1
|
He L, Dang J, Li J, Xue H, Cai J, Cheng G, Yang Y, Liu Z, Liu B, Dai Y, Zhang Y, Huang Y, Sun Y, Guo J, Liu K. Myriocin Restores Metabolic Homeostasis in dAGE-Exposed Mice via AMPK-PGC1α-Mediated Mitochondrial Activation and Systemic Lipid/Glucose Regulation. Nutrients 2025; 17:1549. [PMID: 40362857 PMCID: PMC12073792 DOI: 10.3390/nu17091549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Diet-derived advanced glycation end products (dAGEs) are closely associated with obesity and metabolic disorders. This study investigates the therapeutic potential of myriocin (Myr), a sphingolipid synthesis inhibitor, in counteracting dAGE-induced obesity and its underlying mechanisms. Methods: Male C57BL/6J wild-type mice were randomly assigned to receive either a low-AGE diet or a high-AGE diet with or without the administration of myriocin for a duration of 24 weeks. At the end of the experimental period, blood samples, whole livers, and adipose tissues were harvested for subsequent biochemical, histological, and molecular analyses. Results: Using a 24-week high-AGE diet mouse model, we demonstrate that Myr significantly reduces body weight gain (by 76%) and adipose tissue accumulation, while alleviating hepatic steatosis. Myr improves glucose homeostasis by lowering fasting blood glucose (a 44.5% reduction), enhancing oral glucose tolerance, and restoring hepatic glycolysis/gluconeogenesis balance via upregulating glucokinase and suppressing G6pc. Notably, Myr reduces serum LDL-C, TG, and TC levels by 52.3%, 51.8%, and 48.8%, respectively, and ameliorates liver dysfunction as evidenced by normalized ALT/AST activities. Metabolomics reveal Myr reshapes amino acid, carbohydrate, and lipid metabolism pathways. Mechanistically, Myr suppresses lipogenesis by downregulating Srebp1, Fasn, and Acc, while activating AMPK-PGC1α signaling to enhance mitochondrial biogenesis (a 2.1-fold increase in mtDNA) and thermogenesis via Ucp1 upregulation in brown and white adipose tissues. Conclusions: Our findings unveil Myr as a novel dual regulator of lipid and glucose metabolism through AMPK-PGC1α-mediated mitochondrial activation, providing the first evidence of sphingolipid inhibition as a therapeutic strategy against dAGE-induced metabolic syndrome. This study establishes a multifaceted mechanism involving hepatic lipid regulation, adipose browning, and systemic metabolic reprogramming, advancing potential clinical applications for obesity-related disorders.
Collapse
Affiliation(s)
- Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingjing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hairui Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiaxiu Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guohua Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuhui Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhiyi Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Binghua Liu
- Laboratory of Molecular Biology, College of Medicine, Chengdu University, Chengdu 610106, China
| | - Yali Dai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yu Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yating Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jinlin Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Ruperez C, Madeo F, de Cabo R, Kroemer G, Abdellatif M. Obesity accelerates cardiovascular ageing. Eur Heart J 2025:ehaf216. [PMID: 40197620 DOI: 10.1093/eurheartj/ehaf216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/11/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
A global obesity pandemic, coupled with an increasingly ageing population, is exacerbating the burden of cardiovascular disease. Indeed, clinical and experimental evidence underscores a potential connection between obesity and ageing in the pathogenesis of various cardiovascular disorders. This is further supported by the notion that weight reduction not only effectively reduces major cardiovascular events in elderly individuals but is also considered the gold standard for lifespan extension, in obese and non-obese model organisms. This review evaluates the intricate interplay between obesity and ageing from molecular mechanisms to whole organ function within the cardiovascular system. By comparatively analysing their characteristic features, shared molecular and cell biological signatures between obesity and ageing are unveiled, with the intent to shed light on how obesity accelerates cardiovascular ageing. This review also elaborates on how emerging metabolic interventions targeting obesity might protect from cardiovascular diseases largely through antagonizing key molecular mechanisms of the ageing process itself. In sum, this review aims to provide valuable insight into how understanding these interconnected processes could guide the development of novel and effective cardiovascular therapeutics for a growing aged population with a concerning obesity problem.
Collapse
Affiliation(s)
- Celia Ruperez
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, Graz 8036, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 15 Rue de l'École de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94805, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 20 Rue Leblanc, Paris 75015, France
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, Graz 8036, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 15 Rue de l'École de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94805, France
| |
Collapse
|
3
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
4
|
Tang L, Hao G, Zhou D, Fan Y, Wei Z, Li D, Shen Y, Fang H, Lin F, Zhao M, Zhang H. Hepatotoxicity in Carp ( Carassius auratus) Exposed to Perfluorooctane Sulfonate (PFOS): Integrative Histopathology and Transcriptomics Analysis. Animals (Basel) 2025; 15:610. [PMID: 40003090 PMCID: PMC11851982 DOI: 10.3390/ani15040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Perfluorooctane sulfonate (PFOS) contamination poses a significant environmental threat due to its widespread distribution and persistence. However, the hepatotoxic effects of PFOS on key aquatic species, such as crucian carp, remain understudied. This study systematically investigated the hepatotoxicity and underlying molecular mechanisms associated with PFOS exposure in crucian carp over a 21 day period. We determined a 96 h 50% lethal concentration (LC50) of 23.17 mg/L. Histopathological and transcriptomic analyses confirmed PFOS-induced liver damage in the carp, characterized by venous congestion, nucleolar dissolution and cellular vacuolation. Transcriptomic profiling further identified 1036 differentially expressed genes (DEGs), involving critical pathways related to lipid and energy metabolism, immunity, and endocrine regulation. These pathways are integral to the development of nonalcoholic fatty liver disease (NAFLD). Specifically, DEGs related to lipid metabolism showed significant changes, while those involved in energy metabolism indicated disrupted ATP production and mitochondrial function. Genes associated with immune response revealed an upregulation of pro-inflammatory markers, and hormone regulation genes highlighted alterations in endocrine signaling. Our findings emphasized that PFOS exhibits acute toxicity to crucian carp, potentially inducing hepatotoxicity by disrupting multiple physiological systems. This research provides a theoretical foundation for mitigating aquatic pollution and protecting eco-health, contributing to broader ecological and conservation biology discussions.
Collapse
Affiliation(s)
- Lin Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Guijie Hao
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Dongren Zhou
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Yunpeng Fan
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Zihao Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Dongsheng Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Yafang Shen
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Haoyu Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Feng Lin
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Haiqi Zhang
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| |
Collapse
|
5
|
Xin W, Zhou J, Peng Y, Gong S, Liao W, Wang Y, Huang X, Mao Y, Yao M, Qin S, Xiong J, Li Y, Lan Q, Huang Y, Zhao J. SREBP1c-Mediated Transcriptional Repression of YME1L1 Contributes to Acute Kidney Injury by Inducing Mitochondrial Dysfunction in Tubular Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412233. [PMID: 39680752 PMCID: PMC11809329 DOI: 10.1002/advs.202412233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Acute kidney injury (AKI) is a prevalent clinical syndrome with high morbidity and mortality. Accumulating studies suggest mitochondrial dysfunction as the typical characteristics and key process of AKI, but the underlying mechanism remains elusive. The YME1-like 1 (YME1L1) ATPase, an inner mitochondrial membrane protein, is screened and identified to be downregulated in renal tubular epithelial cells of various mouse models and patients of AKI. Dramatically, restoration of YME1L1 expression significantly alleviates cisplatin-induced AKI and subsequent chronic kidney disease (CKD) through attenuating mitochondrial dysfunction via maintaining optic atrophy 1 (OPA1)-mediated mitochondrial energy metabolism homeostasis. Mechanistically, the upregulated expression of sterol regulatory element binding transcription factor 1c (SREBP1c) is demonstrated to be responsible for cisplatin-mediated transcriptional inhibition of YME1L1 via directly binding to its promoter region. Moreover, cisplatin-induced methyltransferase-like 3 (METTL3)-mediated m6A modification enhances SREBP1c mRNA stability, thereby upregulating its expression. Notably, both depletion of SREBP1c and renal tubule-specific overexpression of YME1L1 markedly ameliorate cisplatin-induced AKI and its transition to CKD. Taken together, these findings suggest that METTL3-mediated SREBP1c upregulation contributes to AKI and its progression to CKD through disrupting mitochondrial energy metabolism via transcriptionally suppressing YME1L1. Targeting the SREBP1c/YME1L1 signaling may serve as a novel therapeutic strategy against AKI.
