1
|
Chen QC, Cai WF, Ni Q, Lin SX, Jiang CP, Yi YK, Liu L, Liu Q, Shen CY. Endocrine regulation of metabolic crosstalk between liver and brown adipose tissue by natural active ingredients. Int J Obes (Lond) 2025:10.1038/s41366-025-01793-7. [PMID: 40389647 DOI: 10.1038/s41366-025-01793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/21/2025]
Abstract
The escalating global obesity crisis and its associated metabolic disorders have posed a significant threat to public health, increasing the risk of major health issues such as cardiovascular diseases and type 2 diabetes. Central to metabolic regulation are the liver and brown adipose tissue (BAT), which orchestrate glycolipid metabolism, thermogenesis, and energy homeostasis. Emerging evidence highlights the role of natural bioactive compounds-such as polyphenols (e.g., resveratrol, curcumin), alkaloids (e.g., berberine), and terpenoids (e.g., paeoniflorin, shikonin)-in modulating liver-BAT crosstalk. These compounds influence critical pathways, including AMPK activation, PPAR signaling, and UCP1-mediated thermogenesis, to enhance lipid oxidation, suppress gluconeogenesis, and improve insulin sensitivity. This review systematically examines how these natural agents regulate metabolic interplay between the liver and BAT, addressing their effects on energy expenditure, carbohydrate utilization, and lipid mobilization. Key mechanisms involve the suppression of hepatic lipogenesis, promotion of BAT-mediated thermogenesis, and secretion of hepatokines (e.g., FGF21) and batokines that coordinate interorgan communication. By synthesizing preclinical and clinical findings, we highlight the translational potential of dietary interventions and nutraceuticals targeting liver-BAT axis dysfunction. Future research should prioritize mechanistic studies, dose optimization, and personalized approaches to harness these compounds for combating obesity-related diseases. These insights underscore the promise of natural bioactive molecules as adjuvants to lifestyle modifications, offering innovative strategies for metabolic health restoration.
Collapse
Affiliation(s)
- Qi-Cong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Wei-Feng Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qian Ni
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Song-Xia Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| | - Yan-Kui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Khalaf F, Barayan D, Saldanha S, Jeschke MG. Metabolaging: a new geroscience perspective linking aging pathologies and metabolic dysfunction. Metabolism 2025; 166:156158. [PMID: 39947519 DOI: 10.1016/j.metabol.2025.156158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
With age, our metabolic systems undergo significant alterations, which can lead to a cascade of adverse effects that are implicated in both metabolic disorders, such as diabetes, and in the body's ability to respond to acute stress and trauma. To elucidate the metabolic imbalances arising from aging, we introduce the concept of "metabolaging." This framework encompasses the broad spectrum of metabolic disruptions associated with the hallmarks of aging, including the functional decline of key metabolically active organs, like the adipose tissue. By examining how these organs interact with essential nutrient-sensing pathways, "metabolaging" provides a more comprehensive view of the systemic metabolic imbalances that occur with age. This concept extends to understanding how age-related metabolic disturbances can influence the response to acute stressors, like burn injuries, highlighting the interplay between metabolic dysfunction and the ability to handle severe physiological challenges. Finally, we propose potential interventions that hold promise in mitigating the effects of metabolaging and its downstream consequences.
Collapse
Affiliation(s)
- Fadi Khalaf
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dalia Barayan
- David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sean Saldanha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Marc G Jeschke
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; David Braley Research Institute, Hamilton, Ontario, Canada; Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Valero-Muñoz M, Saw EL, Cooper H, Pimentel DR, Sam F. White Adipose Tissue in Obesity-Associated HFpEF: Insights From Mice and Humans. JACC Basic Transl Sci 2025:S2452-302X(25)00110-X. [PMID: 40338771 DOI: 10.1016/j.jacbts.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 05/10/2025]
Abstract
Obesity and hypertension are prevalent comorbidities in heart failure with preserved ejection fraction (HFpEF). Increased adiposity is implicated in its pathophysiology. We investigated changes in white adipose tissue (WAT) in obesity-associated HFpEF utilizing patient samples and a murine model of obesity-associated HFpEF. WAT analysis revealed "browning", characterized by smaller adipocytes and increased UCP1 expression, alongside fibrosis and reduced vascular markers during acute HF decompensation. During chronic, stable HFpEF, "browning" markers declined. There is a dynamic process in WAT, where acute HF exacerbations trigger transient "browning", fibrosis, and vascular deterioration, which partially reverse but fibrosis persists. WAT dysfunction worsens during acute HF, highlighting a potential therapeutic target for obesity-related HFpEF.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Hannah Cooper
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - David R Pimentel
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Nicolaisen TS, Lyster AE, Sjøberg KA, Haas DT, Voldstedlund CT, Lundsgaard AM, Jensen JK, Madsen EM, Nielsen CK, Bloch-Ibenfeldt M, Wewer Albrechtsen NJ, Rose AJ, Krahmer N, Clemmensen C, Richter EA, Fritzen AM, Kiens B. Dietary protein restriction elevates FGF21 levels and energy requirements to maintain body weight in lean men. Nat Metab 2025; 7:602-616. [PMID: 40050437 PMCID: PMC11946896 DOI: 10.1038/s42255-025-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
Dietary protein restriction increases energy expenditure and enhances insulin sensitivity in mice. However, the effects of a eucaloric protein-restricted diet in healthy humans remain unexplored. Here, we show in lean, healthy men that a protein-restricted diet meeting the minimum protein requirements for 5 weeks necessitates an increase in energy intake to uphold body weight, regardless of whether proteins are replaced with fats or carbohydrates. Upon reverting to the customary higher protein intake in the following 5 weeks, energy requirements return to baseline levels, thus preventing weight gain. We also show that fasting plasma FGF21 levels increase during protein restriction. Proteomic analysis of human white adipose tissue and in FGF21-knockout mice reveal alterations in key components of the electron transport chain within white adipose tissue mitochondria. Notably, in male mice, these changes appear to be dependent on FGF21. In conclusion, we demonstrate that maintaining body weight during dietary protein restriction in healthy, lean men requires a higher energy intake, partially driven by FGF21-mediated mitochondrial adaptations in adipose tissue.
Collapse
Affiliation(s)
- Trine S Nicolaisen
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aslak E Lyster
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniel T Haas
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian T Voldstedlund
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk A/S, Novo Nordisk, Søborg, Denmark
| | - Jakob K Jensen
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ea M Madsen
- Novo Nordisk A/S, Novo Nordisk, Søborg, Denmark
| | - Casper K Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Mads Bloch-Ibenfeldt
- Institute of Sports Medicine Copenhagen (ISMC), Department of Orthopedic Surgery M81, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | | | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Cypess AM, Cannon B, Nedergaard J, Kazak L, Chang DC, Krakoff J, Tseng YH, Schéele C, Boucher J, Petrovic N, Blondin DP, Carpentier AC, Virtanen KA, Kooijman S, Rensen PCN, Cero C, Kajimura S. Emerging debates and resolutions in brown adipose tissue research. Cell Metab 2025; 37:12-33. [PMID: 39644896 PMCID: PMC11710994 DOI: 10.1016/j.cmet.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs. The field has made major advances by using new model systems, ranging from subcellular studies to clinical trials, which have also led to debates. In this perspective, we identify six fundamental issues that are currently controversial and comprise dichotomous models. Each side presents supporting evidence and, critically, the necessary methods and falsifiable experiments that would resolve the dispute. With this collaborative approach, the field will continue to productively advance the understanding of BAT physiology, appreciate the importance of thermogenic adipocytes as a central area of ongoing research, and realize the therapeutic potential.
Collapse
Affiliation(s)
- Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Douglas C Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, The Center of Inflammation and Metabolism and the Center for Physical Activity Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Cheryl Cero
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
6
|
Kingren MS, Hall JS, Ross TJ, Barre MC, Barlow A, Morales M, Treas LD, Maxson RT, Teo E, Porter C. HOUSING TEMPERATURE ALTERS BURN-INDUCED HYPERMETABOLISM IN MICE. Shock 2025; 63:118-131. [PMID: 39450911 DOI: 10.1097/shk.0000000000002476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
ABSTRACT Mice used in biomedical research are typically housed at ambient temperatures (22°C-24°C) below thermoneutrality (26°C-31°C). This chronic cold stress triggers a hypermetabolic response that may limit the utility of mice in modeling hypermetabolism in response to burns. To evaluate the effect of housing temperature on burn-induced hypermetabolism, mice were randomly assigned to receive sham, small, or large scald burns. Mice recovered for 21 days in metabolic phenotyping cages at 24°C or 30°C. Regardless of sex or sham/burn treatment, mice housed at 24°C had greater total energy expenditure ( P < 0.001), which was largely attributable to greater basal energy expenditure when compared to mice housed at 30°C ( P < 0.001). Thermoneutral housing (30°C) altered adipose tissue mass in a sex-dependent manner. Compared to sham and small burn groups, large burns resulted in greater water vapor loss, regardless of housing temperature ( P < 0.01). Compared to sham, large burns resulted in greater basal energy expenditure and total energy expenditure in mice housed at 24°C; however, this hypermetabolic response to large burns was blunted in female mice housed at 30°C, and absent in male mice housed at 30°C. Locomotion was significantly reduced in mice with large burns compared to sham and small burn groups, irrespective of sex or housing temperature ( P < 0.05). Housing at 30°C revealed sexual dimorphism in terms of the impact of burns on body mass and composition, where males with large burns displayed marked cachexia, whereas females did not. Collectively, this study demonstrates a sex-dependent role for housing temperature in influencing energetics and body composition in a rodent model of burn trauma.
