1
|
Wager JL, Baker LG, Scheidl TB, Yonan SZ, Colarusso P, Young D, Dufour A, Thompson JA. Interleukin-6 from the adipose secretome potentiates differentiation of adipose progenitors through the activation of redox signaling. Am J Physiol Cell Physiol 2025; 328:C1730-C1742. [PMID: 40247767 DOI: 10.1152/ajpcell.00024.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Under obesogenic conditions, it is thought that a signal arising from the adipose microenvironment triggers differentiation of adipose progenitor cells (APCs); yet the identity and source of this signal remain unknown. Redox signaling was shown to influence adipogenesis in primary murine APCs treated with pharmacological agents to manipulate the levels of reactive oxygen species (ROS). Increased generation of superoxide ([Formula: see text]) and hydrogen peroxide (H2O2) via redox cyclers amplified APC differentiation, while differentiation was blunted with ROS scavengers and antioxidants. Protein was concentrated from conditioned media of adipose tissue explants cultured ex vivo to capture secreted factors. Differentiation was enhanced in APCs cultured in the presence of the adipose protein secretome, an effect that was diminished with scavenging of ROS and amplified when the secretome was collected from mice fed a high-fat diet. Proteomic analysis revealed that the adipose secretome from animals on a high-fat diet was enriched in pathways involved in immune cell responses and contained higher levels of cytokines, including interleukin 6 (IL-6). A multiplex assay confirmed higher IL-6, which was predicted as a central regulator of differential levels of secretome proteins. Exposure of APCs to IL-6 increased adipogenesis, while treatment of APCs with an IL-6 blocking antibody diminished the adipogenic effect of the adipose secretome. Together, these findings substantiate a role for redox signaling in the regulation of adipogenesis and identify IL-6 as a potential secreted factor that may mediate activation of adipogenesis via ROS generation under obesogenic conditions.NEW & NOTEWORTHY This study identified IL-6 as an adipose-secreted factor that is increased in obesity and potentiates differentiation of APCs. Redox signaling is involved in APC differentiation and mediates the proadipogenic effect of IL-6. Thus, IL-6 may be a paracrine regulator of APC differentiation in the setting of obesity.
Collapse
Affiliation(s)
- Jessica L Wager
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Larissa G Baker
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taylor B Scheidl
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sophie Z Yonan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Snyder Live Cell Imaging Core, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Young
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Neuhaus M, Stenkula KG. Sex- and depot-specific differences in cellular insulin responsiveness during adipose expansion. Life Sci 2025; 375:123743. [PMID: 40404120 DOI: 10.1016/j.lfs.2025.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/03/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Adipose tissue distribution, metabolism, and expansion capacity exhibit notable sex- and depot-specific differences. Herein, we monitored adipocyte traits related to insulin responsiveness and glucose transport during adipose expansion in visceral and subcutaneous fat from male and female mice. MATERIALS AND METHODS Adipocytes were isolated from perigonadal and inguinal adipose tissue of chow-fed female and male C57Bl6/J mice and assessed for adipocyte size distribution using a coulter counter; glucose uptake and cytosolic volume were measured using glucose tracer assays. GLUT1, GLUT4, and IRS-1 protein levels were assessed by western blot. Pharmacological inhibition (BAY876) of GLUT1 and GLUT4 was used to resolve their respective contribution to cellular glucose transport. KEY FINDINGS Independent of adiposity or sex, visceral adipocytes were larger and displayed higher glucose transport, cytosolic volume, and GLUT4 levelsthan subcutaneous adipocytes. GLUT1 content was higher in subcutaneous than visceral adipocytes in both sexes. Pharmacological inhibition confirmed that GLUT1 contributes to <10 % of adipocyte glucose uptake, while GLUT4 facilitates most of both basal and insulin-stimulated glucose uptake. Females showed significantly higher basal and insulin-stimulated glucose transport, higher cytosolic volume, and greater GLUT4 and IRS-1 protein levels than males in both adipose depots. Interestingly, insulin responsiveness was preserved in female subcutaneous adipocytes but deteriorated in subcutaneous male adipocytes during adipose expansion. SIGNIFICANCE The improved insulin responsiveness, increased glucose transport, and higher levels of GLUT4 and IRS-1 in adipocytes might protect females from the adverse systemic effects linked to obesity. Insulin responsiveness was preserved in female subcutaneous adipocytes during adipose tissue expansion, which could contribute to the reduced risk of females to develop systemic insulin resistance.
Collapse
Affiliation(s)
- Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
3
|
Lecoutre S, Rebière C, Maqdasy S, Lambert M, Dussaud S, Abatan JB, Dugail I, Gautier EL, Clément K, Marcelin G. Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health. Nat Rev Endocrinol 2025; 21:272-288. [PMID: 39757324 DOI: 10.1038/s41574-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Adipose tissue demonstrates considerable plasticity and heterogeneity, enabling metabolic, cellular and structural adaptations to environmental signals. This adaptability is key for maintaining metabolic homeostasis. Impaired adipose tissue plasticity can lead to abnormal adipose tissue responses to metabolic cues, which contributes to the development of cardiometabolic diseases. In chronic obesity, white adipose tissue undergoes pathological remodelling marked by adipocyte hypertrophy, chronic inflammation and fibrosis, which are linked to local and systemic insulin resistance. Research data suggest that the capacity for healthy or unhealthy white adipose tissue remodelling might depend on the intrinsic diversity of adipose progenitor cells (APCs), which sense and respond to metabolic cues. This Review highlights studies on APCs as key determinants of adipose tissue plasticity, discussing differences between subcutaneous and visceral adipose tissue depots during development, growth and obesity. Modulating APC functions could improve strategies for treating adipose tissue dysfunction and metabolic diseases in obesity.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| | - Clémentine Rebière
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine, Karolinska Institutet Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Institut National de la Santé et de la Recherche Médicale, Bobigny, France
- Labex Inflamex, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Bobigny, France
| | - Sébastien Dussaud
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Emmanuel L Gautier
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
- Department of Nutrition, Pitie-Salpêtriere Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| |
Collapse
|
4
|
Wing A, Jeffery E, Church CD, Goodell J, Saavedra-Peña RDM, Saha M, Holtrup B, Voisin M, Alavi NS, Floody M, Wang Z, Zapadka TE, Garabedian MJ, Varshney R, Rudolph MC, Rodeheffer MS. Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling. Cell Rep 2025; 44:115527. [PMID: 40208790 PMCID: PMC12073628 DOI: 10.1016/j.celrep.2025.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/17/2025] [Accepted: 03/15/2025] [Indexed: 04/12/2025] Open
Abstract
Dietary fat composition has changed substantially during the obesity epidemic. As adipocyte hyperplasia is a major mechanism of adipose expansion, we aim to ascertain how dietary fats affect adipogenesis during obesity. We employ an unbiased dietary screen to identify oleic acid (OA) as the only dietary fatty acid that induces obesogenic hyperplasia at physiologic levels and show that plasma monounsaturated fatty acids (MUFAs), which are mostly OA, are associated with human obesity. OA stimulates adipogenesis in mouse and human adipocyte precursor cells (APCs) by increasing AKT2 signaling, a hallmark of obesogenic hyperplasia, and reducing LXR activity. High OA consumption decreases LXRα Ser196 phosphorylation in APCs, while blocking LXRα phosphorylation results in APC hyperproliferation. As OA is increasingly being incorporated into dietary fats due to purported health benefits, our finding that OA is a unique physiologic regulator of adipose biology underscores the importance of understanding how high OA consumption affects metabolic health.
Collapse
Affiliation(s)
- Allison Wing
- Department of Molecular, Cell, and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT 06520, USA
| | - Elise Jeffery
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Christopher D Church
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA
| | - Jennifer Goodell
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA
| | - Rocío Del M Saavedra-Peña
- Department of Molecular, Cell, and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT 06520, USA
| | - Moumita Saha
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA
| | - Brandon Holtrup
- Department of Molecular, Cell, and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT 06520, USA
| | - Maud Voisin
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - N Sima Alavi
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA
| | - Mariana Floody
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA
| | - Zenan Wang
- Department of Molecular, Cell, and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT 06520, USA
| | - Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michael J Garabedian
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology and Harold Hamm Diabetes Center, Oklahoma University Health Sciences, Oklahoma City, OK 73104, USA
| | - Michael C Rudolph
- Department of Biochemistry and Physiology and Harold Hamm Diabetes Center, Oklahoma University Health Sciences, Oklahoma City, OK 73104, USA.
