1
|
Zhang Y, Wang A, Zhao W, Qin J, Zhang Y, Liu B, Yao C, Long J, Yuan M, Yan D. Microbial succinate promotes the response to metformin by upregulating secretory immunoglobulin a in intestinal immunity. Gut Microbes 2025; 17:2450871. [PMID: 39812329 PMCID: PMC11740685 DOI: 10.1080/19490976.2025.2450871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin. The abundance of Bacteroides thetaiotaomicron, considered a representative differential bacterium of metformin responsiveness, and the level of secretory immunoglobulin A (SIgA) in intestinal immunity increased significantly in responder recipient mice following metformin treatment. In contrast, no significant alterations in B. thetaiotaomicron and SIgA were observed in non-responder recipient mice. The study of IgA-/- mice confirmed that downregulated expression or deficiency of SIgA resulted in non-response to metformin, meaning that metformin was unable to improve dysfunctional glucose metabolism and reduce intestinal and adipose tissue inflammation, ultimately leading to systemic insulin resistance. Furthermore, supplementation with succinate, a microbial product of B. thetaiotaomicron, potentially reversed the non-response to metformin by inducing the production of SIgA. In conclusion, we demonstrated that upregulated SIgA, which could be regulated by succinate, was functionally involved in metformin response through its influence on immune cell-mediated inflammation and insulin resistance. Conversely, an inability to regulate SIgA may result in a lack of response to metformin.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia’an Qin
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Yao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingxia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Du W, Zou ZP, Ye BC, Zhou Y. Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases. Gut Microbes 2025; 17:2494703. [PMID: 40260760 PMCID: PMC12026090 DOI: 10.1080/19490976.2025.2494703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These microbial alterations influence the intestinal metabolism of small molecules, which subsequently increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic functions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This review explores the relationship between high-fat diets and gut microbiota, highlighting their roles and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we propose probiotic interventions may serve as a promising adjunctive therapy to counteract the negative effects of high-fat diet-induced alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Luo J, Chen K, Nong X. Potential regulation of artesunate on bone metabolism through suppressing inflammatory infiltration in type 2 diabetes mellitus. Immunopharmacol Immunotoxicol 2025; 47:147-158. [PMID: 39762719 DOI: 10.1080/08923973.2024.2444953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties. Increasing evidence suggests that artesunate possesses anti-inflammatory, immunoregulatory, and osteogenic effects. This review aims to explore the relationship between immune regulation and bone metabolism in type 2 diabetes (T2DM) and to investigate the potential therapeutic application of artesunate. METHODS This review systematically examines literature from PubMed/Medline, Elsevier, Web of Science, Embase, the International Diabetes Federation, and other relevant databases. RESULTS This review synthesizes evidence from multiple sources to delineate the relationship between T lymphocytes and T2DM, the regulation of T lymphocyte subsets in bone metabolism, and the effects of artesunate on both T lymphocytes and bone metabolism. Recent studies suggest a bidirectional regulatory relationship between T2DM and T lymphocytes (CD4+ T and CD8+ T) during the onset and progression of the disease, with inflammatory and anti-inflammatory cytokines serving as key mediators. T lymphocyte subsets and their cytokines play a pivotal role in regulating osteogenesis and osteoclastogenesis in pathological conditions. Furthermore, artesunate has shown promise in modulating inflammatory infiltration and bone metabolism. CONCLUSION The accumulated evidence indicates that artesunate exerts regulatory effects on bone metabolism in T2DM by influencing T lymphocyte differentiation.
Collapse
Affiliation(s)
- Jinghong Luo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Chen
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Jeerawattanawart S, Angkasekwinai P. Intestinal IL-25 prevents high-fat diet-induced obesity by modulating the cholesterol transporter NPC1L1 expression in the intestinal epithelial cells. Sci Rep 2025; 15:10445. [PMID: 40140439 PMCID: PMC11947149 DOI: 10.1038/s41598-025-95516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
The intestine is essential for digestion and nutrient absorption, and its altered function contributes to metabolic dysregulation and obesity-induced intestinal inflammation. Intestinal immune responses have been associated with the regulation of metabolic dysfunction during obesity. Given that the epithelial cell-derived cytokine IL-25 has been demonstrated to regulate metabolic disorders, we sought to examine the role of intestinal IL-25 in modulating a high-fat diet (HFD)-induced obesity. We found that mice on a high-fat diet exhibited decreased IL-25 expression in the small intestine. Intestinal IL-25 mRNA levels displayed an inverse association with plasma triglycerides, total cholesterol, glucose levels, and the expression of the cholesterol transporter Npc1l1 in the intestine. In HFD-induced obesity, transgenic mice overexpressing IL-25 in the intestinal epithelial cells demonstrated diminished mRNA expression of intestinal genes related to glucose, cholesterol, and fat absorption, along with chylomicron production, while also systemically decreasing plasma glucose, total cholesterol, and triglyceride levels, fat accumulation, and weight gain. In vitro, IL-25 treatment of human intestinal Caco-2 cells directly decreased cholesterol uptake and downregulated the expression of NPC1L1 and its transcriptional regulator, SREBP2. These findings highlight IL-25 as a potential modulator in the intestine that regulates intestinal cholesterol absorption and systemic metabolism in obesity.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani, 12000, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand.
- Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
5
|
Sun P, Wang M, Chai X, Liu YX, Li L, Zheng W, Chen S, Zhu X, Zhao S. Disruption of tryptophan metabolism by high-fat diet-triggered maternal immune activation promotes social behavioral deficits in male mice. Nat Commun 2025; 16:2105. [PMID: 40025041 PMCID: PMC11873046 DOI: 10.1038/s41467-025-57414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Diet-related maternal obesity has been implicated in neurodevelopmental disorders in progeny. Although the precise mechanisms and effective interventions remain uncertain, our research elucidates some of these complexities. We established that a prenatal high-fat diet triggered maternal immune activation (MIA), marked by elevated serum lipopolysaccharide levels and inflammatory-cytokine overproduction, which dysregulated the maternal tryptophan metabolism promoting the accumulation of neurotoxic kynurenine metabolites in the embryonic brain. Interventions aimed at mitigating MIA or blocking the kynurenine pathway effectively rescued the male mice social performance. Furthermore, excessive kynurenine metabolites initiated oxidative stress response causing neuronal migration deficits in the fetal neocortex, an effect that was mitigated by administering the glutathione synthesis precursor N-Acetylcysteine, underscoring the central role of maternal immune-metabolic homeostasis in male mice behavioral outcomes. Collectively, our study accentuated the profound influence of maternal diet-induced immuno-metabolic dysregulation on fetal brain development and provided the preventive strategies for addressing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Zheng
- College of Resources and Environment Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Romaní‐Pérez M, Líebana‐García R, Flor‐Duro A, Bonillo‐Jiménez D, Bullich‐Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2025; 292:1397-1420. [PMID: 39159270 PMCID: PMC11927058 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní‐Pérez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Rebeca Líebana‐García
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Alejandra Flor‐Duro
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Daniel Bonillo‐Jiménez
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Clara Bullich‐Vilarrubias
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Marta Olivares
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food TechnologySpanish National Research Council (IATA‐CSIC)ValenciaSpain
| |
Collapse
|
7
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
8
|
Castells-Nobau A, Moreno-Navarrete JM, de la Vega-Correa L, Puig I, Federici M, Sun J, Burcelin R, Guzylack-Piriou L, Gourdy P, Cazals L, Arnoriaga-Rodríguez M, Frühbeck G, Seoane LM, López-Miranda J, Tinahones FJ, Dieguez C, Dumas ME, Pérez-Brocal V, Moya A, Perakakis N, Mingrone G, Bornstein S, Rodriguez Hermosa JI, Castro E, Fernández-Real JM, Mayneris-Perxachs J. Multiomics of the intestine-liver-adipose axis in multiple studies unveils a consistent link of the gut microbiota and the antiviral response with systemic glucose metabolism. Gut 2025; 74:229-245. [PMID: 39358003 PMCID: PMC11874369 DOI: 10.1136/gutjnl-2024-332602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The microbiota is emerging as a key factor in the predisposition to insulin resistance and obesity. OBJECTIVE To understand the interplay among gut microbiota and insulin sensitivity in multiple tissues. DESIGN Integrative multiomics and multitissue approach across six studies, combining euglycaemic clamp measurements (used in four of the six studies) with other measurements of glucose metabolism and insulin resistance (glycated haemoglobin (HbA1c) and fasting glucose). RESULTS Several genera and species from the Proteobacteria phylum were consistently negatively associated with insulin sensitivity in four studies (ADIPOINST, n=15; IRONMET, n=121, FLORINASH, n=67 and FLOROMIDIA, n=24). Transcriptomic analysis of the jejunum, ileum and colon revealed T cell-related signatures positively linked to insulin sensitivity. Proteobacteria in the ileum and colon were positively associated with HbA1c but negatively with the number of T cells. Jejunal deoxycholic acid was negatively associated with insulin sensitivity. Transcriptomics of subcutaneous adipose tissue (ADIPOMIT, n=740) and visceral adipose tissue (VAT) (ADIPOINST, n=29) revealed T cell-related signatures linked to HbA1c and insulin sensitivity, respectively. VAT Proteobacteria were negatively associated with insulin sensitivity. Multiomics and multitissue integration in the ADIPOINST and FLORINASH studies linked faecal Proteobacteria with jejunal and liver deoxycholic acid, as well as jejunal, VAT and liver transcriptomic signatures involved in the actin cytoskeleton, insulin and T cell signalling. Fasting glucose was consistently linked to interferon-induced genes and antiviral responses in the intestine and VAT. Studies in Drosophila melanogaster validated these human insulin sensitivity-associated changes. CONCLUSION These data provide comprehensive insights into the microbiome-gut-adipose-liver axis and its impact on systemic insulin action, suggesting potential therapeutic targets.Cite Now.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Lisset de la Vega-Correa