Collapse
Affiliation(s)
- Wang Xin
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jie Zhou
- Department of OncologySouthwest Cancer CenterSouthwest HospitalArmy Medical UniversityChongqing400038China
| | - Yuzhu Peng
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shuiqin Gong
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Wenhao Liao
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yaqin Wang
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Xixin Huang
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yang Mao
- Clinical Medical Research CenterXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Mengying Yao
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Shaozong Qin
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jiachuan Xiong
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yan Li
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Qigang Lan
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Yinghui Huang
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jinghong Zhao
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| |
Collapse
|
6
|
Ai S, Pan J, Liu Q, Tang F, Wen T, Yuan Y, He Q, Huang L. OTUB1 mediates PARP1 deubiquitination to alleviate NAFLD by regulating HMGB1. Exp Cell Res 2025; 445:114425. [PMID: 39814124 DOI: 10.1016/j.yexcr.2025.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease characterized by hepatocyte steatosis, which excludes alcohol, drugs and other definite liver damage-related factors. It has been reported that OTUB1 serves a significant role in the regulation of glucose and lipid metabolism. The present study aimed to investigate the molecular mechanism underlying the effect of OTUB1 on regulating NAFLD. The NAFLD mouse model was induced via high-fat-diet, and glucose and insulin tolerance tests were then performed. In addition, the serum levels of total cholesterol (TC) and triglycerides (TG) were detected. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were assessed using the corresponding biochemical assays. Hematoxylin and eosin, and periodic acid-Schiff staining was carried out to evaluate the liver pathology in mice. The expression levels of the NAFLD-related genes and inflammatory genes were determined by reverse transcription-quantitative PCR, Western blot analysis and immunofluorescence staining. Furthermore, the regulatory association between OTUB1 and poly (adenosine diphosphate-ribose) polymerase (PARP)-1 was assessed by co-immunoprecipitation assay. The results showed that OTUB1 was significantly upregulated in both in vitro and in vivo NAFLD models. Knockout of OTUB1 significantly improved affected glucose tolerance and insulin sensitivity, decreased TG and TC content, and decreased ALT, AST and ALP levels. In addition, the results show that OTUB1 can regulate the expression of PARP1 by inhibiting the ubiquitination of PARP1, while PARP1 knockout can inhibit liver inflammation by regulating HMGB1, thereby improving NAFLD. Targeting OTUB1 could be a potential therapeutic strategy for the NAFLD.
Collapse
Affiliation(s)
- Shuhua Ai
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Juanli Pan
- Department of Gastroenterology, Ningyuan County People's Hospital, Yongzhou City, 425600, Hunan province, China
| | - Qi Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China
| | - Fenfen Tang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China
| | - Ting Wen
- Department of Gastroenterology, Hengshan County People's Hospital, Hengyang City, 421300, Hunan province, China
| | - Yulin Yuan
- Department of Internal Medicine, Hengshan County People's Hospital, Hengyang City, 421001, Hunan province, China
| | - Qunjun He
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China
| | - Lu Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, the Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China; Department of Gastroenterology, Ningyuan County People's Hospital, Yongzhou City, 425600, Hunan province, China.
| |
Collapse
|
7
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2025; 36:147-160. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Chen S, Wang Y, Zhou Q, Qian Q, Jiang Q, Liu C, Liu Y, Zhou P, Xiong J, Zhang Y, Wang N, Li YE, Yin L, Yang H, Liu J. Myristoylated Eepd1 Enhances Lipolysis and Thermogenesis through PKA Activation to Combat Obesity. Nat Commun 2025; 16:651. [PMID: 39809799 PMCID: PMC11733280 DOI: 10.1038/s41467-025-56026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset. Eepd1 is primarily expressed in adipose tissue, where its downregulation or deletion accelerates obesity development. We show that Eepd1 ablation hinders PKA activation, thereby inhibiting lipolysis and thermogenesis in adipose tissue. Notably, cold exposure enhances Eepd1's myristoylation, facilitating its anchorage to adipocyte membranes and subsequent activation of PKA, while a mutation at the myristoylation site of Eepd1 disrupts this process. Moreover, individuals with obesity exhibit reduced Eepd1 expression. Pharmacological restoration of Eepd1 with Retigabine dihydrochloride effectively mitigates obesity. This study reveals Eepd1's unexpected role in promoting adipose lipolysis and thermogenesis, underscoring its potential as a promising therapeutic target to combat obesity.
Collapse
Affiliation(s)
- Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiqi Qian
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchu Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihui Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Emma Li
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Walths, Australia
| | - Limin Yin
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Walths, Australia
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Houston, Fannin Houston, TX, 77030, USA
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Chen K, Dou X, Lin Y, Bai D, Luo Y, Zhou L. Pachymic acid promotes brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025:1-9. [PMID: 39807020 DOI: 10.3724/zdxbyxb-2024-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVES To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. METHODS The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay. The formation of lipid droplets following treatment with pachymic acid was observed through oil red O staining, and the content of lipids in differentiated cells was determined. The expression levels of key browning genes, including uncoupling protein (Ucp) 1, the peroxisome proliferation-activating receptor gamma coactivator (Pgc)-1α, and the transcription factor containing PR domain 16 (Prdm16) were detected by quantitative reverse transcription polymerase chain reaction. The expression of sterol regulatory element binding protein (Srebp) 1c, acetyl-CoA carboxylase (Acc), fatty acid synthetase (Fas), and steroid-sensitive lipase (Hsl), fatty triglyceride hydrolase (Atgl), and carnitine palmitoyl transferase (Cpt) 1 of lipolysis-related genes were also examined. RESULTS The 3T3-L1 MBX was induced in vitro to form beige adipocytes with high expression of key browning genes, including Ucp1, Pgc-1α, Prdm16, and beige adipose-marker genes, including Cd137, Tbx1, and Tmem26. The concentration range of 0-80 μM pachymic acid was non-cytotoxic to 3T3-L1 MBX. Pachymic acid treatment significantly inhibited the differentiation of 3T3-L1 MBX, resulting in a notable decrease in lipid accumulation content (P<0.01). Additionally, there was a marked increase in the expression of key browning genes and their proteins, such as Ucp1, Pgc-1α, and Prdm16, while the expressions of fat synthesis-related genes Srebp1c, Acc and Fas were significantly decreased (all P<0.05). The expressions of lipolysis-related genes, including Hsl, Atgl, and Cpt1, were significantly increased (all P<0.05). Besides, treating with 20 μmol/L pachymic acid showed the most pronounced effect. CONCLUSIONS Pachymic acid can inhibit fat synthesis and promote lipid decomposition by regulating the brown formation and lipid differentiation of 3T3-L1 MBX preadipocytes.
Collapse
Affiliation(s)
- Kunling Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiyou Lin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danyao Bai
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangzhou Luo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liping Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
10
|
Lin KX, Wu ZY, Qin ML, Zeng HC. Bisphenol S Induces Lipid Metabolism Disorders in HepG2 and SK-Hep-1 Cells via Oxidative Stress. TOXICS 2025; 13:44. [PMID: 39853042 PMCID: PMC11769282 DOI: 10.3390/toxics13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of BPS was selected. Biochemical indices such as triglyceride (TG) and total cholesterol (T-CHO), and oxidative stress indices such as malondialdehyde (MDA) and catalase (CAT) were measured. ROS and MDA levels were significantly increased after BPS treatment for 24 h and 48 h (p < 0.05), indicating an oxidative stress response. Alanine aminotransferase (ALT), T-CHO, and low-density lipoprotein cholesterol (LDL-C) levels also increased significantly after 24 or 48 h BPS treatments (p < 0.05). RT-PCR and Western blot analyses detected mRNA or protein expression levels of peroxisome proliferator-activated receptor α (PPARα) and sterol regulatory element-binding protein 1c (SREBP1C). The results indicated that BPS could inhibit the mRNA expression of PPARα and carnitine palmitoyl transferase 1B (CPT1B), reduce lipid metabolism, promote mRNA or protein expression of SREBP1C and fatty acid synthase (FASN), and increase lipid synthesis. Increased lipid droplets were observed using morphological Oil Red O staining. Our study demonstrates that BPS may cause lipid accumulation by increasing oxidative stress and perturbing cellular lipid metabolism.
Collapse
Affiliation(s)
- Kai-Xing Lin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
| | - Mei-Lin Qin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China; (K.-X.L.); (Z.-Y.W.); (M.-L.Q.)
