1
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Kazane KR, Labarta-Bajo L, Zangwill DR, Liimatta K, Vargas F, Weldon KC, Dorrestein PC, Zúñiga EI. Metabolomic Profiling Reveals Potential of Fatty Acids as Regulators of Stem-like Exhausted CD8 T Cells During Chronic Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617124. [PMID: 39416134 PMCID: PMC11483027 DOI: 10.1101/2024.10.07.617124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chronic infections drive a CD8 T cell program termed T cell exhaustion, characterized by reduced effector functions. While cell-intrinsic mechanisms underlying CD8 T cell exhaustion have been extensively studied, the impact of the metabolic environment in which exhausted CD8 T cells (Tex) operate remains less clear. Using untargeted metabolomics and the murine lymphocytic choriomeningitis virus infection model we investigated systemic metabolite changes early and late following acute versus chronic viral infections. We identified distinct short-term and persistent metabolite shifts, with the most significant differences occurring transiently during the acute phase of the sustained infection. This included nutrient changes that were independent of viral loads and partially associated with CD8 T cell-induced anorexia and lipolysis. One remarkable observation was the elevation of medium- and long-chain fatty acid (FA) and acylcarnitines during the early phase after chronic infection. During this time, virus-specific CD8 T cells from chronically infected mice exhibited increased lipid accumulation and uptake compared to their counterparts from acute infection, particularly stem-like Tex (Tex STEM ), a subset that generates effector-like Tex INT which directly limit viral replication. Notably, only Tex STEM increased oxidative metabolism and ATP production upon FA exposure. Consistently, short-term reintroduction of FA during late chronic infection exclusively improved Tex STEM mitochondrial fitness, percentages and numbers. This treatment, however, also reduced Tex INT , resulting in compromised viral control. Our study offers a valuable resource for investigating the role of specific metabolites in regulating immune responses during acute and chronic viral infections and highlights the potential of long-chain FA to influence Tex STEM and viral control during a protracted infection. Significance This study examines systemic metabolite changes during acute and chronic viral infections. Notably, we identified an early, transient nutrient shift in chronic infection, marked by an increase in medium- and long-chain fatty acid related species. Concomitantly, a virus-specific stem-like T cell population, essential for maintaining other T cells, displayed high lipid avidity and was capable of metabolizing exogenous fatty acids. Administering fatty acids late in chronic infection, when endogenous lipid levels had normalized, expanded this stem-like T cell population and enhanced their mitochondrial fitness. These findings highlight the potential role of fatty acids in regulating stem-like T cells in chronic settings and offer a valuable resource for studying other metabolic signatures in both acute and persistent infections.
Collapse
|
3
|
Valbon SF, Lebel ME, Feldman HA, Condotta SA, Dong M, Giordano D, Waggoner SN, Melichar HJ, Richer MJ. Type I interferon induced during chronic viral infection favors B-cell development in the thymus. Immunol Cell Biol 2024; 102:801-816. [PMID: 39009814 PMCID: PMC11444890 DOI: 10.1111/imcb.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Chronic viral infections cause thymic involution yet the potential for broader, longer-term impact on thymic composition remains unexplored. Here we show that chronic, but not acute, lymphocytic choriomeningitis virus infection promotes a unique population of immature B cells in the thymus. We show that chronic viral infection promotes signals within the thymus, including the expression of B-cell activating factor (BAFF), that favor the maturation of this population as these cells acquire expression of CD19 and immunoglobulin M. Mechanistically, type I interferon (IFN-I), predominantly IFNβ, signals to thymic hematopoietic cells, strongly delaying T-cell development at the earliest precursor stage. Furthermore, IFN-I signaling to the nonhematopoietic compartment provides a second signal essential to favor B-cell differentiation and maturation within the thymus. Importantly, chronic infection yields changes in the B-cell population for at least 50 days following infection, long after thymic atrophy has subsided. Thus, the inflammatory milieu induced by chronic viral infection has a profound, and long-lasting, effect on thymic composition leading to the generation of a novel population of thymic B cells.
Collapse
Affiliation(s)
- Stefanie F Valbon
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Microbiology, Immunology and Infectious Disease, University of Montreal, Montreal, QC, Canada
| | - Marie-Eve Lebel
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - H Alex Feldman
- Center for Autoimmune Genomics & Etiology, Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephanie A Condotta
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Cooperative Center for Excellence in Hematology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mengqi Dong
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, WA, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics & Etiology, Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heather J Melichar
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC Canada
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Cooperative Center for Excellence in Hematology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
5
|
Xu M, Zhang G, Cui T, Liu J, Wang Q, Shang D, Yu T, Guo B, Huang J, Li C. Cross-modal integration of bulk RNA-seq and single-cell RNA sequencing data to reveal T-cell exhaustion in colorectal cancer. J Cell Mol Med 2024; 28:e70101. [PMID: 39344205 PMCID: PMC11439987 DOI: 10.1111/jcmm.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) is a relatively common malignancy clinically and the second leading cause of cancer-related deaths. Recent studies have identified T-cell exhaustion as playing a crucial role in the pathogenesis of CRC. A long-standing challenge in the clinical management of CRC is to understand how T cells function during its progression and metastasis, and whether potential therapeutic targets for CRC treatment can be predicted through T cells. Here, we propose DeepTEX, a multi-omics deep learning approach that integrates cross-model data to investigate the heterogeneity of T-cell exhaustion in CRC. DeepTEX uses a domain adaptation model to align the data distributions from two different modalities and applies a cross-modal knowledge distillation model to predict the heterogeneity of T-cell exhaustion across diverse patients, identifying key functional pathways and genes. DeepTEX offers valuable insights into the application of deep learning in multi-omics, providing crucial data for exploring the stages of T-cell exhaustion associated with CRC and relevant therapeutic targets.
Collapse
Affiliation(s)
- Mingcong Xu
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
| | - Guorui Zhang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
| | - Ting Cui
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
| | - Jiaqi Liu
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Qiuyu Wang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Desi Shang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Tingting Yu
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
| | - Bingzhou Guo
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical UniversityJinanShandongChina
| | - Jinjie Huang
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Chunquan Li
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| |
Collapse
|
6
|
Andres-Martin F, James C, Catalfamo M. IL-27 expression regulation and its effects on adaptive immunity against viruses. Front Immunol 2024; 15:1395921. [PMID: 38966644 PMCID: PMC11222398 DOI: 10.3389/fimmu.2024.1395921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.