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Puig
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Jiuwen Sun
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432, Toulouse, France
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432, Toulouse, France
| | - Laurence Guzylack-Piriou
- Team "Immunité et ALTernatives aux Antibiotiques (IALTA)", Laboratory of host to pathogens Interactions (IHAP), UMR INRAE 1225 / ENVT, Toulouse, France
| | - Pierre Gourdy
- Department of Diabetology, metabolic Diseases and Nutrition, CHU de Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 I2MC, INSERM, Toulouse 3 University, Toulouse, France
| | - Laurent Cazals
- Department of Diabetology, metabolic Diseases and Nutrition, CHU de Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 I2MC, INSERM, Toulouse 3 University, Toulouse, France
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Luisa Maria Seoane
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Fisiopatología Endocrina Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Reina Sofía, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Carlos Dieguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Genomic and Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK
- European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital; University of Lille, Lille, France
- McGill Genome Centre, Mc Gill University, Montréal, Quebec, Canada
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia, Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
| | | | - Ernesto Castro
- General and Digestive Surgery Service, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Jose Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
10
|
Miao L, Cheong MS, Zhang H, Khan H, Tao H, Wang Y, Cheang WS. Portulaca oleracea L. (purslane) extract ameliorates intestinal inflammation in diet-induced obese mice by inhibiting the TLR4/NF-κB signaling pathway. Front Pharmacol 2025; 15:1474989. [PMID: 39845784 PMCID: PMC11752911 DOI: 10.3389/fphar.2024.1474989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Background Portulaca oleracea L. (purslane) is a dietary plant and a botanical drug with antioxidant, antidiabetic, and anti-inflammatory activities. However, the effects of purslane against intestinal-inflammation-associated obesity are yet to be studied. In the present study, we hypothesized that purslane extract could reduce intestinal inflammation associated with metabolic disorder. Results Male C57BL/6J mice were fed a high-fat diet (HFD, 60% kcal% of fat) for a total duration of 14 weeks to establish an obesity model; further, the treatment group was orally administered purslane extract (200 mg/kg/day) during the last 4 weeks. Then, intestinal tissues were detached from the mice for detecting protein expressions through Western blot and immunohistochemical analyses. Pro-inflammatory cytokines were determined using ELISA kits, whereas the components of purslane extract were detected by ultra performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Chronic oral administration of purslane extract ameliorated colon shortening syndrome and reduced bowel inflammation in HFD-induced obese mice through suppression of the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway to downregulate TLR4, myeloid differentiation factor 88 (MyD88), Ser32 phosphorylation of NF-κB inhibitor alpha (IκBα), and Ser536 phosphorylation of NF-κB p65 expression levels, thereby inhibiting the pro-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels. Conclusion The present study supports the anti-inflammatory potential of purslane extract for modulating bowel inflammation under obesity through inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Meng Sam Cheong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Haolin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuxiao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
11
|
Xia L, Li C, Zhao J, Sun Q, Mao X. Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156150. [PMID: 39740376 DOI: 10.1016/j.phymed.2024.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM). MFH plants have drawn much attention due to their strong biological activity and low toxicity. However, the interplay of MFH and gut microbiota in rebalancing the immune homeostasis in combating diseases needs systematic illumination. PURPOSE The review discusses the interaction between MFH and gut microbiota, including the effect of MFH on the major group of gut microbiota and the metabolic effect of gut microbiota on MFH. Moreover, how gut microbiota influences the immune system in terms of innate and adaptive immunity is addressed. Finally, the immunoregulatory mechanisms of MFH in regulation of host pathophysiology via gut microbiota are summarized. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, and Google Scholar using relevant keywords. The obtained articles were screened and summarized by the research content of MFH and gut microbiota in immune regulation. RESULTS The review demonstrates the interaction between MFH and gut microbiota in disease prevention and treatment. Not only do the intestinal microorganisms and intestinal mucosa constitute an important immune barrier of the human body, but also lymphoid tissue and diffused immune cells within the mucosa participate in the response of innate immunity and adaptive immunity. MFH modulates immune regulation by affecting intestinal flora, helps maintain the balance of the immune system and interfere with the occurrence and development of a broad category of diseases. CONCLUSION Being absorbed from the gastrointestinal tract, MFH can have profound effects on gut microbiota. In turn, the gut microbiota also actively participate in the bioconversion of complex constituents from MFH, which could further influence their physiological and pharmacological properties. The review deepens the understanding of the relationship among MFH, gut microbiota, immune system, and human diseases and further promotes the progression of additional relevant research.
Collapse
Affiliation(s)
- Lu Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chuangen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food sciences, Florida State University, Tallahassee, USA
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
12
|
Zhang X, Lau HCH, Ha S, Liu C, Liang C, Lee HW, Ng QWY, Zhao Y, Ji F, Zhou Y, Pan Y, Song Y, Zhang Y, Lo JCY, Cheung AHK, Wu J, Li X, Xu H, Wong CC, Wong VWS, Yu J. Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis. Nat Metab 2025; 7:102-119. [PMID: 39779889 PMCID: PMC11774752 DOI: 10.1038/s42255-024-01177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear. Here, we discover that mice with intestinal epithelial cell-specific knockout of Tm6sf2 (Tm6sf2ΔIEC) develop MASH, accompanied by impaired intestinal barrier and microbial dysbiosis. Transplanting stools from Tm6sf2ΔIEC mice induces steatohepatitis in germ-free recipient mice, whereas MASH is alleviated in Tm6sf2ΔIEC mice co-housed with wild-type mice. Mechanistically, Tm6sf2-deficient intestinal cells secrete more free fatty acids by interacting with fatty acid-binding protein 5 to induce intestinal barrier dysfunction, enrichment of pathobionts, and elevation of lysophosphatidic acid (LPA) levels. LPA is translocated from the gut to the liver, contributing to lipid accumulation and inflammation. Pharmacological inhibition of the LPA receptor suppresses MASH in both Tm6sf2ΔIEC and wild-type mice. Hence, modulating microbiota or blocking the LPA receptor is a potential therapeutic strategy in TM6SF2 deficiency-induced MASH.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Suki Ha
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chuanfa Liu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cong Liang
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Queena Wing-Yin Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Zhao
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenfen Ji
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yasi Pan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Song
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yating Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jennie Ching Yin Lo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoxing Li
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chi Chun Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Phuong-Nguyen K, Mahmood M, Rivera L. Deleterious Effects of Yoyo Dieting and Resistant Starch on Gastrointestinal Morphology. Nutrients 2024; 16:4216. [PMID: 39683609 DOI: 10.3390/nu16234216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Obesity is associated with structural deterioration in the gut. Yoyo dieting, which refers to repeated phases of dieting and non-dieting periods leading to cyclic weight loss and regain, is a common occurrence in individuals with obesity. However, there is limited evidence on how gut structures are affected in yoyo dieting. There is good evidence suggesting that increased intake of resistant starch (RS) may be beneficial in promoting structural improvements in the gut. This investigation aimed to explore the effect of yoyo dieting on gastrointestinal structure and whether RS has beneficial effects in improving obesity-related gastrointestinal damage. METHOD In this study, male and female C57BL/6 mice were assigned to six different diets for 20 weeks: (1) control diet, (2) high fat diet (HF), (3) yoyo diet (alternating HF and control diets every 5 weeks), (4) control diet with RS, (5) HF with RS, and (6) yoyo diet with RS. Distal colon was collected for epithelial barrier integrity measurement. The small and large intestines were collected for histological assessment. RESULTS After 20 weeks, yoyo dieting resulted in increased colonic inflammation and exacerbated mucosal damage in comparison with continuous HF diet feeding. RS supplemented in HF and yoyo diets reduced mucosal damage in comparison to diets without RS. However, RS supplementation in a control diet significantly increased inflammation, crypt length, and goblet cell density. There were no significant differences in epithelial change and epithelial barrier integrity across diet groups. CONCLUSIONS This study suggests that yoyo dieting worsens gut damage, and incorporating high levels of RS may be detrimental in the absence of dietary challenge.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Malik Mahmood
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
14
|
Wang K, Cunha E Rocha K, Qin H, Zeng Z, Ying W. Host metabolic inflammation fueled by bacterial DNA. Trends Endocrinol Metab 2024:S1043-2760(24)00294-7. [PMID: 39609222 DOI: 10.1016/j.tem.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
Metabolic diseases, characterized by chronic low-grade inflammation, exhibit a compromised gut barrier allowing the translocation of bacteria-derived products to bloodstream and distant metabolic organs. Bacterial DNA can be detected in metabolic tissues during the onset of these diseases, highlighting its role in the development of metabolic diseases. Extracellular vesicles (EVs) are involved in the delivery of bacterial DNA to the local tissues, and its sensing by the host triggers local and system inflammation. Understanding bacterial DNA translocation and its induced inflammation is crucial in deciphering metabolic disease pathways. Here, we delve into the mechanisms dictating the interaction between host physiology and bacterial DNA, focusing on its origin and delivery, host immune responses against it, and its roles in metabolic disorders.