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
11
|
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows. BMC Genomics 2025; 26:10. [PMID: 39762777 PMCID: PMC11702196 DOI: 10.1186/s12864-024-11067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and explore its potential regulatory mechanisms. RESULTS We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver. CONCLUSIONS Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease and offers a scientific basis for developing more effective treatment strategies.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yongxia Mao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
12
|
de Oliveira Silva T, Lunardon G, Lino CA, de Almeida Silva A, Zhang S, Irigoyen MCC, Lu YW, Mably JD, Barreto-Chaves MLM, Wang DZ, Diniz GP. Senescent cell depletion alleviates obesity-related metabolic and cardiac disorders. Mol Metab 2025; 91:102065. [PMID: 39557194 PMCID: PMC11636344 DOI: 10.1016/j.molmet.2024.102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity is a major contributor to metabolic and cardiovascular disease. Although senescent cells have been shown to accumulate in adipose tissue, the role of senescence in obesity-induced metabolic disorders and in cardiac dysfunction is not yet clear; therefore, the therapeutic potential of managing senescence in obesity-related metabolic and cardiac disorders remains to be fully defined. OBJECTIVE We investigated the beneficial effects of a senolytic cocktail (dasatinib and quercetin) on senescence and its influence on obesity-related parameters. METHODS AND RESULTS We found that the increase in body weight and adiposity, glucose intolerance, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic disorders which were induced by an obesogenic diet were alleviated by senolytic cocktail treatment in mice. Treatment with senolytic compounds eliminated senescent cells, counteracting the activation of the senescence program and DNA damage in white adipose tissue (WAT) observed with an obesogenic diet. Moreover, the senolytic cocktail prevented the brown adipose tissue (BAT) whitening and increased the expression of the thermogenic gene profile in BAT and pWAT. In the hearts of obese mice, senolytic combination abolished myocardial maladaptation, reducing the senescence-associated secretory phenotype (SASP) and DNA damage, repressing cardiac hypertrophy, and improving diastolic dysfunction. Additionally, we showed that treatment with the senolytic cocktail corrected gene expression programs associated with fatty acid metabolism, oxidative phosphorylation, the P53 pathway, and DNA repair, which were all downregulated in obese mice. CONCLUSIONS Collectively, these data suggest that a senolytic cocktail can prevent the activation of the senescence program in the heart and WAT and activate the thermogenic program in BAT. Our results suggest that targeting senescent cells may be a novel therapeutic strategy for alleviating obesity-related metabolic and cardiac disorders.
Collapse
Affiliation(s)
- Tábatha de Oliveira Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amanda de Almeida Silva
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shiju Zhang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Yao Wei Lu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John D Mably
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | | | - Da-Zhi Wang
- Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Tang Y, Zheng W, Chen J, Xie Y, Yang J, Wang Z, Qin H. Ameliorating Oxidative Stress-Aggravated Adipose Tissue Senescence by Sesamol in Aged Obese Mice via Nrf2/p38MAPK Signaling. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:11. [PMID: 39680188 DOI: 10.1007/s11130-024-01249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
Adipocyte senescence is one of the major common features correlated with aging, which can also lead to obesity, and aggravated oxidative stress contributes to cell senescence. Sesamol, a lignan from plants found in sesame, has been proven to alleviate obesity. However, the effects and mechanisms of sesamol on adipose tissue senescence remain unclear. In the current research, we used an aged model of obesity by feeding old mice high-fat diet (HFD), and a senescent cell model by treating 3T3-L1 mature adipocytes with repeated exposure to hydrogen peroxide (H2O2). Both HFD induced aged obesity mice and H2O2 treated cells presented features associated with senescence. Additionally, obesity in aged mice accelerated the expression of adipose tissue senescence-associated markers. Notably, the presence of sesamol showed marked activation of Nrf2 and inhibition of p-p38MAPK, along with the suppression of oxidative stress (ROS, MDA, SOD), inflammatory factors (IL-6, TNFα) and cell cycle inhibitors (p53, p21, p16). A pretreatment of ML385, an inhibitor of Nrf2, reversed the effects induced by sesamol treatment. In conclusion, our results demonstrated that obesity contributed to deteriorated adipose tissue senescence during aging. Furthermore, sesamol, acted as an activator of Nrf2 and exerted negative impacts on the activation of p38MAPK, which were associated with amelioration of adipose senescence, thereby indicating it could be a potential nutritional intervention for preventing and treating aging-related disorders.
Collapse
Affiliation(s)
- Yongyan Tang
- Xiangya School of Public Health, Central South University, Changsha, China
- Tropical Disease and Chronic Disease Prevention and Control Institute, Hainan Provincial Center for Disease Control and Prevention, Haikou, China
| | - Wenya Zheng
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Jingfang Chen
- Changsha Center for Disease Control and Prevention, Changsha, China
| | - Yan Xie
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Jinxin Yang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhipeng Wang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
14
|
Zhang W, Wang L, Wang Y, Fang Y, Cao R, Fang Z, Han D, Huang X, Gu Z, Zhang Y, Zhu Y, Ma Y, Cao F. Inhibition of the RXRA-PPARα-FABP4 signaling pathway alleviates vascular cellular aging by an SGLT2 inhibitor in an atherosclerotic mice model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2678-2691. [PMID: 39225895 DOI: 10.1007/s11427-024-2602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Linghuan Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Zhiyi Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghui Gu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Ma
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
15
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Kim JH, Koo B, Kim S. PONYTA: prioritization of phenotype-related genes from mouse KO events using PU learning on a biological network. Bioinformatics 2024; 40:btae634. [PMID: 39432684 PMCID: PMC11561041 DOI: 10.1093/bioinformatics/btae634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
MOTIVATION Transcriptome data from gene knock-out (KO) experiments in mice provide crucial insights into the intricate interactions between genotype and phenotype. Differentially expressed gene (DEG) analysis and network propagation (NP) are well-established methods for analysing transcriptome data. To determine genes related to phenotype changes from a KO experiment, we need to choose a cutoff value for the corresponding criterion based on the specific method. Using a rigorous cutoff value for DEG analysis and NP is likely to select mostly positive genes related to the phenotype, but many will be rejected as false negatives. On the other hand, using a loose cutoff value for either method is prone to include a number of genes that are not phenotype-related, which are false positives. Thus, the research problem at hand is how to deal with the trade-off between false negatives and false positives. RESULTS We propose a novel framework called PONYTA for gene prioritization via positive-unlabeled (PU) learning on biological networks. Beginning with the selection of true phenotype-related genes using a rigorous cutoff value for DEG analysis and NP, we address the issue of handling false negatives by rescuing them through PU learning. Evaluations on transcriptome data from multiple studies show that our approach has superior gene prioritization ability compared to benchmark models. Therefore, PONYTA effectively prioritizes genes related to phenotypes derived from gene KO events and guides in vitro and in vivo gene KO experiments for increased efficiency. AVAILABILITY AND IMPLEMENTATION The source code of PONYTA is available at https://github.com/Jun-Hyeong-Kim/PONYTA.
Collapse
Affiliation(s)
- Jun Hyeong Kim
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Republic of Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul 08758, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul 08758, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Zhang Y, Jiang Y, Yang X, Huang Y, Pan A, Liao Y. Adipose tissue senescence: Biological changes, hallmarks and therapeutic approaches. Mech Ageing Dev 2024; 222:111988. [PMID: 39265709 DOI: 10.1016/j.mad.2024.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Adipose tissue (AT), the largest energy storage reservoir and endocrine organ, plays a crucial role in regulating systemic energy metabolism. As one of the most vulnerable tissues during aging, the plasticity of AT is impaired. With age, AT undergoes redistribution, characterized by expansion of visceral adipose tissue (VAT) and reduction of peripheral subcutaneous adipose tissue (SAT). Additionally, age-related changes in AT include reduced adipogenesis of white adipocytes, decreased proliferation and differentiation capacity of mesenchymal stromal/stem cells (MSCs), diminished thermogenic capacity in brown/beige adipocytes, and dysregulation of immune cells. Specific and sensitive hallmarks enable the monitoring and evaluation of the biological changes associated with aging. In this study, we have innovatively proposed seven characteristic hallmarks of AT senescence, including telomere attrition, epigenetic alterations, genomic instability, mitochondrial dysfunction, disabled macroautophagy, cellular senescence, and chronic inflammation, which are intricately interconnected and mutually regulated. Finally, we discussed anti-aging strategies targeting AT, offering insights into mitigating or delaying metabolic disturbances caused by AT senescence.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yaoyao Jiang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiaoyue Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yumei Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China.
