Pharmacology and Cancer Biology, Durham, NC, 27710, USA.
| | - Rodger A Liddle
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University and Department of Veterans Affairs Health Care System, Durham, NC, 27710, USA.
| |
Collapse
|
13
|
Szeitz A, Herbig J, Kouremenos KA, Fitzgerald S, Hallam SJ. Editorial: Metabolomics and transcriptomics in biomarker discovery: mass spectrometric techniques in volatilome research. Front Mol Biosci 2025; 11:1545016. [PMID: 39896930 PMCID: PMC11782019 DOI: 10.3389/fmolb.2024.1545016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Andras Szeitz
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jens Herbig
- IONICON Analytik Gesellschaft m.b.H., Innsbruck, Austria
| | | | - Shane Fitzgerald
- Insight Science Foundation Ireland Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Steven J. Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Wang J, Xiang JH, Peng XY, Liu M, Sun LJ, Zhang M, Zhang LY, Chen ZB, Tang ZQ, Cheng L. Characteristic alterations of gut microbiota and serum metabolites in patients with chronic tinnitus: a multi-omics analysis. Microbiol Spectr 2025; 13:e0187824. [PMID: 39555931 PMCID: PMC11705945 DOI: 10.1128/spectrum.01878-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Chronic tinnitus is a central nervous system disorder. Currently, the effects of gut microbiota on tinnitus remain unexplored. To explore the connection between gut microbiota and tinnitus, we conducted 16S rRNA sequencing of fecal microbiota and serum metabolomic analysis in a cohort of 70 patients with tinnitus and 30 healthy volunteers. We used the weighted gene co-expression network method to analyze the relationship between the gut microbiota and the serum metabolites. The random forest technique was utilized to select metabolites and gut taxa to construct predictive models. A pronounced gut dysbiosis in the tinnitus group, characterized by reduced bacterial diversity, an increased Firmicutes/Bacteroidetes ratio, and some opportunistic bacteria including Aeromonas and Acinetobacter were enriched. In contrast, some beneficial gut probiotics decreased, including Lactobacillales and Lactobacillaceae. In serum metabolomic analysis, serum metabolic disturbances in tinnitus patients and these differential metabolites were enriched in pathways of neuroinflammation, neurotransmitter activity, and synaptic function. The predictive models exhibited great diagnostic performance, achieving 0.94 (95% CI: 0.85-0.98) and 0.96 (95% CI: 0.86-0.99) in the test set. Our study suggests that changes in gut microbiota could potentially influence the occurrence and chronicity of tinnitus, and exert regulatory effects through changes in serum metabolites. Overall, this research provides new perceptions into the potential role of gut microbiota and serum metabolite in the pathogenesis of tinnitus, and proposes the "gut-brain-ear" concept as a pathomechanism underlying tinnitus, with significant clinical diagnostic implications and therapeutic potential.IMPORTANCETinnitus affects millions of people worldwide. Severe cases may lead to sleep disorders, anxiety, and depression, subsequently impacting patients' lives and increasing societal healthcare expenditures. However, tinnitus mechanisms are poorly understood, and effective therapeutic interventions are currently lacking. We discovered the gut microbiota and serum metabolomics changes in patients with tinnitus, and provided the potential pathological mechanisms of dysregulated gut flora in chronic tinnitus. We proposed the innovative concept of the "gut-brain-ear axis," which underscores the exploration of gut microbiota impact on susceptibility to chronic tinnitus through serum metabolic profile modulation. We also reveal novel biomarkers associated with chronic tinnitus, offering a new conceptual framework for further investigations into the susceptibility of patients, potential treatment targets for tinnitus, and assessing patient prognosis. Subsequently, gut microbiota and serum metabolites can be used as molecular markers to assess the susceptibility and prognosis of tinnitus.Furthermore, fecal transplantation may be used to treat tinnitus.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Hui Xiang
- Department of Breast Surgical Oncology, National Cancer Center & National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Yuan Peng
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Liu
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Le-Jia Sun
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Yuan Zhang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Bin Chen
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Quan Tang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Xue SY, Ma W, Li MY, Meng WK, Ding YL, Yang B, Lv YR, Chen RB, Wu ZH, Tunala S, Zhang R, Zhao L, Liu YH. The Impact of Mycobacterium avium subsp. paratuberculosis on Intestinal Microbial Community Composition and Diversity in Small-Tail Han Sheep. Pathogens 2024; 13:1118. [PMID: 39770377 PMCID: PMC11680033 DOI: 10.3390/pathogens13121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Paratuberculosis (PTB), primarily caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic infection that affects ruminants and is difficult to prevent, diagnose, and treat. Investigating how MAP infections affect the gut microbiota in sheep can aid in the prevention and treatment of ovine PTB. This study examined fecal samples from eight small-tail Han sheep (STHS) at various stages of infection and from three different field areas. All samples underwent DNA extraction and 16S rRNA sequencing. Among all samples, the phyla p. Firmicutes and p. Bacteroidota exhibited the highest relative abundance. The dominant genera in groups M1-M6 were UCG-005, Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, Akkermansia, UCG-005, and Bacteroides, whereas those in groups A-C were Christensenellaceae_R-7_group, Escherichia-Shigella, and Acinetobacter, respectively. The microbial community structure varied significantly among groups M1-M6. Specifically, 56 microbiota consortia with different taxonomic levels, including the order Clostridiales, were significantly enriched in groups M1-M6, whereas 96 microbiota consortia at different taxonomic levels, including the family Oscillospiraceae, were significantly enriched in groups A-C. To the best of our knowledge, this is the first study to report that MAP infection alters the intestinal microbiota of STHS. Changes in p. Firmicutes abundance can serve as a potential biomarker to distinguish MAP infection and determine the infection stage for its early diagnosis. Our study provides a theoretical basis for the treatment of PTB by regulating the intestinal microbiota, including p. Firmicutes.
