1
|
Tavakoli S, Li Q, Han W, Zhang H, Hui M, Deng L, Kouhdasht AM, Tan Y, Luo Y, Hong H, Wu K. Valorization of marine crustacean shells waste via fermentation technology: A comprehensive review on derived value-added compounds and enhancing their industrial applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114831. [PMID: 40300451 DOI: 10.1016/j.wasman.2025.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Crustacean processing industries represent the largest segment of global seafood production due to their high demand and considerable commercial value. The crustacean processing sectors annually generate tremendous amounts of waste streams, such as shells, that their disposal and management pose serious challenges. Crustacean shell waste (CSW) contains large amounts of chitin, chitosan, astaxanthin, minerals, bioactive peptides and amino acids, and their improper management leads to both nutritional loss and environmental hazard crisis. To mitigate these problems, implementing secondary processing and valorization of CSW in order to isolate valuable biocompounds is crucial. Two microbial fermentation systems, including Solid-state fermentation (SSF) and submerged/liquid fermentation (SLF) have been established as safe, efficient, and environmentally friendly solutions for the biorefinery of valuable products from CSW. The fermentation-derived ingredients possess multifunctional properties, enabling their application across diverse industries such as food, feed, pharma, cosmetics, agriculture, water treatment, etc. With further research and investments, microbial fermentation has the potential to become the key technique in the biorefining industries, transform our food production systems, and serve the circularity and sustainability of the blue economy. In this review, the hazards associated with CSW accumulation and the role of bioconversion in the value addition of CSW through microbial fermentation are critically presented according to recent information on the scenarios; the advances and revolutions of microbial fermentation in commercialization, and the importance of process variables are comprehensively discussed; the challenges in the emerging field of science are identified, and the future trends are addressed.
Collapse
Affiliation(s)
- Samad Tavakoli
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenyu Han
- Departments of Economics, College of Liberal Arts and Science, University of Colorado Denver, United States of America
| | - Huijuan Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ma Hui
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Luming Deng
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China
| | | | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023 China.
| |
Collapse
|
2
|
Jin J, den Besten HMW, Rietjens IMCM, Widjaja-van den Ende F. Chemical and Microbiological Hazards Arising from New Plant-Based Foods, Including Precision Fermentation-Produced Food Ingredients. Annu Rev Food Sci Technol 2025; 16:171-194. [PMID: 39745934 DOI: 10.1146/annurev-food-111523-122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The growing human population, climate change, and environmental pollution pose urgent threats to global food security. New plant-based foods and precision fermentation that enable the production of new food ingredients can contribute to a revolutionary change in the food industry and can contribute to food security, yet they do not come without hazards. In this review, we describe the hazards of new plant-based foods, including precision fermentation-produced food ingredients. For these foods derived from plant-based raw materials, chemical and microbiological hazards are presented, including natural hazards, environmental hazards, and hazards derived from (inadequate) food processing. In addition, prospects for safety improvement of new plant-based foods and precision fermentation-produced food ingredients are also discussed. Chemical and microbiological hazards of new plant-based foods and precision fermentation-produced food ingredients are to be included in the hazard analysis and critical control point plans. New plant-based foods present hazards carried over from the plant-based raw materials and new hazards from the production process and storage, whereas the risks appear lower for precision fermentation-produced food ingredients than for regular fermented foods because of the use of a more controlled environment and purification of the targeted ingredients.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University & Research, Wageningen, The Netherlands;
| | | |
Collapse
|
3
|
Jiang R, Guo J, Yang S, Zeng H, Wei J, Jin X, Zheng X, Sun W, Zhang Y, Hu Z. Trichodenoids A and B, Two Skeletally Unprecedented Polyketides from Trichoderma reesei with Cardioprotective Effects against H 2O 2-Induced Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6736-6744. [PMID: 40047798 DOI: 10.1021/acs.jafc.5c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Trichoderma reesei, recognized by the FDA as a food-safe strain, plays a vital role in food fermentation. Although the enzymatic applications of T. reesei are well-established, the health benefits of its fermentation-derived metabolites are yet to be fully explored. Trichodenoids A (1) and B (2), two skeletally unprecedented polyketides, were isolated from the endophytic fungus T. reesei originating from the plant Gastrodia elata Blume. Their structures were elucidated via spectroscopic data, single-crystal X-ray crystallographic analysis, quantum chemical DP4+ analysis, and ECD calculation. Compounds 1 and 2 were uniquely defined by the unusual 6/6/5 and 6/6/5/6 ring systems, respectively, which were proposed to be formed through key Diels-Alder and Baeyer-Villiger reactions during biosynthesis. Compound 2 had the potential to mitigate H2O2-induced oxidative stress in H9C2 cells by reducing intracellular ROS levels, restoring mitochondrial function, and regulating the mRNA expression related to oxidative stress, inflammation, and autophagy. These findings highlight compound 2 as a potential candidate for natural antioxidants and even as dietary supplements for cardiovascular health.