Collapse
Affiliation(s)
| | | | - Marta Catalfamo
- Department of Microbiology Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
7
|
Doan TA, Forward TS, Schafer JB, Lucas ED, Fleming I, Uecker-Martin A, Ayala E, Guthmiller JJ, Hesselberth JR, Morrison TE, Tamburini BAJ. Immunization-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. NPJ Vaccines 2024; 9:66. [PMID: 38514656 PMCID: PMC10957963 DOI: 10.1038/s41541-024-00856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Antigens from viruses or immunizations can persist or are archived in lymph node stromal cells such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration resulted in cross-presentation of archived antigens and boosted memory CD8 + T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8 + T cells specific to the archived antigen from the immunization were significantly higher than memory CD8 + T cells of a different antigen specificity. Finally, the boosted memory CD8 + T cells resulted in increased protection against Listeria monocytogenes expressing the antigen from the immunization, but only for the duration that the antigen was archived. These findings outline an important mechanism by which lymph node stromal cell archived antigens, in addition to bystander activation, can augment memory CD8 + T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ira Fleming
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aspen Uecker-Martin
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jay R Hesselberth
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
8
|
Yang C, Liu Z, Yang Y, Cocka LJ, Li Y, Zeng W, Shen H. Chronic viral infection impairs immune memory to a different pathogen. PLoS Pathog 2024; 20:e1012113. [PMID: 38547316 PMCID: PMC11003680 DOI: 10.1371/journal.ppat.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Chronic viral infections cause T cell dysfunction in both animal models and human clinical settings, thereby affecting the ability of the host immune system to clear viral pathogens and develop proper virus-specific immune memory. However, the impact of chronic viral infections on the host's immune memory to other pathogens has not been well described. In this study, we immunized mice with recombinant Listeria monocytogenes expressing OVA (Lm-OVA) to generate immunity to Lm and allow analysis of OVA-specific memory T (Tm) cells. We then infected these mice with lymphocytic choriomeningitis virus (LCMV) strain Cl-13 which establishes a chronic infection. We found that chronically infected mice were unable to protect against Listeria re-challenge. OVA-specific Tm cells showed a progressive loss in total numbers and in their ability to produce effector cytokines in the context of chronic LCMV infection. Unlike virus-specific T cells, OVA-specific Tm cells from chronically infected mice did not up-regulate the expression of inhibitory receptors, a hallmark feature of exhaustion in virus-specific T cells. Finally, OVA-specific Tm cells failed to mount a robust recall response after bacteria re-challenge both in the chronically infected and adoptively transferred naïve hosts. These results show that previously established bacteria-specific Tm cells become functionally impaired in the setting of an unrelated bystander chronic viral infection, which may contribute to poor immunity against other pathogens in the host with chronic viral infection.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Zhicui Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
| | - Luis J. Cocka
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| | - Yongguo Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Zeng
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
9
|
Song M, Liu X, Shen W, Wang Z, Wu J, Jiang J, Liu Y, Xu T, Bian T, Zhang M, Sun W, Huang M, Ji N. IFN-γ decreases PD-1 in T lymphocytes from convalescent COVID-19 patients via the AKT/GSK3β signaling pathway. Sci Rep 2024; 14:5038. [PMID: 38424104 PMCID: PMC10904811 DOI: 10.1038/s41598-024-55191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Post-COVID-19 syndrome may be associated with the abnormal immune status. Compared with the unexposed age-matched elder group, PD-1 in the CD8+ T cells from recovered COVID-19 patients was significantly lower. IFN-γ in the plasma of COVID-19 convalescent patients was increased, which inhibited PD-1 expression in CD8+ T cells from COVID-19 convalescent patients. scRNA-seq bioinformatics analysis revealed that AKT/GSK3β may regulate the INF-γ/PD-1 axis in CD8+ T cells from COVID-19 convalescent patients. In parallel, an IFN-γ neutralizing antibody reduced AKT and increased GSK3β in PBMCs. An AKT agonist (SC79) significantly decreased p-GSK3β. Moreover, AKT decreased PD-1 on CD8+ T cells, and GSK3β increased PD-1 on CD8+ T cells according to flow cytometry analysis. Collectively, we demonstrated that recovered COVID-19 patients may develop long COVID. Increased IFN-γ in the plasma of recovered Wuhan COVID-19 patients contributed to PD-1 downregulation on CD8+ T cells by regulating the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Meijuan Song
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Weiyu Shen
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tao Bian
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Xishan People's Hospital of Wuxi City, Wuxi, China.
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.
| |
Collapse
|
10
|
Wang J, Wang S, Zhang Y, Zhang W. Bibliometric analysis of evolutionary trajectory and prospective directions of LAG-3 in cancer. Front Immunol 2024; 15:1329775. [PMID: 38390331 PMCID: PMC10881671 DOI: 10.3389/fimmu.2024.1329775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Objectives Perform a bibliometric analysis on the role of LAG-3 in the domain of cancer, elucidate the prevailing areas of research, and visually depict the evolutionary trajectory and prospective directions of LAG-3 research over the past twenty-three decades. Materials and methods Between 2000 and 2023, a comprehensive review of scholarly articles pertaining to LAG-3 research in the context of cancer was carried out using the Web of Science Core Collection (WoSCC) database. Bibliometric analysis can be conducted by taking advantage of VOSviewer (version 1.6.16) and CiteSpace (version 6.2.R4). Create a network diagram to visually represent various authors, countries, and organizations while assessing the publishing years, journals, references, and keywords. Results In conclusion, 1841 records were identified and published in 587 publications. These records were authored by 12,849 individuals affiliated with 2491 institutes across 74 countries. There has been a substantial surge in publications subsequent to 2013. The USA, China, and Germany gave the majority of records, amounting to 69.69%. American institutions actively engage in collaboration with institutions located in other countries. Triebel, F., Vignali, Dario A. A., Workman, Creg J. Drake, Charles G., and Elkord, Eyad are highly regarded authors in their respective fields. However, it is worth noting that Triebel exhibits limited collaboration with other writers. The examination of the role of LAG-3 in cancer and its potential for use in clinical settings is a discernible trend, as seen by keyword analysis. Conclusion The scientific interest in and attention towards LAG-3 has experienced a significant rise since 2013. The United States is leading the way, with China following closely behind. Promoting collaboration among writers, nations, and institutions with varied backgrounds is imperative. The discipline of immunotherapy is currently seeing ongoing progress. A thorough investigation of the distinctive cis ligand TCR-CD3 complex of LAG-3 and its signal transduction mechanism is necessary. Additionally, it is worthwhile to explore novel combinations of LAG-3 therapy.