Collapse
Affiliation(s)
| | | | | | | | - Abigail Barlow
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Martin Morales
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | | | | | | | | |
Collapse
|
7
|
Bakalář B, Švecová M, Duška F, Grünerová-Lippertová M, Urban T, Waldauf P, Zajíček R. Illusory movements for immobile patients with extensive burns (IMMOBILE): A randomized, controlled, cross-over trial. Burns 2024; 50:107264. [PMID: 39327102 DOI: 10.1016/j.burns.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/21/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Patients who have sustained extensive burns frequently exhibit substantial damage to skeletal muscle and associated complications. The rehabilitation of these patients can be challenging due to the nature of the injury and the subsequent complications. Nevertheless, there is a possibility that functional proprioceptive stimulation (illusory movements) may facilitate effective rehabilitation in patients with limited physiotherapy options. Nevertheless, this approach has yet to be tested in patients with burn injuries. MATERIAL AND METHODOLOGY A prospective, randomised, crossover trial was conducted at a burn centre in a tertiary teaching hospital. The objective was to assess the effects of illusory movements on energy metabolism, insulin sensitivity, and skeletal muscle biology in adult critically ill patients with deep burns covering 30 % or more of the total body surface area. Two 30-minute daily sessions of functional proprioceptive stimulation were administered in addition to the standard physical therapy or physical activity regimen. Subsequently, the patients proceeded to the next stage of the trial, which involved a two-week crossover period. MEASUREMENTS AND MAIN RESULTS Daily indirect calorimetry and calculation of nitrogen balance. Skeletal muscle biopsies from vastus lateralis for high resolution respirometry and euglycemic clamps to assess whole body glucose disposal were performed three times: at baseline and then fortnightly after each intervention period. The intervention was feasible and well tolerated in both early and late stages of burn disease. It did not change energy expenditure (mean change -33 [95 % CI: -292;+227] kcal .24 h-1, p = 0.79), nitrogen balance (+2.0 [95 % CI: -3.1;+7.1] g N .1.73 m-2 BSA .24 h-1), or insulin sensitivity (mean change of insulin-mediated glucose disposal -0.33 [95 % CI: -1.18;+0.53] mmol.h-1). At the cellular level, the intervention increased the capacity of mitochondria to synthesize ATP by aerobic phosphorylation and tended to increase mitochondrial coupling. Functional capacities of fatty acid oxidation and electron transfer chain complexes I, II, and IV were unaffected. CONCLUSIONS Compared to physical therapy alone, two daily sessions of functional proprioceptive stimulation in addition to usual physical therapy in patients with extensive burns did not change energy expenditure, insulin sensitivity, nitrogen balance, or energy substrate oxidation. At cellular level, the intervention improved the capacity of aerobic phosphorylation in skeletal muscle mitochondria. Clinical effects remain to be demonstrated in adequately powered trials.
Collapse
Affiliation(s)
- Bohumil Bakalář
- Department of Anesthesia and Intensive Care Medicine, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic; Prague Burn Centre, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic.
| | - Magdalena Švecová
- Prague Burn Centre, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic
| | - František Duška
- Department of Anesthesia and Intensive Care Medicine, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic; Oxylab: Mitochondrial Functional Laboratory, The Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Marcela Grünerová-Lippertová
- Department of Rehabilitation, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic
| | - Tomáš Urban
- Prague Burn Centre, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic; Oxylab: Mitochondrial Functional Laboratory, The Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Petr Waldauf
- Department of Anesthesia and Intensive Care Medicine, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic
| | - Robert Zajíček
- Prague Burn Centre, The Third Medical Faculty, Charles University and FNKV University Hospital in Prague, Czech Republic
| |
Collapse
|
8
|
Proskocil BJ, Bash GN, Jacoby DB, Fryer AD, Nie Z. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Am J Physiol Lung Cell Mol Physiol 2024; 327:L867-L875. [PMID: 39316677 PMCID: PMC11684943 DOI: 10.1152/ajplung.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Eosinophils contribute to metabolic homeostasis and airway hyperresponsiveness, but their specific role in obesity-related airway hyperresponsiveness remains unclear. To address this, we used transgenic mice that overexpress interleukin-5 (IL-5) in peripheral T cells (+IL-5T) and wild-type controls. On a normal diet, +IL-5T and wild-type mice have similar body weight, body fat, and airway nerve-mediated reflex bronchoconstriction in response to inhaled serotonin. Feeding wild-type mice a 61.6% high-fat diet resulted in significantly increased body weight, body fat, fasting glucose, fasting insulin, and reflex bronchoconstriction induced by serotonin, which was blocked by vagotomy. In contrast, +IL-5T mice on a high-fat diet gained less body weight and fat than wild-type mice on the same diet and did not exhibit potentiation in fasting glucose, fasting insulin, or reflex bronchoconstriction induced by serotonin. Compared with wild-type mice, +IL-5T mice on normal diet had significantly more adipose tissue eosinophils, and this was further increased by high-fat diet. High-fat diet did not increase adipose tissue eosinophils in wild-type mice. Our findings suggest that adipose tissue eosinophils may play a role in regulating body fat, thereby reducing insulin, which is a mediator of obesity-related airway hyperresponsiveness. Thus, our data indicate adipose tissue eosinophils may be an important avenue for research in obesity-related asthma.NEW & NOTEWORTHY This study investigates how eosinophils influence systemic metabolism and airway function in obesity. Known for their immune functions, eosinophils also mitigate obesity-related hyperinsulinemia, reducing airway hyperresponsiveness in obese mice models. The findings suggest potential therapeutic strategies targeting the intricate interplay among neurons, eosinophils, and the endocrine system to alleviate asthma in obesity. This research provides novel insights into the critical neuro-immune-endocrine interactions essential for managing obesity-related asthma.
Collapse
Grants
- S10 OD034444 NIH HHS
- HL144088 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131525 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL164474 NHLBI NIH HHS
- R01 HL163087 NHLBI NIH HHS
- HL164474 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AI152498 HHS | NIH | NIAID | Division of Intramural Research (DIR, NIAID)
- R21 AI152498 NIAID NIH HHS
- HL163087 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30HL154526 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL131525 NHLBI NIH HHS
- F30 HL154526 NHLBI NIH HHS
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Gina N Bash
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
9
|
Huang L, Zhu L, Zhao Z, Jiang S. Hyperactive browning and hypermetabolism: potentially dangerous element in critical illness. Front Endocrinol (Lausanne) 2024; 15:1484524. [PMID: 39640882 PMCID: PMC11617193 DOI: 10.3389/fendo.2024.1484524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Brown/beige adipose tissue has attracted much attention in previous studies because it can improve metabolism and combat obesity through non-shivering thermogenesis. However, recent studies have also indicated that especially in critical illness, overactivated brown adipose tissue or extensive browning of white adipose tissue may bring damage to individuals mainly by exacerbating hypermetabolism. In this review, the phenomenon of fat browning in critical illness will be discussed, along with the potential harm, possible regulatory mechanism and corresponding clinical treatment options of the induction of fat browning. The current research on fat browning in critical illness will offer more comprehensive understanding of its biological characteristics, and inspire researchers to develop new complementary treatments for the hypermetabolic state that occurs in critically ill patients.
Collapse
Affiliation(s)
- Lu Huang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Department of Plastic and Reconstructive Surgery, Taizhou Enze Hospital, Taizhou, China
| | - Zhenxiong Zhao
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Shenglu Jiang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
10
|
Turyn J, Stelmanska E, Szrok-Jurga S. Two Regions with Different Expression of Lipogenic Enzymes in Rats' Posterior Subcutaneous Fat Depot. Int J Mol Sci 2024; 25:11546. [PMID: 39519099 PMCID: PMC11546078 DOI: 10.3390/ijms252111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Lipid metabolism in various adipose tissue depots can differ vastly. This also applies to lipogenesis, the process of synthesizing fatty acids from acetyl-CoA. This study compared the expression of some lipogenic enzymes: fatty acid synthase (FASN), ATP-citrate lyase (ACLY), and malic enzyme 1 (ME1) in different regions of the posterior subcutaneous adipose tissue in rats. Methods and Results: Posterior subcutaneous adipose tissue collected from twelve-month-old Wistar rats was divided into six parts (A-F). The expression of genes encoding lipogenic enzymes was assessed by measuring their activity and mRNA levels using real-time PCR. In the gluteal region of the fat pad, there were much higher levels of activity and mRNA for these lipogenic enzymes compared to the dorsolumbar region. The mRNA level of FASN increased by more than twentyfold, whereas the level of ME1 and ACLY increased eight- and fivefold respectively. This phenomenon was observed in both old and young animals. Furthermore, the lack of uncoupling protein one (Ucp1) expression suggests that neither the presence of brown adipocytes in the gluteal part nor the transformation of white adipocytes into beige contributed to the observed differences. Conclusion: These results indicate that the gluteal white adipose tissue appears to be a unique and separate subcutaneous fat depot.
