1
|
Ashcroft SP, Ehrlich AM, Burek K, Pendergrast LA, Yonamine CY, Treebak JT, Zierath JR. Enhanced metabolic adaptations following late dark phase wheel running in high-fat diet-fed mice. Mol Metab 2025; 95:102116. [PMID: 39993626 PMCID: PMC11930447 DOI: 10.1016/j.molmet.2025.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
Exercise interventions represent an effective strategy to prevent and treat metabolic diseases and the time-of-day-dependent effects of exercise on metabolic outcomes are becoming increasingly apparent. We aimed to study the influence of time-restricted wheel running on whole-body energy and glucose homeostasis. Male, 8-week-old, C57BL/6NTac mice were fed either a 60% high-fat diet (HFD) or a 10% low-fat diet (LFD) for 4 weeks. Following this, mice were given access to a running wheel between zeitgeber time (ZT) 12-16 (early dark phase) or ZT 20-0 (late dark phase). Sedentary mice had access to a permanently locked wheel. Mice were housed under these conditions in metabolic chambers for 4 weeks in which LFD and HFD conditions were maintained. Following the exercise intervention, body composition and glucose tolerance were assessed. Wheel running during either the early or late dark phase resulted in metabolic improvements such as attenuation in body weight gain, enhanced glucose tolerance and reduced ectopic lipid deposition. However, late dark phase exercise resulted in a greater reduction in body weight gain, as well as enhanced metabolic flexibility and insulin sensitivity. Our data suggest that late dark phase versus early dark phase exercise confers greater metabolic adaptations in HFD-fed mice.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof Burek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Logan A Pendergrast
- Integrative Physiology Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Caio Y Yonamine
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Dong Y, Lam SM, Li Y, Li MD, Shui G. The circadian clock at the intersection of metabolism and aging - emerging roles of metabolites. J Genet Genomics 2025:S1673-8527(25)00123-7. [PMID: 40306487 DOI: 10.1016/j.jgg.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
The circadian clock is a highly hierarchical network of endogenous pacemakers that primarily maintains and directs oscillations through transcriptional and translational feedback loops, which modulates an approximately 24-hour cycle of endocrine and metabolic rhythms within cells and tissues. While circadian clocks regulate metabolic processes and related physiology, emerging evidence indicates that metabolism and circadian rhythm are intimately intertwined. In this review, we highlight the concept of metabolites, including lipids and other polar metabolites generated from intestinal microbial metabolism and nutrient intake, as circadian pacemakers that drive changes in circadian rhythms, which in turn influence metabolism and aging. Furthermore, we discuss the roles of functional metabolites as circadian pacemakers, paving a new direction on potential intervention targets of circadian disruption, pathological aging, as well as metabolic diseases that are clinically important.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, MOE Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
3
|
Lan H, Wu K, Deng C, Wang S. Morning vs. evening: the role of exercise timing in enhancing fat oxidation in young men. Front Physiol 2025; 16:1574757. [PMID: 40337243 PMCID: PMC12055498 DOI: 10.3389/fphys.2025.1574757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Objective This study aimed to investigate the acute effects of exercise timing (morning vs. evening) on fat oxidation and energy expenditure in young men, with a focus on interactions between exercise and meal timing. Methods Eighteen male college students (23.47 ± 2.11 years) completed a randomized crossover trial under five conditions: sedentary control (SC), exercise before breakfast (EBB), exercise after breakfast (EAB), exercise before dinner (EBD), and exercise after dinner (EAD). Indirect calorimetry (COSMED K5) measured substrate utilization during exercise, post-exercise recovery (0-4 h), and the following morning. Total exercise volume (running distance) was standardized, and energy expenditure was normalized to body weight (kcal/kg). Results During the sedentary control test, participants showed similar trends in total energy expenditure. Dring exercise, the EBB group demonstrated significantly higher fat expenditure compared to EAB (P < 0.05), EBD (P < 0.01), and EAD (P < 0.01). Morning exercise overall exhibited superior fat oxidation (P < 0.01). Post-exercise (0-4 h), EBB sustained elevated fat utilization (P < 0.01 vs. EBD/EAD), while EAD showed enhanced fat oxidation the following morning (P < 0.01 vs. EAB). Conclusion The findings suggest that exercise timing may influence temporal patterns of fat oxidation, with morning fasting potentially favoring acute lipid utilization, while evening exercise appears to correlate with delayed metabolic adjustments. Although total energy expenditure remained comparable across conditions, the observed shifts in substrate allocation imply a possible circadian-sensitive modulation of energy partitioning. These preliminary observations underscore the need for further investigation to clarify the long-term physiological relevance of such timing-dependent metabolic responses.
Collapse
Affiliation(s)
| | | | | | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Hu YX, Liu XM, Zhang NX, Ma ZY, Zhu Z, Cao ZB. The effects of resistance are superior to aerobic exercise in improving delayed sleep-wake phase disorder in male college students. Sleep Med 2025; 128:29-36. [PMID: 39879677 DOI: 10.1016/j.sleep.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 12/31/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Delayed sleep-wake phase disorder(DSWPD)is a serious threat to the physical and mental health. There are some problems with current clinical treatment methods, and exercise is an alternative to chronotherapy. Therefore, we aimed to study the effects of two different exercise methods, aerobic and resistance, on sleep, melatonin, inflammatory factors and mood in college students with DSWPD. METHODS Male college students aged 18-28 years with DSWPD and no regular exercise habits were recruited to participate in a randomized crossover trial. Three-day moderate-intensity aerobic and resistance exercises were conducted. Sleep quality, urine melatonin concentration, blood inflammatory factors, and mood changes were evaluated. RESULTS Resistance exercise (RE) improved five sleep indicators (P < 0.05),including sleep onset time, sleep onset latency, total sleep time, wake after sleep onset and sleep efficiency, whereas aerobic exercise (AE) only improved sleep onset time and sleep efficiency (P < 0.05). In addition, RE and AE increased urine aMT6s, IL-10 and decreased IL-6. But RE was more effective in improving sleep onset time, sleep efficiency and urine aMT6s, IL-6. In terms of mood indicators, aerobic and resistance reduced self-rating anxiety scale, but AE also had an improvement effect on self-rating depression scale. CONCLUSION Aerobic and resistance exercises can cause male college students with DSWPD to fall asleep earlier, improve sleep quality, increase melatonin concentration, reduce body inflammation, promote the synthesis of anti-inflammatory cytokines, and improve mood. Of the two exercise intervention methods, the effect of RE was more significant.
Collapse
Affiliation(s)
- Yu-Xin Hu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiao-Mei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Ning-Xin Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhi-Ying Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zheng Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China; Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, China
| | - Zhen-Bo Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China; Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
5
|
Chen J, Xiang J, Zhou M, Huang R, Zhang J, Cui Y, Jiang X, Li Y, Zhou R, Xin H, Li J, Li L, Lam SM, Zhu J, Chen Y, Yang Q, Xie Z, Shui G, Deng F, Zhang Z, Li MD. Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling. Cell Metab 2025:S1550-4131(25)00065-8. [PMID: 40088888 DOI: 10.1016/j.cmet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
Feeding rhythms regulate exercise performance and muscle energy metabolism. However, the mechanisms regulating adipocyte functions remain unclear. Here, using multi-omics analyses, involving (phospho-)proteomics and lipidomics, we found that day-restricted feeding (DRF) regulates diurnal rhythms of the mitochondrial proteome, neutral lipidome, and nutrient-sensing pathways in mouse gonadal white adipose tissue (GWAT). Adipocyte-specific knockdown of Prkaa2 (the gene encoding AMPKα2) impairs physical endurance. This defect is associated with altered rhythmicity in acyl-coenzyme A (CoA) metabolism-related genes, a loss of rhythmicity in the GWAT lipidome, and circadian remodeling of serum metabolites-in particular, lactate and succinate. We also found that adipocyte Prkaa2 regulates muscle clock genes during DRF. Notably, oral administration of the AMPK activator C29 increases endurance and muscle functions in a time-of-day manner, which requires intact adipocyte AMPKα2 signaling. Collectively, our work defines adipocyte AMPKα2 signaling as a critical regulator of circadian metabolic coordination between fat and muscle, thereby enhancing exercise performance.
Collapse
Affiliation(s)
- Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Jing Xiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610072, China
| | - Jianxin Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China; Department of Cardiology, The 960th Hospital of the PLA Joint Service Support Force, Jinan 250000, China
| | - Yuanting Cui
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Yang Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Runchao Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Lihua Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou, China
| | - Jianfang Zhu
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Yanxiu Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Qingyuan Yang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China.
| |
Collapse
|
6
|
Chen J, Xiang J, Zhou M, Huang R, Zhang J, Cui Y, Jiang X, Li Y, Zhou R, Xin H, Li J, Li L, Lam SM, Zhu J, Chen Y, Yang Q, Xie Z, Shui G, Deng F, Zhang Z, Li MD. Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling. Cell Metab 2025. [DOI: pmid: 40088888 doi: 10.1016/j.cmet.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
7
|
Khatri S, Das S, Singh A, Ahmad S, Kashiv M, Laxman S, Kolthur‐Seetharam U. Diurnal variation in skeletal muscle mitochondrial function dictates time-of-day-dependent exercise capacity. FASEB J 2025; 39:e70365. [PMID: 39902884 PMCID: PMC11792768 DOI: 10.1096/fj.202402930r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Exercise impinges on almost all physiological processes at an organismal level and is a potent intervention to treat various diseases. Exercise performance is well established to display diurnal rhythm, peaking during the late active phase. However, the underlying molecular/metabolic factors and mitochondrial energetics that possibly dictate time-of-day exercise capacity remain unknown. Here, we have unraveled the importance of diurnal variation in mitochondrial functions as a determinant of skeletal muscle exercise performance. Our results show that exercise-induced muscle metabolome and mitochondrial energetics are distinct at ZT3 and ZT15. Importantly, we have elucidated key diurnal differences in mitochondrial functions that are well correlated with disparate time-of-day-dependent exercise capacity. Providing causal mechanistic evidence, we illustrate that loss of Sirtuin4 (SIRT4), a well-known mitochondrial regulator, abrogates mitochondrial diurnal variation and consequently abolishes time-of-day-dependent muscle output. Therefore, our findings unequivocally demonstrate the pivotal role of baseline skeletal muscle mitochondrial functions in dictating diurnal exercise capacity.