Collapse
Affiliation(s)
- Rui Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiayi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shenglan Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiangchun Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaoqi Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xinyu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan 430061, People's Republic of China
| |
Collapse
|
4
|
Butowski CF, Dixit Y, Reis MM, Mu C. Metatranscriptomics for Understanding the Microbiome in Food and Nutrition Science. Metabolites 2025; 15:185. [PMID: 40137150 PMCID: PMC11943699 DOI: 10.3390/metabo15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active metabolites that affect food fermentation or gut health. Most of these processes are mediated by microbial enzymes such as carbohydrate-active enzymes and amino acid metabolism enzymes. Metatranscriptomics enables the capture of active transcripts within the microbiome, providing invaluable functional insights into metabolic activities. Given the inter-kingdom complexity of the microbiome, metatranscriptomics could further elucidate the activities of fungi, archaea, and bacteriophages in the microbial ecosystem. Despite its potential, the application of metatranscriptomics in food and nutrition sciences remains limited but is growing. This review highlights the latest advances in food science (e.g., flavour formation and food enzymology) and nutrition science (e.g., dietary fibres, proteins, minerals, and probiotics), emphasizing the integration of metatranscriptomics with other technologies to address key research questions. Ultimately, metatranscriptomics represents a powerful tool for uncovering the microbiome activity, particularly in relation to active metabolic processes.
Collapse
|
5
|
Lelis CA, Alvares TDS, Conte Junior CA. Can lab-grown milk be a novel trend in the dairy industry? Crit Rev Food Sci Nutr 2025:1-10. [PMID: 39995097 DOI: 10.1080/10408398.2025.2471013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Milk using the traditional production system has been associated with environmental problems such as gas emissions and climate change, drawing the attention of industry and researchers to the search for alternatives that may be more sustainable for milk production. Cellular agriculture is an emerging process proposed for food production without animal involvement. Although milk production through cellular agriculture is in the initial phase and presents many technical challenges, its production is promising and has attracted key players in the dairy sector. This review highlighted two types of lab-grown milk production: production using mammary cells and precision fermentation using specific microbial hosts. There are still few scientific articles that address milk production through cellular agriculture. Studies have focused on obtaining milk proteins that can be combined with other constituents, such as water, oils, and carbohydrates, to create products that simulate milk's nutritional and functional properties. Patent applications from dairy industries and startups describing methods for obtaining lab-grown milk include genetic manipulation, selection of microorganisms, culture medium for growth of microorganisms or mammary cells, growth factors, and engineering of bioreactors used in milk production and/or constituents. Challenges related to optimal nutritional profile, costs and regulatory issues must be addressed in the coming years. Therefore, this review article provides relevant information and discussion about lab-grown milk, which, despite being promising, is still in the early stages.
Collapse
Affiliation(s)
- Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago da Silveira Alvares
- Food and Nutrition Institute, Multidisciplinary Center, Nutrition Institute, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
de Moura Campos S, Dos Santos Costa G, Karp SG, Thomaz-Soccol V, Soccol CR. Innovations and challenges in collagen and gelatin production through precision fermentation. World J Microbiol Biotechnol 2025; 41:63. [PMID: 39910024 DOI: 10.1007/s11274-025-04276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Collagen and gelatin are essential biomaterials widely used in industries such as food, cosmetics, healthcare, and pharmaceuticals. Traditionally derived from animal tissues, these proteins are facing growing demand for more sustainable and ethical production methods. Precision fermentation (PF) offers a promising alternative by using genetically engineered microorganisms to produce recombinant collagen and gelatin. This technology not only reduces environmental impact but also ensures consistent quality and higher yields. In this review, we provide a comprehensive overview of collagen and gelatin production through PF destined for the food sector, exploring key advances in recombinant technologies, synthetic biology, and bioprocess optimization. Challenges such as scaling production, cost-efficiency, and market integration are addressed, alongside emerging solutions for enhancing industrial competitiveness. We also highlight leading companies leveraging PF to drive innovation in the food industry. As PF continues to evolve, future developments are expected to improve efficiency, reduce costs, and expand the applications of recombinant collagen and gelatin, particularly in the food and supplement sectors.