Collapse
Affiliation(s)
- Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
11
|
Bieerkehazhi S, Abdullahi A, Khalaf F, Barayan D, de Brito Monteiro L, Samadi O, Rix G, Jeschke MG. β-Adrenergic blockade attenuates adverse adipose tissue responses after burn. J Mol Med (Berl) 2024; 102:1245-1254. [PMID: 39145814 DOI: 10.1007/s00109-024-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Severe burn injuries are defined by a prolonged hypermetabolic response characterized by increases in resting energy expenditure, systemic catabolism, and multi-organ dysfunction. The sustained elevation of catecholamines following a burn injury is thought to significantly contribute to this hypermetabolic response, leading to changes in adipose tissue such as increased lipolysis and the browning of subcutaneous white adipose tissue (WAT). Failure to mitigate these adverse changes within the adipose tissue has been shown to exacerbate the post-burn hypermetabolic response and lead to negative outcomes. Propranolol, a non-selective β-blocker, has been clinically administered to improve outcomes of pediatric and adult burn patients, but there is inadequate knowledge of its effects on the distinct adipose tissue depots. In this study, we investigated the adipose depot-specific alterations that occur in response to burn injury. Moreover, we explored the therapeutic effects of β-adrenoceptor blockade via the drug propranolol in attenuating these burn-induced pathophysiological changes within the different fat depots. Using a murine model of thermal injury, we show that burn injury induces endoplasmic reticulum (ER) stress in the epididymal (eWAT) but not in the inguinal (iWAT) WAT depot. Conversely, burn injury induces the activation of key lipolytic pathways in both eWAT and iWAT depots. Treatment of burn mice with propranolol effectively mitigated adverse burn-induced alterations in the adipose by alleviating ER stress in the eWAT and reducing lipolysis in both depots. Furthermore, propranolol treatment in post-burn mice attenuated UCP1-mediated subcutaneous WAT browning following injury. Overall, our findings suggest that propranolol serves as an effective therapeutic intervention to mitigate the adverse changes induced by burn injury, including ER stress, lipotoxicity, and WAT browning, in both adipose tissue depots. KEY MESSAGES: Burn injury adversely affects adipose tissue metabolism via distinct changes in both visceral and subcutaneous adipose depots. Propranolol, a non-selective β-adrenergic blocker, attenuates many of the adverse adipose tissue changes mediated by burn injury.
Collapse
Affiliation(s)
- Shayahati Bieerkehazhi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Abdikarim Abdullahi
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fadi Khalaf
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Dalia Barayan
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Lauar de Brito Monteiro
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Osai Samadi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Graham Rix
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada.
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada.
| |
Collapse
|
12
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
13
|
Hu Y, Huang Y, Jiang Y, Weng L, Cai Z, He B. The Different Shades of Thermogenic Adipose Tissue. Curr Obes Rep 2024; 13:440-460. [PMID: 38607478 DOI: 10.1007/s13679-024-00559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW By providing a concise overview of adipose tissue types, elucidating the regulation of adipose thermogenic capacity in both physiological contexts and chronic wasting diseases (a protracted hypermetabolic state that precipitates sustained catabolism and consequent progressive corporeal atrophy), and most importantly, delving into the ongoing discourse regarding the role of adipose tissue thermogenic activation in chronic wasting diseases, this review aims to provide researchers with a comprehensive understanding of the field. RECENT FINDINGS Adipose tissue, traditionally classified as white, brown, and beige (brite) based on its thermogenic activity and potential, is intricately regulated by complex mechanisms in response to exercise or cold exposure. This regulation is adipose depot-specific and dependent on the duration of exposure. Excessive thermogenic activation of adipose tissue has been observed in chronic wasting diseases and has been considered a pathological factor that accelerates disease progression. However, this conclusion may be confounded by the detrimental effects of excessive lipolysis. Recent research also suggests that such activation may play a beneficial role in the early stages of chronic wasting disease and provide potential therapeutic effects. A more comprehensive understanding of the changes in adipose tissue thermogenesis under physiological and pathological conditions, as well as the underlying regulatory mechanisms, is essential for the development of novel interventions to improve health and prevent disease.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lvkan Weng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
14
|
Chen X, Wang Y, Li H, Deng Y, Giang C, Song A, Liu Y, Wang QA, Zhu Y. Hyaluronan Mediates Cold-Induced Adipose Tissue Beiging. Cells 2024; 13:1233. [PMID: 39120264 PMCID: PMC11311271 DOI: 10.3390/cells13151233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and β3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the β3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of β3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.
Collapse
Affiliation(s)
- Xi Chen
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Huiqiao Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanru Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charlise Giang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anying Song
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yu’e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiong A. Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yi Zhu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Zhao Y, Li X, Yu W, Lin W, Wei W, Zhang L, Liu D, Ma H, Chen J. Differential expression of ADRB1 causes different responses to norepinephrine in adipocytes of Duroc-Landrace-Yorkshire pigs and min pigs. J Therm Biol 2024; 123:103906. [PMID: 38970835 DOI: 10.1016/j.jtherbio.2024.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/11/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Research has shown that pigs from different regions exhibit varying responses to cold stimuli. Typically, cold stimuli induce browning of white adipose tissue mediated by adrenaline, promoting non-shivering thermogenesis. However, the molecular mechanisms underlying differential response of pig breeds to norepinephrine are unclear. The aim of this study was to investigate the differences and molecular mechanisms of the effects of norepinephrine (NE) treatment on adipocytes of Min pigs (a cold-resistant pig breed) and Duroc-Landrace-Yorkshire (DLY) pigs. Real time-qPCR, western blot, and immunofluorescence were performed following NE treatment on cell cultures of adipocytes originating from Min pigs (n = 3) and DLY pigs (n = 3) to assess the expressions of adipogenesis markers, beige fat markers, and mitochondrial biogenesis markers. The results showed that NE did not affect browning of adipocytes in DLY pigs, whereas promoted browning of adipocytes in Min pigs. Further, the expression of ADRB1 (Adrenoceptor Beta 1, ADRB1) was higher in subcutaneous adipose tissue and adipocytes of Min pigs than those of DLY pigs. Overexpression of ADRB1 in DLY pig adipocytes enhanced sensitivity to NE, exhibiting decreased adipogenesis markers, upregulated beige fat markers, and increased mitochondrial biogenesis. Conversely, adipocytes treated with ADRB1 antagonist in Min pigs resulted in decreased cellular sensitivity to NE. Further studies revealed differential CpG island methylation in ADRB1 promoter region, with lower methylation levels in Min pigs compared to DLY pigs. In conclusion, differential methylation of the ADRB1 promoter region leads to different ADRB1 expression, resulting in varying responsiveness to NE in adipocytes of two pig breeds. Our results provide new insights for further analysis of the differential cold responsiveness in pig breeds from different regions.
Collapse
Affiliation(s)
- Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuexin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbi, 150086, China
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbi, 150086, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Das S, Mukhuty A, Mullen GP, Rudolph MC. Adipocyte Mitochondria: Deciphering Energetic Functions across Fat Depots in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:6681. [PMID: 38928386 PMCID: PMC11203708 DOI: 10.3390/ijms25126681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.
Collapse
Affiliation(s)
- Snehasis Das
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alpana Mukhuty
- Department of Zoology, Rampurhat College, Rampurhat 731224, India
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
17
|
Park J, Hu R, Qian Y, Xiong S, El-Sabbagh AS, Ibrahim M, Wang J, Xu Z, Chen Z, Song Q, Song Z, Yan G, Mahmoud AM, He Y, Layden BT, Chen J, Ong SG, Xu P, Jiang Y. Estrogen counteracts age-related decline in beige adipogenesis through the NAMPT-regulated ER stress response. NATURE AGING 2024; 4:839-853. [PMID: 38858606 PMCID: PMC11829733 DOI: 10.1038/s43587-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.
Collapse
Affiliation(s)
- Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Asma Sana El-Sabbagh
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Meram Ibrahim
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jaden Wang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Ziqiao Xu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
- Biostatistics Shared Resource, University of Illinois Cancer Center, Chicago, IL, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Brian T Layden
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown Medical VA Medical Center, Chicago, IL, USA
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA.
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Orbay H, Corcos AC, Ziembicki JA, Egro FM. Challenges in the Management of Large Burns. Clin Plast Surg 2024; 51:319-327. [PMID: 38429052 DOI: 10.1016/j.cps.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Large burns provoke profound pathophysiological changes. Survival rates of patients with large burns have improved significantly with the advancement of critical care and adaptation of early excision protocols. Nevertheless, care of large burn wounds remains challenging secondary to limited donor sites, prolonged time to wound closure, and immunosuppression. The development of skin substitutes and new grafting techniques decreased time to wound closure. Individually, these methods have limited success, but a combination of them may yield more successful outcomes. Early identification of patients with likely poor prognosis should prompt goals of care discussion and involvement of a palliative care team when possible.
Collapse
Affiliation(s)
- Hakan Orbay
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alain C Corcos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jenny A Ziembicki
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francesco M Egro
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Shi L, Yang J, Tao Z, Zheng L, Bui T, Alonso R, Yue F, Cheng Z. Loss of FoxO1 activates an alternate mechanism of mitochondrial quality control for healthy adipose browning. Clin Sci (Lond) 2024; 138:371-385. [PMID: 38469619 PMCID: PMC10932742 DOI: 10.1042/cs20230973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Browning of white adipose tissue is hallmarked by increased mitochondrial density and metabolic improvements. However, it remains largely unknown how mitochondrial turnover and quality control are regulated during adipose browning. In the present study, we found that mice lacking adipocyte FoxO1, a transcription factor that regulates autophagy, adopted an alternate mechanism of mitophagy to maintain mitochondrial turnover and quality control during adipose browning. Post-developmental deletion of adipocyte FoxO1 (adO1KO) suppressed Bnip3 but activated Fundc1/Drp1/OPA1 cascade, concurrent with up-regulation of Atg7 and CTSL. In addition, mitochondrial biogenesis was stimulated via the Pgc1α/Tfam pathway in adO1KO mice. These changes were associated with enhanced mitochondrial homeostasis and metabolic health (e.g., improved glucose tolerance and insulin sensitivity). By contrast, silencing Fundc1 or Pgc1α reversed the changes induced by silencing FoxO1, which impaired mitochondrial quality control and function. Ablation of Atg7 suppressed mitochondrial turnover and function, causing metabolic disorder (e.g., impaired glucose tolerance and insulin sensitivity), regardless of elevated markers of adipose browning. Consistently, suppression of autophagy via CTSL by high-fat diet was associated with a reversal of adO1KO-induced benefits. Our data reveal a unique role of FoxO1 in coordinating mitophagy receptors (Bnip3 and Fundc1) for a fine-tuned mitochondrial turnover and quality control, underscoring autophagic clearance of mitochondria as a prerequisite for healthy browning of adipose tissue.