Collapse
Grants
- 19P0911 Department of Atomic Energy, Government of India (DAE)
- BT/PR29878/PFN/20/1431/2018 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- Wellcome Trust
- JCB/2022/000036 Department of Science and Technology, Ministry of Science and Technology, India (DST)
- IA/S/21/2/505922 DBT-Wellcome Trust India Alliance Senior Fellowship
- BT/INF/22/SP17358/2016 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- IA/S/21/2/505922 DBT-Wellcome Trust India Alliance
- 19P0116 Department of Atomic Energy, Government of India (DAE)
- Department of Atomic Energy, Government of India (DAE)
- Department of Science and Technology, Ministry of Science and Technology, India (DST)
- Department of Biotechnology, Ministry of Science and Technology, India (DBT)
Collapse
Affiliation(s)
- Subhash Khatri
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Souparno Das
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Anshit Singh
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Shabbir Ahmad
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM)BangaloreIndia
| | - Mohit Kashiv
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM)BangaloreIndia
| | - Ullas Kolthur‐Seetharam
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
- Subject Board of BiologyTata Institute of Fundamental Research (TIFR)HyderabadIndia
- Advanced Research Unit on Metabolism, Development and Ageing (ARUMDA)Tata Institute of Fundamental Research (TIFR)HyderabadIndia
- Centre for DNA Fingerprinting & Diagnostics (CDFD)HyderabadIndia
| |
Collapse
|
8
|
Zhang Z, Yan L, Treebak JT, Li MD. Circadian nutrition: is meal timing an elixir for fatigue? Sci Bull (Beijing) 2025; 70:309-312. [PMID: 39676008 DOI: 10.1016/j.scib.2024.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education (MOE) Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Lu Yan
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education (MOE) Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education (MOE) Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China.
| |
Collapse
|
9
|
Pourabdi R, Shahidi F, Tabandeh MR, Salehpour M. Aerobic exercise timing affects mitochondrial dynamics and insulin resistance by regulating the circadian clock protein expression and NAD +-SIRT1-PPARα-MFN2 pathway in the skeletal muscle of high-fat-diet-induced diabetes mice. J Physiol Biochem 2025; 81:199-214. [PMID: 39715985 DOI: 10.1007/s13105-024-01066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
The circadian clock regulates mitochondrial function and affects time-dependent metabolic responses to exercise. The present study aimed to determine the effects of aerobic exercise timing at the light-dark phase on the proteins expression of the circadian clock, mitochondrial dynamics, and, NAD+-SIRT1-PPARα axis in skeletal muscle of high-fat diet-induced diabetic mice. In this experimental study, thirty male mice were randomly assigned into two groups based on time: the early light phase, ZT3, and the early dark phase, ZT15, and three groups at each time: (1) Healthy Control (HC), (2) Diabetic Control (DC), and (3) Diabetic + Exercise (DE). Diabetes was induced by 5 weeks of feeding with a high-fat diet and Streptozotocin injection. Following confirmation of diabetes, animals underwent treadmill running at ZT3 and ZT15 for eight-weeks (5 days, 60-80 min, 50-60%Vmax). The expression of proteins of muscle aryl-hydrocarbon receptor nuclear translocator-like-1 (BMAL1), period-2 (PER2), mitofusin-2 (MFN2), dynamin-related proteins-1 (DRP-1), glucose transporter (GLUT4), sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-alpha (PPARα), and nicotinamide adenine dinucleotide (NAD+) level were analyzed in gastrocnemius muscle at both exercise times. The results showed that aerobic exercise at both times reversed the dysregulation of the diabetes-induced skeletal muscle clock by increasing the BMAL1 and PER2 protein levels. Aerobic exercise, especially at ZT15 compared to ZT3, increased GLUT4-mediated glucose uptake, and improved the diabetes-induced imbalance of mitochondrial fusion-fission by a significant increase in MFN2 protein level. Moreover, time-dependent aerobic exercise only at ZT15 increased the SIRT1 and PPARα protein levels and reduced diabetes-induced hyperglycemia. However, the aerobic exercise timing could not restore the attenuation of diabetes-induced NAD+ levels and DRP-1 protein. Our findings demonstrated that the synchronization of aerobic exercise with the circadian rhythm of NAD+-SIRT1 may boost MFN2-mediated mitochondrial fusion by activating the BMAL1-PER2-SIRT1-PPARα axis in the skeletal muscle of diabetic mice and be more effective in facilitating glycemic control and insulin resistance.
Collapse
Affiliation(s)
- Raha Pourabdi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | - Fereshteh Shahidi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Salehpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
10
|
Thomas JV, Davy BM, Winett RA, Depner CM, Drummond MJ, Estabrooks PA, Hardikar S, Ou Z, Shen J, Halliday TM. Timing of resistance exercise and cardiometabolic outcomes in adults with prediabetes: a secondary analysis. J Appl Physiol (1985) 2025; 138:439-449. [PMID: 39773011 DOI: 10.1152/japplphysiol.00507.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of this study was to explore whether the time of day (AM vs. PM) resistance exercise is performed influences glucose and insulin concentrations, body composition, and muscular strength in adults with prediabetes. A secondary data analysis was conducted using data from the "Resist Diabetes" study, a phase II exercise intervention. Participants (age: 59.9 ± 5.4 yr; BMI: 33 ± 3.7 kg/m2) with prediabetes and overweight or obesity were categorized into AM (n = 73) or PM (n = 80) exercisers based on when they completed all of their supervised exercise sessions during a 12-wk, 2×/wk resistance exercise intervention. Blood glucose and insulin derived from oral glucose tolerance tests, body composition, and muscular strength were assessed pre- and post resistance exercise training. Inverse propensity score weighting approach was used to estimate the efficacy of AM versus PM exercise on the change of clinical responses. Paired samples t test was used to compare pre-/post-outcomes within AM and PM groups. No differences between AM and PM exercisers were detected in the change in glucose or insulin area under the curve (AUC), body composition, or muscular strength. When exploring within-group changes, PM exercisers reduced glucose AUC (change: -800.6 mg/dL·120 min; P = 0.01), whereas no significant change was detected for AM exercisers (change: -426.9 mg/dL·120 min; P = 0.26). Only AM exercisers increased fat-free mass (change: 0.6 kg; P = 0.001). The time of day resistance exercise is performed may have some impact on glucose concentrations and body composition response. Future randomized clinical trials are needed to understand how exercise timing influences cardiometabolic outcomes in at-risk adults.NEW & NOTEWORTHY In this secondary analysis, there was no difference between AM and PM exercisers in blood glucose, insulin, body composition, or muscular strength following 12 wk of supervised exercise. However, examining within-group changes, glucose area under the curve (AUC) was significantly reduced in PM exercisers, but not in AM exercisers.
Collapse
Affiliation(s)
- Jason V Thomas
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, United States
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States
| | - Richard A Winett
- Department of Psychology, Virginia Tech, Blacksburg, Virginia, United States
| | - Christopher M Depner
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Paul A Estabrooks
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, United States
| | - Sheetal Hardikar
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States
- Cancer Control Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, Utah, United States
| | - Zhining Ou
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tanya M Halliday
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
11
|
Guo H, Sun Y, Gao W, Liu Y, Han T, Zhang D. The association of activity patterns on female reproductive diseases: a prospective cohort study of UK biobank. BMC Public Health 2025; 25:312. [PMID: 39856643 PMCID: PMC11762564 DOI: 10.1186/s12889-025-21576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Little is known about the role of timing of physical activity in female reproductive disorders. These disorders include polycystic ovary syndrome (PCOS), heavy menstrual bleeding (HMB), endometriosis, infertility, and pregnancy-related disorders. This study aims to investigate the associations of activity patterns with female reproductive diseases. METHODS A total of 49,540 female participants from the UK Biobank with valid accelerometer data were enrolled at baseline. Activity patterns were defined based on the timing of moderate-to-vigorous intensity physical activity (MVPA) throughout the day. Participants were categorized into four groups according to the timing of their MVPA: "morning, evening, mixed, midday-afternoon", with the midday-afternoon group serving as the reference. Cox proportional hazards models were utilized to evaluate the association between activity patterns and female reproductive diseases. RESULTS During a median follow-up of 12.6 years, a total of 1044 cases of female reproductive diseases were documented. After adjustment for potential confounders, compared to women with midday-afternoon exercise, women with morning exercise and mixed-timing exercise were associated with lower risks for female reproductive diseases (HRmorning=0.81, 95% CI: 0.67-0.98; HRmixed=0.79, 95% CI: 0.69-0.91, P-trend < 0.05). Moreover, morning exercise and mixed-timing exercise had lower risks of PCOS (HRmorning=0.38, 95% CI: 0.15-0.97; HRmixed=0.27, 95% CI: 0.13-0.57, P-trend<0.001), and mixed-timing exercise was associated with a lower risk for HMB (HRmixed=0.81, 95% CI: 0.70-0.95, P-trend < 0.05), compared with the reference group. CONCLUSIONS Compared with midday-afternoon group, morning and mixed MVPA timing groups, but not evening group, were associated with decreased risks for female reproductive diseases and PCOS. In addition, we found that women with mixed MVPA timing exercise had a lower risk of HMB, compared with the reference group.
Collapse
Affiliation(s)
- Huanyu Guo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Harbin, 150081, Heilongjiang, P. R. China
| | - Yingzi Sun
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Harbin, 150081, Heilongjiang, P. R. China
| | - Wei Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Harbin, 150081, Heilongjiang, P. R. China
| | - Yuqing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Harbin, 150081, Heilongjiang, P. R. China
| | - Tianshu Han
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China.
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Harbin, 150081, Heilongjiang, P. R. China.
| |
Collapse
|
12
|
Procopio SB, Esser KA. Clockwork conditioning: Aligning the skeletal muscle clock with time-of-day exercise for cardiometabolic health. J Mol Cell Cardiol 2025; 198:36-44. [PMID: 39615287 PMCID: PMC11780665 DOI: 10.1016/j.yjmcc.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Circadian rhythms have evolved to synchronize gene expression, physiology, and behavior with time-of-day changes in the external environment. In every mammalian cell exists a core clock mechanism that consists of a transcriptional-translational feedback loop that drives rhythmic gene expression. Circadian disruption, as observed in shift workers and genetic mouse models, contributes to the onset and progression of cardiometabolic disorders. The central clock, located in the hypothalamus, is uniquely sensitive to external light cues, while the peripheral clocks are responsive to non-photic stimuli such as feeding and activity in addition to signals from the central clock. Recent research has illustrated the sensitivity of the skeletal muscle circadian clock to exercise timing, offering a promising avenue for therapeutic intervention in cardiometabolic health. Here we provide an in-depth examination of the molecular mechanisms underlying skeletal muscle clock function and its impact on cardiometabolic pathways, including glucose and lipid metabolism, as well as inflammation. To highlight the role of exercise as a time-cue for the skeletal muscle clock, we discuss evidence of exercise-induced shifts in the skeletal muscle clock and the differential response to exercise performed at different times of the day. Furthermore, we present data in support of time-of-day exercise as a potential therapeutic strategy for mitigating cardiometabolic disease burden. By exploring the relationship between the skeletal muscle clock, exercise timing, and cardiometabolic health, we identify new areas for future research and offer valuable insights into novel therapeutic approaches aimed at improving cardiometabolic disease outcomes.