| | - Matthew S Rodeheffer
- Department of Molecular, Cell, and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06520, USA; Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Varghese M, Thekkelnaycke R, Soni T, Zhang J, Maddipati K, Singer K. Sex differences in the lipid profiles of visceral adipose tissue with obesity and gonadectomy. J Lipid Res 2025; 66:100803. [PMID: 40245983 DOI: 10.1016/j.jlr.2025.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/05/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
In obesity, adipose tissue (AT) expansion is accompanied by chronic inflammation. Altered lipid composition in the visceral or gonadal white AT (GWAT) directly drive AT macrophage accumulation and activation to a proinflammatory phenotype. Sex steroid hormones modulate visceral versus subcutaneous lipid accumulation that correlates with metabolic syndrome, especially in men and postmenopausal women who are more prone to abdominal obesity. Prior studies demonstrated sex differences in GWAT lipid species in HFD-fed mice, but the role of sex hormones is still unclear. We hypothesized that sex hormone alterations with gonadectomy (GX) would further impact lipid composition in the obese GWAT. Untargeted lipidomics of obese GWAT identified sex differences in phospholipids, sphingolipids, sterols, fatty acyls, saccharolipids and prenol lipids. Males had significantly more precursor fatty acids (palmitic, oleic, linoleic, and arachidonic acid) than females and GX mice. Targeted lipidomics for fatty acids and oxylipins in the HFD-fed male and female GWAT stromal vascular fraction identified higher omega-6 to omega-3 free fatty acid profile in males and differences in PUFAs-derived prostaglandins, thromboxanes, and leukotrienes. Both obese male and female GWAT stromal vascular fraction showed increased levels of arachidonic acid-derived oxylipins compared to their lean counterparts. Bulk RNA-seq of sorted GWAT AT macrophages highlighted sex and diet differences in PUFA and oxylipin metabolism genes. These findings of sexual dimorphism in both stored lipid species and PUFA-derived mediators with diet and GX emphasize sex differences in lipid metabolism pathways that drive inflammation responses and metabolic disease risk in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rajendiran Thekkelnaycke
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Jiayu Zhang
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Xu M, Zhou EY, Shi H. Tryptophan and Its Metabolite Serotonin Impact Metabolic and Mental Disorders via the Brain-Gut-Microbiome Axis: A Focus on Sex Differences. Cells 2025; 14:384. [PMID: 40072112 PMCID: PMC11899299 DOI: 10.3390/cells14050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior. Emerging evidence suggests that the gut microbiome regulates brain function and behavior, particularly through microbial influences on tryptophan metabolism and the serotonergic system, both of which are essential for normal functioning. Additionally, sex differences exist in multiple aspects of serotonin-mediated modulation within the brain-gut-microbiome axis, affecting feeding and affective behaviors. This review summarizes the current knowledge from human and animal studies on the influence of tryptophan and its metabolite serotonin on metabolic and behavioral regulation involving the brain and gut microbiome, with a focus on sex differences and the role of sex hormones. We speculate that gut-derived tryptophan and serotonin play essential roles in the pathophysiology that modifies neural circuits, potentially contributing to eating and affective disorders. We propose the gut microbiome as an appealing therapeutic target for metabolic and affective disorders, emphasizing the importance of understanding sex differences in metabolic and behavioral regulation influenced by the brain-gut-microbiome axis. The therapeutic targeting of the gut microbiota and its metabolites may offer a viable strategy for treating serotonin-related disorders, such as eating and affective disorders, with potential differences in treatment efficacy between men and women. This review would promote research on sex differences in metabolic and behavioral regulation impacted by the brain-gut-microbiome axis.
Collapse
Affiliation(s)
- Mengyang Xu
- Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA
| | - Ethan Y. Zhou
- Institute for the Environment and Sustainability, Miami University, Oxford, OH 45056, USA
| | - Haifei Shi
- Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
7
|
CAHYADI DD, WARITA K, HOSAKA YZ. Depot-specific adiposity changes in ovariectomized mice on high-fat diet. J Vet Med Sci 2025; 87:241-247. [PMID: 39842785 PMCID: PMC11903351 DOI: 10.1292/jvms.24-0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025] Open
Abstract
Ovariectomized (OVX) mice serve as a key model for studying postmenopausal metabolic changes, particularly obesity, as they mimic the hormonal state of postmenopausal women. However, our understanding remains limited regarding how hormonal and dietary factors affect different adipose tissues. Furthermore, precise documentation of experimental procedures and their effects on specific adipose tissue depots is essential for reproducible translational research. This study investigated depot-specific adiposity development in OVX mice fed a high-fat diet (HFD), focusing on how reduced estrogen levels and dietary intervention affect distinct fat depots. We composed subcutaneous and visceral white adipose tissue (WAT) depots from sham-operated (Sham) and OVX female C57BL/6JJcl mice on a regular diet (RD) and high-fat diet (HFD) for 20 weeks. OVX mice on HFD gained significantly more weight than Sham controls. Adiposity increased in abdominal subcutaneous WAT (sWAT) and perirenal WAT (prWAT) of OVX mice, but not in mesenteric WAT (mWAT). Analysis of adipose tissue morphology revealed that OVX mice exhibited enlarged adipocyte cross-sectional areas under low estrogen (E2) conditions, suggesting enhanced adipogenesis in an estrogen-deficient state. These findings suggest that low estrogen condition accelerated adiposity, in a tissue site-dependent manner.
Collapse
Affiliation(s)
- Danang Dwi CAHYADI
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Division of Anatomy Histology and Embryology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Katsuhiko WARITA
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshinao Z HOSAKA
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Li Y, Zhang H, Ibáñez CF, Xie M. Characterization of subcutaneous and visceral de-differentiated fat cells. Mol Metab 2025; 93:102105. [PMID: 39884650 PMCID: PMC11848481 DOI: 10.1016/j.molmet.2025.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE The capacity of mature adipocytes to de-differentiate into fibroblast-like cells has been demonstrated in vitro and a few, rather specific in vivo conditions. A detailed comparison between de-differentiated fat (DFAT) cells and adipose stem and progenitor cells (ASPCs) from different adipose depots is yet to be conducted. Moreover, whether de-differentiation of mature adipocytes from classical subcutaneous and visceral depots occurs under physiological conditions remains unknown. METHODS Here, we used in vitro "ceiling culture", single cell/nucleus RNA sequencing, epigenetic anaysis and genetic lineage tracing to address these unknowns. RESULTS We show that in vitro-derived DFAT cells have lower adipogenic potential and distinct cellular composition compared to ASPCs. In addition, DFAT cells derived from adipocytes of inguinal origin have dramatically higher adipogenic potential than DFAT cells of the epididymal origin, due in part to enhanced NF-KB signaling in the former. We also show that high-fat diet (HFD) feeding enhances DFAT cell colony formation and re-differentiation into adipocytes, while switching from HFD to chow diet (CD) only reverses their re-differentiation. Moreover, HFD deposits epigenetic changes in DFAT cells and ASPCs that are not reversed after returning to CD. Finally, combining genetic lineage tracing and single cell/nucleus RNA sequencing, we demonstrate the existence of DFAT cells in inguinal and epididymal adipose depots in vivo, with transcriptomes resembling late-stage ASPCs. CONCLUSIONS These data uncover the cell type- and depot-specific properties of DFAT cells, as well as their plasticity in response to dietary intervention. This knowledge may shed light on their role in life style change-induced weight loss and regain.
Collapse
Affiliation(s)
- Yan Li
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Neuroscience, Karolinska Institute, Stockholm 17165, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Beijing Key Laboratory of Behavior and Mental Health, Beijing 100871, China; Biosciences and Nutrition Unit, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14183, Sweden.
| |
Collapse
|
9
|
Scheidl TB, Wager JL, Thompson JA. Adipose Tissue Stromal Cells: Rheostats for Adipose Tissue Function and Metabolic Disease Risk. Can J Cardiol 2025:S0828-282X(25)00137-0. [PMID: 39986382 DOI: 10.1016/j.cjca.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
The transition from metabolically healthy obesity to the development of obesity-associated metabolic syndrome and cardiovascular disease is thought to be triggered by a loss in the functional integrity of adipose tissue. Although mature adipocytes are the primary functional units that carry out lipid partitioning in adipose tissue for the promotion of whole-body energy balance, they are supported by a heterogenous collection of nonadipocytes in the stroma. Research over the past couple of decades has expanded perspectives on the homeostatic and pathological roles of the nonadipocyte compartment. Adipose progenitors originate in the embryonic period and drive the developmental adipogenesis that establishes the set point of adiposity. A population of adipocyte progenitors reside in adult depots and serve an important homeostatic role as a reservoir to support adipocyte turnover. Adipocyte hypertrophy in obesity increases the rate of adipocyte death and the ability of progenitors to support this high rate of adipocyte turnover is important for the preservation of the lipid-buffering function of adipose tissue. Some evidence exists to suggest that impaired adipogenesis or a decline in progenitors capable of differentiation is a key event in the development of adipose dysfunction. The efficiency of macrophages to clear the debris and toxic lipids released from dead adipocytes lies at the fulcrum between preservation of adipose function and the progression toward chronic inflammation. Although macrophages in collaboration with other immune cells propagate the inflammation that underlies adipose dysfunction, there is now a greater appreciation for the diverse and unique roles of immune cells within adipose tissue.
Collapse
Affiliation(s)
- Taylor B Scheidl
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. https://twitter.com/TaylorScheidl
| | - Jessica L Wager
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Li T, Zhou H, Zhou H. Gender differences in the relationship between cardiometabolic index and all-cause and specific mortality in the United States adults: a national study. Front Endocrinol (Lausanne) 2025; 16:1525815. [PMID: 40034232 PMCID: PMC11872713 DOI: 10.3389/fendo.2025.1525815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Background The cardiometabolic index (CMI) is a new comprehensive measure that reflects visceral obesity and metabolic function. This study aimed to examine associations between CMI and adult mortality from all causes and specific causes, as well as gender differences, using the National Health and Nutrition Examination Survey (NHANES) database. Methods We included 37,539 adult participants with complete data from the 1999-2018 NHANES database. We categorized the participants according to gender and constructed three models to investigate the relationship between CMI and the outcome variables. These were analyzed using Kaplan-Meier curve analysis, COX proportional risk models, and restricted cubic spline (RCS). Results Baseline characteristics showed that among both male and female participants, those who died exhibited higher levels of CMI compared to those who survived. Kaplan-Meier curves showed an increasing trend in all-cause and specific mortality with increasing follow-up time. When CMI was categorized according to quartiles (Q1-Q4), the probability of survival was lower in the Q4 group compared to Q1. We found no gender differences between all three mortality rates. In COX regression analyses, all-cause, cardiovascular, and diabetes mortality were significantly higher in Q4 in the whole population and female participants, whereas no significant differences were identified among male participants. The RCS showed a nonlinear positive correlation in diabetes mortality for females and a linear positive correlation in all-cause and cardiovascular mortality. As for males, CMI was positively and nonlinearly associated with all-cause and diabetes mortality. Besides, there is no statistically significant correlation for males in cardiovascular mortality. Conclusion There were gender differences in the correlation between CMI and all-cause mortality, cardiovascular mortality, and diabetes mortality in the adult population. The findings indicated that adult females with elevated CMI levels were at an elevated risk of mortality from all causes, cardiovascular disease, and diabetes. At the same time, there were no significant associations in adult males.