Collapse
Affiliation(s)
- Shi-Yuan Xue
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
| | - Wei Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
| | - Meng-Yuan Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
| | - Wei-Kang Meng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos 017000, China;
| | - Yue-Rong Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
| | - Rui-Bin Chen
- Otok Banner Animal Disease Prevention and Control Center, Ordos 017000, China; (R.-B.C.); (S.T.); (R.Z.)
| | - Zhi-Hong Wu
- Agriculture and Animal Husbandry Technology Popularization Center of Inner Mongolia Autonomous Region, Hohhot 010010, China;
| | - Siqin Tunala
- Otok Banner Animal Disease Prevention and Control Center, Ordos 017000, China; (R.-B.C.); (S.T.); (R.Z.)
| | - Rong Zhang
- Otok Banner Animal Disease Prevention and Control Center, Ordos 017000, China; (R.-B.C.); (S.T.); (R.Z.)
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China; (S.-Y.X.); (W.M.); (M.-Y.L.); (W.-K.M.); (Y.-L.D.); (Y.-R.L.)
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| |
Collapse
|
16
|
Wang Z, Shang P, Song X, Wu M, Zhang T, Zhao Q, Zhu S, Qiao Y, Zhao F, Zhang R, Wang J, Yu Y, Han H, Dong H. Alterations in Ileal Microbiota and Fecal Metabolite Profiles of Chickens with Immunity to Eimeria mitis. Animals (Basel) 2024; 14:3515. [PMID: 39682480 DOI: 10.3390/ani14233515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidiosis, caused by different species of Eimeria parasites, is an economically important disease in poultry and livestock worldwide. This study aimed to investigate the changes in the ileal microbiota and fecal metabolites in chickens after repeated infections with low-dose E. mitis. The chickens developed solid immunity against a high dose of E. mitis infection after repeated infections with low-dose E. mitis. The composition of the ileal microbiota and the metabonomics of the Eimeria-immunized group and the control group were detected using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS). The relative abundance of Neisseria, Erysipelotrichaceae, Incertae sedis, Coprobacter, Capnocytophaga, Bifidobacterium, and the Ruminococcus torques group declined in the Eimeria-immunized chickens, whereas Alloprevotella, Staphylococcus, Haemophilus, and Streptococcus increased. Furthermore, 286 differential metabolites (including N-undecylbenzenesulfonic acid, 1,25-dihydroxyvitamin D3, gluconic acid, isoleucylproline, proline, and 1-kestose) and 19 significantly altered metabolic pathways (including galactose metabolism, ABC transporters, starch and sucrose metabolism, the ErbB signaling pathway, and the MAPK signaling pathway) were identified between the Eimeria-immunized group and the control group. These discoveries will help us learn more about the composition and dynamics of the gut microbiota as well as the metabolic changes in chickens infected with Eimeria spp.
Collapse
Affiliation(s)
- Zhongchuang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peiyao Shang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Minghui Wu
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Tong Zhang
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Qiao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Fanghe Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Ruiting Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| |
Collapse
|
17
|
Jia W, Ma Q, Xing R, Yang X, Liu D, Zeng H, Liu Z, Liu S, Xu W, Liu Z, Wu W. Jianghua Kucha black tea containing theacrine attenuates depression-like behavior in CUMS mice by regulating gut microbiota-brain neurochemicals and cytokines. Food Res Int 2024; 198:115306. [PMID: 39643357 DOI: 10.1016/j.foodres.2024.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Theacrine and theaflavins are known for their potential to mitigate depression and cognitive impairment. Jianghua Kucha black tea (JH) contains both compounds, yet its antidepressant properties are seldom documented. This study evaluated the effects of JH on depression in chronic unpredictable mild stress (CUMS) mice and explored the underlying mechanisms through integrative analyses of gut microbiota and fecal metabolomics. JH was found to significantly alleviate CUMS-induced depression-like behavior by improving body weight, food intake, 1% sucrose preference, immobility time, and numbers of crossings and standings compared to Zhuyeqi black tea (ZYQ), which contains theaflavins. JH notably altered the gut microbiota composition, enriching genera such as Turicibacter, Faecalibaculum, Akkermansia, and Desulfovibrio, while inhibiting genera norank_f__Muribaculaceae and Lactobacillus. Additionally, JH modified the fecal metabolite profile, characterized by increased levels of several secondary bile acids (BAs) and decreased levels of several purine intermediate metabolites. Furthermore, JH upregulated levels of monoamine neurotransmitters (5-HT and DA) and brain-derived neurotrophic factor (BDNF), while downregulating pro-inflammatory cytokines IL-6 and TNF-α in brain tissue. These findings suggested that JH could mitigate CUMS-induced depression-like behavior, potentially by modulating gut microbiota composition and function, as well as brain neurochemicals and cytokines.
Collapse
Affiliation(s)
- Wenbao Jia
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Horticulture Colleges, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qianting Ma
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Longping Branch, College of Biology, Hunan University, Changsha, Hunan 410125, China
| | - Ruixue Xing
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaolu Yang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Shujuan Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Wei Xu
- Horticulture Colleges, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Longping Branch, College of Biology, Hunan University, Changsha, Hunan 410125, China.