Collapse
Affiliation(s)
- Spencer B Procopio
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
13
|
Sevilla-Lorente R, Marmol-Perez A, Gonzalez-Garcia P, Rodríguez-Miranda MDLN, Riquelme-Gallego B, Aragon-Vela J, Martinez-Gálvez JM, Molina-Garcia P, Alcantara JMA, Garcia-Consuegra J, Cogliati S, Salmeron LM, Huertas JR, Lopez LC, Ruiz JR, Amaro-Gahete FJ. Sexual dimorphism on the acute effect of exercise in the morning vs. evening: A randomized crossover study. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:101021. [PMID: 39716617 PMCID: PMC11930212 DOI: 10.1016/j.jshs.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Mammalian cells possess molecular clocks, the adequate functioning of which is decisive for metabolic health. Exercise is known to modulate these clocks, potentially having distinct effects on metabolism depending on the time of day. This study aimed to investigate the impact of morning vs. evening moderate-intensity aerobic exercise on glucose regulation and energy metabolism in healthy men and women. It also aimed to elucidate molecular mechanisms within skeletal muscle. METHODS Using a randomized crossover design, healthy men (n = 18) and women (n = 17) performed a 60-min bout of moderate-intensity aerobic exercise in the morning and evening. Glucose regulation was continuously monitored starting 24 h prior to the exercise day and continuing until 48 h post-exercise for each experimental condition. Energy expenditure and substrate oxidation were measured by indirect calorimetry during exercise and at rest before and after exercise for 30 min. Skeletal muscle biopsies were collected immediately before and after exercise to assess mitochondrial function, transcriptome, and mitochondrial proteome. RESULTS Results indicated similar systemic glucose, energy expenditure, and substrate oxidation during and after exercise in both sexes. Notably, transcriptional analysis, mitochondrial function, and mitochondrial proteomics revealed marked sexual dimorphism and time of day variations. CONCLUSION The sexual dimorphism and time of day variations observed in the skeletal muscle in response to exercise may translate into observable systemic effects with higher exercise-intensity or chronic exercise interventions. This study provides a foundational molecular framework for precise exercise prescription in the clinical setting.
Collapse
Affiliation(s)
- Raquel Sevilla-Lorente
- Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre "José Mataix", University of Granada, Granada 18071, Spain; Department of Physiology, University of Granada, Granada 18071, Spain
| | - Andres Marmol-Perez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pilar Gonzalez-Garcia
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain
| | - María de Las Nieves Rodríguez-Miranda
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Blanca Riquelme-Gallego
- Faculty of Health Science, University of Granada, Ceuta 51005, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain
| | - Jerónimo Aragon-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaen 23071, Spain
| | - Juan Manuel Martinez-Gálvez
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain; Biofisika Institute (Spanish National Research Council, University of the Basque Country/ Euskal Herriko Unibertsitatea) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa 48940, Spain
| | | | - Juan Manuel A Alcantara
- Department of Health Sciences, Institute for Innovation & Sustainable Food Chain Development, Public University of Navarre, Pamplona 31006, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain
| | - José Garcia-Consuegra
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Sara Cogliati
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Luis Miguel Salmeron
- Department of Surgery and Its Specialties, University Hospital Clínico San Cecilio, Granada 18007, Spain
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre "José Mataix", University of Granada, Granada 18071, Spain; Department of Physiology, University of Granada, Granada 18071, Spain
| | - Luis C Lopez
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain.
| | - Francisco José Amaro-Gahete
- Department of Physiology, University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain
| |
Collapse
|
14
|
Rodriguez-Muñoz A, Martínez-Montoro JI, Sojo-Rodriguez B, Benitez-Porres J, Carrillo-Albornoz-Gil M, Carrasco-Fernandez L, Subiri-Verdugo A, Molina-Ramos A, Cobos-Diaz A, Tinahones FJ, Ortega-Gomez A, Murri M. Glycaemic Response to Acute Aerobic and Anaerobic Exercise Performed in the Morning or Afternoon in Healthy Subjects: A Crossover Trial. J Int Soc Sports Nutr 2024; 21:2433740. [PMID: 39611609 PMCID: PMC11610264 DOI: 10.1080/15502783.2024.2433740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The regular practice of physical activity is considered a health promoter and appears to be one of the main contributors to the prevention of chronic diseases. However, the potential effects of exercise on health depending on the time of day at which it is performed have not yet been fully elucidated. OBJECTIVES To evaluate the effect of physical exercise (aerobic or anaerobic) and chronobiology (morning or afternoon) on the glycemic metabolism of healthy subjects. METHODS Healthy subjects participated in aerobic or anaerobic physical exercise sessions, either in the morning or in the afternoon. Blood was drawn from the subjects before, at the end of the exercise and 2 hours after the end of the exercise. Glycemic parameters were analyzed at these time points. A general linear model test was performed after verifying the normal distribution of the raw data (as assessed by the Shapiro-Wilk test) or after a logarithmic/square root transformation, considering aerobic or anaerobic exercise and morning or afternoon exercise as independent variables. RESULTS Twenty-three subjects (14 women and 9 men) were included in the study. The rate of change in glucose levels was significantly higher at the end of anaerobic exercise compared to aerobic exercise (1.19 ± 0.04 vs. 0.98 ± 0.02, respectively), with a more pronounced decrease in insulin and C-peptide levels following aerobic exercise. In addition, the increase of glucose was higher after the exercise in the morning compared with the afternoon (1.14 ± 0.03 vs. 1.03 ± 0.03, respectively). CONCLUSIONS The type of exercise and chronobiology influence short-term glucose metabolism.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Faculty of Health Sciences, University of Malaga, Spain
| | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Belen Sojo-Rodriguez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Javier Benitez-Porres
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
- Internal Medicine Department, Regional University Hospital of Málaga; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
| | | | - Laura Carrasco-Fernandez
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Alba Subiri-Verdugo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Ana Molina-Ramos
- Department of Cardiology and Cardiovascular Surgery, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrés Cobos-Diaz
- Clinical Analysis UGC, Virgen de la Victoria University Hospital, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de la Victoria, Malaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Almudena Ortega-Gomez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
| | - Mora Murri
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain
- Department of Cardiology and Cardiovascular Surgery, Virgen de la Victoria University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| |
Collapse
|
15
|
Harmsen J, Kotte M, Habets I, Bosschee F, Frenken K, Jorgensen JA, de Kam S, Moonen‐Kornips E, Cissen J, Doligkeit D, van de Weijer T, Erazo‐Tapia E, Buitinga M, Hoeks J, Schrauwen P. Exercise training modifies skeletal muscle clock gene expression but not 24-hour rhythmicity in substrate metabolism of men with insulin resistance. J Physiol 2024; 602:6417-6433. [PMID: 38051503 PMCID: PMC11607886 DOI: 10.1113/jp285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.
Collapse
Affiliation(s)
- Jan‐Frieder Harmsen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marit Kotte
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Ivo Habets
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Frederieke Bosschee
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Koen Frenken
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Johanna A. Jorgensen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Soraya de Kam
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Esther Moonen‐Kornips
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jochem Cissen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Daniel Doligkeit
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edmundo Erazo‐Tapia
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mijke Buitinga
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
16
|
Xu L, Li K, Zhong VW. Associations of temporal patterns of objectively measured moderate-to-vigorous physical activity with mortality in the general population and people with abnormal glucose metabolism or hypertension. J Sports Sci 2024; 42:2434-2442. [PMID: 39611630 DOI: 10.1080/02640414.2024.2435734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
To investigate the association between temporal patterns of objectively measured moderate-to-vigorous physical activity (MVPA) and all-cause and cause-specific mortality in the general population and people with abnormal glucose metabolism (AGM) or hypertension. This prospective cohort study collected accelerometer data from the National Health and Nutrition Examination Survey from 2003 to 2006 with linkage to the National Death Index records through 31 December 2019 in the United States. Baseline 7-day accelerometry data were analysed and participants were categorized into 5 groups: morning/midday (05:00-13:59), afternoon (14:00-16:59), evening (17:00-19:59), night (20:00-00:59), and mixed MVPA timing groups. Cox regression analysis was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) between temporal patterns and mortality. A total of 5976 adults (mean [SE] age, 46.4 [0.5] years; 52.1% women) were included and 1371 participants died during a median follow-up of 14.6 years. Compared with the mixed group, the night group had 22% to 77% higher risks of all-cause and cardiovascular mortality in the overall sample and AGM and hypertension subsamples. In people with hypertension, the morning/midday group showed a 31% higher risk of cardiovascular mortality. For those with AGM, the evening group had 90% to 185% higher risks of all-cause and cardiovascular mortality.
Collapse
Affiliation(s)
- Lan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Victor W Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Fitzgerald LS, Bremner SN, Ward SR, Cho Y, Schenk S. Intrinsic Skeletal Muscle Function and Contraction-Stimulated Glucose Uptake Do Not Vary by Time-of-Day in Mice. FUNCTION 2024; 5:zqae035. [PMID: 39134511 PMCID: PMC11873798 DOI: 10.1093/function/zqae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at 4 times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the 4 time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.
Collapse
Affiliation(s)
- Liam S Fitzgerald
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Medical Scientist Training Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yoshitake Cho
- Division of Cardiovascular Medicine—Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Kelu JJ. Circadian rhythms in muscle health and diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:45-72. [PMID: 40390463 DOI: 10.1016/bs.ircmb.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
All major life forms from bacteria to humans have internal clocks that regulate essential biological processes in a roughly 24-h cycle. In mammals, the central clock in the suprachiasmatic nucleus (SCN) is historically considered the top of a hierarchical organisation that dominates subordinate clocks in peripheral tissues and dictates the circadian behaviours of an organism. Recent studies, however, underscore the importance of the local circadian oscillators, such as the skeletal muscle clock, in regulating local metabolism and physiology. Studies in animal models show that the muscle peripheral clock per se is required for the expression of genes involved in glucose, lipid, and amino acid metabolism. Disruption of the muscle clock leads to glucose intolerance, insulin resistance, and alterations in muscle size and force. This highlights the vital role of the muscle clock in controlling muscle physiology and metabolism. In humans, a perturbation in the muscle circadian rhythms is seen in metabolic disorders such as type 2 diabetes, and muscle diseases such as dystrophies. Disruption of muscle metabolism is also seen when the internal rhythms are misaligned with the external rhythms (circadian misalignments) as in shift work. Understanding the mechanisms by which the muscle clock regulates circadian functions may help the development of new strategies, such as chronotherapy, to potentially prevent or treat muscle pathologies and maintain muscle health.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
19
|
Kim HK, Kimura Y, Takahashi M, Nakaoka T, Yamada Y, Ono R, Shibata S. Morning physical activity may be more beneficial for blood lipids than afternoon physical activity in older adults: a cross-sectional study. Eur J Appl Physiol 2024; 124:3253-3263. [PMID: 38874620 PMCID: PMC11519190 DOI: 10.1007/s00421-024-05526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The effect of differences in daily physical activity patterns on blood lipids has not been determined. This study examines the effects of the differences in free-living daily physical activity patterns (amount and intensity) on blood lipid levels in older adults. METHODS This cross-sectional study included 51 older participants (71.8 ± 0.6 years, men = 8, women = 43). A triaxial accelerometer was used to assess physical activity patterns. The time from awakening to bedtime for each participant was used for group classification based on the amount (number of steps) and intensity (moderate-to-vigorous physical activity, MVPA) of physical activity. The morning step group (M Step) was defined as those who took more steps in the morning, and the afternoon step group (A Step) was defined as those who took more steps in the afternoon. The same method was used for MVPA (morning MVPA: M MVPA; afternoon MVPA: A MVPA). Blood samples were collected at the start of the study to determine blood lipid levels. RESULTS Number of steps taken showed a trend toward lower low-density lipoprotein cholesterol (LDL-C) levels in the M Step group compared with the A Step group. The LDL/high-density lipoprotein (HDL) ratio was significantly lower in the M Step group than the A Step group (p < 0.05). The M MVPA group also had higher HDL-C levels and significantly lower LDL/HDL ratios than the A MVPA group (p < 0.05). CONCLUSIONS These results suggest that compared with afternoon physical activity, daily morning physical activity (amount and intensity) is more effective in improving blood lipid levels.