Collapse
Affiliation(s)
- Sofia de Moura Campos
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Gabriela Dos Santos Costa
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Susan Grace Karp
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Vanete Thomaz-Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
7
|
Wu Y, Xu QH, Chen ZL, Yang LH, Guo DS. Synthetic biology meets Aspergillus: engineering strategies for next-generation organic acid production. World J Microbiol Biotechnol 2025; 41:36. [PMID: 39800796 DOI: 10.1007/s11274-024-04246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 02/27/2025]
Abstract
Organic acids constitute a vital category of chemical raw materials. They have extensive applications in industries such as polymers, food, and pharmaceuticals. Currently, industrial production predominantly relies on microbial fermentation. Aspergillus, due to its unique metabolic capabilities, has become an important microbial resource for organic acid production. In recent years, there has been a growing emphasis on genetic engineering of Aspergillus to increase its yield of organic acids. This review provides a comprehensive overview of the current advancement and future directions in the application of genetic engineering techniques to enhance organic production in Aspergillus, specifically highlighting achievement in reconstructing metabolic pathways for desired products, eliminating by-products, modifying regulatory pathways, and engineering mycelial morphology. Furthermore, this review also focuses on the strategies and genetic tools applied in Aspergillus, with particular emphasis on the potential applications and challenges of CRISPR-based biosensors in organic acid fermentation. By providing insights into these developments, we aim to offer theoretical guidance and innovative approaches for enhancing the efficiency of Aspergillus strains in industrial organic acid production.
Collapse
Affiliation(s)
- Yang Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Qian-Hui Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
8
|
Kwon HC, Jung HS, Kim DH, Han JH, Han SG. Cellular characteristics and milk component productivity of primary bovine mammary cells for cell-cultured milk component production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:236-251. [PMID: 39974788 PMCID: PMC11833205 DOI: 10.5187/jast.2024.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/21/2025]
Abstract
Despite the increasing demand for milk, there is a simultaneous growth in awareness regarding sustainable dairy farming and concerns about environmental issues. The concept of generating milk components without traditional dairy farming has been introduced through the utilization of bovine mammary cells. However, the establishment of a robust primary bovine mammary alveolar cells for cell-cultured milk component production remains a challenge. Hence, the aim of this study was to assess the cellular attributes and milk component productivity of primary bovine mammary cells through various stages of cell subculture. The 1 cm3 pieces of mammary tissues were incubated onto a 10-cm cell culture dish until the cells grow out from the tissues. After the removal of mammary tissues, primary bovine mammary cells (fibroblasts, FBs; myoepithelial cells, MCs; epithelial cells, ECs) were isolated and purified through their different trypsin sensitivity. The primary bovine mammary cells were cultured with control culture media (CCM; without hormones) and differentiation culture media (DCM; with prolactin, insulin, cortisol, progesterone, 17b-estradiol, and epidermal growth factor). At passage 1, FBs, MCs, and ECs cultured with CCM displayed the highest levels of vimentin, α-smooth muscle actin, and cytokeratin 18/19 expression, respectively (p < 0.001). These cellular characteristics were not consistently maintained across subsequent passages, with a notable reduction in cell numbers (p < 0.001). At passage 1, ECs cultured in DCM exhibited higher milk component productivity in comparison to those cultured in CCM (p < 0.05). However, the synthesis of milk components exhibited a gradual decline as vacuoles increased in ECs throughout consecutive passaging. ECs cultured with CCM were unable to synthesize milk components due to the loss of tight junctions caused by matrix metalloproteinase activation. Conversely, ECs cultured with DCM boosted milk component production by intact tight junctions and low matrix metalloproteinase activity (p < 0.05). Our findings demonstrated the requirement for various hormones to maintain the productivity of primary bovine mammary cells over successive passages. These results highlight the importance of hormonal optimization to establish the stable primary cells in cell-cultured milk production.
Collapse
Affiliation(s)
- Hyuk Cheol Kwon
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Hyun Su Jung
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Do Hyun Kim
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Jong Hyeon Han
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Sung Gu Han
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| |
Collapse
|
9
|
Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Yadav VK, Niazi P, Kumar P, Alghamdi S. A Comprehensive Review of the Diversity of Fungal Secondary Metabolites and Their Emerging Applications in Healthcare and Environment. MYCOBIOLOGY 2024; 52:335-387. [PMID: 39845176 PMCID: PMC11749308 DOI: 10.1080/12298093.2024.2416736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 01/24/2025]
Abstract
Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents. Nowadays, these fungal-derived SMs are widely used in food and beverages, for fermentation, preservatives, protein sources, and in dairy industries. In healthcare, it is being used as an antimicrobial, anticancer, anti-inflammatory, and immunosuppressive drug. The usage of modern tools of biotechnology can achieve an increase in demand for these SMs and large-scale production. The present review comprehensively analyses the diversity of fungal SMs along with their emerging applications in healthcare, agriculture, environmental sustainability, and nutraceuticals. Here, the authors have reviewed the recent advancements in genetic engineering, metabolic pathway manipulation, and synthetic biology to improve the production and yield of these SMs. Advancement in fermentation techniques, bioprocessing, and co-cultivation approaches for large-scale production of SMs. Investigators further highlighted the importance of omics technologies in understanding the regulation and biosynthesis of SMs, which offers an understanding of novel applications in drug discovery and sustainable agriculture. Finally, the authors have addressed the potential for genetic manipulation and biotechnological innovations for further exploitation of fungal SMs for commercial and environmental benefits.