| |
Collapse
|
18
|
Camañes-Gonzalvo S, Montiel-Company JM, Lobo-de-Mena M, Safont-Aguilera MJ, Fernández-Diaz A, López-Roldán A, Paredes-Gallardo V, Bellot-Arcís C. Relationship between oral microbiota and colorectal cancer: A systematic review. J Periodontal Res 2024; 59:1071-1082. [PMID: 38775019 PMCID: PMC11626693 DOI: 10.1111/jre.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 12/10/2024]
Abstract
This systematic review aims to investigate the microbial basis underlying the association between oral microbiota and colorectal cancer. A comprehensive search was conducted across four databases, encompassing potentially relevant studies published up to April 2024 related to the PECO question: "Is there a differentiation in oral microbial composition between adult patients diagnosed with colorectal cancer compared to healthy patients?". The Newcastle-Ottawa Scale was used to evaluate the quality of the studies included. The level of evidence was assessed through the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) tool. Sixteen studies fulfilled the eligibility criteria. Based on low to moderate evidence profile, high levels of certain subspecies within Firmicutes (such as Streptococcus anginosus, Peptostreptococcus stomatis, S. koreensis, and S. gallolyticus), Prevotella intermedia, Fusobacterium nucleatum, and Neisseria oralis were found to be associated with colorectal cancer. Conversely, certain bacteria (e.g., Lachnospiraceae, F. periodonticum, and P. melaninogenica) could exert a symbiotic protective effect against colorectal cancer. Based on existing evidence, it appears that variations in oral microbiota composition exist among individuals with and without colorectal cancer. However, further research is necessary to determine the mechanisms of oral dysbiosis in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Sara Camañes-Gonzalvo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Miriam Lobo-de-Mena
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | - María José Safont-Aguilera
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | | | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Vanessa Paredes-Gallardo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carlos Bellot-Arcís
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
19
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
20
|
Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10:136. [PMID: 39587086 PMCID: PMC11589602 DOI: 10.1038/s41522-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis. The GLBA plays a crucial role in numerous physiological and pathological mechanisms through a complex interplay of signaling pathways. However, gaps remain in our knowledge regarding the developmental and functional influences of the GLBA communication pathway. The gut microbial metabolites serve as communication agents between these three distant organs, functioning prominently within the GLBA. In this review, we provide a comprehensive overview of the current understanding of the GLBA, focusing on signaling molecules role in animal and human health and disease. In this review paper elucidate its mechanisms of communication, explore its implications for immune, and energy metabolism in animal and human, and highlight future research directions. Understanding the intricate communication pathways of the GLBA holds promise for creating innovative treatment approaches for a wide range of immune and metabolic conditions.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
21
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
22
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
23
|
Tamanna SS, Boden JS, Kaiser KM, Wannicke N, Höring J, Sánchez‐Baracaldo P, Deponte M, Frankenberg‐Dinkel N, Gehringer MM. Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere. GEOBIOLOGY 2024; 22:e70005. [PMID: 39665522 PMCID: PMC11636452 DOI: 10.1111/gbi.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The evolution of oxygenic photosynthesis during the Archean (4-2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O2, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD). Here, we analyse growth characteristics, SOD gene expression (qRT-PCR) and cellular enzyme activity in the deep branching strain, Pseudanabaena sp. PCC7367, previously demonstrated to release significantly more O2 under anoxic conditions. The observed significantly higher growth rates (p < 0.001) and protein and glycogen contents (p < 0.05) in anoxically cultured Pseudanabaena PCC7367 compared to control cultures grown under present-day oxygen-rich conditions prompted the following question: Is the growth of Pseudanabaena sp. PCC7367 correlated to atmospheric pO2 and cellular SOD activity? Expression of sodB (encoding FeSOD) and sodC (encoding CuZnSOD) strongly correlated with medium O2 levels (p < 0.001). Expression of sodA (encoding MnSOD) correlated significantly to SOD activity during the day (p = 0.019) when medium O2 concentrations were the highest. The cellular SOD enzyme activity of anoxically grown cultures was significantly higher (p < 0.001) 2 h before the onset of the dark phase compared to O2-rich growth conditions. The expression of SOD encoding genes was significantly reduced (p < 0.05) under anoxic conditions in stirred cultures, as were medium O2 levels (p ≤ 0.001), compared to oxic-grown cultures, whereas total cellular SOD activity remained comparable. Our data suggest that increasing pO2 negatively impacts the viability of early cyanobacteria, possibly by increasing photorespiration. Additionally, the increased expression of superoxide-inactivating genes during the dark phase suggests the increased replacement rates of SODs under modern-day conditions compared to those on early Earth.
Collapse
Affiliation(s)
- Sadia S. Tamanna
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
- Department of Molecular BotanyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | - Joanne S. Boden
- School of Geographical Sciences, Faculty of ScienceUniversity of BristolBristolUK
- School of Earth and Environmental SciencesUniversity of St. AndrewsSt. AndrewsUK
| | - Kimberly M. Kaiser
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | - Nicola Wannicke
- Plasma BioengineeringLeibniz Institute of Plasma Science and TechnologyGreifswaldGermany
| | - Jonas Höring
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | | | - Marcel Deponte
- Department of ChemistryUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | | | - Michelle M. Gehringer
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| |
Collapse
|
24
|
Wang T, Zhou N, Ding F, Hao Z, Galindo-Villegas J, Du Z, Su X, Zhang M. Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner. MICROBIOME 2024; 12:212. [PMID: 39434145 PMCID: PMC11492574 DOI: 10.1186/s40168-024-01934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in feed industry. RESULTS To validate the immune-protective effects of xylanase, Nile tilapia was used as the model and fed with xylanase. The results showed that dietary xylanase improved the survival rate of Nile tilapia when they were challenged with Aeromonas hydrophila. The transcriptome analysis showed significant enrichment of genes related to interleukin-17d (il-17d) signaling pathway in the xylanase treatment group. High-throughput sequencing revealed that dietary xylanase altered the composition of the intestinal microbiota and directly promoted the proliferation of Allobaculum stercoricanis which could produce butyrate in vitro. Consequently, dietary xylanase supplementation increased the butyrate level in fish gut. Further experiment verified that butyrate supplementation enhanced the expression of il-17d and regenerating islet-derived 3 gamma (reg3g) in the gut. The knockdown experiment of il-17d confirmed that il-17d is necessary for butyrate to protect Nile tilapia from pathogen resistance. Flow cytometry analysis indicated that butyrate increased the abundance of IL-17D+ intestinal epithelial cells in fish. Mechanistically, butyrate functions as an HDAC3 inhibitor, enhancing il-17d expression and playing a crucial role in pathogen resistance. CONCLUSION Dietary xylanase significantly altered the composition of intestinal microbiota and increased the content of butyrate in the intestine. Butyrate activated the transcription of il-17d in intestinal epithelial cells by inhibiting histone deacetylase 3, thereby protecting the Nile tilapia from pathogen infection. This study elucidated how microbial-derived xylanase regulates host immune function, providing a theoretical basis for the development and application of functional enzymes. Video Abstract.