Collapse
Affiliation(s)
- Hyeon-Ki Kim
- National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senriokashimmachi, Settsu-shi, Osaka, 566-0002, Japan.
| | - Yuga Kimura
- School of Advance Science and Engineering, Waseda University, Tokyo, Japan
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo, Japan
| | - Takashi Nakaoka
- Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Yosuke Yamada
- National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senriokashimmachi, Settsu-shi, Osaka, 566-0002, Japan
| | - Rei Ono
- National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senriokashimmachi, Settsu-shi, Osaka, 566-0002, Japan
| | - Shigenobu Shibata
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
20
|
Hesketh SJ, Esser KA. The clockwork of champions: Influence of circadian biology on exercise performance. Free Radic Biol Med 2024; 224:78-87. [PMID: 39168419 DOI: 10.1016/j.freeradbiomed.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Exercise physiology and circadian biology are distinct and long-standing fields. Recently they have seen increased integration, largely due to the discovery of the molecular components of the circadian clock and recognition of human exercise performance differences over time-of-day. Circadian clocks, ubiquitous in cells, regulate a daily tissue specific program of gene expression that contribute to temporal patterns of physiological functions over a 24-h cycle. Understanding how circadian clock function in skeletal muscle, as well as other tissues contribute to exercise performance is still in the very early stages. This review provides background on this emerging field with a review of early exercise and time-of-day studies in both human and animals. We then move into the role of the circadian clock and its daily program of gene expression in skeletal muscle with a focus on specific metabolic and physiological outputs that vary over time-of-day. Lastly, we discuss the recognition that the timing of exercise communicates with the skeletal muscle circadian clock to adjust its phase settings and why this maybe important for performance and health.
Collapse
Affiliation(s)
- Stuart J Hesketh
- School of Medicine, University of Central Lancashire, 11 Victoria St, Preston, PR1 7DS, UK.
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, 1345 Centre Drive, Gainesville, FL, USA
| |
Collapse
|
21
|
Chen Y, Zhang Y, Jin X, Hong S, Tian H. Exerkines: Benign adaptation for exercise and benefits for non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 726:150305. [PMID: 38917635 DOI: 10.1016/j.bbrc.2024.150305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Exercise has multiple beneficial effects on human metabolic health and is regarded as a "polypill" for various diseases. At present, the lack of physical activity usually causes an epidemic of chronic metabolic syndromes, including obesity, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Remarkably, NAFLD is emerging as a serious public health issue and is associated with the development of cirrhosis and hepatocellular carcinoma. Unfortunately, specific drug therapies for NAFLD and its more severe form, non-alcoholic steatohepatitis (NASH), are currently unavailable. Lifestyle modification is the foundation of treatment recommendations for NAFLD and NASH, especially for exercise. There are under-appreciated organs that crosstalk to the liver during exercise such as muscle-liver crosstalk. Previous studies have reported that certain exerkines, such as FGF21, GDF15, irisin, and adiponectin, are beneficial for liver metabolism and have the potential to be targeted for NAFLD treatment. In addition, some of exerkines can be modified for the new proteins and get enhanced functions, like IL-6/IC7Fc. Another importance of exercise is the physiological adaptation that combats metabolic diseases. Thus, this review aims to summarize the known exerkines and utilize a multi-omics mining tool to identify more exerkines for the future research. Overall, understanding the mechanisms by which exercise-induced exerkines exert their beneficial effects on metabolic health holds promise for the development of novel therapeutic strategies for NAFLD and related diseases.
Collapse
Affiliation(s)
- Yang Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yan Zhang
- Clinical Laboratory, Suzhou Yong Ding Hospital, Suzhou, 215200, China
| | - Xingsheng Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
22
|
Stein MJ, Baurecht H, Bohmann P, Fervers B, Fontvieille E, Freisling H, Friedenreich CM, Konzok J, Peruchet-Noray L, Sedlmeier AM, Leitzmann MF, Weber A. Diurnal timing of physical activity and risk of colorectal cancer in the UK Biobank. BMC Med 2024; 22:399. [PMID: 39289682 PMCID: PMC11409794 DOI: 10.1186/s12916-024-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Physical activity reduces colorectal cancer risk, yet the diurnal timing of physical activity in colorectal cancer etiology remains unclear. METHODS This study used 24-h accelerometry time series from UK Biobank participants aged 42 to 79 years to derive circadian physical activity patterns using functional principal component analysis. Multivariable Cox proportional hazard models were used to examine associations with colorectal cancer risk. RESULTS Among 86,252 participants (56% women), 529 colorectal cancer cases occurred during a median 5.3-year follow-up. We identified four physical activity patterns that explained almost 100% of the data variability during the day. A pattern of continuous day-long activity was inversely associated with colorectal cancer risk (hazard ratio (HR) = 0.94, 95% confidence interval (CI) = 0.89-0.99). A second pattern of late-day activity was suggestively inversely related to risk (HR = 0.93, 95% CI = 0.85-1.02). A third pattern of early- plus late-day activity was associated with decreased risk (HR = 0.89, 95% CI = 0.80-0.99). A fourth pattern of mid-day plus night-time activity showed no relation (HR = 1.02, 95% CI = 0.88-1.19). Our results were consistent across various sensitivity analyses, including the restriction to never smokers, the exclusion of the first 2 years of follow-up, and the adjustment for shift work. CONCLUSIONS A pattern of early- plus late-day activity is related to reduced colorectal cancer risk, beyond the benefits of overall activity. Further research is needed to confirm the role of activity timing in colorectal cancer prevention.
Collapse
Affiliation(s)
- Michael J Stein
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany.
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Patricia Bohmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Béatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard, Lyon, France
- INSERM U1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Emma Fontvieille
- International Agency for Research On Cancer (IARC), Nutrition and Metabolism Branch, 25 Avenue Tony Garnier, CS90627, Lyon, 69366, France
| | - Heinz Freisling
- International Agency for Research On Cancer (IARC), Nutrition and Metabolism Branch, 25 Avenue Tony Garnier, CS90627, Lyon, 69366, France
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
- Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Julian Konzok
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Laia Peruchet-Noray
- International Agency for Research On Cancer (IARC), Nutrition and Metabolism Branch, 25 Avenue Tony Garnier, CS90627, Lyon, 69366, France
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Anja M Sedlmeier
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
- Center for Translational Oncology, University Hospital Regensburg, Regensburg, 93053, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, 93053, Germany
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Andrea Weber
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| |
Collapse
|
23
|
Guo M, Shen F, Guo X, Zhang J, Ma Y, Wu X, Zuo H, Yao J, Hu Y, Wang D, Li Y, Li J, Qiu J, Yu J, Meng M, Zheng Y, Chen X, Gong M, Liu K, Jin L, Ren X, Zhang Q, Zhao Y, Gu X, Shen F, Li D, Gao L, Liu C, Zhou F, Li M, Wang J, Ding S, Ma X, Lu J, Xie C, Xiao J, Xu L. BMAL1/PGC1α4-FNDC5/irisin axis impacts distinct outcomes of time-of-day resistance exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100968. [PMID: 39187065 PMCID: PMC11863284 DOI: 10.1016/j.jshs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Zhou
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Mian Li
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
24
|
Magalhães JP, Oliveira EC, Hetherington-Rauth M, Jesus F, Rodrigues MC, Raposo JF, Ribeiro RT, Caetano C, Sardinha LB. The Ex-Timing trial: evaluating morning, afternoon, and evening exercise on the circadian clock in individuals with type 2 diabetes and overweight/obesity-a randomized crossover study protocol. Trials 2024; 25:526. [PMID: 39107793 PMCID: PMC11301977 DOI: 10.1186/s13063-024-08335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Exercise is known to provide multiple metabolic benefits such as improved insulin sensitivity and glucose control in individuals with type 2 diabetes mellitus (T2DM) and those at risk. Beyond the traditional exercise dose, exercise timing is perceived as a contemporary hot topic, especially in the field of T2DM; however, the number of intervention studies assessing exercise timing and glucose metabolism is scarce. Our aim is to test the effect of exercise timing (i.e., morning, afternoon, or evening) on the inter-individual response variability in glycemic control and related metabolic health parameters in individuals with T2DM and those at risk during a 12-week intervention. METHODS A randomized crossover exercise intervention will be conducted involving two groups: group 1, individuals with T2DM; group 2, age-matched older adults with overweight/obesity. The intervention will consist of three 2-week blocks of supervised post-prandial exercise using high-intensity interval training (HIIT). Between each training block, a 2-week washout period, where participants avoid structured exercise, will take place. Assessments will be conducted in both groups before and after each exercise block. The primary outcomes include the 24-h area under the curve continuous glucose monitoring-based glucose. The secondary outcomes include body composition, resting energy expenditure, insulin response to a meal tolerance test, maximal aerobic capacity, peak power output, physical activity, sleep quality, and insulin and glucose levels. All primary and secondary outcomes will be measured at each assessment point. DISCUSSION Outcomes from this trial will provide us additional insight into the role of exercise timing on the inter-individual response variability in glycemic control and other related metabolic parameters in two distinct populations, thus contributing to the development of more effective exercise prescription guidelines for individuals with T2DM and those at risk. TRIAL REGISTRATION ClinicalTrials.gov NCT06136013. Registered on November 18, 2023.