Collapse
Affiliation(s)
| | | | | | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Mangelinck A, Dubuisson A, Becht E, Dromaint-Catesson S, Fasquel M, Provost N, Walas D, Darville H, Galizzi JP, Lefebvre C, Blanc V, Lombardi V. Characterization of CD4 + and CD8 + T cells responses in the mixed lymphocyte reaction by flow cytometry and single cell RNA sequencing. Front Immunol 2024; 14:1320481. [PMID: 38283342 PMCID: PMC10820991 DOI: 10.3389/fimmu.2023.1320481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Background The Mixed Lymphocyte Reaction (MLR) consists in the allogeneic co-culture of monocytes derived dendritic cells (MoDCs) with T cells from another donor. This in vitro assay is largely used for the assessment of immunotherapy compounds. Nevertheless, the phenotypic changes associated with lymphocyte responsiveness under MLR have never been thoroughly evaluated. Methods Here, we used multiplex cytokine and chemokine assays, multiparametric flow cytometry and single cell RNA sequencing to deeply characterize T cells activation and function in the context of CD4+- and CD8+-specific MLR kinetics. Results We showed that CD4+ and CD8+ T cells in MLR share common classical markers of response such as polyfunctionality, increased proliferation and CD25 expression but differ in their kinetics and amplitude of activation as well as their patterns of cytokines secretion and immune checkpoints expression. The analysis of immunoreactive Ki-67+CD25+ T cells identified PBK, LRR1 and MYO1G as new potential markers of MLR response. Using cell-cell communication network inference and pathway analysis on single cell RNA sequencing data, we also highlighted key components of the immunological synapse occurring between T cells and the stimulatory MoDCs together with downstream signaling pathways involved in CD4+ and CD8+ T cells activation. Conclusion These results provide a deep understanding of the kinetics of the MLR assay for CD4+ or CD8+ T cells and may allow to better characterize compounds impacting MLR and eventually identify new strategies for immunotherapy in cancer.
Collapse
|
12
|
Tamburini B, Doan T, Forward T, Lucas E, Fleming I, Uecker-Martin A, Hesselberth J, Morrison T. Vaccine-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. RESEARCH SQUARE 2023:rs.3.rs-3307809. [PMID: 37841845 PMCID: PMC10571600 DOI: 10.21203/rs.3.rs-3307809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Viral and vaccine antigens persist or are archived in lymph node stromal cells (LNSC) such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration boosted memory CD8+ T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8+ T cells specific to the vaccine archived antigen were significantly higher than memory CD8+ T cells of a different antigen specificity. Finally, the boosted memory CD8+ T cells resulted in increased protection against Listeria monocytogenes expressing the vaccine antigen, but only for the duration that the vaccine antigen was archived. These findings outline a novel mechanism by which LNSC archived antigens, in addition to bystander activation, can augment memory CD8+ T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
| | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | - Erin Lucas
- University of Colorado Anschutz Medical Campus
| | - Ira Fleming
- University of Colorado Anschutz Medical Campus
| | | | | | | |
Collapse
|
13
|
Nazki S, Reddy VRAP, Kamble N, Sadeyen JR, Iqbal M, Behboudi S, Shelton H, Broadbent AJ. CD4 +TGFβ + cells infiltrated the bursa of Fabricius following IBDV infection, and correlated with a delayed viral clearance, but did not correlate with disease severity, or immunosuppression. Front Immunol 2023; 14:1197746. [PMID: 37744374 PMCID: PMC10515216 DOI: 10.3389/fimmu.2023.1197746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Infectious Bursal Disease Virus (IBDV) causes immunosuppression in chickens. While B-cell destruction is the main cause of humoral immunosuppression, bursal T cells from IBDV-infected birds have been reported to inhibit the mitogenic response of splenocytes, indicating that some T cell subsets in the infected bursa have immunomodulatory activities. CD4+CD25+TGFβ+ cells have been recently described in chickens that have immunoregulatory properties and play a role in the pathogenesis of Marek's Disease Virus. Methods To evaluate if CD4+CD25+TGFβ+ cells infiltrated the bursa of Fabricius (BF) following IBDV infection, and influenced the outcome of infection, birds were inoculated at either 2 days or 2 weeks of age with vaccine strain (228E), classic field strain (F52/70), or PBS (mock), and bursal cell populations were quantified by flow cytometry. Results Both 228E and F52/70 led to atrophy of the BF, a significant reduction of Bu1+-B cells, and a significant increase in CD4+ and CD8α+ T cells in the BF, but only F52/70 caused suppression of immune responses to a test antigen in younger birds, and clinical signs in older birds. Virus was cleared from the BF more rapidly in younger birds than older birds. An infiltration of CD4+CD25+T cells into the BF, and elevated expression of bursal TGFβ-1+ mRNA was observed at all time points following infection, irrespective of the strain or age of the birds, but CD4+TGFβ+cells and CD4+CD25+TGFβ+ cells only appeared in the BF at 28 dpi in younger birds. In older birds, CD4+TGFβ+ cells and CD4+CD25+TGFβ+ cells were present at earlier time points, from 7dpi following 228E infection, and from 14 and 28 dpi following F52/70 infection, respectively. Discussion Our data suggest that an earlier infiltration of CD4+TGFβ+ cells into the BF correlated with a delayed clearance of virus. However, the influx of CD4+TGFβ+ cells and CD4+CD25+TGFβ+ into the BF did not correlate with increased pathogenicity, or immunosuppression.