Collapse
Affiliation(s)
- Limin Shi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611, U.S.A
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, U.S.A
| | - Jinying Yang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Zhipeng Tao
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, U.S.A
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, U.S.A
| | - Louise Zheng
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Tyler F. Bui
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
| | - Ramon L. Alonso
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Zhiyong Cheng
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611, U.S.A
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, U.S.A
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, U.S.A
| |
Collapse
|
21
|
Takahashi H, Ito R, Matsumura Y, Sakai J. Environmental factor reversibly determines cellular identity through opposing Integrators that unify epigenetic and transcriptional pathways. Bioessays 2024; 46:e2300084. [PMID: 38013256 DOI: 10.1002/bies.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Organisms must adapt to environmental stresses to ensure their survival and prosperity. Different types of stresses, including thermal, mechanical, and hypoxic stresses, can alter the cellular state that accompanies changes in gene expression but not the cellular identity determined by a chromatin state that remains stable throughout life. Some tissues, such as adipose tissue, demonstrate remarkable plasticity and adaptability in response to environmental cues, enabling reversible cellular identity changes; however, the mechanisms underlying these changes are not well understood. We hypothesized that positive and/or negative "Integrators" sense environmental cues and coordinate the epigenetic and transcriptional pathways required for changes in cellular identity. Adverse environmental factors such as pollution disrupt the coordinated control contributing to disease development. Further research based on this hypothesis will reveal how organisms adapt to fluctuating environmental conditions, such as temperature, extracellular matrix stiffness, oxygen, cytokines, and hormonal cues by changing their cellular identities.
Collapse
Grants
- JP20gm1310007 Japan Agency for Medical Research and Development
- JP16H06390 Ministry of Education, Culture, Sports, Science and Technology
- JP21H04826 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04835 Ministry of Education, Culture, Sports, Science and Technology
- JP20K21747 Ministry of Education, Culture, Sports, Science and Technology
- JP22K18411 Ministry of Education, Culture, Sports, Science and Technology
- JP21K21211 Ministry of Education, Culture, Sports, Science and Technology
- JP19J11909 Ministry of Education, Culture, Sports, Science and Technology
- JPMJPF2013 Japan Science and Technology Agency
Collapse
Affiliation(s)
- Hiroki Takahashi
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryo Ito
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Knuth CM, Barayan D, Lee JH, Auger C, de Brito Monteiro L, Ricciuti Z, Metko D, Wells L, Sung HK, Screaton RA, Jeschke MG. Subcutaneous white adipose tissue independently regulates burn-induced hypermetabolism via immune-adipose crosstalk. Cell Rep 2024; 43:113584. [PMID: 38117653 PMCID: PMC10845122 DOI: 10.1016/j.celrep.2023.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Severe burns induce a chronic hypermetabolic state that persists well past wound closure, indicating that additional internal mechanisms must be involved. Adipose tissue is suggested to be a central regulator in perpetuating hypermetabolism, although this has not been directly tested. Here, we show that thermogenic adipose tissues are activated in parallel to increases in hypermetabolism independent of cold stress. Using an adipose tissue transplantation model, we discover that burn-derived subcutaneous white adipose tissue alone is sufficient to invoke a hypermetabolic response in a healthy recipient mouse. Concomitantly, transplantation of healthy adipose tissue alleviates metabolic dysfunction in a burn recipient. We further show that the nicotinic acetylcholine receptor signaling pathway may mediate an immune-adipose crosstalk to regulate adipose tissue remodeling post-injury. Targeting this pathway could lead to innovative therapeutic interventions to counteract hypermetabolic pathologies.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Dalia Barayan
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Dea Metko
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Lisa Wells
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert A Screaton
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON L8L 2X2, Canada; Hamilton General Hospital, Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
23
|
Fei X, Zhu M, Li X. Characterization of Cell Type Abundance and Gene Expression Timeline from Burned Skin Bulk Transcriptomics by Deconvolution. J Burn Care Res 2024; 45:205-215. [PMID: 37956340 DOI: 10.1093/jbcr/irad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 11/15/2023]
Abstract
Currently, no timeline of cell heterogeneity in thermally injured skin has been reported. In this study, we proposed an approach to deconvoluting cell type abundance and expression from skin bulk transcriptomics with cell type signature matrix constructed by combining independent normal skin and peripheral blood scRNA-seq datasets. Using CIBERSORTx group mode deconvolution, we identified perturbed cell type fractions and cell type-specific gene expression in three stages postthermal injury. We found an increase in cell proportions and cell type-specific gene expression perturbation of neutrophils, macrophages, and endothelial cells and a decrease in CD4+ T cells, keratinocytes, melanocyte, and fibroblast cells, and cell type-specific gene expression perturbation postburn injury. Keratinocyte, fibroblast, and macrophage up regulated genes were dynamically enriched in overlapping and distinct Gene Ontology biological processes including acute phase response, leukocyte migration, metabolic, morphogenesis, and development process. Down-regulated genes were enriched in Wnt signaling, mesenchymal cell differentiation, gland and axon development, epidermal morphogenesis, and fatty acid and glucose metabolic process. We noticed an increase in the expression of CCL7, CCL2, CCL20, CCR1, CCR5, CCXL8, CXCL2, CXCL3, MMP1, MMP8, MMP3, IL24, IL6, IL1B, IL18R1, and TGFBR1 and a decrease in expression of CCL27, CCR10, CCR6, CCR8, CXCL9, IL37, IL17, IL7, IL11R, IL17R, TGFBR3, FGFR1-4, and IGFR1 in keratinocytes and/or fibroblasts. The inferred timeline of wound healing and CC and CXC genes in keratinocyte was validated on independent dataset GSE174661 of purified keratinocytes. The timeline of different cell types postburn may facilitate therapeutic timing.
Collapse
Affiliation(s)
- Xiaoyi Fei
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230009, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Min Zhu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- School of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244061, People's Republic of China
| | - Xueling Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230009, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- School of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244061, People's Republic of China
| |
Collapse
|
24
|
McClave SA, Martindale RG. Browning of white adipose tissue may be an appropriate adaptive response to critical illness. JPEN J Parenter Enteral Nutr 2024; 48:37-45. [PMID: 37908064 DOI: 10.1002/jpen.2576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Both the baseline amount of brown adipose tissue (BAT) and the capacity to stimulate browning of white adipose tissue (WAT) may provide a protective effect to the patient in a critical care setting. Critical illness is associated with reduced mitochondrial volume and function resulting in the increased production of reactive oxygen species, greater demand for adenosine triphosphate, a switch to uncoupled fat metabolism, and hibernation of the organelle, which all contribute to multiple organ failure. Increasing insulin resistance, decreasing fatty acid oxidation, and dependence on carbohydrate metabolism result. Browning of WAT may oppose many of these adverse effects. The presence of BAT and the changes associated with browning may help dissipate oxidative stress, increase consumption and utilization of metabolites, and reduce pro-inflammatory actions. The number of mitochondria increases, and there is greater infiltration of macrophages into adipose tissue. A shift occurs in macrophage expression from the M1 to M2 phenotype, an effect which further dampens inflammation, increases insulin sensitivity, and improves tissue healing and remodeling. Any benefit from these responses may be lost in the disease states of chronic hypermetabolism (such as burns or cancer cachexia) in which the persistence of these physiologic effects may become detrimental, contributing to excessive weight loss, adipose wasting, and loss of lean body mass. This paper discusses the plasticity of adipose tissue and whether shifts in its physiology provide clinical advantages in the intensive care unit.
Collapse
Affiliation(s)
- Stephen A McClave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert G Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| |
Collapse
|
25
|
Yamashita SI, Kanki T. Mitophagy Responds to the Environmental Temperature and Regulates Mitochondrial Mass in Adipose Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:229-243. [PMID: 39289285 DOI: 10.1007/978-981-97-4584-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the β-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
27
|
Kim HR, Young CN. Circumventricular organ-hypothalamic circuit endoplasmic reticulum stress drives hepatic steatosis during obesity. Obesity (Silver Spring) 2024; 32:59-69. [PMID: 37794528 DOI: 10.1002/oby.23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), characterized by excess liver triglyceride accumulation (hepatic steatosis), leads to an increased risk for cardiometabolic diseases and obesity-related mortality. Emerging evidence points to endoplasmic reticulum (ER) stress in the central nervous system as critical in NAFLD pathogenesis. Here, we tested the contribution of ER stress in a circumventricular organ-hypothalamic circuit in NAFLD development during obesity. METHODS C57BL/6J male mice were fed a high-fat diet (HFD) or normal chow. A combination of histological, viral tracing, intersectional viral targeting, and in vivo integrative physiological approaches were used to examine the role of ER stress in subfornical organ to hypothalamic paraventricular nucleus projecting neurons (SFO➔PVN) in NAFLD during diet-induced obesity. RESULTS Immunohistochemical analysis revealed marked unfolded protein response activation in the SFO, particularly in excitatory SFO➔PVN neurons of HFD-fed animals. Moreover, intersectional viral inhibition of ER stress in SFO➔PVN neurons resulted in a reduction in hepatomegaly, hepatic steatosis, and a blunted increase in body weight gain during diet-induced obesity, independent of changes in food intake, substrate partitioning, energy expenditure, and ambulatory activity. CONCLUSIONS These results indicate that ER stress in an SFO➔PVN neural circuit contributes to hepatic steatosis during obesity.