Collapse
Affiliation(s)
- João P Magalhães
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal.
| | - Estela C Oliveira
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| | - Megan Hetherington-Rauth
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| | - Maria Clarissa Rodrigues
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Departamento de Reabilitação Cardíaca, Lisbon, Portugal
| | - João F Raposo
- Education and Research Centre, APDP-Diabetes Portugal (APDP-ERC), Rua Rodrigo da Fonseca 1, Lisbon, 1250-189, Portugal
| | - Rogério T Ribeiro
- Education and Research Centre, APDP-Diabetes Portugal (APDP-ERC), Rua Rodrigo da Fonseca 1, Lisbon, 1250-189, Portugal
| | | | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade Lisboa, Estrada da Costa, Cruz-Quebrada, 1499-688, Portugal
| |
Collapse
|
25
|
Niu WC, Liu C, Liu K, Fang WJ, Liu XQ, Liang XL, Yuan HP, Jia HM, Peng HF, Jiang HW, Jia ZM. The effect of different times of day for exercise on blood glucose fluctuations. Prim Care Diabetes 2024; 18:427-434. [PMID: 38897914 DOI: 10.1016/j.pcd.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
AIMS This study aims to explore blood glucose variations before and after short-term intensive exercise in the morning or afternoon of a day and the trend of blood glucose fluctuations during exercise in patients with T2DM (type 2 diabetes, T2DM). METHODS Blood glucose variations of Fouty during morning exercise 8:00-12:00 hours and twenty during afternoon exercise 14:30-18:30 hours). Patients with T2DM discharged from the hospital were analyzed retrospectively, with the baseline data checked through the medical record system before intervention. We were asked to perform seven times of treadmill aerobic exercise, which lasted for 30 minutes with incremental intensity for each time, for two weeks under the supervision of the Continuous Glucose Monitor (CGM) and the heart rate armband. The exercise intensity has been adjusted by the clinicians and specialist nurses from the Department of Diabetes Mellitus according to the blood glucose levels and heart rate curves during exercise; data including the height, weight, body mass index (BMI), waist-to-hip ratio, fasting blood glucose, glycosylated hemoglobin, in-exercise CGM-measured blood glucose value/min, and after-exercise fingertip blood glucose value of patients with T2DM were collected after the intensive exercise (2 weeks). SPSS 22.0 and GraphPad Prism 7 were adopted for statistical analysis using the T-test and ANOVA. RESULT No difference was observed in the baseline data between the morning and afternoon exercise groups before intervention; compared to the morning exercise group, the fasting C-peptide value (2.15±0.97 vs. 1.53±0.46) in the afternoon exercise group was higher than that in the morning exercise group, with a superior (p=0.029) effect after two weeks of intervention, exhibiting a significant difference in the results. According to the results of repeated variance ANOVA analysis, the time for the appearance of significant improvement in blood glucose in the afternoon exercise group was 5 minutes earlier (11th minute vs 1 minute)than that in the morning exercise group (15th minute vs 1 min); significant differences were observed in both time (p=0.048 vs p<0.01) between the two groups on exercise days, as revealed by the results of bivariate ANOVA; in comparison to the morning exercise group (7.42±1.68), there was a significant difference (p=0.049)in the mean blood glucose between the two groups 25 min after patients with T2DM in the afternoon exercise group (6.25±1.53) started to exercise; in addition, a significant statistical difference (p=0.021) was revealed in the CGM-measured hourly the mean blood glucose on exercise days between the morning(8.18±1.88) and afternoon exercise (6.75±1.40)groups at 4:00 pm in week one and two w. CONCLUSIONS Glycaemic improvement in the short-term intensive afternoon exercise group may be superior to that of the morning exercise group, which may be related to greater fasting C-peptide secretion and longer effective exercise duration. The time to exercise is a factor affecting blood glucose variations during exercise. However, significant variations in the level of blood glucose during exercise must be further observed through exercise intervention over a more extended period.
Collapse
Affiliation(s)
- Wen Chang Niu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Chang Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471000, China
| | - Ke Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471000, China
| | - Wen Jing Fang
- Luoyang Maternal and Child Health Hospital, Luoyang 471000, China
| | - Xiao Qian Liu
- Luoyang Maternal and Child Health Hospital, Luoyang 471000, China
| | - Xiao Li Liang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hui Ping Yuan
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hui Min Jia
- School of Nursing, Henan University of Science and Technology, Luoyang 471000, China
| | - Hui Fang Peng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hong Wei Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhu Min Jia
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
26
|
Fitzgerald LS, Bremner SN, Ward SR, Cho Y, Schenk S. Intrinsic skeletal muscle function and contraction-stimulated glucose uptake do not vary by time-of-day in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594323. [PMID: 38798320 PMCID: PMC11118484 DOI: 10.1101/2024.05.15.594323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from female mice at four times-of-day (Zeitgeber Times 1, 7, 13, 19). Significantly, while both muscles demonstrated circadian-related changes in gene expression, intrinsic contractile function, endurance, and contraction-stimulated glucose uptake were not different between the four time points. Overall, these results demonstrate that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake. Impact statement Ex vivo testing demonstrates that there is no time-of-day variation in the intrinsic contractile properties of skeletal muscle (including no effect on force production or endurance) or contraction-stimulated glucose uptake.
Collapse
|
27
|
Dial MB, Malek EM, Cooper AR, Neblina GA, Vasileva NI, Hines DJ, McGinnis GR. Social jet lag impairs exercise volume and attenuates physiological and metabolic adaptations to voluntary exercise training. J Appl Physiol (1985) 2024; 136:996-1006. [PMID: 38450426 PMCID: PMC11305643 DOI: 10.1152/japplphysiol.00632.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Social jet lag (SJL) is a misalignment between sleep and wake times on workdays and free days. SJL leads to chronic circadian rhythm disruption and may affect nearly 70% of the general population, leading to increased risk for cardiometabolic diseases. This study investigated the effects of SJL on metabolic health, exercise performance, and exercise-induced skeletal muscle adaptations in mice. Ten-week-old C57BL/6J mice (n = 40) were allocated to four groups: control sedentary (CON-SED), control exercise (CON-EX), social jet lag sedentary (SJL-SED), and social jet lag exercise (SJL-EX). CON mice were housed under a 12:12-h light-dark cycle. SJL was simulated by implementing a 4-h phase delay for 3 days to simulate "weekends," followed by a 4-h phase advance back to "weekdays," for 6 wk. EX mice had free access to a running wheel. Graded exercise tests (GXTs) and glucose tolerance tests (GTTs) were performed at baseline and after intervention to monitor the effects of exercise and social jet lag on cardiorespiratory and metabolic health, respectively. SJL led to alterations in activity and running patterns and clock gene expression in skeletal muscle and decreased average running distance (P < 0.05). SJL-SED mice gained significantly more weight compared with CON-SED and SJL-EX mice (P < 0.01). SJL impaired fasting blood glucose and glucose tolerance compared with CON mice (P < 0.05), which was partially restored by exercise in SJL-EX mice. SJL also blunted improvements in exercise performance and mitochondrial content in the quadriceps. These data suggest that SJL blunted some cardiometabolic adaptations to exercise and that proper circadian hygiene is necessary for maintaining health and performance.NEW & NOTEWORTHY In mice, disrupting circadian rhythms with social jet lag for 6 wk caused significant weight gain, higher fasting blood glucose, and impaired glucose tolerance compared with control. Voluntary exercise in mice experiencing social jet lag prevented weight gain, though the mice still experienced increased fasting blood glucose and impaired exercise performance compared with trained mice not experiencing social jet lag. Social jet lag seems to be a potent circadian rhythm disruptor that impacts exercise-induced training adaptations.
Collapse
Affiliation(s)
- Michael B Dial
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Elias M Malek
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Austin R Cooper
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Greco A Neblina
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Nikoleta I Vasileva
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Dustin J Hines
- Department of Psychology, Psychological and Brain Sciences and Interdisciplinary Neuroscience Programs, University of Nevada, Las Vegas, Nevada, United States
| | - Graham R McGinnis
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, United States
| |
Collapse
|
28
|
Li M, Yin Y, Qin D. Treadmill training impacts the skeletal muscle molecular clock after ischemia stroke in rats. Heliyon 2024; 10:e27430. [PMID: 38509905 PMCID: PMC10951531 DOI: 10.1016/j.heliyon.2024.e27430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE Stroke is frequently associated with muscle mass loss. Treadmill training is considered the most effective treatment for sarcopenia. Circadian rhythms are closely related to exercise and have been extensively studied. The skeletal muscle has its molecular clock genes. Exercise may regulate skeletal muscle clock genes. This study evaluated the effects of early treadmill training on the skeletal muscle molecular clock machinery in rats with stroke and determined the relationship of these changes with exercise-induced improvements in skeletal muscle health. MATERIALS AND METHODS Overall, 168 Sprague-Dawley rats were included in this study. We established an ischemic stroke rat model of sarcopenia. Finally, 144 rats were randomly allocated to four groups (36 per group): normal, sham, middle cerebral artery occlusion, and training. Neurological scores, rotating rod test, body weight, muscle circumference, wet weight, and hematoxylin-eosin staining were assessed. Twenty-four rats were used for transcriptome sequencing. Gene and protein expressions of skeletal muscles, such as brain muscle arnt-like 1, period 1, and period 2, were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays. RESULTS Neurological function scores and rotating rod test results improved after treadmill training. Nine differentially expressed genes were identified by comparing the sham group with the hemiplegic side of the model group. Seventeen differentially expressed genes were identified between the hemiplegic and non-hemiplegic sides. BMAL1, PER1, and PER2 mRNA levels increased on both sides after treadmill training. BMAL1 expression increased, and PER1 expression decreased on both sides, whereas PER2 expression decreased on the hemiplegic side but increased on the non-hemiplegic side. CONCLUSION Treadmill training can mitigate muscle loss and regulate skeletal muscle clock gene expression following ischemic stroke. Exercise affects the hemiplegic side and has a positive regulatory effect on the non-hemiplegic side.