Collapse
Affiliation(s)
- Tong Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nannan Zhou
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Feifei Ding
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhenzhen Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
25
|
Mazumder MHH, Hussain S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung-Gut Axis and Beyond. J Xenobiot 2024; 14:1595-1612. [PMID: 39449427 PMCID: PMC11503347 DOI: 10.3390/jox14040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests physiological and pathological functions of lung and gut microbiomes in various pathologies. Epidemiological and experimental data associate air pollution exposure with host microbial dysbiosis in the lungs and gut. Air pollution through increased reactive oxygen species generation, the disruption of epithelial barrier integrity, and systemic inflammation modulates microbial imbalance. Microbiome balance is crucial in regulating inflammation and metabolic pathways to maintain health. Microbiome dysbiosis is proposed as a potential mechanism for the air-pollution-induced modulation of pulmonary and systemic disorders. Microbiome-based therapeutic approaches are increasingly gaining attention and could have added value in promoting lung health. This review summarizes and discusses air-pollution-mediated microbiome alterations in the lungs and gut in humans and mice and elaborates on their role in health and disease. We discuss and summarize the current literature, highlight important mechanisms that lead to microbial dysbiosis, and elaborate on pathways that potentially link lung and lung microbiomes in the context of environmental exposures. Finally, we discuss the lung-liver-gut axis and its potential pathophysiological implications in air-pollution-mediated pathologies through microbial dysbiosis.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
26
|
Wang L, Li S, Hao Y, Liu X, Liu Y, Zuo L, Tai F, Yin L, Young LJ, Li D. Exposure to polystyrene microplastics reduces sociality and brain oxytocin levels through the gut-brain axis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174026. [PMID: 38885706 DOI: 10.1016/j.scitotenv.2024.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 μm and 50 μm) and concentrations (100 μg/L and 1000 μg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 μm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 μm-100 μg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Ecology Postdoctoral Research Station at Hebei Normal University, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Shuxin Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei 066003, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaqing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lirong Zuo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Liyun Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 3032, United States; Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-857, Japan
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
27
|
Han M, Dong Y, Wang S, Huang X, Bai C, Gai Z. Regulation of gut microbiota and serum neurotransmitters in mice by Streptococcus thermophilus GA8- and Lacticaseibacillus rhamnosus HAO9-fermented milk containing high levels of gamma-aminobutyric acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8050-8058. [PMID: 38828862 DOI: 10.1002/jsfa.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) is an important neurotransmitter in the human body, with several negative emotions reported as being associated with GABA dysregulation. This study investigates the safety and modulatory effects of GABA-enriched milk, fermented by Streptococcus thermophilus GA8 and Lacticasebacillus rhamnosus HAO9, on the gut microbiota and neurotransmitter profiles in mice. RESULTS Through rigorous culturing and fermentation processes, we achieved consistent GABA production in milk, with concentrations reaching 4.6 and 8.5 g L-1 for GA8-fermented and co-fermented milk, respectively, after 48 h. Using SPF male C57BL/6J mice, we administered either mono-culture or combined-culture milk treatments and monitored physiological impacts. The treatments did not affect mouse body weight but induced significant changes in gut microbiota composition. Beta diversity analysis revealed distinct microbial profiles between treatment groups, highlighting fermentation-specific microbial shifts, such as an increase in Verrucomicrobia for the GA8 group and a modulation in Saccharibacteria_genera_incertae_sedis for the GA8 + HAO9 group. Serum neurotransmitter levels were elevated in both treatment groups, with significant increases in l-glutamine, l-tryptophan and, notably, serotonin hydrochloride in the GA8 + HAO9 group. Correlation analysis identified a positive association between specific bacterial genera and neurotransmitter levels, suggesting a probiotic effect on neuroactive substances. CONCLUSION These findings suggest that fermented milk has potential as a probiotic supplement for mood improvement and stress relief, highlighting its role in modulating the gut-brain axis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Han
- Department of Food Science, Shanghai Business School, Shanghai, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd, Suzhou, China
| | - Shuo Wang
- APC Microbiome Ireland, Cork, Ireland
| | | | - Chen Bai
- Department of Food Science, Shanghai Business School, Shanghai, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd, Suzhou, China
| |
Collapse
|
28
|
Toci EM, Majumdar A, Meyers CLF. Aldehyde-based Activation of C2α-lactylthiamin Diphosphate Decarboxylation on Bacterial 1-deoxy-d-xylulose 5-phosphate Synthase. Chembiochem 2024:e202400558. [PMID: 39268973 DOI: 10.1002/cbic.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate (donor substrate) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand-gated mechanism in which binding of a small molecule "trigger" activates the first enzyme-bound intermediate, C2α-lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d-GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d-glyceraldehyde (d-GA) can induce LThDP decarboxylation. We hypothesize this ligand-gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α-hydroxy aldehyde moiety of d-GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| |
Collapse
|
29
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
30
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
31
|
Brasino DSK, Speese SD, Schilling K, Schutt CE, Barton MC. A Linkable, Polycarbonate Gut Microbiome-Distal Tumor Chip Platform for Interrogating Cancer Promoting Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309220. [PMID: 39023197 PMCID: PMC11425222 DOI: 10.1002/advs.202309220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiome composition is tied to diseases ranging from arthritis to cancer to depression. However, mechanisms of action are poorly understood, limiting development of relevant therapeutics. Organ-on-chip platforms, which model minimal functional units of tissues and can tightly control communication between them, are ideal platforms to study these relationships. Many gut microbiome models are published to date but devices are typically fabricated using oxygen permeable polydimethylsiloxane, requiring interventions to support anaerobic bacteria. To address this challenge, a platform is developed where the chips are fabricated entirely from gas-impermeable polycarbonate without tapes or gaskets. These chips replicate polarized villus-like structures of the native tissue. Further, they enable co-cultures of commensal anaerobic bacteria Blautia coccoides on the surface of gut epithelia for two days within a standard incubator. Another complication of commonly used materials in organ-on-chip devices is high ad-/absorption, limiting applications in high-resolution microscopy and biomolecule interaction studies. For future communication studies between gut microbiota and distal tumors, an additional polycarbonate chip design is developed to support hydrogel-embedded tissue culture. These chips enable high-resolution microscopy with all relevant processing done on-chip. Designed for facile linking, this platform will make a variety of mechanistic studies possible.