Collapse
Affiliation(s)
- Khushbu Wadhwa
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Neha Kapoor
- Department of Chemistry, Hindu College, University of Delhi, Delhi, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Eman A. Abu-Seer
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohd. Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
10
|
Siegrist A, Green A, Michel F, Mathys A. Comparing the nutritional value and prices of meat and milk substitutes with their animal-based benchmarks across six European countries. Food Res Int 2024; 197:115213. [PMID: 39593297 DOI: 10.1016/j.foodres.2024.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Since overconsumption of animal-sourced foods is directly linked to multiple environmental and health issues, a dietary shift is imperative. One approach to facilitate this change is the production of substitutes for animal-sourced foods based on plant-based or novel ingredients. However, to be a valid alternative, substitute products must match animal-sourced foods regarding their nutritional value while being price competitive. To understand where substitutes currently stand in that regard, this study presents a novel dataset containing the prices, main ingredients, and nutritional composition of almost 2600 substitute products as well as prices of approximately 7500 conventional products sold in major supermarket chains in France, Germany, Italy, the Netherlands, Spain, and the United Kingdom. Although comparative analyses (non-parametric two-sided Wilcoxon rank-sum tests at a 5 % significance level) of the results indicate that the meat substitutes generally contain a higher level of dietary fiber with lower saturated fats, these meat substitutes often also have lower protein quality and higher salt and sugar levels than the conventional products. On average, meat substitutes were found to be 24 to 115 % more expensive compared to conventional meat, except for the German samples where price parity has been reached. Among milk substitutes, only soy-based products have favorable macronutrient profiles. The average price premium charged for milk substitutes compared to cows' milk is 35 to 58 %. In general, fortification rates of substitutes should be increased to ensure sufficient supplies of micronutrients, particularly among meat substitutes where fortification rates are below 20% except for the Netherlands. Following these results, certain individual products already provide high nutritional value at low costs. However, further improvements are required for substitutes to become a compelling alternative at scale.
Collapse
Affiliation(s)
- Armin Siegrist
- ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Ashley Green
- ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| | - Fabienne Michel
- ETH Zurich, Consumer Behavior Group, Universitätsstrasse 22, Zurich 8092, Switzerland
| | - Alexander Mathys
- ETH Zurich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| |
Collapse
|
11
|
Li YP, Ahmadi F, Kariman K, Lackner M. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. NPJ Sci Food 2024; 8:66. [PMID: 39294139 PMCID: PMC11410949 DOI: 10.1038/s41538-024-00299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024] Open
Abstract
The global population is increasing, with a predicted demand for 1250 million tonnes of animal-derived protein by 2050, which will be difficult to meet. Single-cell protein (SCP) offers a sustainable solution. This review covers SCP production mechanisms, microbial and substrate choices, and advancements in metabolic engineering and CRISPR-Cas. It emphasizes second-generation substrates and fermentation for a circular economy. Despite challenges like high nucleic acid content, SCP promises to solve the global nutrition problem.
Collapse
Affiliation(s)
- Yu Pin Li
- College of Agricultural Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China.
| | - Fatemeh Ahmadi
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - Khalil Kariman
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | | |
Collapse
|
12
|
Palatzidi A, Nikoloudaki O, Torreiro MG, Matteucci C, Ferrentino G, Scampicchio MM, Di Cagno R, Gobbetti M. Novel formulations for developing fresh hybrid cheese analogues utilizing fungal-fermented brewery side-stream flours. Curr Res Food Sci 2024; 9:100829. [PMID: 39286429 PMCID: PMC11404057 DOI: 10.1016/j.crfs.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
This study investigated the development of hybrid cheese analogues (HCA) made with fermented brewery side-stream ingredients (spent yeast and malt rootlets) and dairy milk. Different percentages of side-stream flours (3.5%, 5%, and 7.5%) were mixed with pasteurized milk, and the developed HCA were evaluated for their biochemical and textural properties. The addition of a fermentation step improved nutrient availability and led to pH (range 4.79-5.60) and moisture content (range 45.86%-61.29%) similar to traditional animal-based fresh cheeses (control). The inclusion of side-stream flours led to coagulation, even without rennet addition. The higher the concentration of the flour used, the faster the coagulation time, suggesting synergistic effect between the enzymes of the rennet and the enzymes present in the fermented side-stream flours. Nevertheless, textural properties were inferior compared to the control. Selected HCA formulations with added 3.5% flour exhibited increased counts of enterococci and enterobacteria cell densities, ranging from 7.28 ± 0.03 to 7.72 ± 0.09 log CFU/g and 4.90 ± 0.16 to 5.41 ± 0.01 log CFU/g, respectively. Compared to the control sample, HCA formulations exhibited higher concentrations of organic acids, peptides, and free amino acids (FAAs). Lactic acid reached up to 23.78 ± 0.94 g/kg of dry matter (DM), while the peptide area reached up to 22918.50 ± 2370.93 mL⋅AU. Additionally, the total concentration of individual FAAs reached up to 2809.74 ± 104.85 mg/kg of DM, contrasted with the control, which resulted in lower concentrations (847.65 ± 0.02 mg/kg of DM). The overall findings suggested that despite challenges in microbiological quality and textural properties, HCA produced with the inclusion of up to 3.5% brewery side-stream flours could be a sustainable solution to produce nutritious dairy alternatives.