Collapse
Affiliation(s)
- Tianshu Li
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoran Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Oh Y, Kim J, Park YJ, Kim Y. Male-Specific Effects of β-Carotene Supplementation on Lipid Metabolism in the Liver and Gonadal Adipose Tissue of Healthy Mice. Molecules 2025; 30:909. [PMID: 40005219 PMCID: PMC11858425 DOI: 10.3390/molecules30040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Biological sex is a fundamental determinant of physiological differences, including metabolic processes and disease susceptibility. β-carotene (BC), a provitamin A carotenoid, is known for its health benefits, but its sex-specific effects on its metabolism remain largely unexplored. This study investigated male and female BALB/c mice receiving BC or vehicle control via oral gavage for 11 weeks. Hepatic and circulating lipid levels, serum retinol, and the expression of BC cleavage enzymes (Bco1 and Bco2) and estrogen receptors (Esr1 and Esr2) in the liver and gonadal fat were analyzed. BC supplementation increased the hepatic Bco1 and Bco2 expression in males, accompanied by higher serum retinol, while downregulating expressions of these enzymes in male gonadal fat. Additionally, BC supplementation significantly reduced gonadal fat mass and adipogenic gene expression in males, with Cebpa and Esr1/Esr2 positively correlated, suggesting a role for estrogen receptor signaling in adipogenesis. These findings demonstrate that BC exerts sex- and tissue-specific effects on lipid metabolism, with strong regulatory interactions between BC metabolism, lipid homeostasis, and sex hormone signaling in males. The results provide novel insights into the mechanisms underlying sex-dependent differences in lipid metabolism following BC supplementation, with potential implications for metabolic health and disease prevention.
Collapse
Affiliation(s)
- Yeonsoo Oh
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinsol Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
12
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2025; 36:147-160. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
14
|
Ji T, Fang B, Jin Y, Zheng C, Yuan X, Dong J, Cheng L, Wu F. Euglena Attenuates High-Fat-Diet-Induced Obesity and Especially Glucose Intolerance. Nutrients 2024; 16:3780. [PMID: 39519613 PMCID: PMC11548234 DOI: 10.3390/nu16213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Obesity, a global disease, can lead to different chronic diseases and a series of social health problems. Lifestyle changes, especially dietary changes, are the most effective way to treat obesity. Euglena, a novel food, has attracted much attention. Previous studies have shown that Euglena is an important modulator of the host immune response. In this study, the effects of Euglena as a nutritional intervention in high-fat-diet-induced obese C57BL/6J mice were investigated regarding adipose tissue accumulation and lipid and glucose metabolism by gavage at the dose of 100 mg/kg bodyweight for 9 weeks. This study is one of the few to investigate, in detail, the preventive effects of dietary Euglena on obesity. Methods: Five-week-old male C57BL/6J mice were fed with a high-fat diet (HFD) to induce obesity. An obesity model was created by feeding the high-fat diet for a period of 10 weeks. Obese mice were randomized into 2 groups with the same mean body weight, and no significant differences were observed between the groups: (1) the mice in the HEG group were maintained on a high-fat diet and daily gavaged with Euglena (100 mg/kg body weight) dissolved in saline (n = 7); and (2) the mice in the HFD group were maintained on a high-fat diet and daily gavaged with saline with the same volume (n = 7). The experiment finished after a nine-week period. Results: The results showed that Euglena could reduce the accumulation of white body fat, including subcutaneous fat and visceral fat, and mainly targeted subcutaneous fat. Euglena also reduced adipocyte particle size expansion, promoted lipolysis in adipose (adipose triglyceride lipase and hormone-sensitive triglyceride lipase) and liver tissue (reduced non-esterified fatty acid content), and improved obesity-induced ectopic fat deposition and glucose tolerance. Conclusions: Our findings suggest that Euglena, as a nutritional intervention in HFDs, efficiently reduces body weight and white adipose tissue deposition. The mechanism of Euglena is mainly though enhancing lipolysis. It is worth noting that Euglena β-glucan recovers the hyperglycemia and accumulation of ectopic fat within the liver induced by HFD. Our study is one of the few studies to report in detail the preventive effects of dietary Euglena on obesity in vivo. This study revealed that Euglena also has an important ameliorative effect on obesity and metabolic disorders, which laid a theoretical foundation for its future application in functional foods.
Collapse
Affiliation(s)
- Tengteng Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chenyan Zheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xinlei Yuan
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China;
| | - Jianguo Dong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Le Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Hofwimmer K, de Paula Souza J, Subramanian N, Vujičić M, Rachid L, Méreau H, Zhao C, Dror E, Barreby E, Björkström NK, Wernstedt Asterholm I, Böni-Schnetzler M, Meier DT, Donath MY, Laurencikiene J. IL-1β promotes adipogenesis by directly targeting adipocyte precursors. Nat Commun 2024; 15:7957. [PMID: 39261467 PMCID: PMC11390900 DOI: 10.1038/s41467-024-51938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Postprandial IL-1β surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1β in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1β potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPβ are rapidly upregulated by IL-1β and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1β is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1β surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1β levels in obesity blunts this physiological function.
Collapse
Affiliation(s)
- Kaisa Hofwimmer
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Joyce de Paula Souza
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Narmadha Subramanian
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Leila Rachid
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Hélène Méreau
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Cheng Zhao
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Erez Dror
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Emelie Barreby
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Marianne Böni-Schnetzler
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland.
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland.
| | - Marc Y Donath
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Jurga Laurencikiene
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden.
| |
Collapse
|
17
|
Das S, Varshney R, Farriester JW, Kyere-Davies G, Martinez AE, Hill K, Kinter M, Mullen GP, Nagareddy PR, Rudolph MC. NR2F2 Reactivation in Early-life Adipocyte Stem-like Cells Rescues Adipocyte Mitochondrial Oxidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611047. [PMID: 39314382 PMCID: PMC11419096 DOI: 10.1101/2024.09.09.611047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In humans, perinatal exposure to an elevated omega-6 (n6) relative to omega-3 (n3) Fatty Acid (FA) ratio is associated with the likelihood of childhood obesity. In mice, we show perinatal exposure to excessive n6-FA programs neonatal Adipocyte Stem-like cells (ASCs) to differentiate into adipocytes with lower mitochondrial nutrient oxidation and a propensity for nutrient storage. Omega-6 FA exposure reduced fatty acid oxidation (FAO) capacity, coinciding with impaired induction of beige adipocyte regulatory factors PPARγ, PGC1α, PRDM16, and UCP1. ASCs from n6-FA exposed pups formed adipocytes with increased lipogenic genes in vitro, consistent with an in vivo accelerated adipocyte hypertrophy, greater triacylglyceride accumulation, and increased % body fat. Conversely, n6-FA exposed pups had impaired whole animal 13C-palmitate oxidation. The metabolic nuclear receptor, NR2F2, was suppressed in ASCs by excess n6-FA intake preceding adipogenesis. ASC deletion of NR2F2, prior to adipogenesis, mimicked the reduced FAO capacity observed in ASCs from n6-FA exposed pups, suggesting that NR2F2 is required in ASCs for robust beige regulator expression and downstream nutrient oxidation in adipocytes. Transiently re-activating NR2F2 with ligand prior to differentiation in ASCs from n6-FA exposed pups, restored their FAO capacity as adipocytes by increasing the PPARγ-PGC1α axis, mitochondrial FA transporter CPT1A, ATP5 family synthases, and NDUF family Complex I proteins. Our findings suggest that excessive n6-FA exposure early in life dampens an NR2F2-mediated induction of beige adipocyte regulators, resulting in metabolic programming that is shifted towards nutrient storage.
Collapse
Affiliation(s)
- Snehasis Das
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Jacob W. Farriester
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Gertrude Kyere-Davies
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Alexandrea E. Martinez
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kaitlyn Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Gregory P. Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Prabhakara R. Nagareddy
- Deptartment of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Uhrbom M, Muhl L, Genové G, Liu J, Palmgren H, Alexandersson I, Karlsson F, Zhou AX, Lunnerdal S, Gustafsson S, Buyandelger B, Petkevicius K, Ahlstedt I, Karlsson D, Aasehaug L, He L, Jeansson M, Betsholtz C, Peng XR. Adipose stem cells are sexually dimorphic cells with dual roles as preadipocytes and resident fibroblasts. Nat Commun 2024; 15:7643. [PMID: 39223126 PMCID: PMC11369120 DOI: 10.1038/s41467-024-51867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cell identities are defined by intrinsic transcriptional networks and spatio-temporal environmental factors. Here, we explored multiple factors that contribute to the identity of adipose stem cells, including anatomic location, microvascular neighborhood, and sex. Our data suggest that adipose stem cells serve a dual role as adipocyte precursors and fibroblast-like cells that shape the adipose tissue's extracellular matrix in an organotypic manner. We further find that adipose stem cells display sexual dimorphism regarding genes involved in estrogen signaling, homeobox transcription factor expression and the renin-angiotensin-aldosterone system. These differences could be attributed to sex hormone effects, developmental origin, or both. Finally, our data demonstrate that adipose stem cells are distinct from mural cells, and that the state of commitment to adipogenic differentiation is linked to their anatomic position in the microvascular niche. Our work supports the importance of sex and microvascular function in adipose tissue physiology.