Collapse
Affiliation(s)
- Han Rae Kim
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Colin N Young
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
28
|
Lee MJ, Puri V, Fried SK. Metabolic and structural remodeling during browning of primary human adipocytes derived from omental and subcutaneous depots. Obesity (Silver Spring) 2024; 32:70-79. [PMID: 37929774 DOI: 10.1002/oby.23912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This study investigated remodeling of cellular metabolism and structures during browning of primary human adipocytes derived from both visceral and subcutaneous adipose tissues. Effects of glucocorticoids on the browning were also assessed. METHODS Differentiated omental and subcutaneous human adipocytes were treated with rosiglitazone, with or without dexamethasone, and expression levels of brite adipocyte markers, lipolysis, and lipid droplet and mitochondrial structures were examined. RESULTS Both omental and subcutaneous adipocytes acquired brite phenotypes upon peroxisome proliferator-activated receptor-γ agonist treatment, and dexamethasone tended to enhance the remodeling. Although rosiglitazone increased lipolysis during treatment, brite adipocytes exhibited lower basal lipolytic rates and enhanced responses to β-adrenergic agonists or atrial natriuretic peptide. Transcriptome analysis identified induction of both breakdown and biosynthesis of lipids in brite adipocytes. After 60+ days in culture, lipid droplet size increased to ~50 microns, becoming almost unilocular in control adipocytes, and after browning, they acquired paucilocular morphology, clusters of small lipid droplets (1-2 micron) surrounded by mitochondria appearing on the periphery of the central large one. CONCLUSIONS Metabolic and structural remodeling during browning of primary human adipocytes is similar to previous findings in human adipocytes in vivo, supporting their uses for mechanical studies investigating browning with translational relevance.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vishwajeet Puri
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Susan K Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
He L, Li H, Zhang L, Zhang J, Zhang G, Tong X, Zhang T, Wu Y, Li M, Jin L. Transcriptome analysis of norepinephrine-induced lipolysis in differentiated adipocytes of Bama pig. Gene 2023; 888:147753. [PMID: 37659599 DOI: 10.1016/j.gene.2023.147753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Sympathetic innervation of white adipose tissue (WAT) plays a key role in the regulation of lipid metabolism. Sympathetic activation promotes release of norepinephrine (NE), which binds to adrenergic receptors on adipocytes, promoting adipocyte lipolysis and enhanced oxidative metabolism. However, the mechanism by which sympathetic nerves regulate lipid metabolism in pig adipose tissue remains unclear. We used NE to simulate the process of sympathetic driving in pig adipocytes. RNA sequencing (RNA-seq) was used to determine the gene expression profile of pig adipocytes responding to NE stimulation. Our data suggests that the lipolytic signaling pathway is activated in pig adipocytes upon acute stimulation of NE, resulting in enhanced lipid metabolism and lipolysis, consistent with the phenomena found in humans and mice. Specifically, differentially expressed protein coding genes (PCGs) (SIRT4, SLC27A1) are mainly associated with functions that inhibit fatty acid oxidation and promote lipid synthesis. Similarly, we investigated the changes in regulatory transcripts such as long non-coding RNAs (lncRNAs) and transcripts of uncertain coding potential (TUCP) in response to NE and found that differentially expressed lncRNAs (lncG47338, lncG30660, lncG29516, lncG3790) and TUCP (TUCP_G38001) were co-expressed with target genes related to the promotion of fatty acid β-oxidation, lipolysis and oxidative metabolism, thus acting as regulators. These results indicate a broad suite of gene expression alterations in response to NE stimulation and promote the understanding of the molecular mechanisms by which NE regulates lipid metabolism in pigs.
Collapse
Affiliation(s)
- Li He
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Linzhen Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Geng Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Tong
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Wu
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
30
|
Knuth CM, Ricciuti Z, Barayan D, Rehou S, Abdullahi A, Monteiro LDB, Jeschke MG. Single-nuclei RNA Profiling Reveals Disruption of Adipokine and Inflammatory Signaling in Adipose Tissue of Burn Patients. Ann Surg 2023; 278:e1267-e1276. [PMID: 37057618 PMCID: PMC10928875 DOI: 10.1097/sla.0000000000005880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
OBJECTIVE We conducted a large-scale investigation of the systemic and adipose tissue-specific alterations in a clinical population of burn patients to identify factors that may influence hypermetabolism. BACKGROUND Previous research has identified chronic disturbances in adipose tissue inflammation, lipolysis, and browning, which may drive the perpetuation of hypermetabolism following the severe adrenergic stress of a burn injury. Given that adipose tissue is thought to be a central node in the regulation of systemic metabolism, we believe that systematically delineating the pathologic role of adipose tissue postburn, will lead to the identification of novel interventions to mitigate morbidity and mortality from severe burns. METHODS This was a single-institution cohort study, which obtained plasma and subcutaneous adipose tissue samples from severely burn adult patients over various time points during acute hospitalization. Whole-body clinical, metabolic, and inflammatory mediators were assessed in plasma, while genetic analyses through RT-qPCR and single-nuclei RNA sequencing were conducted in adipose tissue. RESULTS Systemic inflammation and adrenergic stress increase IL-6 signaling, lipolysis, browning, and adipokine dysfunction in the adipose tissue of adult burn patients, which may further propagate the long-term hypermetabolic response. Moreover, using single-nuclei RNA sequencing, we provide the first comprehensive characterization of alterations in the adipose tissue microenvironment occurring at acute and chronic stages postburn. CONCLUSION We provide novel insight toward the effect of burns on adipokine release, inflammatory signaling pathways, and adipose heterogeneity over the trajectory of acute and chronic stages.
Collapse
Affiliation(s)
- Carly M. Knuth
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | | | - Dalia Barayan
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | - Sarah Rehou
- Sunnybrook Research Institute, Toronto, Canada
- David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | | | - Marc G. Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
- David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Canada
- Department of Surgery, McMaster University, Hamilton, Canada
| |
Collapse
|
31
|
Huang Z, Gu C, Zhang Z, Arianti R, Swaminathan A, Tran K, Battist A, Kristóf E, Ruan HB. Supraclavicular brown adipocytes originate from Tbx1+ myoprogenitors. PLoS Biol 2023; 21:e3002413. [PMID: 38048357 PMCID: PMC10721186 DOI: 10.1371/journal.pbio.3002413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/14/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Brown adipose tissue (BAT) dissipates energy as heat, contributing to temperature control, energy expenditure, and systemic homeostasis. In adult humans, BAT mainly exists in supraclavicular areas and its prevalence is associated with cardiometabolic health. However, the developmental origin of supraclavicular BAT remains unknown. Here, using genetic cell marking in mice, we demonstrate that supraclavicular brown adipocytes do not develop from the Pax3+/Myf5+ epaxial dermomyotome that gives rise to interscapular BAT (iBAT). Instead, the Tbx1+ lineage that specifies the pharyngeal mesoderm marks the majority of supraclavicular brown adipocytes. Tbx1Cre-mediated ablation of peroxisome proliferator-activated receptor gamma (PPARγ) or PR/SET Domain 16 (PRDM16), components of the transcriptional complex for brown fat determination, leads to supraclavicular BAT paucity or dysfunction, thus rendering mice more sensitive to cold exposure. Moreover, human deep neck BAT expresses higher levels of the TBX1 gene than subcutaneous neck white adipocytes. Taken together, our observations reveal location-specific developmental origins of BAT depots and call attention to Tbx1+ lineage cells when investigating human relevant supraclavicular BAT.
Collapse
Affiliation(s)
- Zan Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Chenxin Gu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Aneesh Swaminathan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kevin Tran
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Alex Battist
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
32
|
|
33
|
Rehou S, de Brito Monteiro L, Auger C, Knuth CM, Abdullahi A, Stanojcic M, Jeschke MG. Propranolol Normalizes Metabolomic Signatures Thereby Improving Outcomes After Burn. Ann Surg 2023; 278:519-529. [PMID: 37389480 DOI: 10.1097/sla.0000000000005973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVE AND BACKGROUND Propranolol, a nonselective beta-receptor blocker, improves outcomes of severely burned patients. While the clinical and physiological benefits of beta-blockade are well characterized, the underlying metabolic mechanisms are less well defined. We hypothesized that propranolol improves outcomes after burn injury by profoundly modulating metabolic pathways. METHODS In this phase II randomized controlled trial, patients with burns ≥20% of total body surface area were randomly assigned to control or propranolol (dose given to decrease heart rate <100 bpm). Outcomes included clinical markers, inflammatory and lipidomic profiles, untargeted metabolomics, and molecular pathways. RESULTS Fifty-two severely burned patients were enrolled in this trial (propranolol, n=23 and controls, n=29). There were no significant differences in demographics or injury severity between groups. Metabolomic pathway analyses of the adipose tissue showed that propranolol substantially alters several essential metabolic pathways involved in energy and nucleotide metabolism, as well as catecholamine degradation ( P <0.05). Lipidomic analysis revealed that propranolol-treated patients had lower levels of proinflammatory palmitic acid ( P <0.05) and saturated fatty acids ( P <0.05) with an increased ratio of polyunsaturated fatty acids ( P <0.05), thus shifting the lipidomic profile towards an anti-inflammatory phenotype after burn ( P <0.05). These metabolic effects were mediated by decreased activation of hormone-sensitive lipase at serine 660 ( P <0.05) and significantly reduced endoplasmic reticulum stress by decreasing phospho-JNK ( P <0.05). CONCLUSION Propranolol's ability to mitigate pathophysiological changes to essential metabolic pathways results in significantly improved stress responses.