Collapse
Affiliation(s)
- Anastasia Palatzidi
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Olga Nikoloudaki
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | | | | | - Giovanna Ferrentino
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Matteo Mario Scampicchio
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Raffaella Di Cagno
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | - Marco Gobbetti
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| |
Collapse
|
13
|
Lee A, Lan JCW, Jambrak AR, Chang JS, Lim JW, Khoo KS. Upcycling fruit waste into microalgae biotechnology: Perspective views and way forward. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100203. [PMID: 38633725 PMCID: PMC11021955 DOI: 10.1016/j.fochms.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Fruit and vegetable wastes are linked to the depletion of natural resources and can pose serious health and environmental risks (e.g. eutrophication, water and soil pollution, and GHG emissions) if improperly managed. Current waste management practices often fail to recover high-value compounds from fruit wastes. Among emerging valorization methods, the utilization of fruit wastes as a feedstock for microalgal biorefineries is a promising approach for achieving net zero waste and sustainable development goals. This is due to the ability of microalgae to efficiently sequester carbon dioxide through photosynthesis, utilize nutrients in wastewater, grow in facilities located on non-arable land, and produce several commercially valuable compounds with applications in food, biofuels, bioplastics, cosmetics, nutraceuticals, pharmaceutics, and various other industries. However, the application of microalgal biotechnology towards upcycling fruit wastes has yet to be implemented on the industrial scale due to several economic, technical, operational, and regulatory challenges. Here, we identify sources of fruit waste along the food supply chain, evaluate current and emerging fruit waste management practices, describe value-added compounds in fruit wastes, and review current methods of microalgal cultivation using fruit wastes as a fermentation medium. We also propose some novel strategies for the practical implementation of industrial microalgal biorefineries for upcycling fruit waste in the future.
Collapse
Affiliation(s)
- Alicia Lee
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| |
Collapse
|
14
|
Tiwari P, Park KI. Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? J Fungi (Basel) 2024; 10:506. [PMID: 39057391 PMCID: PMC11278089 DOI: 10.3390/jof10070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The present era has witnessed an unprecedented scenario with extreme climate changes, depleting natural resources and rising global food demands and its widespread societal impact. From providing bio-based resources to fulfilling socio-economic necessities, tackling environmental challenges, and ecosystem restoration, microbes exist as integral members of the ecosystem and influence human lives. Microbes demonstrate remarkable potential to adapt and thrive in climatic variations and extreme niches and promote environmental sustainability. It is important to mention that advances in fungal biotechnologies have opened new avenues and significantly contributed to improving human lives through addressing socio-economic challenges. Microbe-based sustainable innovations would likely contribute to the United Nations sustainable development goals (SDGs) by providing affordable energy (use of agro-industrial waste by microbial conversions), reducing economic burdens/affordable living conditions (new opportunities by the creation of bio-based industries for a sustainable living), tackling climatic changes (use of sustainable alternative fuels for reducing carbon footprints), conserving marine life (production of microbe-based bioplastics for safer marine life) and poverty reduction (microbial products), among other microbe-mediated approaches. The article highlights the emerging trends and future directions into how fungal biotechnologies can provide feasible and sustainable solutions to achieve SDGs and address global issues.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | |
Collapse
|
15
|
Nadar CG, Fletcher A, Moreira BRDA, Hine D, Yadav S. Waste to protein: A systematic review of a century of advancement in microbial fermentation of agro-industrial byproducts. Compr Rev Food Sci Food Saf 2024; 23:e13375. [PMID: 38865211 DOI: 10.1111/1541-4337.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Increasing global consumption of protein over the last five decades, coupled with concerns about the impact on emissions of animal-based protein production, has created interest in alternative protein sources. Microbial proteins (MPs), derived through the fermentation of agro-industrial byproducts, present a promising option. This review assesses a century of advancements in this domain. We conducted a comprehensive review and meta-analysis, examining 347 relevant research papers to identify trends, technological advancements, and key influencing factors in the production of MP. The analysis covered the types of feedstocks and microbes, fermentation methods, and the implications of nucleic acid content on the food-grade quality of proteins. A conditional inference tree model and Bayesian factor were used to ascertain the impact of various parameters on protein content. Out of all the studied parameters, such as type of feedstock (lignocellulose, free sugars, gases, and others), type of fermentation (solid, liquid, gas), type of microbe (bacteria, fungi, yeast, and mix), and operating parameters (temperature, time, and pH), the type of fermentation and microbe were identified as the largest influences on protein content. Gas and liquid fermentation demonstrated higher protein content, averaging 52% and 42%, respectively. Among microbes, bacterial species produced a higher protein content of 51%. The suitable operating parameters, such as pH, time, and temperature, were also identified for different microbes. The results point to opportunities for continued innovation in feedstock, microbes, and regulatory alignment to fully realize the potential of MP in contributing to global food security and sustainability goals.