Collapse
Affiliation(s)
- Danielle S K Brasino
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Sean D Speese
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Kevin Schilling
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Carolyn E Schutt
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Michelle C Barton
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
32
|
Zhao N, Wu G, Zhao L. H 2S as a metabolic saboteur. Nat Metab 2024; 6:1431-1432. [PMID: 39030388 DOI: 10.1038/s42255-024-01086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Affiliation(s)
- Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
34
|
Li Y, Qiao X, Feng Y, Zhou R, Zhang K, Pan Y, Yan T, Yan L, Yang S, Wei X, Li P, Xu C, Lv Z, Tian Z. Characterization of the gut microbiota and fecal metabolome in the osteosarcoma mouse model. Aging (Albany NY) 2024; 16:10841-10859. [PMID: 38967635 PMCID: PMC11272122 DOI: 10.18632/aging.205951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024]
Abstract
Previous studies have reported the correlation between gut microbiota (GM), GM-derived metabolites, and various intestinal and extra-intestinal cancers. However, limited studies have investigated the correlation between GM, GM-derived metabolites, and osteosarcoma (OS). This study successfully established a female BALB/c nude mouse model of OS. Mice (n = 14) were divided into the following two groups (n = 7/group): OS group named OG, injected with Saos-2 OS cells; normal control group named NCG, injected with Matrigel. The GM composition and metabolites were characterized using 16S rDNA sequencing and untargeted metabolomics, respectively. Bioinformatics analysis revealed that amino acid metabolism was dysregulated in OS. The abundances of bone metabolism-related genera Alloprevotella, Rikenellaceae_RC9_gut_group, and Muribaculum were correlated with amino acid metabolism, especially histidine metabolism. These findings suggest the correlation between GM, GM-derived metabolites, and OS pathogenesis. Clinical significance: The currently used standard therapeutic strategies for OS, including surgery, chemotherapy, and radiation, are not efficacious. The findings of this study provided novel insights for developing therapeutic, diagnostic, and prognostic strategies for OS.
Collapse
Affiliation(s)
- Yuan Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yongchun Pan
- Department of Orthopedics, Third People's Hospital of Datong City, Datong 037006, Shanxi, P.R. China
| | - Ting Yan
- Translational Medicine Center, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Sen Yang
- Department of Orthopedics, The Second People's Hospital of Changzhi, Changzhi 046000, Shanxi, P.R. China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| |
Collapse
|
35
|
Wu X, Hou L, Zhang H, Ma Y, Wang J, Cai M, Tang X. Identification of 3-ketocapnine reductase activity within the human microbiota. MLIFE 2024; 3:307-316. [PMID: 38948141 PMCID: PMC11211663 DOI: 10.1002/mlf2.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
The microbial synthesis of sulfonolipids within the human body is likely involved in maintaining human health or causing diseases. However, the enzymes responsible for their biosynthesis remain largely unknown. In this study, we identified and verified the role of 3-ketocapnine reductase, the third-step enzyme, in the four-step conversion of l-phosphoserine into sulfobacin B both in vivo and in vitro. This finding builds upon our previous research into sulfonolipid biosynthesis, which focused on the vaginal bacterium Chryseobacterium gleum DSM 16776 and the gut bacterium Alistipes finegoldii DSM 17242. Through comprehensive gene mapping, we demonstrate the widespread presence of potential sulfonolipid biosynthetic genes across diverse bacterial species inhabiting various regions of the human body. These findings shed light on the prevalence of sulfonolipid-like metabolites within the human microbiota, suggesting a potential role for these lipid molecules in influencing the intricate biointeractions within the complex microbial ecosystem of the human body.
Collapse
Affiliation(s)
- Xiaotong Wu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Lukuan Hou
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingChina
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Ma
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Jufang Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
36
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
37
|
Dai S, Wang Z, Cai M, Guo T, Mao S, Yang Y. A multi-omics investigation of the lung injury induced by PM 2.5 at environmental levels via the lung-gut axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172027. [PMID: 38552982 DOI: 10.1016/j.scitotenv.2024.172027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Min Cai
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, PR China
| | - Tingting Guo
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shengqiang Mao
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
38
|
Ishaq HM, Yasin R, Mohammad IS, Fan Y, Li H, Shahzad M, Xu J. The gut-brain-axis: A positive relationship between gut microbial dysbiosis and glioblastoma brain tumour. Heliyon 2024; 10:e30494. [PMID: 38756585 PMCID: PMC11096965 DOI: 10.1016/j.heliyon.2024.e30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
The glioblastoma brain tumour (GBM) stands out as the most aggressive and resistant-to-treatment malignancy. Nevertheless, the gut-brain connection plays a pivotal role in influencing the growth and activation of the central nervous system. In this particular investigation, we aimed to assess and characterize the gut microbial ecosystem in GBM patients, both quantitatively and qualitatively. We collected faecal samples from 15 healthy volunteers and 25 GBM patients. To delve into the microbial content, we employed PCR-DGGE, targeting the V3 region of the 16S rRNA gene, and conducted qPCR to measure the levels of crucial intestinal bacteria. For a more in-depth analysis, high-throughput sequencing was performed on a selection of 20 random faecal samples (10 from healthy individuals and 10 from GBM patients), targeting the V3+V4 region of the 16S rRNA gene. Our findings from examining the richness and diversity of the gut microbiota unveiled that GBM patients exhibited significantly higher microbial diversity compared to healthy individuals. At the phylum level, Proteobacteria saw a significant increase, while Firmicutes experienced a noteworthy decrease in the GBM group. Moving down to the family level, we observed significantly elevated levels of Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae in GBM patients, while levels of Veillonellaceae, Rikenellaceae, and Prevotellaceae were notably lower. Delving into genera statistics, we noted a substantial increase in the abundance of Parasutterella, Escherichia-Shigella, and Bacteroides, alongside significantly lower levels of Ruminococcus 2, Faecalibacterium, and Prevotella_9 in the GBM group compared to the control group. Furthermore, when examining specific species, we found a significant increase in Bacteroides vulgatus and Escherichia coli in the GBM group. These observations collectively indicate a marked dysbiosis in the gut microbial composition of GBM patients. Additionally, the GBM group exhibited notably higher levels of alpha diversity when compared to the control group. This increase in diversity suggests a significant bacterial overgrowth in the gut of GBM patients in contrast to the controls. As a result, this research opens up potential avenues to gain a better understanding of the underlying mechanisms, pathways, and potential treatments for GBM, stemming from the significant implications of gut microbial dysbiosis in these patients.