Collapse
Affiliation(s)
- Martin Uhrbom
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
| | - Guillem Genové
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Jianping Liu
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Henrik Palmgren
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Sweden
| | - Alex-Xianghua Zhou
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Lunnerdal
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonja Gustafsson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Byambajav Buyandelger
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Kasparas Petkevicius
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Ahlstedt
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leif Aasehaug
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden
| | - Marie Jeansson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden.
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
19
|
Anaya ES, de Groot EL, Lydon JP, Pangas SA, Hartig SM. Contributions of white adipose tissue to energy requirements for female reproduction. Trends Endocrinol Metab 2024; 35:809-820. [PMID: 38749883 PMCID: PMC11387141 DOI: 10.1016/j.tem.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 09/12/2024]
Abstract
Body composition impacts female fertility and there are established relationships between adipose tissue and the reproductive system. Maintaining functional adipose tissue is vital for meeting the energetic demands during the reproductive process, from ovulation to delivery and lactation. White adipose tissue (WAT) shows plastic responses to daily physiology and secretes diverse adipokines that affect the hypothalamic-pituitary-ovarian axis, but many other interorgan interactions remain to be determined. This review summarizes the current state of research on the dialogue between WAT and the female reproductive system, focusing on the impact of this crosstalk on ovarian and endometrial factors essential for fecundity.
Collapse
Affiliation(s)
- Elizabeth S Anaya
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Evelyn L de Groot
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie A Pangas
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Hasan S, Ghani N, Zhao X, Good J, Huang A, Wrona HL, Liu J, Liu CJ. Dietary pyruvate targets cytosolic phospholipase A2 to mitigate inflammation and obesity in mice. Protein Cell 2024; 15:661-685. [PMID: 38512816 PMCID: PMC11365557 DOI: 10.1093/procel/pwae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Obesity has a multifactorial etiology and is known to be a state of chronic low-grade inflammation, known as meta-inflammation. This state is associated with the development of metabolic disorders such as glucose intolerance and nonalcoholic fatty liver disease. Pyruvate is a glycolytic metabolite and a crucial node in various metabolic pathways. However, its role and molecular mechanism in obesity and associated complications are obscure. In this study, we reported that pyruvate substantially inhibited adipogenic differentiation in vitro and its administration significantly prevented HFD-induced weight gain, white adipose tissue inflammation, and metabolic dysregulation. To identify the target proteins of pyruvate, drug affinity responsive target stability was employed with proteomics, cellular thermal shift assay, and isothermal drug response to detect the interactions between pyruvate and its molecular targets. Consequently, we identified cytosolic phospholipase A2 (cPLA2) as a novel molecular target of pyruvate and demonstrated that pyruvate restrained diet-induced obesity, white adipose tissue inflammation, and hepatic steatosis in a cPLA2-dependent manner. Studies with global ablation of cPLA2 in mice showed that the protective effects of pyruvate were largely abrogated, confirming the importance of pyruvate/cPLA2 interaction in pyruvate attenuation of inflammation and obesity. Overall, our study not only establishes pyruvate as an antagonist of cPLA2 signaling and a potential therapeutic option for obesity but it also sheds light on the mechanism of its action. Pyruvate's prior clinical use indicates that it can be considered a safe and viable alternative for obesity, whether consumed as a dietary supplement or as part of a regular diet.
Collapse
Affiliation(s)
- Sadaf Hasan
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Nabil Ghani
- Department of Medicine, Division of Internal Medicine, Saint Peter’s University Hospital, Rutgers University, New Brunswick, NJ 08901, United States
| | - Xiangli Zhao
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Julia Good
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Amanda Huang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Cornell University, Ithaca, New York, NY, United States
| | - Hailey Lynn Wrona
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Biomedical Engineering, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jody Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- New York University, NY 14853, United States
| | - Chuan-ju Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, United States
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
21
|
Steiner BM, Benvie AM, Lee D, Jiang Y, Berry DC. Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner. Nat Commun 2024; 15:6622. [PMID: 39103342 PMCID: PMC11300861 DOI: 10.1038/s41467-024-50985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Sex steroids modulate the distribution of mammalian white adipose tissues. Moreover, WAT remodeling requires adipocyte progenitor cells. Nevertheless, the sex-dependent mechanisms regulating adipocyte progenitors remain undetermined. Here, we uncover Cxcr4 acting in a sexually dimorphic manner to affect a pool of proliferating cells leading to restriction of female fat mass. We find that deletion of Cxcr4 in Pparγ-expressing cells results in female, not male, lipodystrophy, which cannot be restored by high-fat diet consumption. Additionally, Cxcr4 deletion is associated with a loss of a pool of proliferating adipocyte progenitors. Cxcr4 loss is accompanied by the upregulation of estrogen receptor alpha in adipose-derived PPARγ-labelled cells related to estradiol hypersensitivity and stalled adipogenesis. Estrogen removal or administration of antiestrogens restores WAT accumulation and dynamics of adipose-derived cells in Cxcr4-deficient mice. These findings implicate Cxcr4 as a female adipogenic rheostat, which may inform strategies to target female adiposity.
Collapse
Affiliation(s)
- Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Cai J, Quan Y, Zhu S, Jiayan Lin, Zhang Q, Liu J, Liang Z, Liao Y, Jiang W, He Y, Su T, Lu F. The browning and mobilization of subcutaneous white adipose tissue supports efficient skin repair. Cell Metab 2024; 36:1287-1301.e7. [PMID: 38838641 DOI: 10.1016/j.cmet.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/05/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Adipocytes in dermis are considered to be important participants in skin repair and regeneration, but the role of subcutaneous white adipose tissue (sWAT) in skin repair is poorly understood. Here, we revealed the dynamic changes of sWAT during wound healing process. Lineage-tracing mouse studies revealed that sWAT would enter into the large wound bed and participate in the formation of granulation tissue. Moreover, sWAT undergoes beiging after skin injury. Inhibition of sWAT beiging by genetically silencing PRDM16, a key regulator to beiging, hindered wound healing process. The transcriptomics results suggested that beige adipocytes in sWAT abundantly express neuregulin 4 (NRG4), which regulated macrophage polarization and the function of myofibroblasts. In diabetic wounds, the beiging of sWAT was significantly suppressed. Thus, adipocytes from sWAT regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.
Collapse
Affiliation(s)
- Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Yuping Quan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Shaowei Zhu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Jiayan Lin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Juzi Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Zhuokai Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Yufei He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, P.R. China.
| |
Collapse
|
23
|
Arumugam M, Tovar EA, Essenburg CJ, Dischinger PS, Beddows I, Wolfrum E, Madaj ZB, Turner L, Feenstra K, Gallik KL, Cohen L, Nichols M, Sheridan RTC, Esquibel CR, Mouneimne G, Graveel CR, Steensma MR. Nf1 deficiency modulates the stromal environment in the pretumorigenic rat mammary gland. Front Cell Dev Biol 2024; 12:1375441. [PMID: 38799507 PMCID: PMC11116614 DOI: 10.3389/fcell.2024.1375441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Background Neurofibromin, coded by the NF1 tumor suppressor gene, is the main negative regulator of the RAS pathway and is frequently mutated in various cancers. Women with Neurofibromatosis Type I (NF1)-a tumor predisposition syndrome caused by a germline NF1 mutation-have an increased risk of developing aggressive breast cancer with poorer prognosis. The mechanism by which NF1 mutations lead to breast cancer tumorigenesis is not well understood. Therefore, the objective of this work was to identify stromal alterations before tumor formation that result in the increased risk and poorer outcome seen among NF1 patients with breast cancer. Approach To accurately model the germline monoallelic NF1 mutations in NF1 patients, we utilized an Nf1-deficient rat model with accelerated mammary development before presenting with highly penetrant breast cancer. Results We identified increased collagen content in Nf1-deficient rat mammary glands before tumor formation that correlated with age of tumor onset. Additionally, gene expression analysis revealed that Nf1-deficient mature adipocytes in the rat mammary gland have increased collagen expression and shifted to a fibroblast and preadipocyte expression profile. This alteration in lineage commitment was also observed with in vitro differentiation, however, flow cytometry analysis did not show a change in mammary adipose-derived mesenchymal stem cell abundance. Conclusion Collectively, this study uncovered the previously undescribed role of Nf1 in mammary collagen deposition and regulating adipocyte differentiation. In addition to unraveling the mechanism of tumor formation, further investigation of adipocytes and collagen modifications in preneoplastic mammary glands will create a foundation for developing early detection strategies of breast cancer among NF1 patients.