Collapse
Affiliation(s)
- Sarah Rehou
- Hamilton Health Sciences, Hamilton, ON, Canada
- School of Medicine, St. George's University, True Blue, Grenada
| | | | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Carly M Knuth
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Abdikarim Abdullahi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mile Stanojcic
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Hamilton Health Sciences, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Lund J, Johansen VBI, Clemmensen C, Gerhart-Hines Z. Is lactate a driver of skin burn-induced adipose browning? Am J Physiol Endocrinol Metab 2023; 325:E421-E422. [PMID: 37812086 DOI: 10.1152/ajpendo.00251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Barayan D, Abdullahi A, Knuth CM, Khalaf F, Rehou S, Screaton RA, Jeschke MG. Lactate shuttling drives the browning of white adipose tissue after burn. Am J Physiol Endocrinol Metab 2023; 325:E180-E191. [PMID: 37406182 PMCID: PMC10396278 DOI: 10.1152/ajpendo.00084.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
High levels of plasma lactate are associated with increased mortality in critically injured patients, including those with severe burns. Although lactate has long been considered a waste product of glycolysis, it was recently revealed that it acts as a potent inducer of white adipose tissue (WAT) browning, a response implicated in mediating postburn cachexia, hepatic steatosis, and sustained hypermetabolism. Despite the clinical presentation of hyperlactatemia and browning in burns, whether these two pathological responses are linked is currently unknown. Here, we report that elevated lactate plays a causal signaling role in mediating adverse outcomes after burn trauma by directly promoting WAT browning. Using WAT obtained from human burn patients and mouse models of thermal injury, we show that the induction of postburn browning is positively correlated with a shift toward lactate import and metabolism. Furthermore, daily administration of l-lactate is sufficient to augment burn-induced mortality and weight loss in vivo. At the organ level, increased lactate transport amplified the thermogenic activation of WAT and its associated wasting, thereby driving postburn hepatic lipotoxicity and dysfunction. Mechanistically, the thermogenic effects of lactate appeared to result from increased import through MCT transporters, which in turn increased intracellular redox pressure, [NADH/NAD+], and expression of the batokine, FGF21. In fact, pharmacological inhibition of MCT-mediated lactate uptake attenuated browning and improved hepatic function in mice after injury. Collectively, our findings identify a signaling role for lactate that impacts multiple aspects of postburn hypermetabolism, necessitating further investigation of this multifaceted metabolite in trauma and critical illness.NEW & NOTEWORTHY To our knowledge, this study was the first to investigate the role of lactate signaling in mediating white adipose tissue browning after burn trauma. We show that the induction of browning in both human burn patients and mice is positively correlated with a shift toward lactate import and metabolism. Daily l-lactate administration augments burn-induced mortality, browning, and hepatic lipotoxicity in vivo, whereas pharmacologically targeting lactate transport alleviates burn-induced browning and improves liver dysfunction after injury.
Collapse
Affiliation(s)
- Dalia Barayan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carly M Knuth
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Fadi Khalaf
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Rehou
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Robert A Screaton
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Park J, Hu R, Xiong S, Qian Y, El-Sabbagh AS, Ibrahim M, Song Q, Yan G, Song Z, Mahmoud AM, He Y, Layden BT, Chen J, Ong SG, Xu P, Jiang Y. Estrogen prevents age-dependent beige adipogenesis failure through NAMPT-controlled ER stress pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555821. [PMID: 37693431 PMCID: PMC10491185 DOI: 10.1101/2023.08.31.555821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages they offer are compromised with aging. Here, we show that treating mice with estrogen (E2), a hormone that decreases with age, to mice can counteract the aging- related decline in beige adipocyte formation when subjected to cold, while concurrently enhancing energy expenditure and improving glucose tolerance. Mechanistically, we find that nicotinamide phosphoribosyltranferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related ER stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. In conclusion, our findings shed light on the mechanisms governing the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT controlled ER stress as a key regulator of this process. Highlights Estrogen restores beige adipocyte failure along with improved energy metabolism in old mice.Estrogen enhances the thermogenic gene program by mitigating age-induced ER stress.Estrogen enhances the beige adipogenesis derived from SMA+ APCs.Inhibiting the NAMPT signaling pathway abolishes estrogen-promoted beige adipogenesis.
Collapse
|
37
|
Abstract
In this review, we provide a brief synopsis of the connections between adipose tissue and metabolic health and highlight some recent developments in understanding and exploiting adipocyte biology. Adipose tissue plays critical roles in the regulation of systemic glucose and lipid metabolism and secretes bioactive molecules possessing endocrine, paracrine, and autocrine functions. Dysfunctional adipose tissue has a detrimental impact on metabolic health and is intimately involved in key aspects of metabolic diseases such as insulin resistance, lipid overload, inflammation, and organelle stress. Differences in the distribution of fat depots and adipose characteristics relate to divergent degrees of metabolic dysfunction found in metabolically healthy and unhealthy obese individuals. Thermogenic adipocytes increase energy expenditure via mitochondrial uncoupling or adenosine triphosphate-consuming futile substrate cycles, while functioning as a metabolic sink and participating in crosstalk with other metabolic organs. Manipulation of adipose tissue provides a wealth of opportunities to intervene and combat the progression of associated metabolic diseases. We discuss current treatment modalities for obesity including incretin hormone analogs and touch upon emerging strategies with therapeutic potential including exosome-based therapy, pharmacological activation of brown and beige adipocyte thermogenesis, and administration or inhibition of adipocyte-derived factors.
Collapse
Affiliation(s)
- Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Seung-Hee Cho
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - John C. Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
38
|
Zuo L, Geng Z, Song X, Li J, Wang Y, Zhang X, Ge S, Wang L, Liu G, Zhang L, Xu M, Zhao Y, Shen L, Ge Y, Wu R, Hu J. Browning of Mesenteric White Adipose Tissue in Crohn's Disease: A New Pathological Change and Therapeutic Target. J Crohns Colitis 2023; 17:1179-1192. [PMID: 36932969 DOI: 10.1093/ecco-jcc/jjad046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Indexed: 03/19/2023]
Abstract
BACKROUND Hypertrophic mesenteric adipose tissue [htMAT] is a distinctive hallmark of Crohn's disease [CD], and it affects enteritis via inflammatory adipokine secretion by dysfunctional white adipocytes. White adipocytes can become beige adipocytes, which are characterized by active lipid consumption and favourable endocrine function, via white adipocyte browning. Our study aimed to determine whether white adipocyte browning occurs in htMAT and its role in CD. METHODS White adipocyte browning was examined in MAT samples from CD patients and controls. Human MAT explants and primary mesenteric adipocytes were cultured for in vitro experiments. Mice with 2,4,6-trinitrobenzenesulphonic acid solution [TNBS]-induced colitis were used for in vivo studies. A β3-adrenergic receptor agonist [CL316,243] was used to induce white adipocyte browning, and IL-4/STAT6 signalling was analysed to explore the mechanism underlying the anti-inflammatory activity of beige adipocytes. RESULTS White adipocyte browning was observed in htMAT from CD patients, as shown by the appearance of uncoupling protein 1 [UCP1]-positive multilocular [beige] adipocytes with lipid-depleting activity and anti-inflammatory endocrine profiles. Both human MAT and primary mesenteric adipocytes from CD patients and controls could be induced to undergo browning, which increased their lipid-depleting and anti-inflammatory activities in vitro. Inducing MAT browning ameliorated mesenteric hypertrophy and inflammation as well as colitis in TNBS-treated mice in vivo. The anti-inflammatory activity of beige adipocytes was at least partially related to STAT6 signalling activation via the autocrine and paracrine effects of IL-4. CONCLUSION White adipocyte browning is a newly identified pathological change in htMAT of CD patients and a possible therapeutic target.
Collapse
Affiliation(s)
- Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lian Wang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guangyong Liu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Lele Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Mengyu Xu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yajing Zhao
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Li Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Southeast University Zhongda Hospital, Nanjing, China
| | - Jianguo Hu
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| |
Collapse
|
39
|
Efthymiou V, Ding L, Balaz M, Sun W, Balazova L, Straub LG, Dong H, Simon E, Ghosh A, Perdikari A, Keller S, Ghoshdastider U, Horvath C, Moser C, Hamilton B, Neubauer H, Wolfrum C. Inhibition of AXL receptor tyrosine kinase enhances brown adipose tissue functionality in mice. Nat Commun 2023; 14:4162. [PMID: 37443109 PMCID: PMC10344962 DOI: 10.1038/s41467-023-39715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The current obesity epidemic and high prevalence of metabolic diseases necessitate efficacious and safe treatments. Brown adipose tissue in this context is a promising target with the potential to increase energy expenditure, however no pharmacological treatments activating brown adipose tissue are currently available. Here, we identify AXL receptor tyrosine kinase as a regulator of adipose function. Pharmacological and genetic inhibition of AXL enhance thermogenic capacity of brown and white adipocytes, in vitro and in vivo. Mechanistically, these effects are mediated through inhibition of PI3K/AKT/PDE signaling pathway, resulting in induction of nuclear FOXO1 localization and increased intracellular cAMP levels via PDE3/4 inhibition and subsequent stimulation of the PKA-ATF2 pathway. In line with this, both constitutive Axl deletion as well as inducible adipocyte-specific Axl deletion protect animals from diet-induced obesity concomitant with increases in energy expenditure. Based on these data, we propose AXL receptor as a target for the treatment of obesity.