Collapse
Affiliation(s)
- Ke Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Houji Qin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zeng
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Zhang Y, Xun L, Qiao R, Jin S, Zhang B, Luo M, Wan P, Zuo Z, Song Z, Qi J. Advances in research on the role of high carbohydrate diet in the process of inflammatory bowel disease (IBD). Front Immunol 2024; 15:1478374. [PMID: 39588368 PMCID: PMC11586370 DOI: 10.3389/fimmu.2024.1478374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, systemic gastrointestinal disorder characterized by episodic inflammation that requires life-long management. Although the etiology of IBD is not fully understood, it is hypothesized to involve a multifaceted interplay among genetic susceptibility, the host immune response, and environmental factors. Previous studies have largely concluded that IBD is associated with this complex interplay; however, more recent evidence underscores the significant role of dietary habits as risk factors for the development of IBD. In this review, we review the molecular mechanisms of high-sugar and high-fat diets in the progression of IBD and specifically address the impacts of these diets on the gut microbiome, immune system regulation, and integrity of the intestinal barrier, thereby highlighting their roles in the pathogenesis and exacerbation of IBD.
Collapse
Affiliation(s)
- Ying Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Linting Xun
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ran Qiao
- Colleges of Letters and Science, University of Wisconsin–Madison, Madison, WI, United States
| | - Shumei Jin
- Yunnan Institute of Food and Drug Supervision and Control, Medical Products Administration of Yunnan Province, Kunming, China
| | - Bing Zhang
- Yunnan Provincial Key Laboratory of Modern Information Optics, Kunming University of Science and Technology, Kunming, China
| | - Mei Luo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ping Wan
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zan Zuo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhengji Song
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jialong Qi
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
16
|
Wu X, Ying H, Yang Q, Yang Q, Liu H, Ding Y, Zhao H, Chen Z, Zheng R, Lin H, Wang S, Li M, Wang T, Zhao Z, Xu M, Chen Y, Xu Y, Vincent EE, Borges MC, Gaunt TR, Ning G, Wang W, Bi Y, Zheng J, Lu J. Transcriptome-wide Mendelian randomization during CD4 + T cell activation reveals immune-related drug targets for cardiometabolic diseases. Nat Commun 2024; 15:9302. [PMID: 39468075 PMCID: PMC11519452 DOI: 10.1038/s41467-024-53621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Immunity has shown potentials in informing drug development for cardiometabolic diseases, such as type 2 diabetes (T2D) and coronary artery disease (CAD). Here, we performed a transcriptome-wide Mendelian randomization (MR) study to estimate the putative causal effects of 11,021 gene expression profiles during CD4+ T cells activation on the development of T2D and CAD. Robust MR and colocalization evidence was observed for 162 genes altering T2D risk and 80 genes altering CAD risk, with 12% and 16% respectively demonstrating CD4+ T cell specificity. We observed temporal causal patterns during T cell activation in 69 gene-T2D pairs and 34 gene-CAD pairs. These genes were eight times more likely to show robust genetic evidence. We further identified 25 genes that were targets for drugs under clinical investigation, including LIPA and GCK. This study provides evidence to support immune-to-metabolic disease connections, and prioritises immune-mediated drug targets for cardiometabolic diseases.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ying
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Haoyu Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilan Ding
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiling Zhao
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Zhihe Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Yang F, Li J, Wei L, Qin S, Shi Q, Lu S, Chu S. The characteristics of intestinal microbiota in patients with type 2 diabetes and the correlation with the percentage of T-helper cells. Front Microbiol 2024; 15:1443743. [PMID: 39397795 PMCID: PMC11466775 DOI: 10.3389/fmicb.2024.1443743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background Type 2 diabetes (T2D) is related to intestinal microflora changes and immune inflammation. We aimed to investigate the pattern of intestinal flora-systematic T helper (Th) cell linkage in T2D patients. Methods Participants with T2D diagnosed by physicians and healthy controls were enrolled in the study. The Th1, Th2, and Th17 cells from the peripheral blood were assessed by flow cytometry. The feces were collected. The V3-V4 variable region of 16S rRNA was sequenced and analyzed using bioinformatics. Principal coordinate analysis (PCoA) and non-metric multidimensional scaling (NMDS) analysis were performed to assess the beta diversity. The linear discriminant analysis (LDA) effect size (LEfSe) method was applied to identify amicrobial taxon specific to T2D. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was conducted to identify the metabolic pathways. A network analysis was conducted by constructing a co-occurrence network. Results The percentages of the Th1 and Th17 cells in the peripheral blood were higher in patients with T2D than in controls. Among the top 30 genera of the intestinal microbiota, the levels of Lachnospiraceae_NK4A136_group, Ruminococcaceae_UCG002, and Eubacterium_hallii_group were lower in the patients with T2D than in controls. In the LEfSe analysis, it was observed that the Lachnospiraceae and Ruminococcaceae families were significantly different between patients with T2D and controls. Moreover, the Th1/Th2 ratio was positively correlated with the abundance of the Lachnoclostridium and Ruminococcus_torques_group genera. In the network analysis, the Th1/Th2 ratio, Ruminococcaceae_UCG-002, and Lachnospiraceae_NK4A136_group were the important nodes. Conclusion This study provided a preliminary picture of the crosstalk between the intestinal microbiome and systematic Th cells in patients with T2D. The findings of the study suggested that the network relationship among the intestinal microbiota, metabolites, and CD4+T lymphocyte immunity was unbalanced in the patients with T2D, which might have promoted the development of T2D. This presents a therapeutic opportunity to modulate gut immune reaction and then chronic inflammation by manipulating microbiome-specific Th-cell response.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, Guilin People's Hospital, Guilin, China
- Research Service Department, Guilin People's Hospital, Guilin, China
| | - Jinyan Li
- Department of Endocrinology, Guilin People's Hospital, Guilin, China
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, China
- Medical Department, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Longqin Wei
- Research Service Department, Guilin People's Hospital, Guilin, China
| | - Shenghua Qin
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Qingfeng Shi
- Laboratory Department, Guilin People's Hospital, Guilin, China
| | - Siyan Lu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shuyuan Chu
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Mo C, Huang M, Yan F, Song M, Fan J, Zhang J. Correlation Between Gut Microbiota Composition and Serum Interleukin 17 (IL-17) in Mice With Type 2 Diabetes and Experimental Periodontitis. Cureus 2024; 16:e68005. [PMID: 39211822 PMCID: PMC11360949 DOI: 10.7759/cureus.68005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To preliminarily explore the composition characteristics of gut microbiota in mice with type 2 diabetes mellitus (T2DM) and experimental periodontitis, and their correlation with serum IL-17 levels, aiming to provide new insights and evidence for related experimental studies. Methods A total of 42 SPF-grade C57BL/6J mice were randomly selected, with 24 used for T2DM modeling. Successfully modeled T2DM mice were divided into the T2DM group (ND group, n=8) and T2DM with experimental periodontitis group (PD group, n=8). Non-T2DM mice were divided into the blank control group (NC group, n=8) and the experimental periodontitis group (NP group, n=8). After modeling, body weight and fasting plasma glucose (FPG) were measured weekly. Each group of mice underwent an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT). Six weeks after modeling experimental periodontitis, serum IL-17 levels were measured using ELISA, intestinal inflammation was assessed using HE staining, and gut microbiota composition in cecal contents was analyzed by 16S rRNA sequencing to determine its correlation with serum IL-17 levels. Results FPG in the PD group was higher than in the ND group, with a statistically significant difference in the 12th week (p<0.05). The glucose tolerance level in the PD group was lower than in the ND group (p<0.01). Compared with the NC group, other groups showed varying degrees of inflammatory cell infiltration in the intestinal mucosa, and serum IL-17 levels were lower in both the ND and PD groups compared to the NC group (p<0.01), with the PD group also lower than the NP group (p<0.01). The Shannon and Pielou-e indices of gut microbiota in the PD group were significantly lower than those in the NP group (p<0.05). In terms of microbiota composition, Firmicutes were increased in both the ND and PD groups compared to the NC and NP groups (p<0.05), while Bacteroidetes were decreased (p<0.05). Proteobacteria were increased in the PD group compared to the ND group (p<0.05). The abundance of Bacteroidetes and the Bacteroidetes/Firmicutes ratio was moderately positively correlated with serum IL-17 levels (p<0.01) and moderately negatively correlated with blood glucose levels (p<0.01); serum IL-17 levels were strongly negatively correlated with blood glucose levels (p<0.01). Conclusion Comorbidity of experimental periodontitis and T2DM may exacerbate glucose metabolism impairment in T2DM mice by increasing the abundance of Proteobacteria and intestinal mucosal damage. Serum IL-17 levels may serve as an indicator of gut microbiota dysbiosis in T2DM mice with experimental periodontitis.
Collapse
Affiliation(s)
- Chaolun Mo
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Mingkun Huang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Fuhua Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing University Medical School & Nanjing University Institute of Stomatology, Nanjing, CHN
| | - Minghui Song
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Jiabing Fan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Junmei Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| |
Collapse
|
19
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
20
|
Gélineau A, Marcelin G, Ouhachi M, Dussaud S, Voland L, Manuel R, Baba I, Rouault C, Yvan-Charvet L, Clément K, Tussiwand R, Huby T, Gautier EL. Fructooligosaccharides benefits on glucose homeostasis upon high-fat diet feeding require type 2 conventional dendritic cells. Nat Commun 2024; 15:5413. [PMID: 38926424 PMCID: PMC11208547 DOI: 10.1038/s41467-024-49820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Diet composition impacts metabolic health and is now recognized to shape the immune system, especially in the intestinal tract. Nutritional imbalance and increased caloric intake are induced by high-fat diet (HFD) in which lipids are enriched at the expense of dietary fibers. Such nutritional challenge alters glucose homeostasis as well as intestinal immunity. Here, we observed that short-term HFD induced dysbiosis, glucose intolerance and decreased intestinal RORγt+ CD4 T cells, including peripherally-induced Tregs and IL17-producing (Th17) T cells. However, supplementation of HFD-fed male mice with the fermentable dietary fiber fructooligosaccharides (FOS) was sufficient to maintain RORγt+ CD4 T cell subsets and microbial species known to induce them, alongside having a beneficial impact on glucose tolerance. FOS-mediated normalization of Th17 cells and amelioration of glucose handling required the cDC2 dendritic cell subset in HFD-fed animals, while IL-17 neutralization limited FOS impact on glucose tolerance. Overall, we uncover a pivotal role of cDC2 in the control of the immune and metabolic effects of FOS in the context of HFD feeding.