| |
Collapse
|
18
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
19
|
Arias C, Álvarez-Indo J, Cifuentes M, Morselli E, Kerr B, Burgos PV. Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. Biol Res 2024; 57:51. [PMID: 39118171 PMCID: PMC11312694 DOI: 10.1186/s40659-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, 7500922, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
20
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
21
|
Li S, Qin J, Zhao Y, Wang J, Huang S, Yu X. Tubular insulin-induced gene 1 deficiency promotes NAD + consumption and exacerbates kidney fibrosis. EMBO Mol Med 2024; 16:1675-1703. [PMID: 38806641 PMCID: PMC11251182 DOI: 10.1038/s44321-024-00081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Profibrotic proximal tubules (PT) were identified as a unique phenotype of proximal tubule cells (PTCs) in renal fibrosis by single-cell RNA sequencing (scRNA-seq). Controlling the process of renal fibrosis requires understanding how to manage the S1 subset's branch to the S3 subset rather than to the profibrotic PT subset. Insulin-induced gene 1 (Insig1) is one of the branch-dependent genes involved in controlling this process, although its role in renal fibrosis is unknown. Here, we discovered that tubular Insig1 deficiency, rather than fibroblast Insig1 deficiency, plays a detrimental role in the pathogenesis of renal fibrosis in vivo and in vitro. Overexpression of Insig1 profoundly inhibited renal fibrosis. Mechanistically, Insig1 deletion in PTCs boosted SREBP1 nuclear localization, increasing Aldh1a1 transcriptional activity, causing excessive NAD+ consumption and ER enlargement, as well as accelerating renal fibrosis. We also identified nicardipine as a selective inhibitor of Aldh1a1, which could restore NAD+ and maintain ER homeostasis, as well as improve renal fibrosis. Together, our findings support tubular Insig1 as a new therapeutic target for chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Shumin Li
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Jun Qin
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
- Department of Pediatrics, Yancheng City No.1 People's Hospital, 224005, Yancheng, China
| | - Yingying Zhao
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Jiali Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| | - Xiaowen Yu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
22
|
Włodarczyk M, Nowicka G. DNA damage, obesity and obesity-related health complications: what are new data telling us? Curr Opin Clin Nutr Metab Care 2024; 27:325-330. [PMID: 38652557 DOI: 10.1097/mco.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Obesity is associated with increased DNA damage, which may in turn contribute to the development of obesity-related complications. DNA damage can also affect adipocyte biology, resulting in increased adiposity. Carefully managed weight loss programs can reverse this process. This article surveys new data that support these contentions. RECENT FINDINGS Whole exome sequencing analyses have identified rare variants linked to high BMI and adiposity. Two of the identified genes are linked to DNA damage and DNA repair, suggesting that DNA damage itself may play a role in the cause of obesity. It has also been recognized that obesity increases DNA damage in breast tissue of carriers of BRCA mutations and rates of tumour formation in BRCA1+ mice, indicating effect of obesity on cancer development in high-risk populations. In addition, obesity promotes cancer cell chemoresistance by decreasing fatty acid oxidation involved in cellular DNA damage response, leading to apoptotic cellular death. Obesity is also associated with a reduced capacity of oocytes to repair sperm DNA damage, leading to lower in-vitro fertilization rates in women with obesity. SUMMARY DNA damage and cellular responses to DNA damage can be both the result and the cause of obesity and can strongly influence the development and treatment of obesity-associated diseases.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, and the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
23
|
Zhang S, Yang S, Zhuang Y, Yang D, Gu X, Wang Y, Wang Z, Chen R, Yan F. Lactobacillus acidophilus CICC 6075 attenuates high-fat diet-induced obesity by improving gut microbiota composition and histidine biosynthesis. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:367-380. [PMID: 39364122 PMCID: PMC11444864 DOI: 10.12938/bmfh.2024-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to investigate the potential anti-obesity efficacy of Lactobacillus acidophilus CICC 6075. The study analyzed fecal metagenomic data from 120 obese and 100 non-obese individuals. C57BL/6 mice on normal diet or high-fat diet (HFD) were treated with L. acidophilus CICC 6075 by daily oral gavage for 12 weeks, followed by evaluations of the obesity phenotype. Metagenomic analysis revealed depletion of L. acidophilus in obese individuals. Administration of L. acidophilus CICC 6075 attenuated excessive weight gain and fat accumulation and maintained the intestinal barrier in HFD-induced obese mice. Sequencing results showed that HFD hindered α- and β-diversity while reducing the relative abundance of Lactobacillus and norank_f_Muribaculaceae and significantly increasing the relative abundance of Ileibacterium. L. acidophilus CICC 6075 reversed these results and reduced the Firmicutes/Bacteroidetes ratio. Supplementation of L. acidophilus CICC 6075 enhanced histidine biosynthesis, inhibited the NF-κB pathway, and significantly reduced the expression levels of inflammatory factors in adipose tissue. These results indicate that L. acidophilus CICC 6075 alleviates HFD-induced obesity in mice by inhibiting the activation of the NF-κB pathway and enhancing gut microbiota functionality. This suggests that L. acidophilus CICC 6075 may be a good candidate probiotic for preventing obesity.
Collapse
Affiliation(s)
- Shenyang Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun Zhuang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiqun Gu
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Wang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenzhen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fuling Yan
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
24
|
Zeng Q, Gong Y, Zhu N, Shi Y, Zhang C, Qin L. Lipids and lipid metabolism in cellular senescence: Emerging targets for age-related diseases. Ageing Res Rev 2024; 97:102294. [PMID: 38583577 DOI: 10.1016/j.arr.2024.102294] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Cellular senescence is a kind of cellular state triggered by endogenous or exogenous stimuli, which is mainly characterized by stable cell cycle arrest and complex senescence-associated secretory phenotype (SASP). Once senescent cells accumulate in tissues, they may eventually accelerate the progression of age-related diseases, such as atherosclerosis, osteoarthritis, chronic lung diseases, cancers, etc. Recent studies have shown that the disorders of lipid metabolism are not only related to age-related diseases, but also regulate the cellular senescence process. Based on existing research evidences, the changes in lipid metabolism in senescent cells are mainly concentrated in the metabolic processes of phospholipids, fatty acids and cholesterol. Obviously, the changes in lipid-metabolizing enzymes and proteins involved in these pathways play a critical role in senescence. However, the link between cellular senescence, changes in lipid metabolism and age-related disease remains to be elucidated. Herein, we summarize the lipid metabolism changes in senescent cells, especially the senescent cells that promote age-related diseases, as well as focusing on the role of lipid-related enzymes or proteins in senescence. Finally, we explore the prospect of lipids in cellular senescence and their potential as drug targets for preventing and delaying age-related diseases.
Collapse
Affiliation(s)
- Qing Zeng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410021, China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
25
|
Song T, Liang X, Wang H, Xue M, Wang J. Gut microbiota-bile acid crosstalk and metabolic fatty liver in spotted seabass ( Lateolabrax maculatus): The role of a cholesterol, taurine and glycine supplement. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:87-99. [PMID: 38766518 PMCID: PMC11101744 DOI: 10.1016/j.aninu.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024]
Abstract
The prevalent practice of substituting fishmeal with plant protein frequently leads to disturbances in bile acid metabolism, subsequently increasing the incidence of metabolic liver diseases. Bile acid nutrients such as cholesterol, taurine and glycine have been shown to enhance bile acid synthesis and confer beneficial effects on growth. Therefore, this study aimed to investigate the effects of cholesterol-taurine-glycine (Ch-Tau-Gly) supplement on bile acid metabolism and liver health in spotted seabass (Lateolabrax maculatus) fed a plant-based diet. Two isonitrogenous and isolipidic diets were formulated: (1) plant protein-based diet (PP); (2) PP supplemented 0.5% cholesterol, 0.5% taurine and 1.3% glycine (CTG). Each experimental diet was randomly fed to quadruplicate groups of 30 feed-trained spotted seabass in each tank. The results revealed that supplementing plant-based diet with Ch-Tau-Gly supplement led to an increase in carcass ratio (meat yield) in spotted seabass (P < 0.05), indirectly contributing positively to their growth. The dietary supplement effectively suppressed endogenous cholesterol synthesis in the liver, promoted the expression of bile acid synthesis enzyme synthesis, and simultaneously the expression of intestinal fxr and its downstream genes, including hnf4α and shp (P < 0.05). The reduction in Lactobacillus_salivarius and bile salt hydrolase (BSH) were observed in CTG group with concurrently increased conjugated chenodeoxycholic acid (CDCA) bile acids (P < 0.05), suggesting the enhancement of the hydrophilicity of the bile acid pool. In CTG group, fatty liver was alleviated with a corresponding increase in lipid metabolism, characterized by a downregulation of genes associated with lipogenesis and lipid droplet deposition, along with an upregulation of genes related to lipolysis. Our study underscored the ability of Ch-Tau-Gly supplement to influence the gut microbiota, leading to an increase in the levels of conjugated CDCA (P < 0.05) in the bile acid pool of spotted seabass. The interplay between the gut microbiota and bile acids might constitute a crucial pathway in the promotion of liver health. These findings offer a promising solution, suggesting that Ch-Tau-Gly supplement have the potential to promote the growth of aquatic species and livestock fed on plant-based diets while addressing issues related to metabolic fatty liver.