Collapse
Affiliation(s)
- Cresha Gracy Nadar
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Andrew Fletcher
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | | | - Damian Hine
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Sudhir Yadav
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
16
|
Kwon HC, Jung HS, Kothuri V, Han SG. Current status and challenges for cell-cultured milk technology: a systematic review. J Anim Sci Biotechnol 2024; 15:81. [PMID: 38849927 PMCID: PMC11161985 DOI: 10.1186/s40104-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture. While most cellular agriculture is predominantly centered on the production of cultured meat, there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture. This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production. Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture. Currently, various companies synthesize milk components through precision fermentation technology. Nevertheless, several startup companies are pursuing animal cell-based technology, driven by public concerns regarding genetically modified organisms in precision fermentation technology. Hence, this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components, specifically emphasizing the structural, functional, and productive aspects of mammary epithelial cells, providing new information for industry and academia.
Collapse
Affiliation(s)
- Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun Su Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Vahinika Kothuri
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Nielsen MB, Meyer AS, Arnau J. The Next Food Revolution Is Here: Recombinant Microbial Production of Milk and Egg Proteins by Precision Fermentation. Annu Rev Food Sci Technol 2024; 15:173-187. [PMID: 38134386 DOI: 10.1146/annurev-food-072023-034256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Animal-based agriculture and the production of protein-rich foods from animals, particularly from ruminants, are not sustainable and have serious climate effects. A new type of alternative proteins is now on the menu, namely animal proteins produced recombinantly by microbial fermentation. This new technology, precision fermentation, is projected to completely disrupt traditional animal-based agriculture. Certain milk and egg proteins along with specific meat substitute analog components produced by precision fermentation are already entering the market. This first wave of precision fermentation products targets the use of these proteins as protein additives, and several commercial players are already active in the field. The cost-efficiency requirements involve production titers above 50 g/L which are several orders of magnitude higher than those for pharmaceutical protein manufacture, making strain engineering, process optimization, and scale-up critical success factors. This new development within alternative proteins defines a new research direction integrating biotechnology, process engineering, and sustainable food protein production.
Collapse
Affiliation(s)
- M B Nielsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- 21st.BIO, Søborg, Denmark;
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
18
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
19
|
Ravn JL, Manfrão-Netto JHC, Schaubeder JB, Torello Pianale L, Spirk S, Ciklic IF, Geijer C. Engineering Saccharomyces cerevisiae for targeted hydrolysis and fermentation of glucuronoxylan through CRISPR/Cas9 genome editing. Microb Cell Fact 2024; 23:85. [PMID: 38493086 PMCID: PMC10943827 DOI: 10.1186/s12934-024-02361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The abundance of glucuronoxylan (GX) in agricultural and forestry residual side streams positions it as a promising feedstock for microbial conversion into valuable compounds. By engineering strains of the widely employed cell factory Saccharomyces cerevisiae with the ability to directly hydrolyze and ferment GX polymers, we can avoid the need for harsh chemical pretreatments and costly enzymatic hydrolysis steps prior to fermentation. However, for an economically viable bioproduction process, the engineered strains must efficiently express and secrete enzymes that act in synergy to hydrolyze the targeted polymers. RESULTS The aim of this study was to equip the xylose-fermenting S. cerevisiae strain CEN.PK XXX with xylanolytic enzymes targeting beechwood GX. Using a targeted enzyme approach, we matched hydrolytic enzyme activities to the chemical features of the GX substrate and determined that besides endo-1,4-β-xylanase and β-xylosidase activities, α-methyl-glucuronidase activity was of great importance for GX hydrolysis and yeast growth. We also created a library of strains expressing different combinations of enzymes, and screened for yeast strains that could express and secrete the enzymes and metabolize the GX hydrolysis products efficiently. While strains engineered with BmXyn11A xylanase and XylA β-xylosidase could grow relatively well in beechwood GX, strains further engineered with Agu115 α-methyl-glucuronidase did not display an additional growth benefit, likely due to inefficient expression and secretion of this enzyme. Co-cultures of strains expressing complementary enzymes as well as external enzyme supplementation boosted yeast growth and ethanol fermentation of GX, and ethanol titers reached a maximum of 1.33 g L- 1 after 48 h under oxygen limited condition in bioreactor fermentations. CONCLUSION This work underscored the importance of identifying an optimal enzyme combination for successful engineering of S. cerevisiae strains that can hydrolyze and assimilate GX. The enzymes must exhibit high and balanced activities, be compatible with the yeast's expression and secretion system, and the nature of the hydrolysis products must be such that they can be taken up and metabolized by the yeast. The engineered strains, particularly when co-cultivated, display robust growth and fermentation of GX, and represent a significant step forward towards a sustainable and cost-effective bioprocessing of GX-rich biomass. They also provide valuable insights for future strain and process development targets.