Collapse
Affiliation(s)
- Adélaïde Gélineau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Geneviève Marcelin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Nutrition and Obesities: Systemic approaches research group, NutriOmics, Paris, France
| | - Melissa Ouhachi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Sébastien Dussaud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lise Voland
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Nutrition and Obesities: Systemic approaches research group, NutriOmics, Paris, France
| | - Raoul Manuel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Ines Baba
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christine Rouault
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Nutrition and Obesities: Systemic approaches research group, NutriOmics, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale, Inserm, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Karine Clément
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Nutrition and Obesities: Systemic approaches research group, NutriOmics, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, service de Nutrition, Paris, France
| | - Roxane Tussiwand
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Thierry Huby
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Emmanuel L Gautier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
21
|
Ma L, Bai Y, Liu J, Gong K, He Q, Zhao J, Suo Y, Wang W, Chen G, Lu Z. The therapeutic effects of traditional Chinese medicine on insulin resistance in obese mice by modulating intestinal functions. Heliyon 2024; 10:e30379. [PMID: 38765147 PMCID: PMC11101725 DOI: 10.1016/j.heliyon.2024.e30379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Obesity, mainly caused by excessive accumulation of visceral fat, excessive fat metabolism will cause hormone secretion imbalance and inflammation and other diseases. is extremely detrimental to human health. Although many treatments are available for obesity, most treatments fail to exert a radical effect or are associated with several side effects. Traditional Chinese medicine (TCM) for regulating the intestinal flora, lipid content and inflammation is considered effective. Based on previous studies, Artemisia capillaris, Astragalus propinquus, Phellodendron amurense, Salvia miltiorrhiza, Poria cocos, and Anemarrhena asphodeloides were selected to prepare an innovative herbal formula. Methods TCM was characterized by UHPLC-Q-Orbitrap-MS. The anti-inflammatory and lipid-lowering effects of the TCM formula prepared were evaluated in a high-fat diet-fed obese mouse model. The effects of the TCM formula on the intestinal flora were also investigated. Results Weights and insulin resistance, as well as inflammation, decreased in the mice after treatment. At the same time, lipid metabolism increased after the mice were gavaged with the TCM formula for 2 weeks. The intestinal motility of the drug administration group was enhanced, with partial restoration of the intestinal flora. Conclusion In summary, our innovative Chinese herbal formula significantly reduced weight, reduced intestinal inflammation, improved intestinal motility, and improved lipid metabolism in obese mice. Furthermore, the innovative formula effectively prevented relevant obesity-induced metastatic diseases in the mice.
Collapse
Affiliation(s)
- Lirong Ma
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Yongquan Bai
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Kaimin Gong
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Qirui He
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Jintao Zhao
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Yina Suo
- Yinchuan Traditional Chinese Medicine Hospital, 750001, Ningxia, China
| | - Wenwen Wang
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| | - Guo Chen
- Translational Medicine Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- Translational Medicine Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Department of Bio-pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Nilsen M, Nygaard UC, Brodin P, Carlsen KCL, Fredheim C, Haugen G, Hedlin G, Jonassen CM, Jonsmoen ULA, Lakshmikanth T, Nordlund B, Olin A, Rehbinder EM, Skjerven HO, Snipen L, Staff AC, Söderhäll C, Vettukattil R, Rudi K. Gut bacteria at 6 months of age are associated with immune cell status in 1-year-old children. Scand J Immunol 2024; 99:e13346. [PMID: 39007947 DOI: 10.1111/sji.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 07/16/2024]
Abstract
Age-related gut bacterial changes during infancy have been widely studied, but it remains still unknown how these changes are associated with immune cell composition. This study's aim was to explore if the temporal development of gut bacteria during infancy prospectively affects immune cell composition. Faecal bacteria and short-chain fatty acids were analysed from 67 PreventADALL study participants at four timepoints (birth to 12 months) using reduced metagenome sequencing and gas chromatography. Immune cell frequencies were assessed using mass cytometry in whole blood samples at 12 months. The infants clustered into four groups based on immune cell composition: clusters 1 and 2 showed a high relative abundance of naïve cells, cluster 3 exhibited increased abundance of classical- and non-classical monocytes and clusters 3 and 4 had elevated neutrophil levels. At all age groups, we did observe significant associations between the gut microbiota and immune cell clusters; however, these were generally from low abundant species. Only at 6 months of age we observed significant associations between abundant (>8%) species and immune cell clusters. Bifidobacterium adolescentis and Porphyromonadaceae are associated with cluster 1, while Bacteroides fragilis and Bifidobacterium longum are associated with clusters 3 and 4 respectively. These species have been linked to T-cell polarization and maturation. No significant correlations were found between short-chain fatty acids and immune cell composition. Our findings suggest that abundant gut bacteria at 6 months may influence immune cell frequencies at 12 months, highlighting the potential role of gut microbiota in shaping later immune cell composition.
Collapse
Affiliation(s)
- Morten Nilsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Unni Cecilie Nygaard
- Section for Immunology, Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Rheumatology, Karolinska University Hospital, Solna, Sweden
| | - Karin Cecilie Lødrup Carlsen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cecilie Fredheim
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Guttorm Haugen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Gunilla Hedlin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Christine Monceyron Jonassen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Genetic Unit, Centre for Laboratory Medicine, Østfold Hospital Trust, Kalnes, Norway
| | | | | | - Björn Nordlund
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Axel Olin
- Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Eva Maria Rehbinder
- Department of Dermatology and Vaenorology, Oslo University Hospital, Oslo, Norway
| | - Håvard O Skjerven
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Snipen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Anne Cathrine Staff
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Riyas Vettukattil
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
24
|
Piccolo BD, Graham JL, Tabor-Simecka L, Randolph CE, Moody B, Robeson MS, Kang P, Fox R, Lan R, Pack L, Woford N, Yeruva L, LeRoith T, Stanhope KL, Havel PJ. Colonic epithelial hypoxia remains constant during the progression of diabetes in male UC Davis type 2 diabetes mellitus rats. BMJ Open Diabetes Res Care 2024; 12:e003813. [PMID: 38453236 PMCID: PMC10921531 DOI: 10.1136/bmjdrc-2023-003813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION Colonocyte oxidation of bacterial-derived butyrate has been reported to maintain synergistic obligate anaerobe populations by reducing colonocyte oxygen levels; however, it is not known whether this process is disrupted during the progression of type 2 diabetes. Our aim was to determine whether diabetes influences colonocyte oxygen levels in the University of California Davis type 2 diabetes mellitus (UCD-T2DM) rat model. RESEARCH DESIGN AND METHODS Age-matched male UCD-T2DM rats (174±4 days) prior to the onset of diabetes (PD, n=15), within 1 month post-onset (RD, n=12), and 3 months post-onset (D3M, n=12) were included in this study. Rats were administered an intraperitoneal injection of pimonidazole (60 mg/kg body weight) 1 hour prior to euthanasia and tissue collection to estimate colonic oxygen levels. Colon tissue was fixed in 10% formalin, embedded in paraffin, and processed for immunohistochemical detection of pimonidazole. The colonic microbiome was assessed by 16S gene rRNA amplicon sequencing and content of short-chain fatty acids was measured by liquid chromatography-mass spectrometry. RESULTS HbA1c % increased linearly across the PD (5.9±0.1), RD (7.6±0.4), and D3M (11.5±0.6) groups, confirming the progression of diabetes in this cohort. D3M rats had a 2.5% increase in known facultative anaerobes, Escherichia-Shigella, and Streptococcus (false discovery rate <0.05) genera in colon contents. The intensity of pimonidazole staining of colonic epithelia did not differ across groups (p=0.37). Colon content concentrations of acetate and propionate also did not differ across UCD-T2DM groups; however, colonic butyric acid levels were higher in D3M rats relative to PD rats (p<0.01). CONCLUSIONS The advancement of diabetes in UCD-T2DM rats was associated with an increase in facultative anaerobes; however, this was not explained by changes in colonocyte oxygen levels. The mechanisms underlying shifts in gut microbe populations associated with the progression of diabetes in the UCD-T2DM rat model remain to be identified.
Collapse
Affiliation(s)
- Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - James L Graham
- Department of Nutrition, University of California Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | - Christopher E Randolph
- Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Becky Moody
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ping Kang
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Renee Fox
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Renny Lan
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lindsay Pack
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Noah Woford
- College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | - Laxmi Yeruva
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Tanya LeRoith
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kimber L Stanhope
- Department of Nutrition, University of California Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Peter J Havel
- Department of Nutrition, University of California Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
25
|
Wheeler AE, Stoeger V, Owens RM. Lab-on-chip technologies for exploring the gut-immune axis in metabolic disease. LAB ON A CHIP 2024; 24:1266-1292. [PMID: 38226866 DOI: 10.1039/d3lc00877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The continued rise in metabolic diseases such as obesity and type 2 diabetes mellitus poses a global health burden, necessitating further research into factors implicated in the onset and progression of these diseases. Recently, the gut-immune axis, with diet as a main regulator, has been identified as a possible role player in their development. Translation of conventional 2D in vitro and animal models is however limited, while human studies are expensive and preclude individual mechanisms from being investigated. Lab-on-chip technology therefore offers an attractive new avenue to study gut-immune interactions. This review provides an overview of the influence of diet on gut-immune interactions in metabolic diseases and a critical analysis of the current state of lab-on-chip technology to study this axis. While there has been progress in the development of "immuno-competent" intestinal lab-on-chip models, with studies showing the ability of the technology to provide mechanical cues, support longer-term co-culture of microbiota and maintain in vivo-like oxygen gradients, platforms which combine all three and include intestinal and immune cells are still lacking. Further, immune cell types and inclusion of microenvironment conditions which enable in vivo-like immune cell dynamics as well as host-microbiome interactions are limited. Future model development should focus on combining these conditions to create an environment capable of hosting more complex microbiota and immune cells to allow further study into the effects of diet and related metabolites on the gut-immune ecosystem and their role in the prevention and development of metabolic diseases in humans.