Collapse
Affiliation(s)
- Hafiz Muhammad Ishaq
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Pathobiology and Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| | - Riffat Yasin
- Department of Zoology University of Education Lahore, D.G. Khan Campus, Pakistan
| | - Imran Shair Mohammad
- Department of Radiology, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Yang Fan
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Huan Li
- Xi'an Mental Health Centre, Xi'an, China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Khyaban-e-Jamia Punjab, Lahore, Pakistan
| | - Jiru Xu
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Stoeltje L, Luc JK, Haddad T, Schrankel CS. The roles of ABCB1/P-glycoprotein drug transporters in regulating gut microbes and inflammation: insights from animal models, old and new. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230074. [PMID: 38497255 PMCID: PMC10945405 DOI: 10.1098/rstb.2023.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Commensal enteric bacteria have evolved systems that enable growth in the ecologic niche of the host gastrointestinal tract. Animals evolved parallel mechanisms to survive the constant exposure to bacteria and their metabolic by-products. We propose that drug transporters encompass a crucial system to managing the gut microbiome. Drug transporters are present in the apical surface of gut epithelia. They detoxify cells from small molecules and toxins (xenobiotics) in the lumen. Here, we review what is known about commensal structure in the absence of the transporter ABCB1/P-glycoprotein in mammalian models. Knockout or low-activity alleles of ABCB1 lead to dysbiosis, Crohn's disease and ulcerative colitis in mammals. However, the exact function of ABCB1 in these contexts remain unclear. We highlight emerging models-the zebrafish Danio rerio and sea urchin Lytechinus pictus-that are poised to help dissect the fundamental mechanisms of ATP-binding cassette (ABC) transporters in the tolerance of commensal and pathogenic communities in the gut. We and others hypothesize that ABCB1 plays a direct role in exporting inflammatory bacterial products from host epithelia. Interdisciplinary work in this research area will lend novel insight to the transporter-mediated pathways that impact microbiome community structure and accelerate the pathogenesis of inflammatory bowel disease when perturbed. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Lauren Stoeltje
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Jenna K. Luc
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Timothaus Haddad
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Catherine S. Schrankel
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| |
Collapse
|
40
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
41
|
Wan S, You P, Shi Q, Hu H, Zhang L, Chen L, Wu Z, Lin S, Song X, Luo Y, Wang Y, Ju F, Jin D, Chen Y. Gut microbiome changes in mouse, Mongolian gerbil, and hamster models following Clostridioides difficile challenge. Front Microbiol 2024; 15:1368194. [PMID: 38638911 PMCID: PMC11024471 DOI: 10.3389/fmicb.2024.1368194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Clostridioides difficile infection (CDI), as well as its etiology and pathogenesis, have been extensively investigated. However, the absence of suitable CDI animal models that reflect CDI symptoms and the associated gut microbiome changes in humans has limited research progress in this field. Thus, we aimed to investigate whether Mongolian gerbils, which present a range of human pathological conditions, can been used in studies on CDI. Methods: In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Methods In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Results The results obtained showed that C. difficile colonized the gastrointestinal tracts of the three rodents, and after the C. difficile challenge, C57BL/6J mice did not manifest CDI symptoms and their intestines showed no significant pathological changes. However, the hamsters showed explosive intestinal bleeding and inflammation and the Mongolian gerbils presented diarrhea as well as increased infiltration of inflammatory cells, mucus secretion, and epithelial cell shedding in their intestinal tissue. Further, intestinal microbiome analysis revealed significant differences with respect to intestinal flora abundance and diversity. Specifically, after C. difficile challenge, the Firmicutes/Bacteroidetes ratio decreased for C57BL/6J mice, but increased significantly for Mongolian gerbils and hamsters. Furthermore, the abundance of Proteobacteria increased in all three models, especially in hamsters, while that of Verrucomicrobia only increased significantly in C57BL/6J mice and Mongolian gerbils. Our results also indicated that differences in the relative abundances of Lactobacillaceae and Akkermansia were primarily responsible for the observed differences in response to C. difficile challenge. Conclusion Based on the observed responses to C. difficile challenge, we concluded for the first time that the Mongolian gerbil could be used as an animal model for CDI. Additionally, the taxa identified in this study may be used as biomarkers for further studies on CDI and to improve understanding regarding changes in gut microbiome in CDI-related diseases.
Collapse
Affiliation(s)
- Shuangshuang Wan
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Peijun You
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qikai Shi
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hui Hu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Lu Zhang
- Environmental Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, China
| | - Leyang Chen
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ziyi Wu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xiaojun Song
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yongneng Luo
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yaxuan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
| | - Feng Ju
- Environmental Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
42
|
Braga JD, Thongngam M, Kumrungsee T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut-brain axis. NPJ Sci Food 2024; 8:16. [PMID: 38565567 PMCID: PMC10987602 DOI: 10.1038/s41538-024-00253-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) plays a crucial role in the central nervous system as an inhibitory neurotransmitter. Imbalances of this neurotransmitter are associated with neurological diseases, such as Alzheimer's and Parkinson's disease, and psychological disorders, including anxiety, depression, and stress. Since GABA has long been believed to not cross the blood-brain barrier, the effects of circulating GABA on the brain are neglected. However, emerging evidence has demonstrated that changes in both circulating and brain levels of GABA are associated with changes in gut microbiota composition and that changes in GABA levels and microbiota composition play a role in modulating mental health. This recent research has raised the possibility that GABA may be a potent mediator of the gut-brain axis. This review article will cover up-to-date information about GABA-producing microorganisms isolated from human gut and food sources, explanation why those microorganisms produce GABA, food factors inducing gut-GABA production, evidence suggesting GABA as a mediator linking between gut microbiota and mental health, including anxiety, depression, stress, epilepsy, autism spectrum disorder, and attention deficit hyperactivity disorder, and novel information regarding homocarnosine-a predominant brain peptide that is a putative downstream mediator of GABA in regulating brain functions. This review will help us to understand how the gut microbiota and GABA-homocarnosine metabolism play a significant role in brain functions. Nonetheless, it could support further research on the use of GABA production-inducing microorganisms and food factors as agents to treat neurological and psychological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
- Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanutchaporn Kumrungsee
- Laboratory of Molecular Nutrition, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan.