Collapse
Affiliation(s)
- Tingting Song
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Zeng X, Wang TW, Yamaguchi K, Hatakeyama S, Yamazaki S, Shimizu E, Imoto S, Furukawa Y, Johmura Y, Nakanishi M. M2 macrophage-derived TGF-β induces age-associated loss of adipogenesis through progenitor cell senescence. Mol Metab 2024; 84:101943. [PMID: 38657734 PMCID: PMC11079528 DOI: 10.1016/j.molmet.2024.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES Adipose tissue is an endocrine and energy storage organ composed of several different cell types, including mature adipocytes, stromal cells, endothelial cells, and a variety of immune cells. Adipose tissue aging contributes to the pathogenesis of metabolic dysfunction and is likely induced by crosstalk between adipose progenitor cells (APCs) and immune cells, but the underlying molecular mechanisms remain largely unknown. In this study, we revealed the biological role of p16high senescent APCs, and investigated the crosstalk between each cell type in the aged white adipose tissue. METHODS We performed the single-cell RNA sequencing (scRNA-seq) analysis on the p16high adipose cells sorted from aged p16-CreERT2/Rosa26-LSL-tdTomato mice. We also performed the time serial analysis on the age-dependent bulk RNA-seq datasets of human and mouse white adipose tissues to infer the transcriptome alteration of adipogenic potential within aging. RESULTS We show that M2 macrophage-derived TGF-β induces APCs senescence which impairs adipogenesis in vivo. p16high senescent APCs increase with age and show loss of adipogenic potential. The ligand-receptor interaction analysis reveals that M2 macrophages are the donors for TGF-β and the senescent APCs are the recipients. Indeed, treatment of APCs with TGF-β1 induces senescent phenotypes through mitochondrial ROS-mediated DNA damage in vitro. TGF-β1 injection into gonadal white adipose tissue (gWAT) suppresses adipogenic potential and induces fibrotic genes as well as p16 in APCs. A gWAT atrophy is observed in cancer cachexia by APCs senescence, whose induction appeared to be independent of TGF-β induction. CONCLUSIONS Our results suggest that M2 macrophage-derived TGF-β induces age-related lipodystrophy by APCs senescence. The TGF-β treatment induced DNA damage, mitochondrial ROS, and finally cellular senescence in APCs.
Collapse
Affiliation(s)
- Xinyi Zeng
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
27
|
Behtaj D, Ghorbani A, Eslamian G, Malekpour Alamdari N, Abbasi M, Zand H, Shakery A, Shimi G, Sohouli MH, Fazeli Taherian S. Ex vivo Anti-Senescence Activity of N-Acetylcysteine in Visceral Adipose Tissue of Obese Volunteers. Obes Facts 2024; 17:355-363. [PMID: 38718763 PMCID: PMC11299969 DOI: 10.1159/000539255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/06/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Excessive visceral adiposity is known to drive the onset of metabolic derangements, mostly involving oxidative stress, prolonged inflammation, and cellular senescence. N-acetylcysteine (NAC) is a synthetic form of l-cysteine with potential antioxidant, anti-inflammatory, and anti-senescence properties. This ex-vivo study aimed to determine the effect of NAC on some markers of senescence including β-galactosidase activity and p16, p53, p21, IL-6, and TNF-α gene expressions in visceral adipose tissue in obese adults. METHODS This ex-vivo experimental study involved 10 obese participants who were candidates for bariatric surgery. Duplicate biopsies from the abdominal visceral adipose tissue were obtained from the omentum. The biopsies were treated with or without NAC (5 and 10 mm). To evaluate adipose tissue senescence, beta-galactosidase (β-gal) activity and the expression of P16, P21, P53, IL-6, and TNF-α were determined. ANOVA test was employed to analyze the varying markers of cellular senescence and inflammation between treatment groups. RESULTS The NAC at concentrations of 5 mm and 10 mm resulted in a noteworthy reduction β-gal activity compared to the control group (p < 0.001). Additionally, the expression of P16, P21, and IL-6 was significantly reduced following treatment with NAC (5 mm) and NAC (10 mm) compared to the control group (All p < 0.001). DISCUSSION/CONCLUSION Taken together, these data suggest the senotherapeutic effect of NAC, as it effectively reduces the activity of SA-β-gal and the expression of IL-6, P16, and P21 genes in the visceral adipose tissue of obese individuals.
Collapse
Affiliation(s)
- Diba Behtaj
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- School of Medicine, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- School of Medicine, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Shakery
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Sohouli
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Fazeli Taherian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Wang D, Zhao H, Xing C, Lv B, Wang X, He B. Androgens exacerbate hepatic triglyceride accumulation in rats with polycystic ovary syndrome by downregulating MTTP expression. Endocrine 2024; 84:735-744. [PMID: 37950821 DOI: 10.1007/s12020-023-03590-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder, which is closely associated with insulin resistance, glucose and lipid metabolism disorders. Patients with PCOS have a significantly higher risk of non-alcoholic fatty liver disease and are associated with hyperandrogenemia (HA). However, the exact mechanism by which HA exacerbates hepatic steatosis in PCOS has not yet been fully elucidated. This work aims to investigate the effects and underlying mechanisms of androgens on hepatic triglyceride (TG) metabolism in rats with PCOS. METHODS Twenty-four female Sprague-Dawley rats were randomly divided into four groups (6 rats/group): control, high-fat diet (HFD), PCOS, and PCOS + flutamide (Flu). Changes in the estrous cycle, liver and ovarian tissue sections, serum total testosterone, serum and liver biochemical indicators, and key enzymes involved in TG metabolism were studied. RESULTS Hepatocyte steatosis and TG accumulation were more evident in the PCOS group than in the control and HFD groups. The PCOS group showed apparent increases in the levels of serum alanine aminotransferase, aspartate aminotransferase, TG, free fatty acid, fasting insulin, and homeostasis model assessment of insulin resistance. Hepatic VLDL and apoB-100 levels decreased in the PCOS group. After Flu was administered to block the actions of androgens, the above abnormalities had been improved. The expression of MTTP was greatly decreased in the PCOS group and significantly increased after Flu administration. CONCLUSION Hepatic steatosis in PCOS rats was correlated with HA. Androgens may exacerbate hepatic TG accumulation by downregulating MTTP expression in PCOS.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Han Zhao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Chuan Xing
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Bo Lv
- Department of Endocrinology, Dalian Third People's Hospital, Dalian, 116033, PR China
| | - Xiaochen Wang
- Department of Endocrinology, The People's Hospital of Liaoning Province, Shenyang, 110067, PR China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
29
|
Guo X, Tang J, He H, Jian L, Qiang O, Xie Y. Body composition and inflammation variables as the potential prognostic factors in epithelial ovarian cancer treated with Olaparib. Front Oncol 2024; 14:1359635. [PMID: 38725625 PMCID: PMC11079183 DOI: 10.3389/fonc.2024.1359635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Background Epithelial ovarian cancer (EOC) is a significant cause of mortality among gynecological cancers. While Olaparib, a PARP inhibitor, has demonstrated efficacy in EOC maintenance therapy, individual responses vary. This study aims to assess the prognostic significance of body composition and systemic inflammation markers in EOC patients undergoing initial Olaparib treatment. Methods A retrospective analysis was conducted on 133 EOC patients initiating Olaparib therapy. Progression-free survival (PFS) was assessed through Kaplan-Meier analysis and Cox proportional hazards regression. Pre-treatment computed tomography images were utilized to evaluate body composition parameters including subcutaneous adipose tissue index (SATI), visceral adipose tissue index (VATI), skeletal muscle area index (SMI), and body mineral density (BMD). Inflammatory markers, such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), serum albumin, and hemoglobin levels, were also measured. Results The median follow-up duration was 16 months (range: 5-49 months). Survival analysis indicated that high SATI, high VATI, high SMI, high BMD, low NLR, and low PLR were associated with decreased risk of disease progression (all p < 0.05). Multivariate analysis identified several factors independently associated with poor PFS, including second or further lines of therapy (HR = 2.16; 95% CI = 1.09-4.27, p = 0.027), low VATI (HR = 3.79; 95% CI = 1.48-9.70, p = 0.005), low SMI (HR = 2.52; 95% CI = 1.11-5.72, p = 0.027), low BMD (HR = 2.36; 95% CI = 1.22-4.54, p = 0.010), and high NLR (HR = 0.31; 95% CI = 0.14-0.69, p = 0.004). Subgroup analysis in serous adenocarcinoma patients revealed distinct prognostic capabilities of SATI, VATI, SMI, PLR, and NLR. Conclusion Body composition and inflammation variables hold promise as predictors of therapeutic response to Olaparib in EOC patients. Understanding their prognostic significance could facilitate tailored treatment strategies, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Gynecologic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Haifeng He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lian Jian
- Department of Radiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ouyang Qiang
- Department of Gynecologic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Antonucci L, Karin M. The Past and Future of Inflammation as a Target to Cancer Prevention. Cancer Prev Res (Phila) 2024; 17:141-155. [PMID: 38271694 PMCID: PMC10987280 DOI: 10.1158/1940-6207.capr-23-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Inflammation is an essential defense mechanism in which innate immune cells are coordinately activated on encounter of harmful stimuli, including pathogens, tissue injury, and toxic compounds and metabolites to neutralize and eliminate the instigator and initiate healing and regeneration. Properly terminated inflammation is vital to health, but uncontrolled runaway inflammation that becomes chronic begets a variety of inflammatory and metabolic diseases and increases cancer risk. Making damaged tissues behave as "wounds that do not heal" and sustaining the production of growth factors whose physiologic function is tissue healing, chronic inflammation accelerates cancer emergence from premalignant lesions. In 1863, Rudolf Virchow, a leading German pathologist, suggested a possible association between inflammation and tumor formation, but it took another 140 years to fully elucidate and appreciate the tumorigenic role of inflammation. Key findings outlined molecular events in the inflammatory cascade that promote cancer onset and progression and enabled a better appreciation of when and where inflammation should be inhibited. These efforts triggered ongoing research work to discover and develop inflammation-reducing chemopreventive strategies for decreasing cancer risk and incidence.