Collapse
Affiliation(s)
- Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Elizabeth A. Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Curt J. Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Patrick S. Dischinger
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Ian Beddows
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Emily Wolfrum
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Zach B. Madaj
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Lisa Turner
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Kristin Feenstra
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Kristin L. Gallik
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Lorna Cohen
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Madison Nichols
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | | | - Corinne R. Esquibel
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Carrie R. Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Matthew R. Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
- Helen DeVos Children’s Hospital, Spectrum Health System, Grand Rapids, MI, United States
- Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
24
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
25
|
Chiang YTT, Kassotis CD. Molecular Assessment of Proadipogenic Effects for Common-Use Contraceptives and Their Mixtures. Endocrinology 2024; 165:bqae050. [PMID: 38648498 PMCID: PMC11081078 DOI: 10.1210/endocr/bqae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Hormonal contraceptives are widely prescribed due to their effectiveness and convenience and have become an integral part of family planning strategies worldwide. In the United States, approximately 65% of reproductive-aged women are estimated to be using contraceptive options, with approximately 33% using one or a combination of hormonal contraceptives. While these methods have undeniably contributed to improved reproductive health, recent studies have raised concerns regarding their potential effect on metabolic health. Despite widespread anecdotal reports, epidemiological research has been mixed as to whether hormonal contraceptives contribute to metabolic health effects. As such, the goals of this study were to assess the adipogenic activity of common hormonal contraceptive chemicals and their mixtures. Five different models of adipogenesis were used to provide a rigorous assessment of metabolism-disrupting effects. Interestingly, every individual contraceptive (both estrogens and progestins) and each mixture promoted significant adipogenesis (eg, triglyceride accumulation and/or preadipocyte proliferation). These effects appeared to be mediated in part through estrogen receptor signaling, particularly for the contraceptive mixtures, as cotreatment with fulvestrant acted to inhibit contraceptive-mediated proadipogenic effects on triglyceride accumulation. In conclusion, this research provides valuable insights into the complex interactions between hormonal contraceptives and adipocyte development. The results suggest that both progestins and estrogens within these contraceptives can influence adipogenesis, and the specific effects may vary based on the receptor disruption profiles. Further research is warranted to establish translation of these findings to in vivo models and to further assess causal mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yu-Ting Tiffany Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
26
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Lee MJ, Kim J. The pathophysiology of visceral adipose tissues in cardiometabolic diseases. Biochem Pharmacol 2024; 222:116116. [PMID: 38460909 PMCID: PMC11407912 DOI: 10.1016/j.bcp.2024.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Central pattern of fat distribution, especially fat accumulation within the intraabdominal cavity increases risks for cardiometabolic diseases. Portal hypothesis combined with a pathological remodeling in visceral fat is considered the major etiological factor explaining the independent contribution of visceral obesity to cardiometabolic diseases. Excessive remodeling in visceral fat during development of obesity leads to dysfunctions in the depot, characterized by hypertrophy and death of adipocytes, hypoxia, inflammation, and fibrosis. Dysfunctional visceral fat secretes elevated levels of fatty acids, glycerol, and proinflammatory and profibrotic cytokines into the portal vein directly impacting the liver, the central regulator of systemic metabolism. These metabolic and endocrine products induce ectopic fat accumulation, insulin resistance, inflammation, and fibrosis in the liver, which in turn causes or exacerbates systemic metabolic derangements. Elucidation of underlying mechanisms that lead to the pathological remodeling and higher degree of dysfunctions in visceral adipose tissue is therefore, critical for the development of therapeutics to prevent deleterious sequelae in obesity. We review depot differences in metabolic and endocrine properties and expendabilities as well as underlying mechanisms that contribute to the pathophysiological aspects of visceral adiposity in cardiometabolic diseases. We also discuss impacts of different weight loss interventions on visceral adiposity and cardiometabolic diseases.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Hawaii 96822, USA.
| | - Jeehoon Kim
- Department of Sociology, Social Work, and Criminology, Idaho State University, Idaho 83209, USA
| |
Collapse
|
28
|
Zeng Q, Song J, Sun X, Wang D, Liao X, Ding Y, Hu W, Jiao Y, Mai W, Aini W, Wang F, Zhou H, Xie L, Mei Y, Tang Y, Xie Z, Wu H, Liu W, Deng T. A negative feedback loop between TET2 and leptin in adipocyte regulates body weight. Nat Commun 2024; 15:2825. [PMID: 38561362 PMCID: PMC10985112 DOI: 10.1038/s41467-024-46783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Ten-eleven translocation (TET) 2 is an enzyme that catalyzes DNA demethylation to regulate gene expression by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, functioning as an essential epigenetic regulator in various biological processes. However, the regulation and function of TET2 in adipocytes during obesity are poorly understood. In this study, we demonstrate that leptin, a key adipokine in mammalian energy homeostasis regulation, suppresses adipocyte TET2 levels via JAK2-STAT3 signaling. Adipocyte Tet2 deficiency protects against high-fat diet-induced weight gain by reducing leptin levels and further improving leptin sensitivity in obese male mice. By interacting with C/EBPα, adipocyte TET2 increases the hydroxymethylcytosine levels of the leptin gene promoter, thereby promoting leptin gene expression. A decrease in adipose TET2 is associated with obesity-related hyperleptinemia in humans. Inhibition of TET2 suppresses the production of leptin in mature human adipocytes. Our findings support the existence of a negative feedback loop between TET2 and leptin in adipocytes and reveal a compensatory mechanism for the body to counteract the metabolic dysfunction caused by obesity.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yayi Jiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wuqian Mai
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wufuer Aini
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fanqi Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hui Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ying Mei
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yuan Tang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
29
|
Yao T, Wei D, Tian X, Zhao L, Wan Q, Zhang X, Cai J, Li S, Diao B, Feng S, Shan B, Shao M, Wu Y. PDGFRβ + cell HIF2α is dispensable for white adipose tissue metabolic remodeling and hepatic lipid accumulation in obese mice. Lipids Health Dis 2024; 23:81. [PMID: 38509584 PMCID: PMC10953078 DOI: 10.1186/s12944-024-02069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRβ + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRβ + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRβ + cells remains undetermined in vivo. METHODS New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRβ + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRβ + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRβ + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRβ + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRβ + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRβ + cell Epas1-deficient mice. CONCLUSION The new findings in this study support that, in contrast to HIF1α, PDGFRβ + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.
Collapse
Affiliation(s)
- Tao Yao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Danni Wei
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Tian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiangyou Wan
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Zhang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Juan Cai
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Siqi Li
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Diao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Suihan Feng
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bo Shan
- Cancer Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengle Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
30
|
Lin W, Wall JD, Li G, Newman D, Yang Y, Abney M, VandeBerg JL, Olivier M, Gilad Y, Cox LA. Genetic regulatory effects in response to a high-cholesterol, high-fat diet in baboons. CELL GENOMICS 2024; 4:100509. [PMID: 38430910 PMCID: PMC10943580 DOI: 10.1016/j.xgen.2024.100509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWASs), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using non-human primate models.
Collapse
Affiliation(s)
- Wenhe Lin
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Deborah Newman
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Yunqi Yang
- Committee on Genetics, Genomics and System Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura A Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA.
| |
Collapse
|
31
|
Romaní-Pérez M, Bullich-Vilarrubias C, López-Almela I, Sanz Y. The Ablation of Sensory Neurons Expressing the Nav1.8 Sodium Channel Improves Glucose Homeostasis and Amplifies the GLP-1 Signaling in Obese Female Mice. Mol Nutr Food Res 2024; 68:e2300474. [PMID: 38038153 DOI: 10.1002/mnfr.202300474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/16/2023] [Indexed: 12/02/2023]
Abstract
SCOPE Sensory neurons expressing the sodium channel Nav1.8 contain a repertoire of receptors for nutrient, hormonal, and inflammatory ligands. However, their function in key regulators of energy homeostasis control is not well understood and is completely unexplored in females. METHODS AND RESULTS Mice lacking neurons expressing the sodium channel Nav1.8 were generated using an ablation strategy based on cre recombinase-mediated expression of diphtheria toxin fragment A (DTA) (Nav1.8-cre/DTA mice) to investigate whether these neurons modulate body weight, food intake, gut hormone secretion, gastrointestinal transit, and glucose tolerance in response to nutrient challenges in a sex-dependent manner. Male Nav1.8-cre/DTA mice show resistance to gain weight in response to high-fat high-sugar diet (HFHSD), whereas females lacking Nav1.8+ neurons have improved oral glucose tolerance accompanied by higher insulin levels and attenuated glucagon secretion after an oral glucose load. Female Nav1.8-cre/DTA mice also show higher fasting and postprandial glucagon like peptide-1 (GLP-1) levels with an increased number of GLP-1-positive cells. Finally, ablation of Nav1.8-expressing neurons accelerates the gastrointestinal transit in female mice under HFHSD. CONCLUSION This data demonstrates sex-dependent differences in the Nav1.8-mediated regulation of energy metabolism, and provides new insights that may help in the design of sex-specific neuromodulation therapies for metabolic disorders induced by diets rich in fats and simple sugars.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
32
|
Benvie AM, Lee D, Jiang Y, Berry DC. Platelet-derived growth factor receptor beta is required for embryonic specification and confinement of the adult white adipose lineage. iScience 2024; 27:108682. [PMID: 38235323 PMCID: PMC10792241 DOI: 10.1016/j.isci.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrβ) in identifying the adult APC lineage. Without Pdgfrβ, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrβ is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrβ activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrβ acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Van Stiphout CM, Kelly G, Pallegar NK, Elbakry E, Vilchis-Celis AV, Christian SL, Viloria-Petit AM. Identification of lysyl oxidase as an adipocyte-secreted mediator that promotes a partial mesenchymal-to-epithelial transition in MDA-MB-231 cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1-19. [PMID: 38468823 PMCID: PMC10927314 DOI: 10.37349/etat.2024.00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 03/13/2024] Open
Abstract
Aim Breast cancer (BC) is the most common cancer in women worldwide, where adiposity has been linked to BC morbidity. In general, obese premenopausal women diagnosed with triple-negative BC (TNBC) tend to have larger tumours with more metastases, particularly to the bone marrow, and worse prognosis. Previous work using a 3-dimensional (3D) co-culture system consisting of TNBC cells, adipocytes and the laminin-rich extracellular matrix (ECM) trademarked as Matrigel, demonstrated that adipocytes and adipocyte-derived conditioned media (CM) caused a partial mesenchymal-to-epithelial transition (MET). Given that MET has been associated with secondary tumour formation, this study sought to identify molecular mediators responsible for this phenotypic change. Methods Adipocytes were cultured with and without Matrigel, where semi-quantitative proteomics was used to identify proteins whose presence in the CM was induced or enhanced by Matrigel, which were referred to as adipocyte-secreted ECM-induced proteins (AEPs). The AEPs identified were assessed for association with prognosis in published proteomic datasets and prior literature. Of these, 4 were evaluated by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), followed by a functional and MET marker analysis of 1 AEP on MDA-MB-231 cells grown on Matrigel or as monolayers. Results The 4 AEPs showed a positive correlation between protein expression and poor prognosis. RT-qPCR analysis reported no significant change in AEPs mRNA expression. However, lysyl oxidase (LOX) was increased in CM of ECM-exposed adipocytes. Recombinant LOX (rLOX) caused the mesenchymal MDA-MB-231 TNBC cells to form less branched 3D structures and reduced the expression of vimentin. Conclusions The data suggest that adipocyte-secreted LOX changes the mesenchymal phenotype of BC cells in a manner that could promote secondary tumour formation, particularly at sites high in adipocytes such as the bone marrow. Future efforts should focus on determining whether targeting LOX could reduce BC metastasis in obese individuals.