Collapse
Affiliation(s)
- Alexandra E Wheeler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Verena Stoeger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| |
Collapse
|
26
|
Tearle JLE, Tang A, Vasanthakumar A, James KR. Role reversals: non-canonical roles for immune and non-immune cells in the gut. Mucosal Immunol 2024; 17:137-146. [PMID: 37967720 DOI: 10.1016/j.mucimm.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The intestine is home to an intertwined network of epithelial, immune, and neuronal cells as well as the microbiome, with implications for immunity, systemic metabolism, and behavior. While the complexity of this microenvironment has long since been acknowledged, recent technological advances have propelled our understanding to an unprecedented level. Notably, the microbiota and non-immune or structural cells have emerged as important conductors of intestinal immunity, and by contrast, cells of both the innate and adaptive immune systems have demonstrated non-canonical roles in tissue repair and metabolism. This review highlights recent works in the following two streams: non-immune cells of the intestine performing immunological functions; and traditional immune cells exhibiting non-immune functions in the gut.
Collapse
Affiliation(s)
- Jacqueline L E Tearle
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Biomedical Sciences, University of New South Wales, Australia
| | - Adelynn Tang
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| | - Kylie R James
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Biomedical Sciences, University of New South Wales, Australia.
| |
Collapse
|
27
|
Peña-Juárez MC, Guadarrama-Escobar OR, Serrano-Castañeda P, Méndez-Albores A, Vázquez-Durán A, Vera-Graziano R, Rodríguez-Pérez B, Salgado-Machuca M, Anguiano-Almazán E, Morales-Florido MI, Rodríguez-Cruz IM, Escobar-Chávez JJ. Synergistic Effect of Retinoic Acid and Lactoferrin in the Maintenance of Gut Homeostasis. Biomolecules 2024; 14:78. [PMID: 38254678 PMCID: PMC10813542 DOI: 10.3390/biom14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Omar Rodrigo Guadarrama-Escobar
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Pablo Serrano-Castañeda
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Betsabé Rodríguez-Pérez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Unidad de Investigación Multidisciplinaria (UIM), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Mariana Salgado-Machuca
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Ericka Anguiano-Almazán
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Miriam Isabel Morales-Florido
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
- Laboratorio de Farmacia Molecular y Liberación Controlada, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Isabel Marlene Rodríguez-Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional e Alta Especialidad de Sumpango, Carretera Zumpango-Jilotzingo #400, Barrio de Santiago, 2ª Sección, Zumpango 55600, Mexico;
| | - José Juan Escobar-Chávez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| |
Collapse
|
28
|
Wu M, Liao Z, Zeng K, Jiang Q. Exploring the causal role of gut microbiota in giant cell arteritis: a Mendelian randomization analysis with mediator insights. Front Immunol 2024; 14:1280249. [PMID: 38239360 PMCID: PMC10794469 DOI: 10.3389/fimmu.2023.1280249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Background Giant Cell Arteritis (GCA) is a complex autoimmune condition. With growing interest in the role of gut microbiota in autoimmune diseases, this research aimed to explore the potential causal relationship between gut microbiota and GCA, and the mediating effects of specific intermediaries. Methods Using a bidirectional two-sample Mendelian randomization (MR) design, we investigated associations between 191 microbial taxa and GCA. A two-step MR technique discerned the significant mediators on this relationship, followed by Multivariable MR analyses to quantify the direct influence of gut microbiota on GCA and mediation effect proportion, adjusting for these mediators. Results Nine taxa displayed significant associations with GCA. Among them, families like Bacteroidales and Clostridiaceae1 had Odds Ratios (OR) of 1.48 (p=0.043) and 0.52 (p=5.51e-3), respectively. Genera like Clostridium sensu stricto1 and Desulfovibrio showed ORs of 0.48 (p=5.39e-4) and 1.48 (p=0.037), respectively. Mediation analyses identified 25 hydroxyvitamin D level (mediation effect of 19.95%), CD14+ CD16- monocyte counts (mediation effect of 27.40%), and CD4+ T cell counts (mediation effect of 28.51%) as significant intermediaries. Conclusion Our findings provide invaluable insights into the complex interplay between specific gut microbiota taxa and GCA. By highlighting the central role of gut microbiota in influencing GCA risk and long-term recurrence, and their interactions with vital immune mediators, this research paves the way for potential therapeutic interventions in GCA management.
Collapse
Affiliation(s)
- Menglin Wu
- Department of Cardiology, Zhangjiajie People’s Hospital, Zhangjiajie, China
| | - Zhixiong Liao
- Department of Cardiology, Zhangjiajie People’s Hospital, Zhangjiajie, China
| | - Kaidong Zeng
- Department of Cardiology, Zhangjiajie People’s Hospital, Zhangjiajie, China
| | - Qiaohui Jiang
- Department of Cardiology, The Second People’s Hospital of Neijiang, Neijiang, China
| |
Collapse
|
29
|
Kulkarni DH, Rusconi B, Floyd AN, Joyce EL, Talati KB, Kousik H, Alleyne D, Harris DL, Garnica L, McDonough R, Bidani SS, Kulkarni HS, Newberry EP, McDonald KG, Newberry RD. Gut microbiota induces weight gain and inflammation in the gut and adipose tissue independent of manipulations in diet, genetics, and immune development. Gut Microbes 2023; 15:2284240. [PMID: 38036944 PMCID: PMC10730159 DOI: 10.1080/19490976.2023.2284240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Obesity and the metabolic syndrome are complex disorders resulting from multiple factors including genetics, diet, activity, inflammation, and gut microbes. Animal studies have identified roles for each of these, however the contribution(s) specifically attributed to the gut microbiota remain unclear, as studies have used combinations of genetically altered mice, high fat diet, and/or colonization of germ-free mice, which have an underdeveloped immune system. We investigated the role(s) of the gut microbiota driving obesity and inflammation independent of manipulations in diet and genetics in mice with fully developed immune systems. We demonstrate that the human obese gut microbiota alone was sufficient to drive weight gain, systemic, adipose tissue, and intestinal inflammation, but did not promote intestinal barrier leak. The obese microbiota induced gene expression promoting caloric uptake/harvest but was less effective at inducing genes associated with mucosal immune responses. Thus, the obese gut microbiota is sufficient to induce weight gain and inflammation.
Collapse
Affiliation(s)
- Devesha H. Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Brigida Rusconi
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Alexandria N. Floyd
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Elisabeth L. Joyce
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Khushi B. Talati
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Hrishi Kousik
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Dereck Alleyne
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Dalia L. Harris
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Lorena Garnica
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Ryan McDonough
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Shay S. Bidani
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Elizabeth P. Newberry
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Keely G. McDonald
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Rodney D. Newberry
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
30
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
31
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
32
|
Qi X, Li Z, Han J, Liu W, Xia P, Cai X, Liu X, Liu X, Zhang J, Yu P. Multifaceted roles of T cells in obesity and obesity-related complications: A narrative review. Obes Rev 2023; 24:e13621. [PMID: 37583087 DOI: 10.1111/obr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Obesity is characterized by chronic low-grade inflammatory responses in the adipose tissue, accompanied by pronounced insulin resistance and metabolic anomalies. It affects almost all body organs and eventually leads to diseases such as fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Recently, T cells have emerged as interesting therapeutic targets because the dysfunction of T cells and their cytokines in the adipose tissue is implicated in obesity-induced inflammation and their complicated onset. Although several recent narrative reviews have provided a brief overview of related evidence in this area, they have mainly focused on either obesity-associated T cell metabolism or modulation of T cell activation in obesity. Moreover, at present, no published review has reported on the multifaceted roles of T cells in obesity and obesity-related complications, even though there has been a significant increase in studies on this topic since 2019. Therefore, this narrative review aims to comprehensively summarize current advances in the mechanistic roles of T cells in the development of obesity and its related complications. Further, we aim to discuss relevant drugs for weight loss as well as the contradictory role of T cells in the same disease so as to highlight key findings regarding this topic and provide a valid basis for future treatment strategies.
Collapse
Affiliation(s)
- Xinrui Qi
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiashu Han
- MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenqing Liu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Silvestri A, Gil-Gomez A, Vitale M, Braga D, Demitri C, Brescia P, Madaghiele M, Spadoni I, Jones B, Fornasa G, Mouries J, Carloni S, Lizier M, Romero-Gomez M, Penna G, Sannino A, Rescigno M. Biomimetic superabsorbent hydrogel acts as a gut protective dynamic exoskeleton improving metabolic parameters and expanding A. muciniphila. Cell Rep Med 2023; 4:101235. [PMID: 37852177 PMCID: PMC10591066 DOI: 10.1016/j.xcrm.2023.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
The rising prevalence of obesity and metabolic disorders worldwide highlights the urgent need to find new long-term and clinically meaningful weight-loss therapies. Here, we evaluate the therapeutic potential and the mechanism of action of a biomimetic cellulose-based oral superabsorbent hydrogel (OSH). Treatment with OSH exerts effects on intestinal tissue and gut microbiota composition, functioning like a protective dynamic exoskeleton. It protects from gut barrier permeability disruption and induces rapid and consistent changes in the gut microbiota composition, specifically fostering Akkermansia muciniphila expansion. The mechanobiological, physical, and chemical structures of the gel are required for A. muciniphila growth. OSH treatment induces weight loss and reduces fat accumulation, in both preventative and therapeutic settings. OSH usage also prevents liver steatosis, immune infiltration, and fibrosis, limiting the progression of non-alcoholic fatty liver disease. Our work shows the potential of using OSH as a non-systemic mechanobiological approach to treat metabolic syndrome and its comorbidities.