Collapse
Affiliation(s)
- Salik Nazki
- The Pirbright Institute, Woking, United Kingdom
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Munir Iqbal
- The Pirbright Institute, Woking, United Kingdom
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Andrew J. Broadbent
- The Pirbright Institute, Woking, United Kingdom
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
14
|
Dai X, Park JJ, Du Y, Na Z, Lam SZ, Chow RD, Renauer PA, Gu J, Xin S, Chu Z, Liao C, Clark P, Zhao H, Slavoff S, Chen S. Massively parallel knock-in engineering of human T cells. Nat Biotechnol 2023; 41:1239-1255. [PMID: 36702900 PMCID: PMC11260498 DOI: 10.1038/s41587-022-01639-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yaying Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Zhiyuan Chu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Cun Liao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Seth A, Yokokura Y, Choi JY, Shyer JA, Vidyarthi A, Craft J. AP-1-independent NFAT signaling maintains follicular T cell function in infection and autoimmunity. J Exp Med 2023; 220:e20211110. [PMID: 36820828 PMCID: PMC9998660 DOI: 10.1084/jem.20211110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/05/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Coordinated gene expression programs enable development and function of T cell subsets. Follicular helper T (Tfh) cells coordinate humoral immune responses by providing selective and instructive cues to germinal center B cells. Here, we show that AP-1-independent NFAT gene expression, a program associated with hyporesponsive T cell states like anergy or exhaustion, is also a distinguishing feature of Tfh cells. NFAT signaling in Tfh cells, maintained by NFAT2 autoamplification, is required for their survival. ICOS signaling upregulates Bcl6 and induces an AP-1-independent NFAT program in primary T cells. Using lupus-prone mice, we demonstrate that genetic disruption or pharmacologic inhibition of NFAT signaling specifically impacts Tfh cell maintenance and leads to amelioration of autoantibody production and renal injury. Our data provide important conceptual and therapeutic insights into the signaling mechanisms that regulate Tfh cell development and function.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yoshiyuki Yokokura
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Jin-Young Choi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Justin A. Shyer
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Aurobind Vidyarthi
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Casado-Fernández G, Corona M, Torres M, Saez AJ, Ramos-Martín F, Manzanares M, Vigón L, Mateos E, Pozo F, Casas I, García-Gutierrez V, Rodríguez-Mora S, Coiras M. Sustained Cytotoxic Response of Peripheral Blood Mononuclear Cells from Unvaccinated Individuals Admitted to the ICU Due to Critical COVID-19 Is Essential to Avoid a Fatal Outcome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1947. [PMID: 36767310 PMCID: PMC9915056 DOI: 10.3390/ijerph20031947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The main objective of this study was to determine the influence of the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) on the outcome of unvaccinated individuals with critical COVID-19 admitted to the ICU. Blood samples from 23 individuals were collected upon admission and then every 2 weeks for 13 weeks until death (Exitus group) (n = 13) or discharge (Survival group) (n = 10). We did not find significant differences between groups in sociodemographic, clinical, or biochemical data that may influence the fatal outcome. However, direct cellular cytotoxicity of PBMCs from individuals of the Exitus group against pseudotyped SARS-CoV-2-infected Vero E6 cells was significantly reduced upon admission (-2.69-fold; p = 0.0234) and after 4 weeks at the ICU (-5.58-fold; p = 0.0290), in comparison with individuals who survived, and it did not improve during hospitalization. In vitro treatment with IL-15 of these cells did not restore an effective cytotoxicity at any time point until the fatal outcome, and an increased expression of immune exhaustion markers was observed in NKT, CD4+, and CD8+ T cells. However, IL-15 treatment of PBMCs from individuals of the Survival group significantly increased cytotoxicity at Week 4 (6.18-fold; p = 0.0303). Consequently, immunomodulatory treatments that may overcome immune exhaustion and induce sustained, efficient cytotoxic activity could be essential for survival during hospitalization due to critical COVID-19.
Collapse
Affiliation(s)
- Guiomar Casado-Fernández
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28805 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Magdalena Corona
- Faculty of Sciences, Universidad de Alcalá, 28805 Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Adolfo J. Saez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mario Manzanares
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Francisco Pozo
- Respiratory Viruses Service, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Casas
- Respiratory Viruses Service, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Valentín García-Gutierrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
17
|
Nath PR, Pal-Nath D, Kaur S, Gangaplara A, Meyer TJ, Cam MC, Roberts DD. Loss of CD47 alters CD8+ T cell activation in vitro and immunodynamics in mice. Oncoimmunology 2022; 11:2111909. [PMID: 36105746 PMCID: PMC9467551 DOI: 10.1080/2162402x.2022.2111909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
CD47 has established roles in the immune system for regulating macrophage phagocytosis and lymphocyte activation, with growing evidence of its cell-intrinsic regulatory roles in natural killer and CD8+ T cells. CD47 limits antigen-dependent cytotoxic activities of human and murine CD8+ T cells, but its role in T cell activation kinetics remains unclear. Using in vitro and in vivo models, we show here that CD47 differentially regulates CD8+ T cell responses to short- versus long-term activation. Although CD47 was not required for T cell development in mice and early activation in vitro, short-term stimuli elevated pathogen-reactive gene expression and enhanced proliferation and the effector phenotypes of Cd47-deficient relative to Cd47-sufficient CD8+ T cells. In contrast, persistent TCR stimulation limited the effector phenotypes of Cd47 -/- CD8+ T cells and enhanced their apoptosis signature. CD8+ T cell expansion and activation in vivo induced by acute lymphocytic choriomeningitis virus (LCMV) infection did not differ in the absence of CD47. However, the frequency and effector phenotypes of Cd47-/- CD8+ T cells were constrained in chronic LCMV-infected as well as in mice bearing B16 melanoma tumors. Therefore, CD47 regulates CD8+ T cell activation, proliferation, and fitness in a context-dependent manner.