Collapse
Affiliation(s)
- Cassidy M. Van Stiphout
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant Kelly
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Nikitha K. Pallegar
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Eman Elbakry
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Ana Valeria Vilchis-Celis
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Morphology, National Polytechnic Institute, Mexico City, CDMX 07738, Mexico
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Alicia M. Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
34
|
Felix JB, Saha PK, de Groot E, Tan L, Sharp R, Anaya ES, Li Y, Quang H, Saidi N, Abushamat L, Ballantyne CM, Amos CI, Lorenzi PL, Klein S, Gao X, Hartig SM. N-acetylaspartate from fat cells regulates postprandial body temperature. RESEARCH SQUARE 2024:rs.3.rs-3835159. [PMID: 38260478 PMCID: PMC10802732 DOI: 10.21203/rs.3.rs-3835159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
N-acetylaspartate (NAA), the brain's second most abundant metabolite, provides essential substrates for myelination through its hydrolysis. However, activities and physiological roles of NAA in other tissues remain unknown. Here, we show aspartoacylase (ASPA) expression in white adipose tissue (WAT) governs systemic NAA levels for postprandial body temperature regulation. Proteomics and mass spectrometry revealed NAA accumulation in WAT of Aspa knockout mice stimulated the pentose phosphate pathway and pyrimidine production. Stable isotope tracing confirmed higher incorporation of glucose-derived carbon into pyrimidine metabolites in Aspa knockout cells. Additionally, serum NAA positively correlates with the pyrimidine intermediate orotidine and this relationship predicted lower body mass index in humans. Using whole-body and tissue-specific knockout mouse models, we demonstrate that fat cells provided plasma NAA and suppressed postprandial body temperature elevation. Furthermore, exogenous NAA supplementation reduced body temperature. Our study unveils WAT-derived NAA as an endocrine regulator of postprandial body temperature and physiological homeostasis.
Collapse
Affiliation(s)
- Jessica B. Felix
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Pradip K. Saha
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Evelyn de Groot
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Elizabeth S. Anaya
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holly Quang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Nooshin Saidi
- Data Sciences Program, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Layla Abushamat
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Xia Gao
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Thomas NS, Scalzo RL, Wellberg EA. Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy. Nat Rev Endocrinol 2024; 20:16-26. [PMID: 37783846 PMCID: PMC11487546 DOI: 10.1038/s41574-023-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Breast cancer is the most common invasive malignancy in the world, with millions of survivors living today. Type 2 diabetes mellitus (T2DM) is also a globally prevalent disease that is a widely studied risk factor for breast cancer. Most breast tumours express the oestrogen receptor and are treated with systemic therapies designed to disrupt oestrogen-dependent signalling. Since the advent of targeted endocrine therapy six decades ago, the mortality from breast cancer has steadily declined; however, during the past decade, an elevated risk of T2DM after breast cancer treatment has been reported, particularly for those who received endocrine therapy. In this Review, we highlight key events in the history of endocrine therapies, beginning with the development of tamoxifen. We also summarize the sequence of reported adverse metabolic effects, which include dyslipidaemia, hepatic steatosis and impaired glucose tolerance. We discuss the limitations of determining a causal role for breast cancer treatments in T2DM development from epidemiological data and describe informative preclinical studies that suggest complex mechanisms through which endocrine therapy might drive T2DM risk and progression. We also reinforce the life-saving benefits of endocrine therapy and highlight the need for better predictive biomarkers of T2DM risk and preventive strategies for the growing population of breast cancer survivors.
Collapse
Affiliation(s)
- Nisha S Thomas
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA.
| |
Collapse
|
36
|
Lecoutre S, Maqdasy S, Lambert M, Breton C. The Impact of Maternal Obesity on Adipose Progenitor Cells. Biomedicines 2023; 11:3252. [PMID: 38137473 PMCID: PMC10741630 DOI: 10.3390/biomedicines11123252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of Developmental Origin of Health and Disease (DOHaD) postulates that adult-onset metabolic disorders may originate from suboptimal conditions during critical embryonic and fetal programming windows. In particular, nutritional disturbance during key developmental stages may program the set point of adiposity and its associated metabolic diseases later in life. Numerous studies in mammals have reported that maternal obesity and the resulting accelerated growth in neonates may affect adipocyte development, resulting in persistent alterations in adipose tissue plasticity (i.e., adipocyte proliferation and storage) and adipocyte function (i.e., insulin resistance, impaired adipokine secretion, reduced thermogenesis, and higher inflammation) in a sex- and depot-specific manner. Over recent years, adipose progenitor cells (APCs) have been shown to play a crucial role in adipose tissue plasticity, essential for its development, maintenance, and expansion. In this review, we aim to provide insights into the developmental timeline of lineage commitment and differentiation of APCs and their role in predisposing individuals to obesity and metabolic diseases. We present data supporting the possible implication of dysregulated APCs and aberrant perinatal adipogenesis through epigenetic mechanisms as a primary mechanism responsible for long-lasting adipose tissue dysfunction in offspring born to obese mothers.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, F-75013 Paris, France
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mélanie Lambert
- U978 Institut National de la Santé et de la Recherche Médicale, F-93022 Bobigny, France;
- Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, F-93000 Bobigny, France
| | - Christophe Breton
- Maternal Malnutrition and Programming of Metabolic Diseases, Université de Lille, EA4489, F-59000 Lille, France
- U1283-UMR8199-EGID, Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
37
|
León-Ramírez YMD, Sánchez EP, Pérez AC, Sánchez-Solís CN, Rodríguez-Antolín J, Nicolás-Toledo L. Dietary intervention in adult rats exposed to a high-sugar diet early in life permanently impairs sperm quality. ANNALES D'ENDOCRINOLOGIE 2023; 84:779-789. [PMID: 37343721 DOI: 10.1016/j.ando.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Childhood obesity predicts the presence of adult obesity. Obesity is associated with poor sperm quality. We hypothesized that exposure to a high-sugar diet (HSD) in early life would cause permanent histomorphology damage to the testes, resulting in reduced sperm quality in adult life. Wistar rats (aged 21days) were divided into four groups (n=6). In the first experiment, the rats received tap water (control) and a 30% sucrose diet for two months (S30). In the second experiment, the control and 30% sucrose diets were fed for two months, followed by replacement with tap water for two months (IS30). Eating and drinking were monitored. Animals were then euthanized, visceral and gonadal fat tissue and testes were collected, and epididymal spermatozoa were excised. Testicular samples were used for morphological description by H&E staining and for quantifying triacylglycerol content, caspase activity, and oxidative stress. Serum testosterone concentration was evaluated. Spermatozoa were used to assess sperm quality. Our results show that sperm quality was impaired by consuming HSD and could not be restored by dietary intervention. HSD feeding induced hyperplasia of visceral adipose tissue, increased testicular weight, and serum testosterone levels. The dietary intervention increased visceral adipose tissue, serum, and testicular triacylglycerol levels and normalized serum testosterone levels. Overall, the HSD diet caused permanent changes in seminiferous tubule cross-sectional area, caspase activity, oxidative stress, and sperm quality. Therefore, a high-sugar diet in early life causes permanent damage to sperm quality in adulthood.