Collapse
Affiliation(s)
| | - Antonio Gil-Gomez
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Milena Vitale
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, 73021 Calimera, Lecce, Italy
| | - Paola Brescia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, 73021 Calimera, Lecce, Italy
| | - Ilaria Spadoni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | | | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Juliette Mouries
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Sara Carloni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Manuel Romero-Gomez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy; Gelesis, Boston, MA 02116, USA
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
34
|
Lê S, Cecchin-Albertoni C, Thomas C, Kemoun P, Minty M, Blasco-Baque V. The Role of Dysbiotic Oral Microbiota in Cardiometabolic Diseases: A Narrative Review. Diagnostics (Basel) 2023; 13:3184. [PMID: 37892006 PMCID: PMC10605832 DOI: 10.3390/diagnostics13203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Over the past decade, there have been significant advancements in the high-flow analysis of "omics," shedding light on the relationship between the microbiota and the host. However, the full recognition of this relationship and its implications in cardiometabolic diseases are still underway, despite advancements in understanding the pathophysiology of these conditions. Cardiometabolic diseases, which include a range of conditions from insulin resistance to cardiovascular disease and type 2 diabetes, continue to be the leading cause of mortality worldwide, with a persistently high morbidity rate. While the link between the intestinal microbiota and cardiometabolic risks has been extensively explored, the role of the oral microbiota, the second-largest microbiota in the human body, and specifically the dysbiosis of this microbiota in causing these complications, remains incompletely defined. This review aims to examine the association between the oral microbiota and cardiometabolic diseases, focusing on the dysbiosis of the oral microbiota, particularly in periodontal disease. Additionally, we will dive into the mechanistic aspects of this dysbiosis that contribute to the development of these complications. Finally, we will discuss potential prevention and treatment strategies, including the use of prebiotics, probiotics, and other interventions.
Collapse
Affiliation(s)
- Sylvie Lê
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Chiara Cecchin-Albertoni
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- RESTORE Research Center, CNRS, EFS, ENVT, Batiment INCERE, INSERM, Université de Toulouse, 4 bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Charlotte Thomas
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Philippe Kemoun
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- RESTORE Research Center, CNRS, EFS, ENVT, Batiment INCERE, INSERM, Université de Toulouse, 4 bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Matthieu Minty
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Vincent Blasco-Baque
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| |
Collapse
|
35
|
Sun J, Germain A, Kaglan G, Servant F, Lelouvier B, Federici M, Fernandez-Real JM, Sala DT, Neagoe RM, Bouloumié A, Burcelin R. The visceral adipose tissue bacterial microbiota provides a signature of obesity based on inferred metagenomic functions. Int J Obes (Lond) 2023; 47:1008-1022. [PMID: 37488221 DOI: 10.1038/s41366-023-01341-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Metabolic inflammation mediated obesity requires bacterial molecules to trigger immune and adipose cells leading to inflammation and adipose depot development. In addition to the well-established gut microbiota dysbiosis, a leaky gut has been identified in patients with obesity and animal models, characterized by the presence of a tissue microbiota in the adipose fat pads. METHODS To determine its potential role, we sequenced the bacterial 16 S rRNA genes in the visceral adipose depot of patients with obesity. Taking great care (surgical, biochemical, and bioinformatic) to avoid environmental contaminants. We performed statistical discriminant analyses to identify specific signatures and constructed network of interactions between variables. RESULTS The data showed that a specific 16SrRNA gene signature was composed of numerous bacterial families discriminating between lean versus patients with obesity and people with severe obesity. The main discriminant families were Burkholderiaceae, Yearsiniaceae, and Xanthomonadaceae, all of which were gram-negative. Interestingly, the Morganellaceae were totally absent from people without obesity while preponderant in all in patients with obesity. To generate hypotheses regarding their potential role, we inferred metabolic pathways from the 16SrRNA gene signatures. We identified several pathways associated with adenosyl-cobalamine previously described to be linked with adipose tissue development. We further identified chorismate biosynthesis, which is involved in aromatic amino-acid metabolism and could play a role in fat pad development. This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis. CONCLUSIONS This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis in obesity and notably the potential role of tissue microbiota.
Collapse
Affiliation(s)
- Jiuwen Sun
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Alberic Germain
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Gracia Kaglan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | | | | | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta'; Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Daniela Tatiana Sala
- University of Medicine Pharmacy, Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, Târgu Mureș, Romania
| | - Radu Mircea Neagoe
- University of Medicine Pharmacy, Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, Târgu Mureș, Romania
| | - Anne Bouloumié
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France.
| |
Collapse
|
36
|
Jacouton E, Mondot S, Langella P, Bermúdez-Humarán LG. Impact of Oral Administration of Lactiplantibacillus plantarum Strain CNCM I-4459 on Obesity Induced by High-Fat Diet in Mice. Bioengineering (Basel) 2023; 10:1151. [PMID: 37892881 PMCID: PMC10604482 DOI: 10.3390/bioengineering10101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Recent evidence suggests that some lactobacilli strains, particularly Lactiplantibacillus plantarum, have a beneficial effect on obesity-associated syndromes. Several studies have investigated probiotic challenges in models of high-fat diet (HFD)-induced obesity, specifically with respect to its impact on hepatic and/or adipocyte metabolism, gut inflammation and epithelial barrier integrity, and microbiota composition. However, only a few studies have combined these aspects to generate a global understanding of how probiotics exert their protective effects. Here, we used the probiotic strain L. plantarum CNCM I-4459 and explored its impact on a mouse model of HFD-induced obesity. Briefly, mice were administered 1 × 109 CFUs/day and fed HFD for 12 weeks. Treatment with this strain improved insulin sensitivity by lowering serum levels of fasting glucose and fructosamine. Administration of the probiotic also affected the transport and metabolism of glucose, resulting in the downregulation of the hepatic Glut-4 and G6pase genes. Additionally, L. plantarum CNCM I-4459 promoted a decreased concentration of LDL-c and modulated hepatic lipid metabolism (downregulation of Fasn, Plin, and Cpt1α genes). Probiotic treatment also restored HFD-disrupted intestinal microbial composition by increasing microbial diversity and lowering the ratio of Firmicutes to Bacteroidetes. In conclusion, this probiotic strain represents a potential approach for at least partial restoration of the glucose sensitivity and lipid disruption that is associated with obesity.
Collapse
Affiliation(s)
| | | | | | - Luis G. Bermúdez-Humarán
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.J.); (S.M.); (P.L.)
| |
Collapse
|
37
|
Elsayed NS, Valenzuela RK, Kitchner T, Le T, Mayer J, Tang ZZ, Bayanagari VR, Lu Q, Aston P, Anantharaman K, Shukla SK. Genetic risk score in multiple sclerosis is associated with unique gut microbiome. Sci Rep 2023; 13:16269. [PMID: 37758833 PMCID: PMC10533555 DOI: 10.1038/s41598-023-43217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease in which both the roles of genetic susceptibility and environmental/microbial factors have been investigated. More than 200 genetic susceptibility variants have been identified along with the dysbiosis of gut microbiota, both independently have been shown to be associated with MS. We hypothesize that MS patients harboring genetic susceptibility variants along with gut microbiome dysbiosis are at a greater risk of exhibiting the disease. We investigated the genetic risk score for MS in conjunction with gut microbiota in the same cohort of 117 relapsing remitting MS (RRMS) and 26 healthy controls. DNA samples were genotyped using Illumina's Infinium Immuno array-24 v2 chip followed by calculating genetic risk score and the microbiota was determined by sequencing the V4 hypervariable region of the 16S rRNA gene. We identified two clusters of MS patients, Cluster A and B, both having a higher genetic risk score than the control group. However, the MS cases in cluster B not only had a higher genetic risk score but also showed a distinct gut microbiome than that of cluster A. Interestingly, cluster A which included both healthy control and MS cases had similar gut microbiome composition. This could be due to (i) the non-active state of the disease in that group of MS patients at the time of fecal sample collection and/or (ii) the restoration of the gut microbiome post disease modifying therapy to treat the MS. Our study showed that there seems to be an association between genetic risk score and gut microbiome dysbiosis in triggering the disease in a small cohort of MS patients. The MS Cluster A who have a higher genetic risk score but microbiome profile similar to that of healthy controls could be due to the remitting phase of the disease or due to the effect of disease modifying therapies.
Collapse
Affiliation(s)
- Noha S Elsayed
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 N Oak Avenue # MLR, Marshfield, WI, 54449, USA
- Department of Pediatrics, Albert Einstein Medical College, New York, United States
| | - Robert K Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 N Oak Avenue # MLR, Marshfield, WI, 54449, USA
| | - Terrie Kitchner
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 N Oak Avenue # MLR, Marshfield, WI, 54449, USA
| | - Thao Le
- Integrated Research Development Laboratory, Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, 54449, USA
| | - John Mayer
- Office of Research Computing and Analytics, Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, 54449, USA
| | - Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Vishnu R Bayanagari
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 N Oak Avenue # MLR, Marshfield, WI, 54449, USA
- Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, 02908, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Paula Aston
- Department of Neurology, Marshfield Clinic Health System, Marshfield, WI, 54449, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 N Oak Avenue # MLR, Marshfield, WI, 54449, USA.