Collapse
Affiliation(s)
- Pulak R. Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical and Translational Immunology Unit, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arunkumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Zebley CC, Youngblood B. Mechanisms of T cell exhaustion guiding next-generation immunotherapy. Trends Cancer 2022; 8:726-734. [PMID: 35570136 PMCID: PMC9388609 DOI: 10.1016/j.trecan.2022.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
The functional decline in T cells during their chronic stimulation, commonly referred to as T cell exhaustion, is a major limitation for current immunotherapy approaches. As modern medicine embraces therapeutic approaches that exploit the immuno-oncology interface, a primary question is how is T cell function maintained over time in scenarios of prolonged tumor burden. Deciphering the molecular mechanisms of T cell exhaustion is now enabling the field to begin using cardinal features of T cell differentiation to develop biomarkers that can delineate responders from nonresponders prior to treatment with T cell-based therapeutics. Furthermore, applying principles of basic T cell immunity toward the development of cancer treatments is laying a foundation for rational approaches to improve immunotherapy by redirecting T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Ben Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
19
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
20
|
Cole KE, Ly QP, Hollingsworth MA, Cox JL, Fisher KW, Padussis JC, Foster JM, Vargas LM, Talmadge JE. Splenic and PB immune recovery in neoadjuvant treated gastrointestinal cancer patients. Int Immunopharmacol 2022; 106:108628. [PMID: 35203041 PMCID: PMC9009221 DOI: 10.1016/j.intimp.2022.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
In recent years, immune therapy, notably immune checkpoint inhibitors (ICI), in conjunction with chemotherapy and surgery has demonstrated therapeutic activity for some tumor types. However, little is known about the optimal combination of immune therapy with standard of care therapies and approaches. In patients with gastrointestinal (GI) cancers, especially pancreatic ductal adenocarcinoma (PDAC), preoperative (neoadjuvant) chemotherapy has increased the number of patients who can undergo surgery and improved their responses. However, most chemotherapy is immunosuppressive, and few studies have examined the impact of neoadjuvant chemotherapy (NCT) on patient immunity and/or the optimal combination of chemotherapy with immune therapy. Furthermore, the majority of chemo/immunotherapy studies focused on immune regulation in cancer patients have focused on postoperative (adjuvant) chemotherapy and are limited to peripheral blood (PB) and occasionally tumor infiltrating lymphocytes (TILs); representing a minority of immune cells in the host. Our previous studies examined the phenotype and frequencies of myeloid and lymphoid cells in the PB and spleens of GI cancer patients, independent of chemotherapy regimen. These results led us to question the impact of NCT on host immunity. We report herein, unique studies examining the splenic and PB phenotypes, frequencies, and numbers of myeloid and lymphoid cell populations in NCT treated GI cancer patients, as compared to treatment naïve cancer patients and patients with benign GI tumors at surgery. Overall, we noted limited immunological differences in patients 6 weeks following NCT (at surgery), as compared to treatment naive patients, supporting rapid immune normalization. We observed that NCT patients had a lower myeloid derived suppressor cells (MDSCs) frequency in the spleen, but not the PB, as compared to treatment naive cancer patients and patients with benign GI tumors. Further, NCT patients had a higher splenic and PB frequency of CD4+ T-cells, and checkpoint protein expression, as compared to untreated, cancer patients and patients with benign GI tumors. Interestingly, in NCT treated cancer patients the frequency of mature (CD45RO+) CD4+ and CD8+ T-cells in the PB and spleens was higher than in treatment naive patients. These differences may also be associated, in part with patient stage, tumor grade, and/or NCT treatment regimen. In summary, the phenotypic profile of leukocytes at the time of surgery, approximately 6 weeks following NCT treatment in GI cancer patients, are similar to treatment naive GI cancer patients (i.e., patients who receive adjuvant therapy); suggesting that NCT may not limit the response to immune intervention and may improve tumor responses due to the lower splenic frequency of MDSCs and higher frequency of mature T-cells.
Collapse
Affiliation(s)
- Kathryn E Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - James C Padussis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Luciano M Vargas
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
21
|
James LM, Georgopoulos AP. At the Root of 3 “Long” Diseases: Persistent Antigens Inflicting Chronic Damage on the Brain and Other Organs in Gulf War Illness, Long-COVID-19, and Chronic Fatigue Syndrome. Neurosci Insights 2022; 17:26331055221114817. [PMID: 35910083 PMCID: PMC9335483 DOI: 10.1177/26331055221114817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Several foreign antigens such as those derived from viruses and bacteria have been linked to long-term deleterious effects on the brain and other organs; yet, health outcomes subsequent to foreign antigen exposure vary depending in large part on the host’s immune system, in general, and on human leukocyte antigen (HLA) composition, in particular. Here we first provide a brief description of 3 conditions characterized by persistent long-term symptoms, namely long-COVID-19, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and Gulf War Illness (GWI), followed by a brief overview of the role of HLA in the immune response to foreign antigens. We then discuss our Persistent Antigen (PA) hypothesis and highlight associations between antigen persistence due to HLA-antigen incongruence and chronic health conditions in general and the 3 “long” diseases above in particular. This review is not intended to cover the breadth and depth of symptomatology of those diseases but is specifically focused on the hypothesis that the presence of persistent antigens underlies their pathogenesis.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
22
|
Rahman MA, Islam MS. Early approval of COVID-19 vaccines: Pros and cons. Hum Vaccin Immunother 2021; 17:3288-3296. [PMID: 34283001 PMCID: PMC8437465 DOI: 10.1080/21645515.2021.1944742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The development of safe and effective vaccines has been an overriding priority for controlling the 2019-coronavirus disease (COVID-19) pandemic. From the onset, COVID-19 has caused high mortality and economic losses and yet has also offered an opportunity to advance novel therapeutics such as DNA and mRNA vaccines. Although it is hoped that the swift acceptance of such vaccines will prevent loss of life, rejuvenate economies and restore normal life, there could also be significant pitfalls. This perspective provides an overview of future directions and challenges in advancing promising vaccine platforms to widespread therapeutic use.
Collapse
Affiliation(s)
- Md Arifur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
| |
Collapse
|
23
|
Jiang Z, Liang H, Pan H, Liang Y, Wang H, Yang X, Lu P, Zhang X, Yang J, Zhang D, Shen X, Wang J, Liang Z, Lin Q, Wang Y, Zhao L, Zhong Y, Lu H, Zhu H. HIV-1-Specific CAR-T Cells With Cell-Intrinsic PD-1 Checkpoint Blockade Enhance Anti-HIV Efficacy in vivo. Front Microbiol 2021; 12:684016. [PMID: 34295319 PMCID: PMC8290485 DOI: 10.3389/fmicb.2021.684016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Adoptive cellular immunotherapy therapy using broadly neutralizing antibody-based chimeric antigen receptor-T cells (bNAb-based CAR-T) has shown great potency and safety for the functional cure of HIV. The efficacy of bNAb-based CAR-T cells could be compromised by adaptive resistance during HIV chronic infection according to the phenomenon that cellular exhaustion was observed in endogenous cytotoxic T-lymphocytes (CTLs) along with upregulated expression of PD−1. Here, we created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a 3BNC117-DNR CAR (3BD CAR) construct that enables the expression of PD-1 dominant negative receptor (DNR) and the single-chain variable fragment of the HIV-1-specific broadly neutralizing antibody 3BNC117 to target native HIV envelope glycoprotein (Env). Compared with HIV CAR expression alone, 3BD CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells. Moreover, 3BD CAR-T cells can kill HIV-latently-infected cell lines, which are reactivated by the secretory cytokines of effector cells followed by contact with initial HIV-expressing fraction. Furthermore, bioluminescence imaging indicated that 3BD CAR-T cells displayed superior anti-HIV function in an HIV NCG mouse model of transplanting Env+/PD-L1+ cells (LEL6). These studies suggested that our proposed combinational strategy of HIV CAR-T therapy with PD-1 blockade therapy is feasible and potent, making it a promising therapeutic candidate for HIV functional cure.