Collapse
Affiliation(s)
- Yeimy Mar De León-Ramírez
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México; Licenciatura en Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Eliut Pérez Sánchez
- Licenciatura en Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Adriana Corona Pérez
- Licenciatura en Nutrición, Unidad Académica Multidisciplinaria Calpulalpan, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Cristhian Neftaly Sánchez-Solís
- Licenciatura en Nutrición, Unidad Académica Multidisciplinaria Calpulalpan, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| |
Collapse
|
38
|
Fryklund C, Neuhaus M, Stenkula KG. Adipocyte traits limiting cellular insulin responsiveness and glucose transport. Am J Physiol Endocrinol Metab 2023; 325:E682-E687. [PMID: 37877798 PMCID: PMC10874650 DOI: 10.1152/ajpendo.00291.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
Adipocyte dysfunction is a hallmark of systemic insulin resistance. Insulin-responsive glucose transporter 4 (GLUT4) is downregulated in the insulin resistant state, and cellular insulin responsiveness varies depending on fat depot origin and degree of adipose expansion. Here, we have resolved factors limiting cellular insulin responsiveness, by examining adipocyte function and traits related to glucose transport at the cellular level. Subcutaneous (inguinal) and visceral (epididymal) adipocytes were isolated from C57BL/6J mice fed either chow or high-fat diet. Cell size was determined using coulter counter method, glucose uptake and cytosolic volume were assessed using glucose tracer assays. Total and GLUT4 protein content expressions were determined by Western blot. We found that basal glucose uptake per cell was preserved independent of diet or fat depot origin. Insulin-stimulated glucose uptake per cell was sustained in visceral adipocytes but decreased with adipose expansion in subcutaneous adipocytes. In parallel, the cytosolic space and total protein increased proportionally to total cellular volumetric expansion in visceral, but not in subcutaneous, adipocytes, whereas GLUT4 content decreased exclusively in expanding subcutaneous adipocytes. Together, these data support the existence of distinct phenotypic adipocyte traits that could limit cellular insulin responsiveness. Potentially, these characteristics account for fat depot-specific differences related to glucose transport capacity.NEW & NOTEWORTHY This work illustrates that adipocyte characteristics related to fat depot origin rather than adipocyte size per se limit cellular insulin responsiveness and glucose uptake in male C57BL/6J mice. These findings contribute to the overall understanding of factors limiting adipocyte function and how adipose progression affects insulin response and glucose transport capacity differently in diverse fat depots. Future studies examining whether the proposed characteristics hold true in adipocytes derived from female mice or human origin are needed.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Verde L, Camajani E, Annunziata G, Sojat A, Marina LV, Colao A, Caprio M, Muscogiuri G, Barrea L. Ketogenic Diet: A Nutritional Therapeutic Tool for Lipedema? Curr Obes Rep 2023; 12:529-543. [PMID: 37924422 DOI: 10.1007/s13679-023-00536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the current evidence on the efficacy, also considering the anti-inflammatory properties and safety of very low-calorie ketogenic diet (VLCKD) as a potential treatment for lipedema, particularly in the context of obesity. RECENT FINDINGS Lipedema is a chronic disease characterized by abnormal and painful fat buildup on the legs and/or arms. It is often misdiagnosed as obesity or lymphedema. However, although lipedema and obesity can coexist, unlike obesity, lipedema usually affects the legs and thighs without affecting the feet or hands, and the abnormal deposition of adipose tissue in lipedema is painful. The current lifestyle interventions are often unsuccessful in the management of lipedema. There is no consensus on the most effective nutritional approach for managing lipedema. Recent studies have suggested that VLCKD may be an effective treatment for lipedema, demonstrating that it is also superior to other nutritional approaches such as Mediterranean diet or intermittent fasting. Lipedema is a chronic and debilitating disease characterized by abnormal and painful accumulation of adipose tissue in the legs. VLCKD has been shown to be an effective treatment for lipedema, especially in the context of obesity, due to its anti-inflammatory properties. However, further research is needed to determine the long-term safety and efficacy of VLCKD as a treatment for lipedema.
Collapse
Affiliation(s)
- Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
| | - Giuseppe Annunziata
- Department of Experimental Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Antoanstefan Sojat
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ljiljana V Marina
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy.
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy
| |
Collapse
|
40
|
Jiang Y, Zhang R, Guo JQ, Qian LL, Ji JJ, Wu Y, Ji ZJ, Yang ZW, Zhang Y, Chen X, Ma GS, Yao YY. Identification of major hub genes involved in high-fat diet-induced obese visceral adipose tissue based on bioinformatics approach. Adipocyte 2023; 12:2169227. [PMID: 36654490 PMCID: PMC9897782 DOI: 10.1080/21623945.2023.2169227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High-fat diet (HFD) can cause obesity, inducing dysregulation of the visceral adipose tissue (VAT). This study aimed to explore potential biological pathways and hub genes involved in obese VAT, and for that, bioinformatic analysis of multiple datasets was performed. The expression profiles (GSE30247, GSE167311 and GSE79434) were downloaded from Gene Expression Omnibus. Overlapping differentially expressed genes (ODEGs) between normal diet and HFD groups in GSE30247 and GSE167311 were selected to run protein-protein interaction network, GO and KEGG analysis. The hub genes in ODEGs were screened by Cytoscape software and further verified in GSE79434 and obese mouse model. A total of 747 ODEGs (599 up-regulated and 148 down-regulated) were screened, and the GO and KEGG analysis showed that the up-regulated ODEGs were significantly enriched in inflammatory response and extracellular matrix receptor interaction pathways. On the other hand, the down-regulated ODEGs were involved in metabolic pathways; however, there were no significant KEGG pathways. Furthermore, six hub genes, Mki67, Rac2, Itgb2, Emr1, Tyrobp and Csf1r were acquired. These pathways and genes were verified in GSE79434 and VAT of obese mice. This study revealed that HFD induced VAT expansion, inflammation and fibrosis, and the hub genes could be used as therapeutic biomarkers in obesity.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Ling-Lin Qian
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, P. R. China
| | - Jing-Jing Ji
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Zhen-Jun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Zi-Wei Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Xi Chen
- Department of Cardiology, Anqing First People’s Hospital of Anhui Province, Anqing, P. R. China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China,CONTACT Yu-Yu Yao Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing210009, Jiangsu, P. R. China
| |
Collapse
|
41
|
Li S, Liao Z, He K, Shen Y, Hu S, Li Z. Association of sex-specific abdominal adipose tissue with WHO/ISUP grade in clear cell renal cell carcinoma. Insights Imaging 2023; 14:194. [PMID: 37980639 PMCID: PMC10657923 DOI: 10.1186/s13244-023-01494-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 11/21/2023] Open
Abstract
OBJECTIVES To explore the association between computed tomography (CT)-measured sex-specific abdominal adipose tissue and the pathological grade of clear cell renal cell carcinoma (ccRCC). METHODS This retrospective study comprised 560 patients (394 males and 166 females) with pathologically proven ccRCC (467 low- and 93 high-grade). Abdominal CT images were used to assess the adipose tissue in the subcutaneous, visceral, and intermuscular regions. Subcutaneous fat index (SFI), visceral fat index (VFI), intermuscular fat index (IFI), total fat index (TFI), and relative visceral adipose tissue (rVAT) were calculated. Univariate and multivariate logistic regression analyses were performed according to sex to identify the associations between fat-related parameters and pathological grade. RESULTS IFI was significantly higher in high-grade ccRCC patients than in low-grade patients for both men and women. For male patients with high-grade tumors, the SFI, VFI, TFI, and rVAT were significantly lower, but not for female patients. In both univariate and multivariate studies, the IFI continued to be a reliable and independent predictor of high-grade ccRCC, regardless of sex. CONCLUSIONS Intermuscular fat index proved to be a valuable biomarker for the pathological grade of ccRCC and could be used as a reliable independent predictor of high-grade ccRCC for both males and females. CRITICAL RELEVANCE STATEMENT Sex-specific fat adipose tissue can be used as a new biomarker to provide a new dimension for renal tumor-related research and may provide new perspectives for personalized tumor management decision-making approaches. KEY POINTS • There are sex differences in distribution of subcutaneous fat and visceral fat. • The SFI, VFI, TFI, and rVAT were significantly lower in high-grade ccRCC male patients, but not for female patients. • Intermuscular fat index can be used as a reliable independent predictor of high-grade ccRCC for both males and females.
Collapse
Affiliation(s)
- Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhouyan Liao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Hu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Hirakawa H, Gao L, Tavakol DN, Vunjak-Novakovic G, Ding L. Cellular plasticity of the bone marrow niche promotes hematopoietic stem cell regeneration. Nat Genet 2023; 55:1941-1952. [PMID: 37857934 DOI: 10.1038/s41588-023-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Hematopoietic stem cells (HSCs) regenerate after myeloablation, a procedure that adversely disrupts the bone marrow and drives leptin receptor-expressing cells, a key niche component, to differentiate extensively into adipocytes. Regeneration of the bone marrow niche is associated with the resolution of adipocytes, but the mechanisms remain poorly understood. Using Plin1-creER knock-in mice, we followed the fate of adipocytes in the regenerating niche in vivo. We found that bone marrow adipocytes were highly dynamic and dedifferentiated to leptin receptor-expressing cells during regeneration after myeloablation. Bone marrow adipocytes could give rise to osteolineage cells after skeletal injury. The cellular fate of steady-state bone marrow adipocytes was also plastic. Deletion of adipose triglyceride lipase (Atgl) from bone marrow stromal cells, including adipocytes, obstructed adipocyte dedifferentiation and led to severely compromised regeneration of HSCs as well as impaired B lymphopoiesis after myeloablation, but not in the steady state. Thus, the regeneration of HSCs and their niche depends on the cellular plasticity of bone marrow adipocytes.
Collapse
Affiliation(s)
- Hiroyuki Hirakawa
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Longfei Gao
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel Naveed Tavakol
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, New York, NY, USA.
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
43
|
Jung BC, You D, Lee I, Li D, Schill RL, Ma K, Pi A, Song Z, Mu WC, Wang T, MacDougald OA, Banks AS, Kang S. TET3 plays a critical role in white adipose development and diet-induced remodeling. Cell Rep 2023; 42:113196. [PMID: 37777963 PMCID: PMC10763978 DOI: 10.1016/j.celrep.2023.113196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Maintaining healthy adipose tissue is crucial for metabolic health, requiring a deeper understanding of adipocyte development and response to high-calorie diets. This study highlights the importance of TET3 during white adipose tissue (WAT) development and expansion. Selective depletion of Tet3 in adipose precursor cells (APCs) reduces adipogenesis, protects against diet-induced adipose expansion, and enhances whole-body metabolism. Transcriptomic analysis of wild-type and Tet3 knockout (KO) APCs unveiled TET3 target genes, including Pparg and several genes linked to the extracellular matrix, pivotal for adipogenesis and remodeling. DNA methylation profiling and functional studies underscore the importance of DNA demethylation in gene regulation. Remarkably, targeted DNA demethylation at the Pparg promoter restored its transcription. In conclusion, TET3 significantly governs adipogenesis and diet-induced adipose expansion by regulating key target genes in APCs.