Collapse
Affiliation(s)
- Vissarion Efthymiou
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Joslin Diabetes Center, Section of Integrative Physiology and Metabolism, Research Division, Harvard Medical School, Boston, MA, USA
| | - Lianggong Ding
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Miroslav Balaz
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wenfei Sun
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucia Balazova
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Leon G Straub
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Hua Dong
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Simon
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Adhideb Ghosh
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Aliki Perdikari
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Svenja Keller
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Umesh Ghoshdastider
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Carla Horvath
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Caroline Moser
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Bradford Hamilton
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Heike Neubauer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christian Wolfrum
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland.
| |
Collapse
|
40
|
KIM SUJIN, PARK DONGHO, LEE SANGHYUN, KWAK HYOBUM, KANG JUHEE. Contribution of High-Intensity Interval Exercise in the Fasted State to Fat Browning: Potential Roles of Lactate and β-Hydroxybutyrate. Med Sci Sports Exerc 2023; 55:1160-1171. [PMID: 36790381 PMCID: PMC10242519 DOI: 10.1249/mss.0000000000003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Fat browning contributes to energy consumption and may have metabolic benefits against obesity; however, the potential roles of lactate and β-hydroxybutyrate (β-HB) in fat browning remain unclear. We investigated the roles of a single bout of aerobic exercise that increases lactate and β-HB levels in the fasted state on the regulation of fat browning in rats and humans. METHODS Male Sprague-Dawley rats were exposed to 24-h fasting and/or a single bout moderate-intensity aerobic exercise (40 min): sedentary (CON), exercise (ND-EX), fasting (FAST), and exercise + fasting (F-EX). Adult men ( n = 13) were randomly assigned into control with food intake (CON), exercise with intensity at onset of blood lactate accumulation in the fasted state (F-OBLA), and high-intensity interval exercise in the fasted state (F-HIIE) until each participant expended 350 kcal of energy. For evaluating the effects of exercise intensity in rats, we conducted another set of animal experiment, including groups of sedentary fed control, fasting control, and exercise with moderate-intensity or HIIE for 40 min after a 24-h fasting. RESULTS Regardless of fasting, single bout of exercise increases the concentration of lactate and β-HB in rats, but the exercise in the fasted state increases the β-HB level more significantly in rats and humans. F-EX-activated fat browning (AMPK-SirT1-PGC1α pathway and PRDM16) and thermogenic factor (UCP1) in white fat of rats. In rats and humans, exercise in the fasted state increased the blood levels of fat browning-related adipomyokines. In particular, compared with F-OBLA, F-HIIE more efficiently increases free fatty acid as well as blood levels of fat browning adipomyokines in humans, which was correlated with blood levels of lactate and β-HB. In rats that performed exercise with different intensity, the higher plasma lactate and β-HB levels, and higher expression of p-AMPK, UCP1, and PRDM16 in white adipose tissue of HIIE group than those of moderate-intensity group, were observed. CONCLUSIONS A single bout of aerobic exercise in the fasted state significantly induced fat browning-related pathways, free fatty acid, and adipomyokines, particularly F-HIIE in human. Although further evidence for supporting our results is required in humans, aerobic exercise in the fasted state with high intensity that increase lactate and β-HB may be a modality of fat browning.
Collapse
Affiliation(s)
- SUJIN KIM
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
| | - DONG-HO PARK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - SANG-HYUN LEE
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
| | - HYO-BUM KWAK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - JU-HEE KANG
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| |
Collapse
|
41
|
Blondin DP. Human thermogenic adipose tissue. Curr Opin Genet Dev 2023; 80:102054. [PMID: 37269791 DOI: 10.1016/j.gde.2023.102054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 06/05/2023]
Abstract
Human thermogenic adipose tissue has long been touted as a promising therapeutic target for obesity and its associated metabolic diseases. Here, we provide a brief overview of the current knowledge of in vivo human thermogenic adipose tissue metabolism. We explore the evidence provided by retrospective and prospective studies describing the association of brown adipose tissue (BAT) [18F]fluorodeoxyglucose accumulation and various cardiometabolic risk factors. Although these studies have been invaluable in generating hypothesis, it has also raised some questions about the reliability of this method as an indicator of BAT thermogenic capacity. We discuss the evidence in support of human BAT functioning as a local thermogenic organ and energy sink, as an endocrine organ, and as a biomarker of adipose tissue health.
Collapse
Affiliation(s)
- Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, 3001, 12th Ave North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
42
|
Siddique R, Mehmood MH, Hussain L, Malik A, Sethi A, Farrukh M, Kousar S. Role of medicinal herbs and phytochemicals in post burn management. Inflammopharmacology 2023:10.1007/s10787-023-01246-5. [PMID: 37204694 DOI: 10.1007/s10787-023-01246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Burn management is a natural and distinctly programmed process involving overlapping phases of hemostasis, inflammation, proliferation and remodeling. Burn wound healing involves initiation of inflammation, re-epithelialization, granulation, neovascularization and wound contraction. Despite the availability of multiple preparations for management of burn wound, there is dire need for efficacious alternative agents. Current approaches for burn wound management include pharmaceutical agents and antibiotics. However, high cost of synthetic drugs and accelerated resistance to antibiotics is challenging for both developed and developing nations. Among alternative options, medicinal plants have been a biocompatible, safe and affordable source of preventive/curative approaches. Due to cultural acceptance and patient compliance, there has been a focus on the use of botanical drugs and phytochemicals for burn wound healing. Keeping in consideration of medicinal herbs and phytochemicals as suitable therapeutic/adjuvant agents for burn wound management, this review highlights therapeutic potential of 35 medicinal herbs and 10 phytochemicals. Among these, Elaeis guineensis, Ephedra ciliate and Terminalia avicennioides showed better burn wound healing potential with varied mechanisms such as modulation of TNF-alpha, inflammatory cytokines, nitric oxide, eicosanoids, ROS and leukocyte response. Phytochemicals (oleanolic acid, ursolic acid, kirenol) also showed promising role in burn wound management though various pathways involving such as down regulation of TNF-alpha, IL-6 and inflammatory mediators including plasma proteases and arachidonic acid metabolites. This review provides a pavement for therapeutic/adjuvant use of potential botanical drugs and novel druggable phyto-compounds to target skin burn injury with diverse mechanisms, affordability and safety profile.
Collapse
Affiliation(s)
- Rida Siddique
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Ayesha Sethi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maryam Farrukh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Shaneel Kousar
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| |
Collapse
|
43
|
Liu Y, Han L, Zhu P, Song M, Zhang Y, Meng L, Zhang W, Zhang C, Zhong M. PTPN2 targets TAK1 for dephosphorylation to improve cellular senescence and promote adipose tissue browning in T2DM. Front Pharmacol 2023; 14:1124633. [PMID: 37251330 PMCID: PMC10213551 DOI: 10.3389/fphar.2023.1124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: The energy imbalance when energy intake exceeds expenditure acts as an essential factor in the development of insulin resistance (IR). The activity of brown adipose tissue, which is involved in the dissipation of energy via heat expenditure decreases under type 2 diabetic mellitus (T2DM) state when the number of pathological aging adipocytes increases. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates several biological processes by dephosphorylating several cellular substrates; however, whether PTPN2 regulates cellular senescence in adipocytes and the underlying mechanism has not been reported. Methods: We constructed a model of type 2 diabetic mice with PTPN2 overexpression to explore the role of PTPN2 in T2DM. Results: We revealed that PTPN2 facilitated adipose tissue browning by alleviating pathological senescence, thus improving glucose tolerance and IR in T2DM. Mechanistically, we are the first to report that PTPN2 could bind with transforming growth factor-activated kinase 1 (TAK1) directly for dephosphorylation to inhibit the downstream MAPK/NF-κB pathway in adipocytes and regulate cellular senescence and the browning process subsequently. Discussion: Our study revealed a critical mechanism of adipocytes browning progression and provided a potential target for the treatment of related diseases.
Collapse
Affiliation(s)
- Yapeng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Zhu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoyuan Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linlin Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
44
|
Wu R, Park J, Qian Y, Shi Z, Hu R, Yuan Y, Xiong S, Wang Z, Yan G, Ong SG, Song Q, Song Z, Mahmoud AM, Xu P, He C, Arpke RW, Kyba M, Shu G, Jiang Q, Jiang Y. Genetically prolonged beige fat in male mice confers long-lasting metabolic health. Nat Commun 2023; 14:2731. [PMID: 37169793 PMCID: PMC10175245 DOI: 10.1038/s41467-023-38471-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
A potential therapeutic target to curb obesity and diabetes is thermogenic beige adipocytes. However, beige adipocytes quickly transition into white adipocytes upon removing stimuli. Here, we define the critical role of cyclin dependent kinase inhibitor 2A (Cdkn2a) as a molecular pedal for the beige-to-white transition. Beige adipocytes lacking Cdkn2a exhibit prolonged lifespan, and male mice confer long-term metabolic protection from diet-induced obesity, along with enhanced energy expenditure and improved glucose tolerance. Mechanistically, Cdkn2a promotes the expression and activity of beclin 1 (BECN1) by directly binding to its mRNA and its negative regulator BCL2 like 1 (BCL2L1), activating autophagy and accelerating the beige-to-white transition. Reactivating autophagy by pharmacological or genetic methods abolishes beige adipocyte maintenance induced by Cdkn2a ablation. Furthermore, hyperactive BECN1 alone accelerates the beige-to-white transition in mice and human. Notably, both Cdkn2a and Becn1 exhibit striking positive correlations with adiposity. Hence, blocking Cdkn2a-mediated BECN1 activity holds therapeutic potential to sustain beige adipocytes in treating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolei Xiong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Congcong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
45
|
Rodó J, Garcia M, Casana E, Muñoz S, Jambrina C, Sacristan V, Franckhauser S, Grass I, Jimenez V, Bosch F. Integrated gene expression profiles reveal a transcriptomic network underlying the thermogenic response in adipose tissue. Sci Rep 2023; 13:7266. [PMID: 37142619 PMCID: PMC10160086 DOI: 10.1038/s41598-023-33367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Obesity and type 2 diabetes are two closely related diseases representing a serious threat worldwide. An increase in metabolic rate through enhancement of non-shivering thermogenesis in adipose tissue may represent a potential therapeutic strategy. Nevertheless, a better understanding of thermogenesis transcriptional regulation is needed to allow the development of new effective treatments. Here, we aimed to characterize the specific transcriptomic response of white and brown adipose tissues after thermogenic induction. Using cold exposure to induce thermogenesis in mice, we identified mRNAs and miRNAs that were differentially expressed in several adipose depots. In addition, integration of transcriptomic data in regulatory networks of miRNAs and transcription factors allowed the identification of key nodes likely controlling metabolism and immune response. Moreover, we identified the putative role of the transcription factor PU.1 in the regulation of PPARγ-mediated thermogenic response of subcutaneous white adipose tissue. Therefore, the present study provides new insights into the molecular mechanisms that regulate non-shivering thermogenesis.