Collapse
Affiliation(s)
- Zhengtao Jiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao Zhang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dengji Zhang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yangcheng Zhong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Venuti A, Donzelli S, Nisticò P, Blandino G, Ciliberto G. Does Interleukin-6 Bridge SARS-CoV-2 With Virus-Associated Cancers? JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:79-85. [PMID: 35663529 PMCID: PMC9153257 DOI: 10.36401/jipo-20-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 09/10/2021] [Indexed: 06/15/2023]
Abstract
To date SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a member of the Coronaviridae family, has infected more than 40 million people worldwide. A second wave of SARS-CoV-2 infection is aggressively surging. The clinical worsening of SARS-CoV-2 infection appears to be strictly associated with comorbidities, which can be used to establish an intrinsic patient network whose molecular profile is pivotal for identifying and successfully treating populations at risk. Herein, we focus on the direct interaction between SARS-CoV-2 and virus-associated cancers, exploring the critical role of interleukin-6 (IL-6) as a mediator of this complex cross talk. IL-6 production is enhanced in diverse viral infections ranging from human papilloma virus (HPV) to hepatitis B virus (HBV), human immunodeficiency virus (HIV), and SARS-CoV-2 infection. High systemic levels of IL-6 are associated with viral persistence and poor clinical outcomes in SARS-CoV-2-infected patients. Blockade of IL-6/IL-6R, using specific molecules, is under investigation in active clinical trials for the treatment of patients with SARS-CoV-2. Although the data are as yet inconclusive, they pave the way for selective targeting of crucial cytokine-activated aberrant signaling in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aldo Venuti
- HPV-Unit, UOSD (Simple Departmental Operational Unit) Tumor Immunology and Immunotherapy, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Regina Elena National Cancer Institute, Rome, Italy
- UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
25
|
Roy RK, Yadav R, Jain A, Tripathi V, Jain M, Singh S, Prakash H. Yin and yang of immunological memory in controlling infections: Overriding self defence mechanisms. Int Rev Immunol 2021; 41:240-252. [PMID: 33872093 DOI: 10.1080/08830185.2021.1912037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological memory is critical for host immunity and decisive for individual to respond exponentially to previously encountered infection. Both T and B cell memory are known to orchestrate immunological memory with their central and effector memory arms contributing in prolonged immunity/defence mechanisms of host. While central memory helps in maintaining prolonged immunity for a particular infection, effector memory helps in keeping local/seasonal infection in control. In addition to this, generation of long-lived plasma cells is pivotal for generating neutralizing antibodies which can enhance recall and B cell memory to control re-infection. In view of this, scaling up memory response is one of the major objectives for the expected outcome of vaccination. In this line, this review deals with the significance of memory cells, molecular pathways of their development, maintenance, epigenetic regulation and negative regulation in various infections. We have also highlighted the significance of both T and B cell memory responses in the vaccination approaches against range of infections which is not fully explored so far.[Box: see text].
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Gautam Buddha Nagar, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Sandhya Singh
- Amity Institute of Physiology and Allied Sciences, Amity University, Noida, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| |
Collapse
|
26
|
Clements DM, Crumley B, Chew GM, Davis E, Bruhn R, Murphy EL, Ndhlovu LC, Jain P. Phenotypic and Functional Analyses Guiding Combination Immune Checkpoint Immunotherapeutic Strategies in HTLV-1 Infection. Front Immunol 2021; 12:608890. [PMID: 33767694 PMCID: PMC7985073 DOI: 10.3389/fimmu.2021.608890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) develops in 1–5% of HTLV-1-infected individuals. Previous studies by us and others have shown that the expression of negative immune checkpoint receptors (NCRs) is significantly increased on CD8 T cells in various chronic viral infections and are associated with poor anti-viral immunity. We have previously identified the differential expression of NCRs on CD8 T cells in blood from patients with HAM/TSP and in central nervous system (CNS) tissues of HTLV-1 infected humanized mice and defined the association with neurological complications. In this study, we determined the co-expression patterns of several key NCRs (PD-1, TIGIT, TIM-3, and LAG-3) and their cognate ligands in HTLV-1 infection and assessed how combination strategies targeting these pathways would impact HTLV-1-specific CD8 T-cell effector functions as an approach to reduce CNS disease outcomes. We found that global CD8 T cells from HAM/TSP patients co-express multiple NCRs at significantly higher frequencies than asymptomatic carriers (AC). Moreover, NCR ligands (PVR and PD-LI) on both plasmacytoid and myeloid dendritic cells were also expressed at higher frequencies in HAM/TSP compared to AC. In both AC and HAM/TSP subjects, combination dual PD-L1/TIGIT or triple PD-L1/TIGIT/TIM-3 blockade with monoclonal antibodies resulted in increases in intracellular cytokine expression in CD8 T cells after virus stimulation, particularly CD107a, a marker of degranulation, and TNF-α, a key cytokine that can directly inhibit viral replication. Interestingly, almost all blockade combinations resulted in reduced IL-2+ HTLV-1-specific CD8 T cell frequencies in HAM/TSP subjects, but not in AC. These results define a novel combinatorial NCR immunotherapeutic blockade strategy to reduce HAM/TSP disease burden.