Collapse
Affiliation(s)
- Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Li X, Liu A, Xie C, Chen Y, Zeng K, Xie C, Zhang Z, Luo P, Huang H. The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair. Kidney Int 2024; 105:115-131. [PMID: 37914087 DOI: 10.1016/j.kint.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Aiting Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chen Xie
- Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yanlian Chen
- Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Kuan Zeng
- Department of Cardiac Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changming Xie
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Zhengzhipeng Zhang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
32
|
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y, Kong QP. Longevity-Associated Transcription Factor ATF7 Promotes Healthspan by Suppressing Cellular Senescence and Systematic Inflammation. Aging Dis 2023:AD.2022.1217. [PMID: 37163432 PMCID: PMC10389835 DOI: 10.14336/ad.2022.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/17/2022] [Indexed: 05/12/2023] Open
Abstract
Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.
Collapse
Affiliation(s)
- Yaqun Huang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hong Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing-Lin Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Yu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Shun Ao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ji Li
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
33
|
Popa AD, Niță O, Caba L, Gherasim A, Graur M, Mihalache L, Arhire LI. From the Sun to the Cell: Examining Obesity through the Lens of Vitamin D and Inflammation. Metabolites 2023; 14:4. [PMID: 38276294 PMCID: PMC10820276 DOI: 10.3390/metabo14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Obesity affects more than one billion people worldwide and often leads to cardiometabolic chronic comorbidities. It induces senescence-related alterations in adipose tissue, and senescence is closely linked to obesity. Fully elucidating the pathways through which vitamin D exerts anti-inflammatory effects may improve our understanding of local adipose tissue inflammation and the pathogenesis of metabolic disorders. In this narrative review, we compiled and analyzed the literature from diverse academic sources, focusing on recent developments to provide a comprehensive overview of the effect of vitamin D on inflammation associated with obesity and senescence. The article reveals that the activation of the NF-κB (nuclear factor kappa B subunit 1) and NLRP3 inflammasome (nucleotide-binding domain, leucine-rich-containing, pyrin domain-containing-3) pathways through the toll-like receptors, which increases oxidative stress and cytokine release, is a common mechanism underlying inflammation associated with obesity and senescence, and it discusses the potential beneficial effect of vitamin D in alleviating the development of subclinical inflammation. Investigating the main target cells and pathways of vitamin D action in adipose tissue could help uncover complex mechanisms of obesity and cellular senescence. This review summarizes significant findings related to opportunities for improving metabolic health.
Collapse
Affiliation(s)
- Alina Delia Popa
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lavinia Caba
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Laura Mihalache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lidia Iuliana Arhire
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| |
Collapse
|
34
|
Yang S, Moon S, Hur SC, Jeong SM. Fatty acid oxidation regulates cellular senescence by modulating the autophagy-SIRT1 axis. BMB Rep 2023; 56:651-656. [PMID: 37679295 PMCID: PMC10761749 DOI: 10.5483/bmbrep.2023-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 01/09/2024] Open
Abstract
Senescence, a cellular process through which damaged or dysfunctional cells suppress the cell cycle, contributes to aging or age-related functional decline. Cell metabolism has been closely correlated with aging processes, and it has been widely recognized that metabolic changes underlie the cellular alterations that occur with aging. Here, we report that fatty acid oxidation (FAO) serves as a critical regulator of cellular senescence and uncover the underlying mechanism by which FAO inhibition induces senescence. Pharmacological or genetic ablation of FAO results in a p53-dependent induction of cellular senescence in human fibroblasts, whereas enhancing FAO suppresses replicative senescence. We found that FAO inhibition promotes cellular senescence through acetyl-CoA, independent of energy depletion. Mechanistically, increased formation of autophagosomes following FAO inhibition leads to a reduction in SIRT1 protein levels, thereby contributing to senescence induction. Finally, we found that inhibition of autophagy or enforced expression of SIRT1 can rescue the induction of senescence as a result of FAO inhibition. Collectively, our study reveals a distinctive role for the FAO-autophagy-SIRT1 axis in the regulation of cellular senescence. [BMB Reports 2023; 56(12): 651-656].
Collapse
Affiliation(s)
- Seungyeon Yang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, MD 21218, USA
| | - Subin Moon
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, MD 21218, USA
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Seung Min Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, MD 21218, USA
| |
Collapse
|
35
|
Yang S, Moon S, Hur SC, Jeong SM. Fatty acid oxidation regulates cellular senescence by modulating the autophagy-SIRT1 axis. BMB Rep 2023; 56:651-656. [PMID: 37679295 PMCID: PMC10761749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence, a cellular process through which damaged or dysfunctional cells suppress the cell cycle, contributes to aging or age-related functional decline. Cell metabolism has been closely correlated with aging processes, and it has been widely recognized that metabolic changes underlie the cellular alterations that occur with aging. Here, we report that fatty acid oxidation (FAO) serves as a critical regulator of cellular senescence and uncover the underlying mechanism by which FAO inhibition induces senescence. Pharmacological or genetic ablation of FAO results in a p53-dependent induction of cellular senescence in human fibroblasts, whereas enhancing FAO suppresses replicative senescence. We found that FAO inhibition promotes cellular senescence through acetyl-CoA, independent of energy depletion. Mechanistically, increased formation of autophagosomes following FAO inhibition leads to a reduction in SIRT1 protein levels, thereby contributing to senescence induction. Finally, we found that inhibition of autophagy or enforced expression of SIRT1 can rescue the induction of senescence as a result of FAO inhibition. Collectively, our study reveals a distinctive role for the FAO-autophagy-SIRT1 axis in the regulation of cellular senescence. [BMB Reports 2023; 56(12): 651-656].