- Computational and Informatics in Biology and Medicine Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
38
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
39
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
40
|
Rosendo-Silva D, Viana S, Carvalho E, Reis F, Matafome P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern Emerg Med 2023; 18:1287-1302. [PMID: 37014495 PMCID: PMC10412677 DOI: 10.1007/s11739-023-03262-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023]
Abstract
Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tissue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
- Faculty of Medicine, Pole III of University of Coimbra, Subunit 1, 1st floor, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra, Portugal.
| |
Collapse
|
41
|
Sun CY, Yang N, Zheng ZL, Liu D, Xu QL. T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomed Pharmacother 2023; 161:114483. [PMID: 36906976 DOI: 10.1016/j.biopha.2023.114483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The gut microbiota colonizing the gastrointestinal tract, is an indispensable "invisible organ" that affects multiple aspects of human health. The gut microbial community has been assumed to be an important stimulus to the immune homeostasis and development, and increasing data support the role of the gut microbiota-immunity axis in autoimmune diseases. Host's immune system requires recognition tools to communicate with the gut microbial evolutionary partners. Among these microbial perceptions, T cells enable the widest spectrum of gut microbial recognition resolution. Specific gut microbiota direct the induction and differentiation of Th17 cells in intestine. However, the detailed links between the gut microbiota and Th17 cells have not been well established. In this review, we describe the generation and characterization of Th17 cells. Notably, we discuss the induction and differentiation of Th17 cells by the gut microbiota and their metabolites, as well as recent advances in our understanding of interactions between Th17 cells and the gut microbiota in human diseases. In addition, we provide the emerging evidences in support of interventions targeting the gut microbes/Th17 cells in human diseases.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Na Yang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | | | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Qi-Lin Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| |
Collapse
|
42
|
Breznik JA, Jury J, Verdú EF, Sloboda DM, Bowdish DME. Diet-induced obesity alters intestinal monocyte-derived and tissue-resident macrophages and increases intestinal permeability in female mice independent of tumor necrosis factor. Am J Physiol Gastrointest Liver Physiol 2023; 324:G305-G321. [PMID: 36749921 DOI: 10.1152/ajpgi.00231.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Macrophages are essential for homeostatic maintenance of the anti-inflammatory and tolerogenic intestinal environment, yet monocyte-derived macrophages can promote local inflammation. Proinflammatory macrophage accumulation within the intestines may contribute to the development of systemic chronic inflammation and immunometabolic dysfunction in obesity. Using a model of high-fat diet-induced obesity in C57BL/6J female mice, we assessed intestinal paracellular permeability by in vivo and ex vivo assays and quantitated intestinal macrophages in ileum and colon tissues by multicolor flow cytometry after short (6 wk), intermediate (12 wk), and prolonged (18 wk) diet allocation. We characterized monocyte-derived CD4-TIM4- and CD4+TIM4- macrophages, as well as tissue-resident CD4+TIM4+ macrophages. Diet-induced obesity had tissue- and time-dependent effects on intestinal permeability, as well as monocyte and macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and tumor necrosis factor (TNF). We found that obese mice had increased paracellular permeability, in particular within the ileum, but this did not elicit recruitment of monocytes nor a local proinflammatory response by monocyte-derived or tissue-resident macrophages in either the ileum or colon. Proliferation of monocyte-derived and tissue-resident macrophages was also unchanged. Wild-type and TNF-/- littermate mice had similar intestinal permeability and macrophage population characteristics in response to diet-induced obesity. These data are unique from reported effects of diet-induced obesity on macrophages in metabolic tissues, as well as outcomes of acute inflammation within the intestines. These experiments also collectively indicate that TNF does not mediate effects of diet-induced obesity on paracellular permeability or intestinal monocyte-derived and tissue-resident intestinal macrophages in young female mice.NEW & NOTEWORTHY We found that diet-induced obesity in female mice has tissue- and time-dependent effects on intestinal paracellular permeability as well as monocyte-derived and tissue-resident macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and TNF. These changes were not mediated by TNF.
Collapse
Affiliation(s)
- Jessica A Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Jury
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F Verdú
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
43
|
Nagahisa T, Kosugi S, Yamaguchi S. Interactions between Intestinal Homeostasis and NAD + Biology in Regulating Incretin Production and Postprandial Glucose Metabolism. Nutrients 2023; 15:nu15061494. [PMID: 36986224 PMCID: PMC10052115 DOI: 10.3390/nu15061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The intestine has garnered attention as a target organ for developing new therapies for impaired glucose tolerance. The intestine, which produces incretin hormones, is the central regulator of glucose metabolism. Glucagon-like peptide-1 (GLP-1) production, which determines postprandial glucose levels, is regulated by intestinal homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT)-mediated nicotinamide adenine dinucleotide (NAD+) biosynthesis in major metabolic organs such as the liver, adipose tissue, and skeletal muscle plays a crucial role in obesity- and aging-associated organ derangements. Furthermore, NAMPT-mediated NAD+ biosynthesis in the intestines and its upstream and downstream mediators, adenosine monophosphate-activated protein kinase (AMPK) and NAD+-dependent deacetylase sirtuins (SIRTs), respectively, are critical for intestinal homeostasis, including gut microbiota composition and bile acid metabolism, and GLP-1 production. Thus, boosting the intestinal AMPK-NAMPT-NAD+-SIRT pathway to improve intestinal homeostasis, GLP-1 production, and postprandial glucose metabolism has gained significant attention as a novel strategy to improve impaired glucose tolerance. Herein, we aimed to review in detail the regulatory mechanisms and importance of intestinal NAMPT-mediated NAD+ biosynthesis in regulating intestinal homeostasis and GLP-1 secretion in obesity and aging. Furthermore, dietary and molecular factors regulating intestinal NAMPT-mediated NAD+ biosynthesis were critically explored to facilitate the development of new therapeutic strategies for postprandial glucose dysregulation.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
44
|
Ji L, Deng H, Xue H, Wang J, Hong K, Gao Y, Kang X, Fan G, Huang W, Zhan J, You Y. Research progress regarding the effect and mechanism of dietary phenolic acids for improving nonalcoholic fatty liver disease via gut microbiota. Compr Rev Food Sci Food Saf 2023; 22:1128-1147. [PMID: 36717374 DOI: 10.1111/1541-4337.13106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023]
Abstract
Phenolic acids (PAs), a class of small bioactive molecules widely distributed in food and mainly found as secondary plant metabolites, present significant advantages such as antioxidant activity and other health benefits. The global epidemic of nonalcoholic fatty liver disease (NAFLD) is becoming a serious public health problem. Existing studies showed that gut microbiota (GM) dysbiosis is highly associated with the occurrence and development of NAFLD. In recent years, progress has been made in the study of the relationship among PA compounds, GM, and NAFLD. PAs can regulate the composition and functions of the GM to promote human health, while GM can increase the dietary sources of PAs and improve its bioavailability. This paper discussed PAs, GM, and their interrelationship while introducing several representative dietary PA sources and examining the absorption and metabolism of PAs mediated by GM. It also summarizes the effect and mechanisms of PAs in improving and regulating NAFLD via GM and their metabolites. This helps to better evaluate the potential preventive effect of PAs on NAFLD via the regulation of GM and expands the utilization of PAs and PA-rich food resources.
Collapse
Affiliation(s)
- Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jiting Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Kexin Hong
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiping Kang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Guanghe Fan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Li W, Chen W. Weight cycling based on altered immune microenvironment as a result of metaflammation. Nutr Metab (Lond) 2023; 20:13. [PMID: 36814270 PMCID: PMC9945679 DOI: 10.1186/s12986-023-00731-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
As a result of the obesity epidemic, more people are concerned about losing weight; however, weight regain is common, leading to repeated weight loss and weight cycling. The health benefits of early weight loss are nullified by weight regain after weight cycling, which has much more severe metabolic consequences. Weight cycling alters body composition, resulting in faster fat recovery and slower muscle reconstruction. This evident fat accumulation, muscle loss, and ectopic fat deposition destroy the intestinal barrier, increase the permeability of the small intestinal epithelium, and cause the lipotoxicity of lipid metabolites and toxins to leak into extraintestinal tissues and circulation. It causes oxidative stress and hypoxia in local tissues and immune cell infiltration in various tissues, all contributing to the adaptation to this metabolic change. Immune cells transmit inflammatory responses in adipose and skeletal muscle tissue by secreting cytokines and adipokines, which mediate immune cell pathways and cause metaflammation and inefficient metabolic degradation. In this review, we focus on the regulatory function of the immunological microenvironment in the final metabolic outcome, with a particular emphasis on the cellular and molecular processes of local and systemic metaflammation induced by weight cycling-induced changes in body composition. Metaflammation in adipose and muscle tissues that is difficult to relieve may cause weight cycling. As this chronic low-grade inflammation spreads throughout the body, metabolic complications associated with weight cycling are triggered. Inhibiting the onset and progression of metabolic inflammation and enhancing the immune microenvironment of adipose and muscle tissues may be the first step in addressing weight cycling.