Collapse
Affiliation(s)
- Jonas L Ravn
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| | - João H C Manfrão-Netto
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Campinas, 13083-100, Brazil
| | - Jana B Schaubeder
- Institute of Bioproducts and Paper Technology (BPTI), Graz University of Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Luca Torello Pianale
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology (BPTI), Graz University of Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Iván F Ciklic
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), 5507 Luján de Cuyo, San Martín, Mendoza, 3853, Argentina
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| |
Collapse
|
20
|
Valentino V, Magliulo R, Farsi D, Cotter PD, O'Sullivan O, Ercolini D, De Filippis F. Fermented foods, their microbiome and its potential in boosting human health. Microb Biotechnol 2024; 17:e14428. [PMID: 38393607 PMCID: PMC10886436 DOI: 10.1111/1751-7915.14428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Fermented foods (FFs) are part of the cultural heritage of several populations, and their production dates back 8000 years. Over the last ~150 years, the microbial consortia of many of the most widespread FFs have been characterised, leading in some instances to the standardisation of their production. Nevertheless, limited knowledge exists about the microbial communities of local and traditional FFs and their possible effects on human health. Recent findings suggest they might be a valuable source of novel probiotic strains, enriched in nutrients and highly sustainable for the environment. Despite the increasing number of observational studies and randomised controlled trials, it still remains unclear whether and how regular FF consumption is linked with health outcomes and enrichment of the gut microbiome in health-associated species. This review aims to sum up the knowledge about traditional FFs and their associated microbiomes, outlining the role of fermentation with respect to boosting nutritional profiles and attempting to establish a link between FF consumption and health-beneficial outcomes.
Collapse
Affiliation(s)
- Vincenzo Valentino
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Raffaele Magliulo
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- NBFC‐National Biodiversity Future CenterPalermoItaly
| | - Dominic Farsi
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
| | - Paul D. Cotter
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
- APC Microbiome IrelandNational University of IrelandCorkIreland
- VistaMilk, FermoyCorkIreland
| | - Orla O'Sullivan
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
- APC Microbiome IrelandNational University of IrelandCorkIreland
- VistaMilk, FermoyCorkIreland
| | - Danilo Ercolini
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| | - Francesca De Filippis
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- NBFC‐National Biodiversity Future CenterPalermoItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
21
|
Li K, Qiao K, Xiong J, Guo H, Zhang Y. Nutritional Values and Bio-Functional Properties of Fungal Proteins: Applications in Foods as a Sustainable Source. Foods 2023; 12:4388. [PMID: 38137192 PMCID: PMC10742821 DOI: 10.3390/foods12244388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the preparation of bread, cheese, beer, and condiments to vegetarian meat products, fungi play a leading role in the food fermentation industry. With the shortage of global protein resources and the decrease in cultivated land, fungal protein has received much attention for its sustainability. Fungi are high in protein, rich in amino acids, low in fat, and almost cholesterol-free. These properties mean they could be used as a promising supplement for animal and plant proteins. The selection of strains and the fermentation process dominate the flavor and quality of fungal-protein-based products. In terms of function, fungal proteins exhibit better digestive properties, can regulate blood lipid and cholesterol levels, improve immunity, and promote gut health. However, consumer acceptance of fungal proteins is low due to their flavor and safety. Thus, this review puts forward prospects in terms of these issues.
Collapse
Affiliation(s)
- Ku Li
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Kaina Qiao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jian Xiong
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Hui Guo
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
22
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
23
|
Bachleitner S, Ata Ö, Mattanovich D. The potential of CO 2-based production cycles in biotechnology to fight the climate crisis. Nat Commun 2023; 14:6978. [PMID: 37914683 PMCID: PMC10620168 DOI: 10.1038/s41467-023-42790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
Rising CO2 emissions have pushed scientists to develop new technologies for a more sustainable bio-based economy. Microbial conversion of CO2 and CO2-derived carbon substrates into valuable compounds can contribute to carbon neutrality and sustainability. Here, we discuss the potential of C1 carbon sources as raw materials to produce energy, materials, and food and feed using microbial cell factories. We provide an overview of potential microbes, natural and synthetic C1 utilization pathways, and compare their metabolic driving forces. Finally, we sketch a future in which C1 substrates replace traditional feedstocks and we evaluate the costs associated with such an endeavor.