Collapse
Affiliation(s)
- Mai Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374, Fengning Street, Dianmian Road, 650101, Kunming, China
| | - Yong Yin
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, No. 176, Qingnian Road, 650021, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, 650500, Kunming, China
| |
Collapse
|
29
|
Raza GS, Kaya Y, Stenbäck V, Sharma R, Sodum N, Mutt SJ, Gagnon DD, Tulppo M, Järvelin MR, Herzig KH, Mäkelä KA. Effect of Aerobic Exercise and Time-Restricted Feeding on Metabolic Markers and Circadian Rhythm in Mice Fed with the High-Fat Diet. Mol Nutr Food Res 2024; 68:e2300465. [PMID: 38389173 DOI: 10.1002/mnfr.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/30/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Diet and exercise are significant players in obesity and metabolic diseases. Time-restricted feeding (tRF) has been shown to improve metabolic responses by regulating circadian clocks but whether it acts synergically with exercise remains unknown. It is hypothesized that forced exercise alone or combined with tRF alleviates obesity and its metabolic complications. METHODS AND RESULTS Male C57bl6 mice are fed with high-fat or a control diet for 12 weeks either ad libitum or tRF for 10 h during their active period. High-fat diet (HFD)-fed mice are divided into exercise (treadmill for 1 h at 12 m min-1 alternate days for 9 weeks and 16 m min-1 daily for the following 3 weeks) and non-exercise groups. tRF and tRF-Ex significantly decreased body weight, food intake, and plasma lipids, and improved glucose tolerance. However, exercise reduced only body weight and plasma lipids. tRF and tRF-Ex significantly downregulated Fasn, Hmgcr, and Srebp1c, while exercise only Hmgcr. HFD feeding disrupted clock genes, but exercise, tRF, and tRF-Ex coordinated the circadian clock genes Bmal1, Per2, and Rev-Erbα in the liver, adipose tissue, and skeletal muscles. CONCLUSION HFD feeding disrupted clock genes in the peripheral organs while exercise, tRF, and their combination restored clock genes and improved metabolic consequences induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Yağmur Kaya
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Kent University, Istanbul, 34406, Turkey
| | - Ville Stenbäck
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Shivaprakash Jagalur Mutt
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, 75123, Sweden
| | - Dominique D Gagnon
- Faculty of Sports and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, Jyväskylä, 40014, Finland
- Clinic for Sports and Exercise Medicine, Department of Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki Mäkelänkatu, Helsinki, 00550, Finland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, SW72AZ, UK
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | - Kari A Mäkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| |
Collapse
|
30
|
Wang R, Ren C, Gao T, Li H, Bo X, Zhu D, Zhang D, Chen H, Zhang Y. SEPDB: a database of secreted proteins. Database (Oxford) 2024; 2024:baae007. [PMID: 38345567 PMCID: PMC10878045 DOI: 10.1093/database/baae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Detecting changes in the dynamics of secreted proteins in serum has been a challenge for proteomics. Enter secreted protein database (SEPDB), an integrated secretory proteomics database offering human, mouse and rat secretory proteomics datasets collected from serum, exosomes and cell culture media. SEPDB compiles secreted protein information from secreted protein database, UniProt and Human Protein Atlas databases to annotate secreted proteomics data based on protein subcellular localization and disease markers. SEPDB integrates the latest predictive modeling techniques to measure deviations in the distribution of signal peptide structures of secreted proteins, extends signal peptide sequence prediction by excluding transmembrane structural domain proteins and updates the validation analysis pipeline for secreted proteins. To establish tissue-specific profiles, we have also created secreted proteomics datasets associated with different human tissues. In addition, we provide information on heterogeneous receptor network organizational relationships, reflective of the complex functional information inherent in the molecular structures of secreted proteins that serve as ligands. Users can take advantage of the Refreshed Search, Analyze, Browse and Download functions of SEPDB, which is available online at https://sysomics.com/SEPDB/. Database URL: https://sysomics.com/SEPDB/.
Collapse
Affiliation(s)
- Ruiqing Wang
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, #5 Dong Dan San Tiao, Beijing 100005, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 Daxue Road, Changqing District, Jinan, Shandong Province 250355, China
| | - Chao Ren
- Institute of Health Service and Transfusion Medicine, #27 Taiping Road, Haidian District, Beijing 100850, China
| | - Tian Gao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, #5 Dong Dan San Tiao, Beijing 100005, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 Daxue Road, Changqing District, Jinan, Shandong Province 250355, China
| | - Hao Li
- Institute of Health Service and Transfusion Medicine, #27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, #27 Taiping Road, Haidian District, Beijing 100850, China
| | - Dahai Zhu
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, #5 Dong Dan San Tiao, Beijing 100005, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #96 South Xingdao Ring Road, Haizhu District, Guangzhou 510005, China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 Daxue Road, Changqing District, Jinan, Shandong Province 250355, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, #27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yong Zhang
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, #5 Dong Dan San Tiao, Beijing 100005, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #96 South Xingdao Ring Road, Haizhu District, Guangzhou 510005, China
| |
Collapse
|
31
|
Dial MB, Malek EM, Neblina GA, Cooper AR, Vaslieva NI, Frommer R, Girgis M, Dawn B, McGinnis GR. Effects of time-restricted exercise on activity rhythms and exercise-induced adaptations in the heart. Sci Rep 2024; 14:146. [PMID: 38168503 PMCID: PMC10761674 DOI: 10.1038/s41598-023-50113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Circadian rhythms play a crucial role in the regulation of various physiological processes, including cardiovascular function and metabolism. Exercise provokes numerous beneficial adaptations in heart, including physiological hypertrophy, and serves to shift circadian rhythms. This study investigated the impact of time-restricted exercise training on exercise-induced adaptations in the heart and locomotor activity rhythms. Male mice (n = 45) were allocated to perform voluntary, time-restricted exercise in the early active phase (EAP), late active phase (LAP), or remain sedentary (SED) for 6 weeks. Subsequently, mice were allowed 24-h ad libitum access to the running wheel to assess diurnal rhythms in locomotor activity. Heart weight and cross-sectional area were measured at sacrifice, and cardiac protein and gene expression levels were assessed for markers of mitochondrial abundance and circadian clock gene expression. Mice rapidly adapted to wheel running, with EAP mice exhibiting a significantly greater running distance compared to LAP mice. Time-restricted exercise induced a shift in voluntary wheel activity during the 24-h free access period, with the acrophase in activity being significantly earlier in EAP mice compared to LAP mice. Gene expression analysis revealed a higher expression of Per1 in LAP mice. EAP exercise elicited greater cardiac hypertrophy compared to LAP exercise. These findings suggest that the timing of exercise affects myocardial adaptations, with exercise in the early active phase inducing hypertrophy in the heart. Understanding the time-of-day dependent response to exercise in the heart may have implications for optimizing exercise interventions for cardiovascular health.
Collapse
Affiliation(s)
- Michael B Dial
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Elias M Malek
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Greco A Neblina
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Austin R Cooper
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Nikoleta I Vaslieva
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Rebecca Frommer
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Magdy Girgis
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Graham R McGinnis
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA.
| |
Collapse
|
32
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Nakamura S, Miyachi Y, Shinjo A, Yokomizo H, Takahashi M, Nakatani K, Izumi Y, Otsuka H, Sato N, Sakamoto R, Miyazawa T, Bamba T, Ogawa Y. Improved endurance capacity of diabetic mice during SGLT2 inhibition: Role of AICARP, an AMPK activator in the soleus. J Cachexia Sarcopenia Muscle 2023; 14:2866-2881. [PMID: 37941098 PMCID: PMC10751436 DOI: 10.1002/jcsm.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Diabetes is associated with an increased risk of deleterious changes in muscle mass and function or sarcopenia, leading to physical inactivity and worsening glycaemic control. Given the negative energy balance during sodium-glucose cotransporter-2 (SGLT2) inhibition, whether SGLT2 inhibitors affect skeletal muscle mass and function is a matter of concern. However, how SGLT2 inhibition affects the skeletal muscle function in patients with diabetes remains insufficiently explored. We aimed to explore the effects of canagliflozin (CANA), an SGLT2 inhibitor, on skeletal muscles in genetically diabetic db/db mice focusing on the differential responses of oxidative and glycolytic muscles. METHODS Db/db mice were treated with CANA for 4 weeks. We measured running distance and handgrip strength to assess skeletal muscle function during CANA treatment. At the end of the experiment, we performed a targeted metabolome analysis of the skeletal muscles. RESULTS CANA treatment improved the reduced endurance capacity, as revealed by running distance in db/db mice (414.9 ± 52.8 vs. 88.7 ± 22.7 m, P < 0.05). Targeted metabolome analysis revealed that 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5'-monophosphate (AICARP), a naturally occurring AMP-activated protein kinase (AMPK) activator, increased in the oxidative soleus muscle (P < 0.05), but not in the glycolytic extensor digitorum longus muscle (P = 0.4376), with increased levels of AMPK phosphorylation (P < 0.01). CONCLUSIONS This study highlights the potential role of the AICARP/AMPK pathway in oxidative rather than glycolytic skeletal muscles during SGLT2 inhibition, providing novel insights into the mechanism by which SGLT2 inhibitors improve endurance capacity in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Shintaro Nakamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasutaka Miyachi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Akihito Shinjo
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hisashi Yokomizo
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kohta Nakatani
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Hiroko Otsuka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Naoichi Sato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Miyazawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
34
|
Pacak CA, Suzuki-Hatano S, Khadir F, Daugherty AL, Sriramvenugopal M, Gosiker BJ, Kang PB, Cade WT. One episode of low intensity aerobic exercise prior to systemic AAV9 administration augments transgene delivery to the heart and skeletal muscle. J Transl Med 2023; 21:748. [PMID: 37875924 PMCID: PMC10598899 DOI: 10.1186/s12967-023-04626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION The promising potential of adeno-associated virus (AAV) gene delivery strategies to treat genetic disorders continues to grow with an additional three AAV-based therapies recently approved by the Food and Drug Administration and dozens of others currently under evaluation in clinical trials. With these developments, it has become increasingly apparent that the high doses currently needed for efficacy carry risks of toxicity and entail enormous manufacturing costs, especially for clinical grade products. Strategies to increase the therapeutic efficacy of AAV-mediated gene delivery and reduce the minimal effective dose would have a substantial impact on this field. We hypothesized that an exercise-induced redistribution of tissue perfusion in the body to favor specific target organs via acute aerobic exercise prior to systemic intravenous (IV) AAV administration could increase efficacy. BACKGROUND Aerobic exercise triggers an array of downstream physiological effects including increased perfusion of heart and skeletal muscle, which we expected could enhance AAV transduction. Prior preclinical studies have shown promising results for a gene therapy approach to treat Barth syndrome (BTHS), a rare monogenic cardioskeletal myopathy, and clinical studies have shown the benefit of low intensity exercise in these patients, making this a suitable disease in which to test the ability of aerobic exercise to enhance AAV transduction. METHODS Wild-type (WT) and BTHS mice were either systemically administered AAV9 or completed one episode of low intensity treadmill exercise immediately prior to systemic administration of AAV9. RESULTS We demonstrate that a single episode of acute low intensity aerobic exercise immediately prior to IV AAV9 administration improves marker transgene delivery in WT mice as compared to mice injected without the exercise pre-treatment. In BTHS mice, prior exercise improved transgene delivery and additionally increased improvement in mitochondrial gene transcription levels and mitochondrial function in the heart and gastrocnemius muscles as compared to mice treated without exercise. CONCLUSIONS Our findings suggest that one episode of acute low intensity aerobic exercise improves AAV9 transduction of heart and skeletal muscle. This low-risk, cost effective intervention could be implemented in clinical trials of individuals with inherited cardioskeletal disease as a potential means of improving patient safety for human gene therapy.