Collapse
Affiliation(s)
- Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ikjun Lee
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MO, USA
| | - Katherine Ma
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Anna Pi
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Zehan Song
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Wei-Chieh Mu
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MO, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
44
|
Tang T, Jiang G, Shao J, Wang M, Zhang X, Xia S, Sun W, Jia X, Wang J, Lai S. lncRNA MSTRG4710 Promotes the Proliferation and Differentiation of Preadipocytes through miR-29b-3p/IGF1 Axis. Int J Mol Sci 2023; 24:15715. [PMID: 37958699 PMCID: PMC10649235 DOI: 10.3390/ijms242115715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity, a major global health issue, is increasingly associated with the integral role of long non-coding RNA (lncRNA) in adipogenesis. Recently, we found that lncRNA-MSTRG4710 was highly expressed in the liver of rabbits fed a high-fat diet, but whether it is involved in lipid metabolism remains unclear. A series of experiments involving CCK-8, EDU, qPCR, and Oil Red O staining demonstrated that the overexpression of MSTRG4710 stimulated the proliferation and differentiation of preadipocytes while its knockdown inhibited these processes. Bioinformatics analysis showed that miR-29b-3p was a potential target gene of MSTRG4710, and IGF1 was a downstream target gene of miR-29b-3p. Luciferase reporter gene analysis and qPCR analysis confirmed that miR-29b-3p was a potential target gene of MSTRG4710, and miR-29b-3p directly targeted the 3'UTR of IGF1. The overexpression of miR-29b-3p was observed to regulate IGF1 protein and mRNA levels negatively. Additionally, a total of 414 known differentially expressed genes between the miR-29b-3p mimic, miR-29b-3p negative control (NC), siMSTRG4710, and siMSTRG4710-NC group were screened via transcriptome sequencing technology. The GO- and KEGG-enriched pathways were found to be related to lipid metabolism. The study also established that miR-29b-3p targets IGF1 to inhibit preadipocyte proliferation and differentiation. Notably, IGF1 knockdown significantly reduced preadipocyte proliferation and differentiation. Furthermore, co-transfection of pcDNA3.1(+)-MSTRG4710 and mimics into rabbit preadipocytes revealed that the mimics reversed the promotional effect of pcDNA3.1(+)-MSTRG4710. In conclusion, these results uncover that MSTRG4710 positively regulated cell proliferation and adipogenesis by the miR-29b-3p/IGF1 axis. Our findings might provide a new target for studying adipogenesis in rabbit preadipocytes and obesity.
Collapse
Affiliation(s)
- Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxiao Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China (J.W.)
| |
Collapse
|
45
|
Singh P, Ali SA. Mature white adipocyte plasticity during mammary gland remodelling and cancer. CELL INSIGHT 2023; 2:100123. [PMID: 37771567 PMCID: PMC10522874 DOI: 10.1016/j.cellin.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Mammary gland growth and differentiation predominantly rely on stromal-epithelial cellular communication. Specifically, mammary adipocytes play a crucial role in ductal morphogenesis, as well as in the proliferation and differentiation of mammary epithelial cells. The process of lactation entails a reduction in the levels of white adipose tissue associated with the MG, allowing for the expansion of milk-producing epithelial cells. Subsequently, during involution and the regression of the milk-producing unit, adipocyte layers resurface, occupying the vacated space. This dynamic phenomenon underscores the remarkable plasticity and expansion of adipose tissue. Traditionally considered terminally differentiated, adipocytes have recently been found to exhibit plasticity in certain contexts. Unraveling the significance of this cell type within the MG could pave the way for novel approaches to reduce the risk of breast cancer and enhance lactation performance. Moreover, a comprehensive understanding of adipocyte trans- and de-differentiation processes holds promise for the development of innovative therapeutic interventions targeting cancer, fibrosis, obesity, type 2 diabetes, and other related diseases. Additionally, adipocytes may find utility in the realm of regenerative medicine. This review article provides a comprehensive examination of recent advancements in our understanding of MG remodelling, with a specific focus on the tissue-specific functions of adipocytes and their role in the development of cancer. By synthesizing current knowledge in this field, it aims to consolidate our understanding of adipocyte biology within the context of mammary gland biology, thereby fostering further research and discovery in this vital area.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120, Heidelberg, Germany
| |
Collapse
|
46
|
Abstract
Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.
Collapse
Affiliation(s)
- Jessica Cannavino
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| |
Collapse
|
47
|
Horwitz A, Birk R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity-The Case of BBS Obesity. Nutrients 2023; 15:3445. [PMID: 37571382 PMCID: PMC10421039 DOI: 10.3390/nu15153445] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet-Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity.
Collapse
Affiliation(s)
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
48
|
Jin L, Wang D, Zhang J, Liu P, Wang Y, Lin Y, Liu C, Han Z, Long K, Li D, Jiang Y, Li G, Zhang Y, Bai J, Li X, Li J, Lu L, Kong F, Wang X, Li H, Huang Z, Ma J, Fan X, Shen L, Zhu L, Jiang Y, Tang G, Feng B, Zeng B, Ge L, Li X, Tang Q, Zhang Z, Li M. Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss. Nat Commun 2023; 14:3457. [PMID: 37308492 PMCID: PMC10258790 DOI: 10.1038/s41467-023-39191-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Using an adult female miniature pig model with diet-induced weight gain/weight loss, we investigated the regulatory mechanisms of three-dimensional (3D) genome architecture in adipose tissues (ATs) associated with obesity. We generated 249 high-resolution in situ Hi-C chromatin contact maps of subcutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin architectural changes under different nutritional treatments. We find that chromatin architecture remodeling underpins transcriptomic divergence in ATs, potentially linked to metabolic risks in obesity development. Analysis of chromatin architecture among subcutaneous ATs of different mammals suggests the presence of transcriptional regulatory divergence that could explain phenotypic, physiological, and functional differences in ATs. Regulatory element conservation analysis in pigs and humans reveals similarities in the regulatory circuitry of genes responsible for the obesity phenotype and identified non-conserved elements in species-specific gene sets that underpin AT specialization. This work provides a data-rich tool for discovering obesity-related regulatory elements in humans and pigs.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R & D Program of China (2020YFA0509500), the Sichuan Science and Technology Program (2021YFYZ0009 and 2021YFYZ0030)
- the National Key R & D Program of China (2021YFA0805903), the Tackling Project for Agricultural Key Core Technologies of China (NK2022110602), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054), the Ya’an Science and Technology Program (21SXHZ0022)
- the Sichuan Science and Technology Program (2022NSFSC0056)
- the Sichuan Science and Technology Program (2022NSFSC1618)
- the National Key R & D Program of China (2021YFD1300800), the Sichuan Science and Technology Program (2021YFS0008 and 2022YFQ0022)
- the Opening Foundation of Key Laboratory of Pig Industry Sciences (22519C)
- the Sichuan Science and Technology Program (2021YFH0033), the Major Science and Technology Projects of Tibet Autonomous Region (XZ202101ZD0005N)
- the China Agriculture Research System (CARS-35-01A)
- the National Key R & D Program of China (2022YFF1000100), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054)
- the Strategic Priority Research Program of CAS (XDA24020307), the Special Investigation on Science and Technology Basic Resources of the MOST of China (2019FY100102), the Beijing Natural Science Foundation (Z200021)
Collapse
Affiliation(s)
- Long Jin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
- Sars-Fang Centre and MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengliang Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Lin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyin Han
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guisen Li
- Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyi Bai
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaolan Fan
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanzhi Jiang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqing Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Ya'an Digital Economy Operation Company, Ya'an, 625014, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Xuewei Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
49
|
Rivera-Gonzalez GC, Butka EG, Gonzalez CE, Kong W, Jindal K, Morris SA. Single-cell lineage tracing reveals hierarchy and mechanism of adipocyte precursor maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543318. [PMID: 37398135 PMCID: PMC10312565 DOI: 10.1101/2023.06.01.543318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
White adipose tissue is crucial in various physiological processes. In response to high caloric intake, adipose tissue may expand by generating new adipocytes. Adipocyte precursor cells (progenitors and preadipocytes) are essential for generating mature adipocytes, and single-cell RNA sequencing provides new means to identify these populations. Here, we characterized adipocyte precursor populations in the skin, an adipose depot with rapid and robust generation of mature adipocytes. We identified a new population of immature preadipocytes, revealed a biased differentiation potential of progenitor cells, and identified Sox9 as a critical factor in driving progenitors toward adipose commitment, the first known mechanism of progenitor differentiation. These findings shed light on the specific dynamics and molecular mechanisms underlying rapid adipogenesis in the skin.
Collapse
Affiliation(s)
- Guillermo C. Rivera-Gonzalez
- Department of Developmental Biology, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily G. Butka
- Department of Developmental Biology, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Carolynn E. Gonzalez
- Department of Developmental Biology, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kunal Jindal
- Department of Developmental Biology, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Samantha A. Morris
- Department of Developmental Biology, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine; 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Abstract
The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.
Collapse
Affiliation(s)
- Chelsea Hepler
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|