Collapse
Affiliation(s)
- Jordi Rodó
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignasi Grass
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
46
|
Shi L, Tao Z, Zheng L, Yang J, Hu X, Scott K, de Kloet A, Krause E, Collins JF, Cheng Z. FoxO1 regulates adipose transdifferentiation and iron influx by mediating Tgfβ1 signaling pathway. Redox Biol 2023; 63:102727. [PMID: 37156218 DOI: 10.1016/j.redox.2023.102727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
Adipose plasticity is critical for metabolic homeostasis. Adipocyte transdifferentiation plays an important role in adipose plasticity, but the molecular mechanism of transdifferentiation remains incompletely understood. Here we show that the transcription factor FoxO1 regulates adipose transdifferentiation by mediating Tgfβ1 signaling pathway. Tgfβ1 treatment induced whitening phenotype in beige adipocytes, reducing UCP1 and mitochondrial capacity and enlarging lipid droplets. Deletion of adipose FoxO1 (adO1KO) dampened Tgfβ1 signaling by downregulating Tgfbr2 and Smad3 and induced browning of adipose tissue in mice, increasing UCP1 and mitochondrial content and activating metabolic pathways. Silencing FoxO1 also abolished the whitening effect of Tgfβ1 on beige adipocytes. The adO1KO mice exhibited a significantly higher energy expenditure, lower fat mass, and smaller adipocytes than the control mice. The browning phenotype in adO1KO mice was associated with an increased iron content in adipose tissue, concurrent with upregulation of proteins that facilitate iron uptake (DMT1 and TfR1) and iron import into mitochondria (Mfrn1). Analysis of hepatic and serum iron along with hepatic iron-regulatory proteins (ferritin and ferroportin) in the adO1KO mice revealed an adipose tissue-liver crosstalk that meets the increased iron requirement for adipose browning. The FoxO1-Tgfβ1 signaling cascade also underlay adipose browning induced by β3-AR agonist CL316243. Our study provides the first evidence of a FoxO1-Tgfβ1 axis in the regulation of adipose browning-whitening transdifferentiation and iron influx, which sheds light on the compromised adipose plasticity in conditions of dysregulated FoxO1 and Tgfβ1 signaling.
Collapse
Affiliation(s)
- Limin Shi
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA; Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL, 32611, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32610, USA
| | - Zhipeng Tao
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Louise Zheng
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jinying Yang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA; Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Xinran Hu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA
| | - Karen Scott
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL32610, USA
| | - Annette de Kloet
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32610, USA; Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Eric Krause
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL32610, USA
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA; Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Zhiyong Cheng
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA; Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL, 32611, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32610, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
47
|
Portales AE, Miguel I, Rodriguez MJ, Novaro V, Gambaro SE, Giovambattista A. CDK4/6 are necessary for UCP1-mediated thermogenesis of white adipose tissue. Life Sci 2023; 322:121652. [PMID: 37011871 DOI: 10.1016/j.lfs.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
AIMS In white adipose tissue (WAT) the cell cycle regulators CDK4 and CDK6 (CDK4/6) promote adipogenesis and maintain the adipocyte mature state. Here we aimed to investigate their role in the Ucp1-mediated thermogenesis of WAT depots and in the biogenesis of beige adipocytes. MAIN METHODS We treated mice with the CDK4/6 inhibitor palbociclib at room temperature (RT) or cold and analyzed thermogenic markers in the epididymal (abdominal) and inguinal (subcutaneous) WAT depots. We also assessed the effect of in vivo palbociclib-treatment on the percentage of beige precursors in the stroma vascular fraction (SVF), and on its beige adipogenic potential. Finally, we treated SVFs and mature adipocytes from WAT depots with palbociclib in vitro to study the role of CDK4/6 in beige adipocytes biogenesis. KEY FINDINGS In vivo CDK4/6 inhibition downregulated thermogenesis at RT and impaired cold-induced browning of both WAT depots. It also reduced the percentage of beige precursors and the beige adipogenic potential of the SVF upon differentiation. A similar result was observed with direct CDK4/6 inhibition in the SVF of control mice in vitro. Importantly, CDK4/6 inhibition also downregulated the thermogenic program of beige differentiated- and depots-derived adipocytes. SIGNIFICANCE CDK4/6 modulate Ucp1-mediated thermogenesis of WAT depots in basal and cold-stressing conditions controlling beige adipocytes biogenesis by adipogenesis and transdifferentiation. This shows a pivotal role of CDK4/6 in WAT browning that could be applied to fight obesity or browning-associated hypermetabolic conditions such as cancer cachexia.
Collapse
|
48
|
Castellá M, Villarroya F. Brown fat. Med Clin (Barc) 2023:S0025-7753(23)00050-7. [PMID: 36868963 DOI: 10.1016/j.medcli.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Affiliation(s)
- Moisés Castellá
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, España; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, España
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, España; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, España.
| |
Collapse
|
49
|
Alipoor E, Jazayeri S, Dahmardehei M, Salehi S, Yaseri M, Emami MR, Rezayat SM, Hosseinzadeh-Attar MJ. Effect of a collagen-enriched beverage with or without omega-3 fatty acids on wound healing, metabolic biomarkers, and adipokines in patients with major burns. Clin Nutr 2023; 42:298-308. [PMID: 36724726 DOI: 10.1016/j.clnu.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS This study investigated the effects of collagen hydrolysate and omega-3 fatty acids (FAs) on the rate and quality of wound healing, metabolic disorders, and adipose-derived peptides in patients with major burns. METHODS In this randomized clinical trial, 66 patients with 20-45% deep partial or full-thickness burns were randomly assigned to three groups to receive either a beverage containing collagen (40 gr/d), collagen (40 gr/d) plus 3 gr/d omega-3 (ω-3) FAs, or placebo for four weeks. Wound healing rate, Vancouver scar scale (VSS), as well as baseline, weeks two and three serum concentrations of adiponectin, fibroblast growth factor 21 (FGF21), neuregulin 4 (NRG4), transforming growth factor (TGF)-β1, and pre-albumin/hs-CRP ratio were assessed. RESULTS The wound healing rate during the weeks post-burn (p = 0.006 and p = 0.01), and days of 95% (21.3 ± 6.8 and 22.9 ± 8.7 vs. 34.3 ± 14.8 days, p = 0.003 and p = 0.03) and complete (26 ± 7.7 and 27.4 ± 9.4 vs. 41.1 ± 16.6 days, p = 0.003 and p = 0.01) wound healing were significantly better with Collagen and Collagen. ω-3 compared to the placebo group. The VSS was significantly lower, indicated better scar status, in the both intervention groups compared to the placebo (p = 0.02 and p = 0.01). Wound healing outcomes were not statistically different between the Collagen and Collagen. ω-3 groups. Hs-CRP/pre-albumin ratio was significantly lower in the Collagen. ω-3 than the placebo group at week three (1.2 ± 1.9 vs. 4.8 ± 7.7 dl/l, p = 0.03). The significant decrease in serum adiponectin seen during the trial course within the placebo (10 ± 8.8 to 5.8 ± 4.9 mg/l, p = 0.03) and Collagen (11.8 ± 14 to 8.6 ± 11.7 mg/l, p = 0.03) groups was prevented in the Collagen. ω-3 group (p = 0.4). Circulating FGF21 decreased significantly within the Collagen (p = 0.005) and Collagen. ω-3 (p = 0.02) groups at the end of week three compared to the baseline. CONCLUSIONS Adding collagen hydrolysate as part of adjunctive therapy improved wound healing rate and quality. These findings as well as the efficacy of omega-3 FAs need to be further confirmed in larger populations. This study was registered with the Iranian Registry of Clinical Trials (IRCT20090901002394N42).
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Dahmardehei
- Department of Plastic Surgery, Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Salehi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Emami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Nanomedicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Żwierełło W, Piorun K, Skórka-Majewicz M, Maruszewska A, Antoniewski J, Gutowska I. Burns: Classification, Pathophysiology, and Treatment: A Review. Int J Mol Sci 2023; 24:ijms24043749. [PMID: 36835171 PMCID: PMC9959609 DOI: 10.3390/ijms24043749] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Burns and their treatment are a significant medical problem. The loss of the physical barrier function of the skin opens the door to microbial invasion and can lead to infection. The repair process of the damage caused by the burn is impaired due to the enhanced loss of fluids and minerals through the burn wound, the onset of hypermetabolism with the concomitant disruption of nutrient supply, and derangements in the endocrine system. In addition, the initiated inflammatory and free radical processes drive the progression of oxidative stress, the inhibition of which largely depends on an adequate supply of antioxidants and minerals. Clinical experience and research provide more and more data to make the treatment of patients with thermal injury increasingly effective. The publication discusses disorders occurring in patients after thermal injury and the methods used at various stages of treatment.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Krzysztof Piorun
- West Pomeranian Center for Treating Severe Burns and Plastic Surgery, 72-300 Gryfice, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Jacek Antoniewski
- Department of Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
- Correspondence:
| |
Collapse
|