Collapse
Affiliation(s)
- Christina A Pacak
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| | - Silveli Suzuki-Hatano
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, USA
| | - Fatemeh Khadir
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Audrey L Daugherty
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | | | - Bennett J Gosiker
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - William Todd Cade
- Physical Therapy Division, Department of Orthopaedic Surgery, Duke University School of Medicine, 311 Trent Drive, Durham, NC, 27710, USA.
| |
Collapse
|
35
|
Martínez-Montoro JI, Benítez-Porres J, Tinahones FJ, Ortega-Gómez A, Murri M. Effects of exercise timing on metabolic health. Obes Rev 2023; 24:e13599. [PMID: 37416977 DOI: 10.1111/obr.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
The increasing prevalence of metabolic syndrome is associated with major health and socioeconomic consequences. Currently, physical exercise, together with dietary interventions, is the mainstay of the treatment of obesity and related metabolic complications. Although exercise training includes different modalities, with variable intensity, duration, volume, or frequency, which may have a distinct impact on several characteristics related to metabolic syndrome, the potential effects of exercise timing on metabolic health are yet to be fully elucidated. Remarkably, promising results with regard to this topic have been reported in the last few years. Similar to other time-based interventions, including nutritional therapy or drug administration, time-of-day-based exercise may become a useful approach for the management of metabolic disorders. In this article, we review the role of exercise timing in metabolic health and discuss the potential mechanisms that could drive the metabolic-related benefits of physical exercise performed in a time-dependent manner.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Benítez-Porres
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Physical Education and Sport, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Ortega-Gómez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Mora Murri
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Heart Area Clinical Management Unit, Virgen de la Victoria University Hospital, Málaga, Spain
| |
Collapse
|
36
|
Kang J, Ratamess NA, Faigenbaum AD, Bush JA, Finnerty C, DiFiore M, Garcia A, Beller N. Time-of-Day Effects of Exercise on Cardiorespiratory Responses and Endurance Performance-A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:2080-2090. [PMID: 37026733 DOI: 10.1519/jsc.0000000000004497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Kang, J, Ratamess, NA, Faigenbaum, AD, Bush, JA, Finnerty, C, DiFiore, M, Garcia, A, and Beller, N. Time-of-day effects of exercise on cardiorespiratory responses and endurance performance-A systematic review and meta-analysis. J Strength Cond Res 37(10): 2080-2090, 2023-The time-of-day effect of exercise on human function remains largely equivocal. Hence, this study aimed to further analyze the existing evidence concerning diurnal variations in cardiorespiratory responses and endurance performance using a meta-analytic approach. Literature search was conducted through databases, including PubMed, CINAHL, and Google Scholar. Article selection was made based on inclusion criteria concerning subjects' characteristics, exercise protocols, times of testing, and targeted dependent variables. Results on oxygen uptake (V̇ o2 ), heart rate (HR), respiratory exchange ratio, and endurance performance in the morning (AM) and late afternoon or evening (PM) were extracted from the chosen studies. Meta-analysis was conducted with the random-effects model. Thirty-one original research studies that met the inclusion criteria were selected. Meta-analysis revealed higher resting V̇ o2 (Hedges' g = -0.574; p = 0.040) and resting HR (Hedges' g = -1.058; p = 0.002) in PM than in AM. During exercise, although V̇ o2 remained indifferent between AM and PM, HR was higher in PM at submaximal (Hedges' g = -0.199; p = 0.046) and maximal (Hedges' g = -0.298; p = 0.001) levels. Endurance performance as measured by time-to-exhaustion or the total work accomplished was higher in PM than in AM (Hedges' g = -0.654; p = 0.001). Diurnal variations in V̇ o2 appear less detectable during aerobic exercise. The finding that exercising HR and endurance performance were greater in PM than in AM emphasizes the need to consider the effect of circadian rhythm when evaluating athletic performance or using HR as a criterion to assess fitness or monitor training.
Collapse
Affiliation(s)
- Jie Kang
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Galan-Lopez P, Casuso RA. Metabolic Adaptations to Morning Versus Afternoon Training: A Systematic Review and Meta-analysis. Sports Med 2023; 53:1951-1961. [PMID: 37458979 DOI: 10.1007/s40279-023-01879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Some physiological responses such as circulating glucose as well as muscle performance show a circadian rhythmicity. In the present study we aimed to quantitatively synthesize the data comparing the metabolic adaptations induced by morning and afternoon training. METHODS PubMed, SCOPUS, and Web of Science databases were systematically searched for studies comparing the metabolic adaptations (> 2 weeks) between morning and afternoon training. A meta-analysis was performed using random-effects models with DerSimonian-Laird methods for fasting blood glucose, hemoglobin A1c (HbAc1), homeostatic model assessment (HOMA), insulin, triglycerides, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL). RESULTS We identified 9 studies with 11 different populations (n = 450 participants). We found that afternoon exercise was more effective at reducing circulating triglycerides [standardized mean difference (SMD) - 0.32; 95% confidence interval (CI) - 0.616 to - 0.025] than morning training. Moreover, afternoon tended to decrease fasting blood glucose (SMD - 0.24; 95% CI - 0.478 to 0.004) to a greater extent than morning training. CONCLUSION Metabolic adaptations to exercise may be dependent on the time of day. Morning training does not show superior effects to afternoon exercise in any of the analyzed outcomes. However, afternoon training is more effective at reducing circulating triglyceride levels and perhaps at reducing fasting blood glucose than morning training. The study was preregistered at PROSPERO (CRD42021287860).
Collapse
Affiliation(s)
- Pablo Galan-Lopez
- Department of Communication and Education, Universidad Loyola Andalucía, Seville, Spain
| | - Rafael A Casuso
- Faculty of Health Sciences, Universidad Loyola Andalucía, Córdoba, Spain.
| |
Collapse
|
38
|
Hesketh SJ, Sexton CL, Wolff CA, Viggars MR, Esser KA. Early morning run-training results in enhanced endurance performance adaptations in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557933. [PMID: 37781623 PMCID: PMC10541096 DOI: 10.1101/2023.09.18.557933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Time-of-day differences in acute exercise performance in mice are well established with late active phase (afternoon) runners exhibiting significantly greater endurance performance compared to early active phase (morning) runners. In this study, we asked if performance adaptations would be different when training for 6 weeks at two different times of day, and if this corresponds to steady state changes in the phase of peripheral tissue clocks. To address these questions, we endurance trained female PER2::Luciferase mice, at the same relative workload, either in the morning, at ZT13, or in the afternoon, at ZT22. Then, after training, we recorded luminescence from tissues of PER2::Luciferase mice to report timing of tissue clocks in several peripheral tissues. After 6 weeks, we found that both groups exhibited significant improvements in maximal endurance capacity (total treadmill work)(p < 0.0001), but the morning runners exhibited an enhanced rate of adaptation as there was no detectable difference in maximal endurance capacity (p = 0.2182) between the morning and afternoon runners. In addition, morning and afternoon runners exhibited divergent clock phase shifts with a significant 5-hour phase advance in the EDL (p < 0.0001) and soleus (p < 0.0001) of morning runners, but a phase delay in the EDL (p < 0.0001) and Soleus (p < 0.0001) of afternoon runners. Therefore, our data demonstrate that morning training enhances endurance adaptations compared to afternoon training in mice, and we suggest this is due to phase advancement of muscle clocks to better align metabolism with exercise performance.
Collapse
Affiliation(s)
- Stuart J Hesketh
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
- School of Medicine,University of Central Lancashire, 11 Victoria St, Preston PR1 7QS, United Kingdom
| | - Casey L Sexton
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| | - Christopher A Wolff
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| | - Mark R Viggars
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| |
Collapse
|
39
|
Nobari H, Azarian S, Saedmocheshi S, Valdés-Badilla P, García Calvo T. Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon 2023; 9:e19636. [PMID: 37809566 PMCID: PMC10558889 DOI: 10.1016/j.heliyon.2023.e19636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives This study was a narrative review of the importance of circadian rhythm (CR), describes the underlying mechanisms of CR in sports performance, emphasizes the reciprocal link between CR, endocrine homeostasis and sex differences, and the unique role of the circadian clock in immune system function and coordination. Method As a narrative review study, a comprehensive search was conducted in PubMed, Scopus, and Web of Science (core collection) databases using the keywords "circadian rhythm", "sports performance", "hormonal regulation", "immune system", and "injury prevention". Inclusion criteria were studies published in English and peer-reviewed journals until July 2023. Studies that examined the role of CR in sports performance, hormonal status, immune system function, and injury prevention in athletes were selected for review. Results CR is followed by almost all physiological and biochemical activities in the human body. In humans, the superchiasmatic nucleus controls many daily biorhythms under solar time, including the sleep-wake cycle. A body of literature indicates that the peak performance of essential indicators of sports performance is primarily in the afternoon hours, and the evening of actions occurs roughly at the peak of core body temperature. Recent studies have demonstrated that the time of day that exercise is performed affects the achievement of good physical performance. This review also shows various biomarkers of cellular damage in weariness and the underlying mechanisms of diurnal fluctuations. According to the clock, CR can be synchronized with photonic and non-photonic stimuli (i.e., temperature, physical activity, and food intake), and feeding patterns and diet changes can affect CR and redox markers. It also emphasizes the reciprocal links between CR and endocrine homeostasis, the specific role of the circadian clock in coordinating immune system function, and the relationship between circadian clocks and sex differences. Conclusion The interaction between insufficient sleep and time of day on performance has been established in this study because it is crucial to balance training, recovery, and sleep duration to attain optimal sports performance.
Collapse
Affiliation(s)
- Hadi Nobari
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Somayeh Azarian
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Pablo Valdés-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca, 3530000, Chile
- Sports Coach Career, School of Education, Universidad Viña del Mar, Viña del Mar, 2520000, Chile
| | - Tomás García Calvo
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
40
|
Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Sheng-Hwa Tung A, Li VL, Huang W, Wiggenhorn AL, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab 2023; 35:1261-1279.e11. [PMID: 37141889 PMCID: PMC10524249 DOI: 10.1016/j.cmet.2023.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nicholas M Riley
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wentao Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Qian J, Xiao Q, Walkup MP, Coday M, Erickson ML, Unick J, Jakicic JM, Hu K, Scheer FA, Middelbeek RJ, Look AHEAD Research Group. Association of Timing of Moderate-to-Vigorous Physical Activity With Changes in Glycemic Control Over 4 Years in Adults With Type 2 Diabetes From the Look AHEAD Trial. Diabetes Care 2023; 46:1417-1424. [PMID: 37226675 PMCID: PMC10300518 DOI: 10.2337/dc22-2413] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/22/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE We aimed to determine the association of the time-of-day of bout-related moderate-to-vigorous physical activity (bMVPA) with changes in glycemic control across 4 years in adults with overweight/obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS Among 2,416 participants (57% women; mean age, 59 years) with 7-day waist-worn accelerometry recording at year 1 or 4, we assigned bMVPA timing groups based on the participants' temporal distribution of bMVPA at year 1 and recategorized them at year 4. The time-varying exposure of bMVPA (≥10-min bout) timing was defined as ≥50% of bMVPA occurring during the same time period (morning, midday, afternoon, or evening), <50% of bMVPA in any time period (mixed), and ≤1 day with bMVPA per week (inactive). RESULTS HbA1c reduction at year 1 varied among bMVPA timing groups (P = 0.02), independent of weekly bMVPA volume and intensity. The afternoon group had the greatest HbA1c reduction versus inactive (-0.22% [95%CI -0.39%, -0.06%]), the magnitude of which was 30-50% larger than the other groups. The odds of discontinuation versus maintaining or initiating glucose-lowering medications at year 1 differed by bMVPA timing (P = 0.04). The afternoon group had the highest odds (odds ratio 2.13 [95% CI 1.29, 3.52]). For all the year-4 bMVPA timing groups, there were no significant changes in HbA1c between year 1 and 4. CONCLUSIONS bMVPA performed in the afternoon is associated with improvements in glycemic control in adults with diabetes, especially within the initial 12 months of an intervention. Experimental studies are needed to examine causality.