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
43
|
Lee SU, Jang BS, Na YR, Lee SH, Han S, Chang JH, Kim HJ. Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics Antimicrob Proteins 2024; 16:636-648. [PMID: 37072632 DOI: 10.1007/s12602-023-10071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
The purpose of this study was to investigate the role of Lactobacillus rhamnosus GG (LGG) probiotics in radiation enteritis using in vivo mice. A total of 40 mice were randomly assigned to four groups: control, probiotics, radiotherapy (RT), and RT + probiotics. For the group of probiotics, 0.2 mL of solution that contained 1.0 × 108 colony-forming units (CFU) of LGG was used and orally administered daily until sacrifice. For RT, a single dose of 14 Gy was administered using a 6 mega-voltage photon beam to the abdominopelvic area. Mice were sacrifice at day 4 (S1) and day 7 (S2) after RT. Their jejunum, colon, and stool were collected. A multiplex cytokine assay and 16 s ribosomal RNA amplicon sequencing were then performed. Regarding cytokine concentrations in tissues, pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein-1, showed significantly decreased protein levels in colon tissues of the RT + probiotics group than in the RT alone group (all p < 0.05). As for comparing microbial abundance through alpha-diversity and beta-diversity, no significant differences were observed between the RT + probiotics and RT alone groups, except for an increase in alpha-diversity in the stool of the RT + probiotics group. Upon analysis of differential microbes based on treatment, the dominance of anti-inflammatory-related microbes, such as Porphyromonadaceae, Bacteroides acidifaciens, and Ruminococcus, was observed in the jejunum, colon, and stool of the RT + probiotics group. With regard to predicted metabolic pathway abundances, the pathways associated with anti-inflammatory processes, such as biosynthesis of pyrimidine nucleotides, peptidoglycans, tryptophan, adenosylcobalamin, and propionate, were differentially identified in the RT + probiotics group compared to the RT alone group. Protective effects of probiotics on radiation enteritis were potentially derived from dominant anti-inflammation-related microbes and metabolites.
Collapse
Affiliation(s)
- Sung Uk Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Sun Hwa Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Sunwoo Han
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
44
|
Lee SH, Lee JH, Lee SW. Application of Microbiome-Based Therapies in Chronic Respiratory Diseases. J Microbiol 2024; 62:201-216. [PMID: 38635003 DOI: 10.1007/s12275-024-00124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
The application of microbiome-based therapies in various areas of human disease has recently increased. In chronic respiratory disease, microbiome-based clinical applications are considered compelling options due to the limitations of current treatments. The lung microbiome is ecologically dynamic and affected by various conditions, and dysbiosis is associated with disease severity, exacerbation, and phenotype as well as with chronic respiratory disease endotype. However, it is not easy to directly modulate the lung microbiome. Additionally, studies have shown that chronic respiratory diseases can be improved by modulating gut microbiome and administrating metabolites. Although the composition, diversity, and abundance of the microbiome between the gut and lung are considerably different, modulation of the gut microbiome could improve lung dysbiosis. The gut microbiome influences that of the lung via bacterial-derived components and metabolic degradation products, including short-chain fatty acids. This phenomenon might be associated with the cross-talk between the gut microbiome and lung, called gut-lung axis. There are multiple alternatives to modulate the gut microbiome, such as prebiotics, probiotics, and postbiotics ingestion and fecal material transplantation. Several studies have shown that high-fiber diets, for example, present beneficial effects through the production of short-chain fatty acids. Additionally, genetically modified probiotics to secrete some beneficial molecules might also be utilized to treat chronic respiratory diseases. Further studies on microbial modulation to regulate immunity and potentiate conventional pharmacotherapy will improve microbiome modulation techniques, which will develop as a new therapeutic area in chronic respiratory diseases.
Collapse
Affiliation(s)
- Se Hee Lee
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Republic of Korea
| | - Jang Ho Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
45
|
Li X, Niu H, Huang Z, Zhang M, Xing M, Chen Z, Wu L, Xu P. Deciphering the Role of the Gut Microbiota in Exposure to Emerging Contaminants and Diabetes: A Review. Metabolites 2024; 14:108. [PMID: 38393000 PMCID: PMC10890638 DOI: 10.3390/metabo14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Emerging pollutants, a category of compounds currently not regulated or inadequately regulated by law, have recently become a focal point of research due to their potential toxic effects on human health. The gut microbiota plays a pivotal role in human health; it is particularly susceptible to disruption and alteration upon exposure to a range of toxic environmental chemicals, including emerging contaminants. The disturbance of the gut microbiome caused by environmental pollutants may represent a mechanism through which environmental chemicals exert their toxic effects, a mechanism that is garnering increasing attention. However, the discussion on the toxic link between emerging pollutants and glucose metabolism remains insufficiently explored. This review aims to establish a connection between emerging pollutants and glucose metabolism through the gut microbiota, delving into the toxic impacts of these pollutants on glucose metabolism and the potential role played by the gut microbiota.
Collapse
Affiliation(s)
- Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhengliang Huang
- Disease Prevention and Control Center of Jingning She Autonomous County, Lishui 323500, China
| | - Man Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| |
Collapse
|
46
|
Lee NR, Kwon TJ, Chung EC, Bae J, Soung SH, Tak HJ, Choi JY, Lee YE, Won Hwang N, Lee JS, Shin KJ, Lee CH, Kim K, Kim S. Combination of Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 attenuates fat accumulation and alters the metabolome and gut microbiota in mice with high-fat diet-induced obesity. Food Funct 2024; 15:647-662. [PMID: 38099933 DOI: 10.1039/d3fo03557c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This study evaluated the effects of formulations with Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 on adiposity, the alteration of microbiota, and the metabolome in high-fat diet-fed mice. The strains were selected based on their fat and glucose absorption inhibitory activities and potential metabolic interactions. The optimal ratio of the two strains in the probiotic formulation was determined based on their adipocyte differentiation inhibitory activities. Treatment of formulations with BEPC22 and BELP53 for 10 weeks decreased body weight gain at 6 weeks; it also decreased the food efficiency ratio, white adipose tissue volume, and adipocyte size. Moreover, it decreased the expression of the lipogenic gene Ppar-γ in the liver, while significantly increasing the expression of the fat oxidation gene Ppar-α in the white adipose tissue. Notably, treatment with a combination of the two strains significantly reduced the plasma levels of the obesity hormone leptin and altered the microbiota and metabolome. The omics data also indicated the alteration of anti-obesity microbes and metabolites such as Akkermansia and indolelactic acid, respectively. These findings suggest that treatment with a combination of BEPC22 and BELP53 exerts synergistic beneficial effects against obesity.