Collapse
Affiliation(s)
- Simone Bachleitner
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria
| | - Özge Ata
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, 1190, Austria
| | - Diethard Mattanovich
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria.
- Austrian Centre of Industrial Biotechnology, Vienna, 1190, Austria.
| |
Collapse
|
24
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
25
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
26
|
Roth MG, Westrick NM, Baldwin TT. Fungal biotechnology: From yesterday to tomorrow. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1135263. [PMID: 37746125 PMCID: PMC10512358 DOI: 10.3389/ffunb.2023.1135263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 09/26/2023]
Abstract
Fungi have been used to better the lives of everyday people and unravel the mysteries of higher eukaryotic organisms for decades. However, comparing progress and development stemming from fungal research to that of human, plant, and bacterial research, fungi remain largely understudied and underutilized. Recent commercial ventures have begun to gain popularity in society, providing a new surge of interest in fungi, mycelia, and potential new applications of these organisms to various aspects of research. Biotechnological advancements in fungal research cannot occur without intensive amounts of time, investments, and research tool development. In this review, we highlight past breakthroughs in fungal biotechnology, discuss requirements to advance fungal biotechnology even further, and touch on the horizon of new breakthroughs with the highest potential to positively impact both research and society.
Collapse
Affiliation(s)
- Mitchell G. Roth
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Nathaniel M. Westrick
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas T. Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
27
|
Fitzgerald M. It is time to appreciate the value of processed foods. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
28
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
29
|
Aro N, Ercili-Cura D, Andberg M, Silventoinen P, Lille M, Hosia W, Nordlund E, Landowski CP. Production of bovine beta-lactoglobulin and hen egg ovalbumin by Trichoderma reesei using precision fermentation technology and testing of their techno-functional properties. Food Res Int 2023; 163:112131. [PMID: 36596092 DOI: 10.1016/j.foodres.2022.112131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The food protein ingredient market is dominated by dairy and egg proteins. Both milk whey and egg proteins are challenging proteins to replace, e.g. with plant proteins, due to the unique structural features of the animal proteins that render them highly functional. Thus, to provide a non-animal source of these important proteins the fungal host Trichoderma reesei was utilized for the biotechnical production of recombinant hen ovalbumin (TrOVA) and bovine beta lactoglobulin (TrBLG). These food proteins were investigated using two different promoter systems to test the concept of effectively expressing them in a fungal host. Both proteins were successfully produced in 24 well plate and bioreactor scale. The production level of TrBLG and TrOVA were 1 g/L and 2 g/L, respectively. Both proteins were further purified and characterized, and their functional properties were tested. TrBLG and TrOVA secondary structures determined by circular dichroism corresponded to the proteins of bovine and hen. The T. reesei produced proteins were found to be N-glycosylated, mostly with Man 5. TrBLG had emulsification properties matching to corresponding bovine protein. TrOVA showed excellent foaming characteristics and heat-induced gelation, although the strength of the gel was somewhat lower than with hen ovalbumin, possibly due to the partial degradation of TrOVA or presence of other host proteins. Biotechnical production of whey and egg proteins using precision fermentation technology offers an innovative way to increase the sustainability of the conventional food industry, without further reliance on animal farming. Industrial relevance: The food protein ingredient market is dominated by dairy (largely whey proteins) and egg proteins. Whey proteins are valuable and versatile food ingredients due to their functional and nutritional quality. They are largely used in meat and milk products, low fat products, bakery, confectionary, infant formulas and sports nutrition. Similarly, egg white protein ovalbumin is a highly functional protein ingredient that facilitates structure formation and high nutritional quality in most food products. Together they comprise 40-70% of the revenue in the animal protein ingredients market. Both whey and egg proteins are extremely challenging proteins to replace, e.g., by plant proteins due to their unique structural features that render them with high functionality. Biotechnical production of whey and egg proteins using precision fermentation technology offers an innovative way to increase the sustainability of the conventional food industry, without further reliance on animal farming.
Collapse
Affiliation(s)
- Nina Aro
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - Dilek Ercili-Cura
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Martina Andberg
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Pia Silventoinen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Martina Lille
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Waltteri Hosia
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | | |
Collapse
|
30
|
Zhang R, Song X, Liu W, Xiang Q. Mixed fermentation of Chlorella pyrenoidosa and Bacillus velezensis SW-37 by optimization. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|