Collapse
Affiliation(s)
- Wanyang Li
- grid.413106.10000 0000 9889 6335Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
46
|
Hill AA, Kim M, Zegarra-Ruiz DF, Chang LC, Norwood K, Assié A, Wu WJH, Renfroe MC, Song HW, Major AM, Samuel BS, Hyser JM, Longman RS, Diehl GE. Acute high-fat diet impairs macrophage-supported intestinal damage resolution. JCI Insight 2023; 8:e164489. [PMID: 36538527 PMCID: PMC9977439 DOI: 10.1172/jci.insight.164489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic exposure to high-fat diets (HFD) worsens intestinal disease pathology, but acute effects of HFD in tissue damage remain unclear. Here, we used short-term HFD feeding in a model of intestinal injury and found sustained damage with increased cecal dead neutrophil accumulation, along with dietary lipid accumulation. Neutrophil depletion rescued enhanced pathology. Macrophages from HFD-treated mice showed reduced capacity to engulf dead neutrophils. Macrophage clearance of dead neutrophils activates critical barrier repair and antiinflammatory pathways, including IL-10, which was lost after acute HFD feeding and intestinal injury. IL-10 overexpression restored intestinal repair after HFD feeding and intestinal injury. Macrophage exposure to lipids from the HFD prevented tethering and uptake of apoptotic cells and Il10 induction. Milk fat globule-EGF factor 8 (MFGE8) is a bridging molecule that facilitates macrophage uptake of dead cells. MFGE8 also facilitates lipid uptake, and we demonstrate that dietary lipids interfere with MFGE8-mediated macrophage apoptotic neutrophil uptake and subsequent Il10 production. Our findings demonstrate that HFD promotes intestinal pathology by interfering with macrophage clearance of dead neutrophils, leading to unresolved tissue damage.
Collapse
Affiliation(s)
| | - Myunghoo Kim
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel F. Zegarra-Ruiz
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lin-Chun Chang
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kendra Norwood
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wan-Jung H. Wu
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael C. Renfroe
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hyo Wong Song
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Randy S. Longman
- Jill Roberts Institute for Research in IBD and Jill Roberts Center for IBD, Weill Cornell Medicine, New York, New York, USA
| | - Gretchen E. Diehl
- Alkek Center for Metagenomics and Microbiome Research and the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
47
|
Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Mol Neurodegener 2023; 18:9. [PMID: 36721148 PMCID: PMC9889249 DOI: 10.1186/s13024-023-00595-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, results in a sustained decline in cognition. There are currently few effective disease modifying therapies for AD, but insights into the mechanisms that mediate the onset and progression of disease may lead to new, effective therapeutic strategies. Amyloid beta oligomers and plaques, tau aggregates, and neuroinflammation play a critical role in neurodegeneration and impact clinical AD progression. The upstream modulators of these pathological features have not been fully clarified, but recent evidence indicates that the gut microbiome (GMB) may have an influence on these features and therefore may influence AD progression in human patients. In this review, we summarize studies that have identified alterations in the GMB that correlate with pathophysiology in AD patients and AD mouse models. Additionally, we discuss findings with GMB manipulations in AD models and potential GMB-targeted therapeutics for AD. Lastly, we discuss diet, sleep, and exercise as potential modifiers of the relationship between the GMB and AD and conclude with future directions and recommendations for further studies of this topic.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sangram S. Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL 60637 USA
| | - Robert J. Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
48
|
Cao C, Tan X, Yan H, Shen Q, Hua R, Shao Y, Yao Q. Sleeve gastrectomy decreases high-fat diet induced colonic pro-inflammatory status through the gut microbiota alterations. Front Endocrinol (Lausanne) 2023; 14:1091040. [PMID: 37008903 PMCID: PMC10061349 DOI: 10.3389/fendo.2023.1091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Background High-fat diet (HFD) induced obesity is characterized with chronic low-grade inflammation in various tissues and organs among which colon is the first to display pro-inflammatory features associated with alterations of the gut microbiota. Sleeve gastrectomy (SG) is currently one of the most effective treatments for obesity. Although studies reveal that SG results in decreased levels of inflammation in multiple tissues such as liver and adipose tissues, the effects of surgery on obesity related pro-inflammatory status in the colon and its relation to the microbial changes remain unknown. Methods To determine the effects of SG on the colonic pro-inflammatory condition and the gut microbiota, SG was performed on HFD-induced obese mice. To probe the causal relationship between alterations of the gut microbiota and improvements of pro-inflammatory status in the colon following SG, we applied broad-spectrum antibiotics cocktails on mice that received SG to disturb the gut microbial changes. The pro-inflammatory shifts in the colon were assessed based on morphology, macrophage infiltration and expressions of a variety of cytokine genes and tight junction protein genes. The gut microbiota alterations were analyzed using 16s rRNA sequencing. RNA sequencing of colon was conducted to further explore the role of the gut microbiota in amelioration of colonic pro-inflammation following SG at a transcriptional level. Results Although SG did not lead to pronounced changes of colonic morphology and macrophage infiltration in the colon, there were significant decreases in the expressions of several pro-inflammatory cytokines including interleukin-1β (IL-1β), IL-6, IL-18, and IL-23 as well as increased expressions of some tight junction proteins in the colon following SG, suggesting an improvement of pro-inflammatory status. This was accompanied by changing populations of the gut microbiota such as increased richness of Lactobacillus subspecies following SG. Importantly, oral administrations of broad-spectrum antibiotics to delete most intestinal bacteria abrogated surgical effects to relieve colonic pro-inflammation. This was further confirmed by transcriptional analysis of colon indicating that SG regulated inflammation related pathways in a manner that was gut microbiota relevant. Conclusion These results support that SG decreases obesity related colonic pro-inflammatory status through the gut microbial alterations.
Collapse
Affiliation(s)
- Chong Cao
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaozhuo Tan
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Hai Yan
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Qiwei Shen
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Rong Hua
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yikai Shao
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
49
|
Champion C, Neagoe RM, Effernberger M, Sala DT, Servant F, Christensen JE, Arnoriaga-Rodriguez M, Amar J, Lelouvier B, Loubieres P, Azalbert V, Minty M, Thomas C, Blasco-Baque V, Gamboa F, Tilg H, Cardellini M, Federici M, Fernández-Real JM, Loubes JM, Burcelin R. Human liver microbiota modeling strategy at the early onset of fibrosis. BMC Microbiol 2023; 23:34. [PMID: 36717776 PMCID: PMC9885577 DOI: 10.1186/s12866-023-02774-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identified that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identified. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statistical approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and statistical differences. RESULTS Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs F0. CONCLUSIONS Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signatures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses. TRIAL REGISTRATION TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 4065/2014. Registered 01 01 2014.
Collapse
Affiliation(s)
- Camille Champion
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France ,grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Radu M. Neagoe
- Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Science and Technology “George Emil Palade” Tîrgu Mures, Târgu Mureș, Romania
| | - Maria Effernberger
- grid.5361.10000 0000 8853 2677Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela T. Sala
- Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Science and Technology “George Emil Palade” Tîrgu Mures, Târgu Mureș, Romania
| | | | - Jeffrey E. Christensen
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Maria Arnoriaga-Rodriguez
- grid.411295.a0000 0001 1837 4818Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona ‘Dr Josep Trueta’, Girona, Spain ,grid.429182.4Institut d’Investigacio Biomedica de Girona IdibGi, Girona, Spain ,CIBER Fisiopatologia de La Obesidad Y Nutricion, Girona, Spain
| | - Jacques Amar
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France ,grid.414295.f0000 0004 0638 3479Therapeutics Department, Rangueil Hospital, Toulouse, France
| | | | - Pascale Loubieres
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Vincent Azalbert
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Matthieu Minty
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Charlotte Thomas
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Vincent Blasco-Baque
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Fabrice Gamboa
- grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Herbert Tilg
- grid.5361.10000 0000 8853 2677Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina Cardellini
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Federici
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Jose-Manuel Fernández-Real
- grid.411295.a0000 0001 1837 4818Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona ‘Dr Josep Trueta’, Girona, Spain ,grid.429182.4Institut d’Investigacio Biomedica de Girona IdibGi, Girona, Spain ,CIBER Fisiopatologia de La Obesidad Y Nutricion, Girona, Spain
| | - Jean Michel Loubes
- grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Rémy Burcelin
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| |
Collapse
|
50
|
He T, Lykov N, Luo X, Wang H, Du Z, Chen Z, Chen S, Zhu L, Zhao Y, Tzeng C. Protective Effects of Lactobacillus gasseri against High-Cholesterol Diet-Induced Fatty Liver and Regulation of Host Gene Expression Profiles. Int J Mol Sci 2023; 24:ijms24032053. [PMID: 36768377 PMCID: PMC9917166 DOI: 10.3390/ijms24032053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Fatty liver is one of the most pervasive liver diseases worldwide. Probiotics play an important role in the progression of liver disease, but their effects on host regulation are poorly understood. This study investigated the protective effects of lactobacillus gasseri (L. gasseri) against high-cholesterol diet (HCD)-induced fatty liver injury using a zebrafish larvae model. Liver pathology, lipid accumulation, oxidative stress and hepatic inflammation were evaluated to demonstrate the changes in a spectrum of hepatic injury. Moreover, multiple indexes on host gene expression profiles were comprehensively characterized by RNA screening. The results showed that treatment with L. gasseri ameliorated HCD-induced morphological and histological alterations, lipid regulations, oxidative stress and macrophage aggregation in the liver of zebrafish larvae. Furthermore, the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that the core pathways of L. gasseri regulation were interleukin-17 (IL-17) signaling, phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, the regulation of lipolysis and adipocytes and fatty acid elongation and estrogen signaling. The genes at key junction nodes, hsp90aa1.1, kyat3, hsd17b7, irs2a, myl9b, ptgs2b, cdk21 and papss2a were significantly regulated by L. gasseri administration. To conclude, the current research extends our understanding of the protective effects of L. gasseri against fatty liver and provides potential therapeutic options for fatty liver treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ye Zhao
- Correspondence: (Y.Z.); (C.T.)
| | | |
Collapse
|