Collapse
Affiliation(s)
- Danielle M Clements
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Brenndan Crumley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Glen M Chew
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Elijah Davis
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Roberta Bruhn
- Department of Medicine and Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, United States.,Vitalant Research Institute, San Francisco, CA, United States
| | - Edward L Murphy
- Department of Medicine and Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, United States.,Vitalant Research Institute, San Francisco, CA, United States
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
27
|
Tang L, Zhang Y, Hu Y, Mei H. T Cell Exhaustion and CAR-T Immunotherapy in Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6616391. [PMID: 33728333 PMCID: PMC7936901 DOI: 10.1155/2021/6616391] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
T cell exhaustion has been recognized to play an immunosuppressive role in malignant diseases. Persistent tumor antigen stimulation, the presence of inhibitory immune cells and cytokines in tumor microenvironment (TME), upregulated expression of inhibitory receptors, changes in T cell-related transcription factors, and metabolic factors can all result in T cell exhaustion. Strategies dedicated to preventing or reversing T cell exhaustion are required to reduce the morbidity from cancer and enhance the effectiveness of adoptive cellular immunotherapy. Here, we summarize the current findings of T cell exhaustion in hematological malignancies and chimeric antigen receptor T (CAR-T) immunotherapy, as well as the value of novel technologies, to inverse such dysfunction. Our emerging understanding of T cell exhaustion may be utilized to develop personalized strategies to restore antitumor immunity.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| | - Yinqiang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022 Hubei, China
| |
Collapse
|
28
|
Schøller AS, Nazerai L, Christensen JP, Thomsen AR. Functionally Competent, PD-1 + CD8 + Trm Cells Populate the Brain Following Local Antigen Encounter. Front Immunol 2021; 11:595707. [PMID: 33603737 PMCID: PMC7884456 DOI: 10.3389/fimmu.2020.595707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of programmed cell death-1 receptor (PD-1) has traditionally been linked to T-cell exhaustion, as signaling via PD-1 dampens the functionality of T-cells upon repetitive antigen exposures during chronic infections. However, resent findings pointing to the involvement of PD-1 both in T-cell survival and in restraining immunopathology, challenge the concept of PD-1 solely as marker for T-cell exhaustion. Tissue resident memory T cells (Trms) hold unique effector qualities, but within a delicate organ like the CNS, these protective abilities could potentially be harmful. In contrast to their counterparts in many other tissues, brain derived CD8+ Trms have been found to uniformly and chronically express PD-1. In this study we utilized a recently established model system for generating CNS Trms in order to improve our understanding regarding the role of PD-1 expression by Trms inside the CNS. By intracerebral (i.c.) inoculation with a non-replicating adeno-viral vector, we induced a PD-1hi CD8+ T cell memory population within the CNS. We found that PD-1 expression lowered the severity of clinical disease associated with the i.c. inoculation. Furthermore, high levels of PD-L1 expression were found on the infiltrating monocytes and macrophages as well as on the resident microglia, oligodendrocytes and astrocytes during the acute phase of the response. Additionally, we showed that the intensity of PD-1 expression correlates with local antigen encounter and found that PD-1 expression was associated with decreased CD8+ T cell memory formation in the CNS despite an increased number of infiltrating CD8+ T cells. Most importantly, our experiments revealed that despite expression of PD-1 and several additional markers linked to T-cell exhaustion, Tim-3, Lag-3 and CD39, the cells did not show signs of limited effector capacity. Collectively, these results endorse the increasing amount of evidence pointing to an immune-modifying role for PD-1 expression within the CNS, a mechanism we found to correlate with local antigen exposure.
Collapse
Affiliation(s)
| | | | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Hartog N, Faber W, Frisch A, Bauss J, Bupp CP, Rajasekaran S, Prokop JW. SARS-CoV-2 infection: molecular mechanisms of severe outcomes to suggest therapeutics. Expert Rev Proteomics 2021; 18:105-118. [PMID: 33779460 PMCID: PMC8022340 DOI: 10.1080/14789450.2021.1908894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Introduction:The year 2020 was defined by the 29,903 base pairs of RNA that codes for the SARS-CoV-2 genome. SARS-CoV-2 infects humans to cause COVID-19, spreading from patient-to-patient yet impacts patients very divergently.Areas covered: Within this review, we address the known molecular mechanisms and supporting data for COVID-19 clinical course and pathology, clinical risk factors and molecular signatures, therapeutics of severe COVID-19, and reinfection/vaccination. Literature and published datasets were reviewed using PubMed, Google Scholar, and NCBI SRA tools. The combination of exaggerated cytokine signaling, pneumonia, NETosis, pyroptosis, thrombocytopathy, endotheliopathy, multiple organ dysfunction syndrome (MODS), and acute respiratory distress syndrome (ARDS) create a positive feedback loop of severe damage in patients with COVID-19 that impacts the entire body and may persist for months following infection. Understanding the molecular pathways of severe COVID-19 opens the door for novel therapeutic design. We summarize the current insights into pathology, risk factors, secondary infections, genetics, omics, and drugs being tested to treat severe COVID-19.Expert opinion: A growing level of support suggests the need for stronger integration of biomarkers and precision medicine to guide treatment strategies of severe COVID-19, where each patient has unique outcomes and thus require guided treatment.
Collapse
Affiliation(s)
- Nicholas Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Allergy & Immunology, Spectrum Health, Grand Rapids, MI, USA
| | - William Faber
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Chemistry, Grand Rapids Community College, Grand Rapids, MI, USA
| | - Austin Frisch
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jacob Bauss
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Spectrum Health Medical Genetics, Grand Rapids, MI, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI, USA
- Office of Research, Office of Research, Spectrum Health, Grand Rapids, MI, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
30
|
The Potential of T Cell Factor 1 in Sustaining CD8 + T Lymphocyte-Directed Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13030515. [PMID: 33572793 PMCID: PMC7866257 DOI: 10.3390/cancers13030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The transcription factor T cell factor 1 (TCF1), encoded by the TCF7 gene, is a key regulator of T-cell fate, which is known to promote T cell proliferation and establish T cell stemness. Importantly, increasing evidence has demonstrated that TCF1 is a critical determinant of the success of anti-tumor immunotherapy, implicating that TCF1 is a promising biomarker and therapeutic target in cancer. In recent years, new findings have emerged to provide a clearer view of TCF1 and its role in T cell biology. In this review, we aim to provide a comprehensive outline of the most recent literature on the role of TCF1 in T cell development and to discuss the potential of TCF1 in sustaining CD8+ T lymphocyte-directed anti-tumor immunity. Abstract T cell factor 1 (TCF1) is a transcription factor that has been highlighted to play a critical role in the promotion of T cell proliferation and maintenance of cell stemness in the embryonic and CD8+ T cell populations. The regulatory nature of TCF1 in CD8+ T cells is of great significance, especially within the context of T cell exhaustion, which is linked to the tumor and viral escape in pathological contexts. Indeed, inhibitory signals, such as programmed cell death 1 (PD-1) and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), expressed on exhausted T lymphocytes (TEX), have become major therapeutic targets in immune checkpoint blockade (ICB) therapy. The significance of TCF1 in the sustenance of CTL-mediated immunity against pathogens and tumors, as well as its recently observed necessity for an effective anti-tumor immune response in ICB therapy, presents TCF1 as a potentially significant biomarker and/or therapeutic target for overcoming CD8+ T cell exhaustion and resistance to ICB therapy. In this review, we aim to outline the recent findings on the role of TCF1 in T cell development and discuss its implications in anti-tumor immunity.
Collapse
|
31
|
Wong K, Nguyen J, Blair L, Banjanin M, Grewal B, Bowman S, Boyd H, Gerstner G, Cho HJ, Panfilov D, Tam CK, Aguilar D, Venketaraman V. Pathogenesis of Human Immunodeficiency Virus- Mycobacterium tuberculosis Co-Infection. J Clin Med 2020; 9:E3575. [PMID: 33172001 PMCID: PMC7694603 DOI: 10.3390/jcm9113575] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Given that infection with Mycobacterium tuberculosis (Mtb) is the leading cause of death amongst individuals living with HIV, understanding the complex mechanisms by which Mtb exacerbates HIV infection may lead to improved treatment options or adjuvant therapies. While it is well-understood how HIV compromises the immune system and leaves the host vulnerable to opportunistic infections such as Mtb, less is known about the interplay of disease once active Mtb is established. This review explores how glutathione (GSH) depletion, T cell exhaustion, granuloma formation, and TNF-α upregulation, as a result of Mtb infection, leads to an increase in HIV disease severity. This review also examines the difficulties of treating coinfected patients and suggests further research on the clinical use of GSH supplementation.