Collapse
Affiliation(s)
- Na-Rae Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea.
| | - Eui-Chun Chung
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Jaewoong Bae
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Song-Hui Soung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05209, Republic of Korea
| | - Hyun-Ji Tak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05209, Republic of Korea
| | - Jun-Young Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea.
| | - Young-Eun Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Nak Won Hwang
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Jong Seo Lee
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Kum-Joo Shin
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Choong Hwan Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05209, Republic of Korea
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea.
- College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea
| | - Seokjin Kim
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| |
Collapse
|
47
|
Lamenza FF, Upadhaya P, Roth P, Shrestha S, Jagadeesha S, Horn N, Pracha H, Oghumu S. Berries vs. Disease: Revenge of the Phytochemicals. Pharmaceuticals (Basel) 2024; 17:84. [PMID: 38256917 PMCID: PMC10818490 DOI: 10.3390/ph17010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Secondary metabolites and phytochemicals in plant-based diets are known to possess properties that inhibit the development of several diseases including a variety of cancers of the aerodigestive tract. Berries are currently of high interest to researchers due to their high dietary source of phytochemicals. Black raspberries (BRB), Rubus occidentalis, are of special interest due to their rich and diverse composition of phytochemicals. In this review, we present the most up-to-date preclinical and clinical data involving berries and their phytochemicals in the chemoprevention of a variety of cancers and diseases. BRBs possess a variety of health benefits including anti-proliferative properties, anti-inflammatory activity, activation of pro-cell-death pathways, modulation of the immune response, microbiome modulation, reduction in oxidative stress, and many more. However, little has been done in both preclinical and clinical settings on the effects of BRB administration in combination with other cancer therapies currently available for patients. With the high potential for BRBs as chemopreventive agents, there is a need to investigate their potential in combination with other treatments to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Natalie Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| |
Collapse
|
48
|
Oh J, Kim J, Lee S, Park G, Baritugo KAG, Han KJ, Lee S, Sung GH. 1H NMR Serum Metabolomic Change of Trimethylamine N-oxide (TMAO) Is Associated with Alcoholic Liver Disease Progression. Metabolites 2024; 14:39. [PMID: 38248842 PMCID: PMC10818766 DOI: 10.3390/metabo14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Without early detection and treatment, chronic and excessive alcohol consumption can lead to the development of alcoholic liver disease (ALD). With this in mind, we exploit the recent concept of the liver-gut axis and analyze the serum profile of ALD patients for identification of microbiome-derived metabolites that can be used as diagnostic biomarkers for onset of ALD. 1H-NMR was used to analyze serum metabolites of 38 ALD patients that were grouped according to their Child-Turcotte-Pugh scores (CTP): class A (CTP-A; 19), class B(CTP-B; 10), and class C (CTP-C; 9). A partial least squares-discriminant analysis (PLS-DA) and a variable importance of projection (VIP) score were used to identify significant metabolites. A receiver operating characteristic (ROC) curve and correlation heatmap were used to evaluate the predictability of identified metabolites as ALD biomarkers. Among 42 identified metabolites, 6 were significantly correlated to exacerbation of ALD. As ALD progressed in CTP-C, the levels of trimethylamine N-oxide (TMAO), malate, tyrosine, and 2-hydroxyisovalerate increased, while isobutyrate and isocitrate decreased. Out of six metabolites, elevated levels of TMAO and its precursors (carnitine, betaine, choline) were associated with severity of ALD. This indicates that TMAO can be used as an effective biomarker for the diagnosis of ALD progression.
Collapse
Affiliation(s)
- Junsang Oh
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea
| | - Jayoung Kim
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Laboratory Medicine, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Sanghak Lee
- Department of Biomedical Science, Graduate School, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea; (S.L.); (G.P.)
| | - Gyubin Park
- Department of Biomedical Science, Graduate School, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea; (S.L.); (G.P.)
| | - Kei-Anne Garcia Baritugo
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea
| | - Ki Jun Han
- Department of Internal Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Sangheun Lee
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Internal Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Gi-Ho Sung
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea
| |
Collapse
|
49
|
Niu H, Xu M, Tu P, Xu Y, Li X, Xing M, Chen Z, Wang X, Lou X, Wu L, Sun S. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. TOXICS 2024; 12:47. [PMID: 38251002 PMCID: PMC10819641 DOI: 10.3390/toxics12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.
Collapse
Affiliation(s)
- Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Manjin Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Pengcheng Tu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Yunfeng Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
50
|
Song X, Dou X, Chang J, Zeng X, Xu Q, Xu C. The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Gut Microbes 2024; 16:2414805. [PMID: 39446051 PMCID: PMC11509012 DOI: 10.1080/19490976.2024.2414805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The current studies have shown that the occurrence and development of chronic obstructive pulmonary disease (COPD) are closely related to the changes in gut health and its microenvironment, and even some gut diseases have significant clinical correlation with COPD. The dysbiosis of gut microbiota observed in COPD patients also suggests a potential bidirectional interaction between the gut and lung. Communication between the gut and lung may occur through circulating inflammatory cells, gut microbial metabolites, and circulating inflammatory mediators, but the mechanism of bidirectional communication between the gut and lung in COPD is still under study. Therefore, more research is still needed in this area. In this review, we summarize recent clinical studies and animal models on the role of the gut-lung axis in the occurrence and development of COPD and its mechanisms, so as to provide ideas for further research in this field. In addition, we also summarized the negative effects of COPD medication on gut microbiota and the gut microbiota risk factors for COPD and proposed the potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|