Collapse
Affiliation(s)
- Seungyeon Yang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, MD 21218, USA
| | - Subin Moon
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, MD 21218, USA
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Seung Min Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, USA
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea, MD 21218, USA
| |
Collapse
|
36
|
Duo T, Liu X, Mo D, Bian Y, Cai S, Wang M, Li R, Zhu Q, Tong X, Liang Z, Jiang W, Chen S, Chen Y, He Z. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs. J Anim Sci Biotechnol 2023; 14:141. [PMID: 37919760 PMCID: PMC10621156 DOI: 10.1186/s40104-023-00930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/06/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness. This favorable mutation is common in Western commercial pig populations, but absent in most Chinese indigenous pig breeds. To improve meat production of Chinese indigenous pigs, we used cytosine base editor 3 (CBE3) to introduce IGF2-intron3-C3071T mutation into porcine embryonic fibroblasts (PEFs) isolated from a male Liang Guang Small Spotted pig (LGSS), and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer (SCNT) to generate the founder line of IGF2T/T pigs. RESULTS We found the heterozygous progeny IGF2C/T pigs exhibited enhanced expression of IGF2, increased lean meat by 18%-36%, enlarged loin muscle area by 3%-17%, improved intramuscular fat (IMF) content by 18%-39%, marbling score by 0.75-1, meat color score by 0.53-1.25, and reduced backfat thickness by 5%-16%. The enhanced accumulation of intramuscular fat in IGF2C/T pigs was identified to be regulated by the PI3K-AKT/AMPK pathway, which activated SREBP1 to promote adipogenesis. CONCLUSIONS We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality, and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3K-AKT/AMPK signaling pathways. Our study provides a further understanding of the biological functions of IGF2 and an example for improving porcine economic traits through precise base editing.
Collapse
Affiliation(s)
- Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Bian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Ruiqiang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Weilun Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Shiyi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
37
|
Jeong D, Koo B, Oh M, Kim TB, Kim S. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype. Bioinformatics 2023; 39:btad582. [PMID: 37740295 PMCID: PMC10547929 DOI: 10.1093/bioinformatics/btad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
MOTIVATION Asthma is a heterogeneous disease where various subtypes are established and molecular biomarkers of the subtypes are yet to be discovered. Recent availability of multi-omics data paved a way to discover molecular biomarkers for the subtypes. However, multi-omics biomarker discovery is challenging because of the complex interplay between different omics layers. RESULTS We propose a deep attention model named Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network (GOAT) for identifying molecular biomarkers for eosinophilic asthma subtypes with multi-omics data. GOAT identifies genes that discriminate subtypes using a graph neural network by modeling complex interactions among genes as the attention mechanism in the deep learning model. In experiments with multi-omics profiles of the COREA (Cohort for Reality and Evolution of Adult Asthma in Korea) asthma cohort of 300 patients, GOAT outperforms existing models and suggests interpretable biological mechanisms underlying asthma subtypes. Importantly, GOAT identified genes that are distinct only in terms of relationship with other genes through attention. To better understand the role of biomarkers, we further investigated two transcription factors, CTNNB1 and JUN, captured by GOAT. We were successful in showing the role of the transcription factors in eosinophilic asthma pathophysiology in a network propagation and transcriptional network analysis, which were not distinct in terms of gene expression level differences. AVAILABILITY AND IMPLEMENTATION Source code is available https://github.com/DabinJeong/Multi-omics_biomarker. The preprocessed data underlying this article is accessible in data folder of the github repository. Raw data are available in Multi-Omics Platform at http://203.252.206.90:5566/, and it can be accessible when requested.
Collapse
Affiliation(s)
- Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd, Seoul 08826, Republic of Korea
| | - Minsik Oh
- School of Software Convergence, Myongji University, Seoul 03674, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd, Seoul 08826, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence,, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Kaisinger LR, Kentistou KA, Stankovic S, Gardner EJ, Day FR, Zhao Y, Mörseburg A, Carnie CJ, Zagnoli-Vieira G, Puddu F, Jackson SP, O’Rahilly S, Farooqi IS, Dearden L, Pantaleão LC, Ozanne SE, Ong KK, Perry JR. Large-scale exome sequence analysis identifies sex- and age-specific determinants of obesity. CELL GENOMICS 2023; 3:100362. [PMID: 37601970 PMCID: PMC10435378 DOI: 10.1016/j.xgen.2023.100362] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
Obesity contributes substantially to the global burden of disease and has a significant heritable component. Recent large-scale exome sequencing studies identified several genes in which rare, protein-coding variants have large effects on adult body mass index (BMI). Here we extended such work by performing sex-stratified associations in the UK Biobank study (N∼420,000). We identified genes in which rare heterozygous loss-of-function increases adult BMI in women (DIDO1, PTPRG, and SLC12A5) and in men (SLTM), with effect sizes up to ∼8 kg/m2. This is complemented by analyses implicating rare variants in OBSCN and MADD for recalled childhood adiposity. The known functions of these genes, as well as findings of common variant genome-wide pathway enrichment analyses, suggest a role for neuron death, apoptosis, and DNA damage response mechanisms in the susceptibility to obesity across the life-course. These findings highlight the importance of considering sex-specific and life-course effects in the genetic regulation of obesity.
Collapse
Affiliation(s)
- Lena R. Kaisinger
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine A. Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eugene J. Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Felix R. Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alexander Mörseburg
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christopher J. Carnie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Guido Zagnoli-Vieira
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fabio Puddu
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Stephen P. Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - I. Sadaf Farooqi
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Laura Dearden
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lucas C. Pantaleão
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Susan E. Ozanne
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ken K. Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John R.B. Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
39
|
Yang S, Hwang S, Kim B, Shin S, Kim M, Jeong SM. Fatty acid oxidation facilitates DNA double-strand break repair by promoting PARP1 acetylation. Cell Death Dis 2023; 14:435. [PMID: 37454129 PMCID: PMC10349888 DOI: 10.1038/s41419-023-05968-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
DNA repair is a tightly coordinated stress response to DNA damage, which is critical for preserving genome integrity. Accruing evidence suggests that metabolic pathways have been correlated with cellular response to DNA damage. Here, we show that fatty acid oxidation (FAO) is a crucial regulator of DNA double-strand break repair, particularly homologous recombination repair. Mechanistically, FAO contributes to DNA repair by activating poly(ADP-ribose) polymerase 1 (PARP1), an enzyme that detects DNA breaks and promotes DNA repair pathway. Upon DNA damage, FAO facilitates PARP1 acetylation by providing acetyl-CoA, which is required for proper PARP1 activity. Indeed, cells reconstituted with PARP1 acetylation mutants display impaired DNA repair and enhanced sensitivity to DNA damage. Consequently, FAO inhibition reduces PARP1 activity, leading to increased genomic instability and decreased cell viability upon DNA damage. Finally, our data indicate that FAO serves as an important participant of cellular response to DNA damage, supporting DNA repair and genome stability.
Collapse
Affiliation(s)
- Seungyeon Yang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Sunsook Hwang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Byungjoo Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Seungmin Shin
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Minjoong Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
40
|
Spinelli R, Baboota RK, Gogg S, Beguinot F, Blüher M, Nerstedt A, Smith U. Increased cell senescence in human metabolic disorders. J Clin Invest 2023; 133:e169922. [PMID: 37317964 DOI: 10.1172/jci169922] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Cell senescence (CS) is at the nexus between aging and associated chronic disorders, and aging increases the burden of CS in all major metabolic tissues. However, CS is also increased in adult obesity, type 2 diabetes (T2D), and nonalcoholic fatty liver disease independent of aging. Senescent tissues are characterized by dysfunctional cells and increased inflammation, and both progenitor cells and mature, fully differentiated and nonproliferating cells are afflicted. Recent studies have shown that hyperinsulinemia and associated insulin resistance (IR) promote CS in both human adipose and liver cells. Similarly, increased CS promotes cellular IR, showing their interdependence. Furthermore, the increased adipose CS in T2D is independent of age, BMI, and degree of hyperinsulinemia, suggesting premature aging. These results suggest that senomorphic/senolytic therapy may become important for treating these common metabolic disorders.
Collapse
Affiliation(s)
- Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ritesh Kumar Baboota
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Evotec International GmbH, Göttingen, Germany
| | - Silvia Gogg
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Beguinot
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Liu Y, Han L, Zhu P, Song M, Zhang Y, Meng L, Zhang W, Zhang C, Zhong M. PTPN2 targets TAK1 for dephosphorylation to improve cellular senescence and promote adipose tissue browning in T2DM. Front Pharmacol 2023; 14:1124633. [PMID: 37251330 PMCID: PMC10213551 DOI: 10.3389/fphar.2023.1124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: The energy imbalance when energy intake exceeds expenditure acts as an essential factor in the development of insulin resistance (IR). The activity of brown adipose tissue, which is involved in the dissipation of energy via heat expenditure decreases under type 2 diabetic mellitus (T2DM) state when the number of pathological aging adipocytes increases. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates several biological processes by dephosphorylating several cellular substrates; however, whether PTPN2 regulates cellular senescence in adipocytes and the underlying mechanism has not been reported. Methods: We constructed a model of type 2 diabetic mice with PTPN2 overexpression to explore the role of PTPN2 in T2DM. Results: We revealed that PTPN2 facilitated adipose tissue browning by alleviating pathological senescence, thus improving glucose tolerance and IR in T2DM. Mechanistically, we are the first to report that PTPN2 could bind with transforming growth factor-activated kinase 1 (TAK1) directly for dephosphorylation to inhibit the downstream MAPK/NF-κB pathway in adipocytes and regulate cellular senescence and the browning process subsequently. Discussion: Our study revealed a critical mechanism of adipocytes browning progression and provided a potential target for the treatment of related diseases.