Collapse
Affiliation(s)
- Jingyi Qian
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Qian Xiao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | | | - Mace Coday
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
| | | | - Jessica Unick
- Weight Control and Diabetes Research Center, Miriam Hospital, Providence, RI
| | - John M. Jakicic
- Division of Physical Activity and Weight Management, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kun Hu
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Frank A.J.L. Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
42
|
Xin H, Huang R, Zhou M, Chen J, Zhang J, Zhou T, Ji S, Liu X, Tian H, Lam SM, Bao X, Li L, Tong S, Deng F, Shui G, Zhang Z, Wong CCL, Li MD. Daytime-restricted feeding enhances running endurance without prior exercise in mice. Nat Metab 2023; 5:1236-1251. [PMID: 37365376 DOI: 10.1038/s42255-023-00826-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Physical endurance and energy conservation are essential for survival in the wild. However, it remains unknown whether and how meal timing regulates physical endurance and muscle diurnal rhythms. Here, we show that day/sleep time-restricted feeding (DRF) enhances running endurance by 100% throughout the circadian cycle in both male and female mice, compared to either ad libitum feeding or night/wake time-restricted feeding. Ablation of the circadian clock in the whole body or the muscle abolished the exercise regulatory effect of DRF. Multi-omics analysis revealed that DRF robustly entrains diurnal rhythms of a mitochondrial oxidative metabolism-centric network, compared to night/wake time-restricted feeding. Remarkably, muscle-specific knockdown of the myocyte lipid droplet protein perilipin-5 completely mimics DRF in enhancing endurance, enhancing oxidative bioenergetics and outputting rhythmicity to circulating energy substrates, including acylcarnitine. Together, our work identifies a potent dietary regimen to enhance running endurance without prior exercise, as well as providing a multi-omics atlas of muscle circadian biology regulated by meal timing.
Collapse
Affiliation(s)
- Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianxin Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Tingting Zhou
- Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shushen Ji
- Department of Bioinformatics, GFK Biotech, Shanghai, China
| | - Xiao Liu
- Department of Bioinformatics, GFK Biotech, Shanghai, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies, Changzhou, China
| | - Xinyu Bao
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lihua Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shifei Tong
- Department of Cardiology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Catherine C L Wong
- Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
43
|
Kahn RE, Dayanidhi S, Lacham-Kaplan O, Hawley JA. Molecular clocks, satellite cells, and skeletal muscle regeneration. Am J Physiol Cell Physiol 2023; 324:C1332-C1340. [PMID: 37184229 PMCID: PMC11932531 DOI: 10.1152/ajpcell.00073.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Skeletal muscle comprises approximately 50% of individual body mass and plays vital roles in locomotion, heat production, and whole body metabolic homeostasis. This tissue exhibits a robust diurnal rhythm that is under control of the suprachiasmatic nucleus (SCN) region of the hypothalamus. The SCN acts as a "central" coordinator of circadian rhythms, while cell-autonomous "peripheral" clocks are located within almost all other tissues/organs in the body. Synchronization of the peripheral clocks in muscles (and other tissues) together with the central clock is crucial to ensure temporally coordinated physiology across all organ systems. By virtue of its mass, human skeletal muscle contains the largest collection of peripheral clocks, but within muscle resides a local stem cell population, satellite cells (SCs), which have their own functional molecular clock, independent of the numerous muscle clocks. Skeletal muscle has a daily turnover rate of 1%-2%, so the regenerative capacity of this tissue is important for whole body homeostasis/repair and depends on successful SC myogenic progression (i.e., proliferation, differentiation, and fusion). Emerging evidence suggests that SC-mediated muscle regeneration may, in part, be regulated by molecular clocks involved in SC-specific diurnal transcription. Here we provide insights on molecular clock regulation of muscle regeneration/repair and provide a novel perspective on the interplay between SC-specific molecular clocks, myogenic programs, and cell cycle kinetics that underpin myogenic progression.
Collapse
Affiliation(s)
- Ryan E Kahn
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Martin RA, Viggars MR, Esser KA. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat Rev Endocrinol 2023; 19:272-284. [PMID: 36726017 PMCID: PMC11783692 DOI: 10.1038/s41574-023-00805-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Circadian rhythms that influence mammalian homeostasis and overall health have received increasing interest over the past two decades. The molecular clock, which is present in almost every cell, drives circadian rhythms while being a cornerstone of physiological outcomes. The skeletal muscle clock has emerged as a primary contributor to metabolic health, as the coordinated expression of the core clock factors BMAL1 and CLOCK with the muscle-specific transcription factor MYOD1 facilitates the circadian and metabolic programme that supports skeletal muscle physiology. The phase of the skeletal muscle clock is sensitive to the time of exercise, which provides a rationale for exploring the interactions between the skeletal muscle clock, exercise and metabolic health. Here, we review the underlying mechanisms of the skeletal muscle clock that drive muscle physiology, with a particular focus on metabolic health. Additionally, we highlight the interaction between exercise and the skeletal muscle clock as a means of reinforcing metabolic health and discuss the possible implications of the time of exercise as a chronotherapeutic approach.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
45
|
Zečević K, Popović N, Vuksanović Božarić A, Vukmirović M, Rizzo M, Muzurović E. Timing Is Important-Management of Metabolic Syndrome According to the Circadian Rhythm. Biomedicines 2023; 11:biomedicines11041171. [PMID: 37189789 DOI: 10.3390/biomedicines11041171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Physiological processes occur in accordance with a rhythm regulated by the endogenous biological clock. This clock is programmed at the molecular level and synchronized with the daily light-dark cycle, as well as activities such as feeding, exercise, and social interactions. It consists of the core clock genes, Circadian Locomotor Output Cycles Protein Kaput (CLOCK) and Brain and Muscle Arnt-Like protein 1 (BMAL1), and their products, the period (PER) and cryptochrome (CRY) proteins, as well as an interlocked feedback loop which includes reverse-strand avian erythroblastic leukemia (ERBA) oncogene receptors (REV-ERBs) and retinoic acid-related orphan receptors (RORs). These genes are involved in the regulation of metabolic pathways and hormone release. Therefore, circadian rhythm disruption leads to development of metabolic syndrome (MetS). MetS refers to a cluster of risk factors (RFs), which are not only associated with the development of cardiovascular (CV) disease (CVD), but also with increased all-cause mortality. In this review, we consider the importance of the circadian rhythm in the regulation of metabolic processes, the significance of circadian misalignment in the pathogenesis of MetS, and the management of MetS in relation to the cellular molecular clock.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Nataša Popović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | | | - Mihailo Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Cardiology Clinic, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
46
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
47
|
Abdelmoez AM, Dmytriyeva O, Zurke YX, Trauelsen M, Marica AA, Savikj M, Smith JAB, Monaco C, Schwartz TW, Krook A, Pillon NJ. Cell selectivity in succinate receptor SUCNR1/GPR91 signaling in skeletal muscle. Am J Physiol Endocrinol Metab 2023; 324:E289-E298. [PMID: 36812387 DOI: 10.1152/ajpendo.00009.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle. In human tissues, SUCNR1 mRNA was associated with macrophage markers. Single-cell RNA sequencing and fluorescent RNAscope demonstrated that in human skeletal muscle, SUCNR1 mRNA is not expressed in muscle fibers but coincided with macrophage populations. Human M2-polarized macrophages exhibit high levels of SUCNR1 mRNA and stimulation with selective agonists of SUCNR1 triggered Gq- and Gi-coupled signaling. Primary human skeletal muscle cells were unresponsive to SUCNR1 agonists. In conclusion, SUCNR1 is not expressed in muscle cells and its role in the adaptive response of skeletal muscle to exercise is most likely mediated via paracrine mechanisms involving M2-like macrophages within the muscle.NEW & NOTEWORTHY Macrophages but not skeletal muscle cells respond to extracellular succinate via SUCNR1/GPR91.
Collapse
Affiliation(s)
- Ahmed M Abdelmoez
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yasemin-Xiomara Zurke
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Mette Trauelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alesandra A Marica
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Kirchner H, Weisner L, Wilms B. When should I run-the role of exercise timing in metabolic health. Acta Physiol (Oxf) 2023; 237:e13953. [PMID: 36815281 DOI: 10.1111/apha.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
The prevalence of type 2 diabetes is reaching epidemic proportions. First line therapy approaches are lifestyle interventions including exercise. Although a vast amount of studies reports on beneficial effects of exercise on metabolism in humans per se, overall data are contradictory which makes it difficult to optimize interventions. Innovative exercise strategies and its underlying mechanism are needed to elucidate in order to close this therapeutic gap. The skeletal muscle produces and secretes myokines and microRNAs in response to exercise and both are discussed as mechanisms linking exercise and metabolic adaptation. Aspects of chronophysiology such as diurnal variation in insulin sensitivity or exercise as a signal to reset dysregulated peripheral clocks are of growing interest in the context of impaired metabolism. Deep insight of how exercise timing determines metabolic adaptations is required to optimize exercise interventions. This review aims to summarize the current state of research on the interaction between timing of exercise and metabolism in humans, providing insights into proposed mechanistic concepts focusing on myokines and microRNAs. First evidence points to an impact of timing of exercise on health outcome, although data are inconclusive. Underlying mechanisms remain elusive. It is currently unknown if the timed release of mykokines depends on time of day when exercise is performed. microRNAs have been found as an important mediator of processes associated with exercise adaptation. Further research is needed to evaluate their full relevance. In conclusion, it seems to be too early to provide concrete recommendations on timing of exercise to maximize beneficial effects.
Collapse
Affiliation(s)
- Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Leon Weisner
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Britta Wilms
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| |
Collapse
|
49
|
Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci 2023; 24:6275. [PMID: 37047252 PMCID: PMC10094461 DOI: 10.3390/ijms24076275] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals' set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms "Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms". It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients' laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Ataşehir, 34752 Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Ataşehir, 34752 Istanbul, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| |
Collapse
|
50
|
Ashcroft SP, Jepsen SL, Ehrlich AM, Treebak JT, Holst JJ, Zierath JR. Protocol to assess arteriovenous differences across the liver and hindlimb muscles in mice following treadmill exercise. STAR Protoc 2023; 4:101985. [PMID: 36602899 PMCID: PMC9826965 DOI: 10.1016/j.xpro.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
The tissue-specific release and uptake of metabolites in response to exercise is incompletely understood. Here, we detail a protocol to assess arteriovenous differences across the liver and hindlimb muscles in response to treadmill exercise in mice. We describe steps for the treadmill running of mice and the region-specific sampling of blood from the liver and hindlimb. This procedure is particularly relevant for the study of tissue-specific metabolism in response to exercise. For complete details on the use and execution of this protocol, please refer to Sato et al. (2022).1.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Deparment of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|