Collapse
Affiliation(s)
- Yapeng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Zhu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoyuan Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linlin Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
42
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
43
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
44
|
Zhang R, Yao K, Chen S, Pan X, Wu F, Gao P. Liraglutide promotes angiogenesis in adipose tissue via suppression of adipocyte-derived IL-6. Biochem Biophys Res Commun 2023; 651:8-19. [PMID: 36774663 DOI: 10.1016/j.bbrc.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Accumulating evidence suggests that Liraglutide is a favorable treatment for obese people. Obesity induces cellular senescence and accumulated senescent adipocytes in adipose tissue. However, the role of Liraglutide in adipose tissue (AT) senescence and the underlying mechanisms remain obscure. In this study, we found that HFD induces adipocyte senescence and impaired angiogenesis in AT. The deleterious effects provoked unhealthy adipose tissue remodeling and metabolic disturbance. In contrast, treatment of Liraglutide promoted weight reduction, alleviated adipose tissue senescence, and improved angiogenesis in AT. Notably, we demonstrated that Liraglutide promotes angiogenesis in AT dependent on adipocyte-derived IL-6. These findings revealed distinctive roles of Liraglutide in the regulation of adipocyte senescence and provide a therapeutic potential to obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Run Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangli Yao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Chen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxi Pan
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China.
| | - Pingjin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 2023; 19:200-211. [PMID: 36750681 DOI: 10.1038/s41584-022-00905-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.
Collapse
Affiliation(s)
- Antonio Pezone
- Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Fabiola Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Maria Vittoria Napoli
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Procopio
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Enrico Vittorio Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy.
| | - Armando Gabrielli
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
46
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the most recent evidence identifying the presence of distinct white adipocyte subpopulations in white adipose tissue (WAT) and how these may be altered with increasing adiposity and/or metabolic disease. We conceptualize how changes in adipocyte subpopulations may contribute to alterations in WAT function and the development of metabolic diseases such as type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). RECENT FINDINGS Studies utilizing novel analytical approaches support the existence of distinct white adipocyte subpopulations in both human and murine WAT. Adipocyte subtypes are potentially functionally distinct and may have different roles in WAT function and obesity-associated metabolic diseases. SUMMARY The exploration of white adipocyte heterogeneity using novel analytical technologies, has unveiled a new layer of complexity in the study of WAT biology. Interrogation of potential functional differences between adipocyte subpopulations and their role in the function of different WAT depots is now needed. Through understanding the mechanisms regulating white adipocyte subtype development and potential pathophysiological consequences of changes in the presence of adipocyte subpopulations, studies could provide novel therapeutic targets for the treatment of T2DM, NAFLD, and CVD.
Collapse
Affiliation(s)
- Josh Bilson
- Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust
| | - Jaswinder K. Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christopher D. Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust
| |
Collapse
|
48
|
Lino CA, de Oliveira-Silva T, Lunardon G, Balbino-Silva C, Lima VM, Huang ZP, Donato J, Takano APC, Barreto-Chaves ML, Wang DZ, Diniz GP. Ablation of miRNA-22 protects against obesity-induced adipocyte senescence and ameliorates metabolic disorders in middle-aged mice. Mech Ageing Dev 2023; 210:111775. [PMID: 36641038 DOI: 10.1016/j.mad.2023.111775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
High-fat diet (HFD) promotes obesity-related metabolic complications by activating cellular senescence in white adipose tissue (WAT). Growing evidence supports the importance of microRNA-22 (miR-22) in metabolic disorders and cellular senescence. Recently, we showed that miR-22 deletion attenuates obesity-related metabolic abnormalities. However, whether miR-22 mediates HFD-induced cellular senescence of WAT remains unknown. Here, we uncovered that obese mice displayed increased pri-miR-22 levels and cellular senescence in WAT. However, miR-22 ablation protected mice against HFD-induced WAT senescence. In addition, in vitro studies showed that miR-22 deletion prevented preadipocyte senescence in response to Doxorubicin (Doxo). Loss-of-function studies in vitro and in vivo revealed that miR-22 increases H2ax mRNA and γH2ax levels in preadipocytes and WAT without inducing DNA damage. Intriguingly, miR-22 ablation prevented HFD-induced increase in γH2ax levels and DNA damage in WAT. Similarly, miR-22 deletion prevented Doxo-induced increase in γH2ax levels in preadipocytes. Adipose miR-22 levels were enhanced in middle-aged mice fed a HFD than those found in young mice. Furthermore, miR-22 deletion attenuated fat mass gain and glucose imbalance induced by HFD in middle-aged mice. Overall, our findings indicate that miR-22 is a key regulator of obesity-induced WAT senescence and metabolic disorders in middle-aged mice.
Collapse
Affiliation(s)
- Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila Balbino-Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa M Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zhan-Peng Huang
- Center for Translational Medicine, The First Affiliated Hospital, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Paula C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
49
|
Chen W, Meng F, Zeng X, Cao X, Bu G, Du X, Yu G, Kong F, Li Y, Gan T, Han X. Mechanic Insight into the Distinct and Common Roles of Ovariectomy Versus Adrenalectomy on Adipose Tissue Remodeling in Female Mice. Int J Mol Sci 2023; 24:ijms24032308. [PMID: 36768630 PMCID: PMC9916485 DOI: 10.3390/ijms24032308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Dysfunctions of the ovaries and adrenal glands are both evidenced to cause aberrant adipose tissue (AT) remodeling and resultant metabolic disorders, but their distinct and common roles are poorly understood. In this study, through biochemical, histological and RNA-seq analyses, we comprehensively explored the mechanisms underpinning subcutaneous (SAT) and visceral adipose tissue (VAT) remodeling, in response to ovariectomy (OVX) versus adrenalectomy (ADX) in female mice. OVX promoted adipocyte differentiation and fat accumulation in both SAT and VAT, by potentiating the Pparg signaling, while ADX universally prevented the cell proliferation and extracellular matrix organization in both SAT and VAT, likely by inactivating the Nr3c1 signaling, thus causing lipoatrophy in females. ADX, but not OVX, exerted great effects on the intrinsic difference between SAT and VAT. Specifically, ADX reversed a large cluster of genes differentially expressed between SAT and VAT, by activating 12 key transcription factors, and thereby caused senescent cell accumulation, massive B cell infiltration and the development of selective inflammatory response in SAT. Commonly, both OVX and ADX enhance circadian rhythmicity in VAT, and impair cell proliferation, neurogenesis, tissue morphogenesis, as well as extracellular matrix organization in SAT, thus causing dysfunction of adipose tissues and concomitant metabolic disorders.
Collapse
|
50
|
Arabi T, Shafqat A, Sabbah BN, Ashraf N, Shah H, Abdulkader H, Razak A, Sabbah AN, Arabi Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front Endocrinol (Lausanne) 2023; 13:1095211. [PMID: 36726470 PMCID: PMC9884830 DOI: 10.3389/fendo.2022.1095211] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) causes considerable morbidity, mortality, and health expenditures worldwide. Obesity is a significant risk factor for CKD development, partially explained by the high prevalence of diabetes mellitus and hypertension in obese patients. However, adipocytes also possess potent endocrine functions, secreting a myriad of cytokines and adipokines that contribute to insulin resistance and induce a chronic low-grade inflammatory state thereby damaging the kidney. CKD development itself is associated with various metabolic alterations that exacerbate adipose tissue dysfunction and insulin resistance. This adipose-renal axis is a major focus of current research, given the rising incidence of CKD and obesity. Cellular senescence is a biologic hallmark of aging, and age is another significant risk factor for obesity and CKD. An elevated senescent cell burden in adipose tissue predicts renal dysfunction in animal models, and senotherapies may alleviate these phenotypes. In this review, we discuss the direct mechanisms by which adipose tissue contributes to CKD development, emphasizing the potential clinical importance of such pathways in augmenting the care of CKD.
Collapse
Affiliation(s)
- Tarek Arabi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Nader Ashraf
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hassan Shah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ziad Arabi
- Division of Nephrology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|