Collapse
Affiliation(s)
- Kevin Wong
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - James Nguyen
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Lillie Blair
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Marina Banjanin
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Bunraj Grewal
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Shane Bowman
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Hailey Boyd
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Grant Gerstner
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Hyun Jun Cho
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - David Panfilov
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Cho Ki Tam
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Delaney Aguilar
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
32
|
Guerrera G, Ruggieri S, Picozza M, Piras E, Gargano F, Placido R, Gasperini C, Salvetti M, Buscarinu MC, Battistini L, Borsellino G, Angelini DF. EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e876. [PMID: 32817203 PMCID: PMC7455312 DOI: 10.1212/nxi.0000000000000876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Objective Infection with Epstein-Barr virus (EBV) has been associated with clinical activity and risk of developing MS. The purpose of this study is to investigate the impact of glatiramer acetate (GA) therapy on EBV-specific immune responses and disease course. Methods We characterized EBV-specific CD8 T lymphocytes and B cells during disease-modifying treatments in 2 groups of patients with MS. We designed a 2-pronged approach consisting of a cross-sectional study (39 untreated patients, 38 patients who had undergone 12 months of GA treatment, and 48 healthy donors compatible for age and sex with the patients with MS) and a 12-month longitudinal study (35 patients treated with GA). CD8 EBV-specific T cells and B lymphocytes were studied using pentamers and multiparametric flow cytometry. Results We find that treatment with GA enhances viral recognition by inducing an increased number of circulating virus-specific CD8 T cells (p = 0.0043) and by relieving their features of exhaustion (p = 0.0053) and senescence (p < 0.0001, p = 0.0001). B cells, phenotypically and numerically tracked along the 1-year follow-up study, show a steady decrease in memory B-cell frequencies (p = 0.025), paralleled by an increase of the naive B subset. Conclusion GA therapy acts as a disease-modifying therapy restoring homeostasis in the immune system, including anti-EBV responses.
Collapse
Affiliation(s)
- Gisella Guerrera
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Serena Ruggieri
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Mario Picozza
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Eleonora Piras
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Francesca Gargano
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Roberta Placido
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Claudio Gasperini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Marco Salvetti
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Maria Chiara Buscarinu
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Luca Battistini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Giovanna Borsellino
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Daniela F Angelini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy.
| |
Collapse
|
33
|
Coulon PG, Roy S, Prakash S, Srivastava R, Dhanushkodi N, Salazar S, Amezquita C, Nguyen L, Vahed H, Nguyen AM, Warsi WR, Ye C, Carlos-Cruz EA, Mai UT, BenMohamed L. Upregulation of Multiple CD8 + T Cell Exhaustion Pathways Is Associated with Recurrent Ocular Herpes Simplex Virus Type 1 Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:454-468. [PMID: 32540992 DOI: 10.4049/jimmunol.2000131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
A large proportion of the world's population harbors latent HSV type 1 (HSV-1). Cross-talk between antiviral CD8+ T cells and HSV-1 appear to control latency/reactivation cycles. We found that compared with healthy asymptomatic individuals, in symptomatic (SYMP) patients, the CD8+ T cells with the same HLA-A*0201-restricted HSV-1 epitope specificities expressed multiple genes and proteins associated to major T cell exhaustion pathways and were dysfunctional. Blockade of immune checkpoints with anti-LAG-3 and anti-PD-1 antagonist mAbs synergistically restored the frequency and function of antiviral CD8+ T cells, both 1) ex vivo, in SYMP individuals and SYMP HLA-A*0201 transgenic mice; and 2) in vivo in HSV-1-infected SYMP HLA-A*0201 transgenic mice. This was associated with a significant reduction in virus reactivation and recurrent ocular herpetic disease. These findings confirm antiviral CD8+ T cell exhaustion during SYMP herpes infection and pave the way to targeting immune checkpoints to combat recurrent ocular herpes.
Collapse
Affiliation(s)
- Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Stephanie Salazar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Cassandra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lan Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Wasay R Warsi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Edgar A Carlos-Cruz
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Uyen T Mai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697; and.,Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
34
|
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med 2020; 217:e20200678. [PMID: 32353870 PMCID: PMC7191310 DOI: 10.1084/jem.20200678] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
The novel 2019 strain of coronavirus is a source of profound morbidity and mortality worldwide. Compared with recent viral outbreaks, COVID-19 infection has a relatively high mortality rate, the reasons for which are not entirely clear. Furthermore, treatment options for COVID-19 infection are currently limited. In this Perspective, we explore the contributions of the innate and adaptive immune systems to both viral control as well as toxicity during COVID-19 infections and offer suggestions to both understand and therapeutically modulate anti-COVID immunity.
Collapse
Affiliation(s)
- Santosha A. Vardhana
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Jedd D. Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Human Oncology Pathogenesis Program, Department of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine and Graduate School of Biomedical Sciences, New York, NY
| |
Collapse
|
35
|
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. THE JOURNAL OF EXPERIMENTAL MEDICINE 2020. [PMID: 32353870 DOI: 10.1084/jem.20200678.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The novel 2019 strain of coronavirus is a source of profound morbidity and mortality worldwide. Compared with recent viral outbreaks, COVID-19 infection has a relatively high mortality rate, the reasons for which are not entirely clear. Furthermore, treatment options for COVID-19 infection are currently limited. In this Perspective, we explore the contributions of the innate and adaptive immune systems to both viral control as well as toxicity during COVID-19 infections and offer suggestions to both understand and therapeutically modulate anti-COVID immunity.
Collapse
Affiliation(s)
- Santosha A Vardhana
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA.,Human Oncology Pathogenesis Program, Department of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medicine and Graduate School of Biomedical Sciences, New York, NY
| |
Collapse
|
36
|
Yu X, Zhang L, Chaudhry A, Rapaport AS, Ouyang W. Unravelling the heterogeneity and dynamic relationships of tumor-infiltrating T cells by single-cell RNA sequencing analysis. J Leukoc Biol 2020; 107:917-932. [PMID: 32272497 PMCID: PMC7317876 DOI: 10.1002/jlb.6mr0320-234r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are crucial for the success of immune-based cancer therapy. Reinvigorating antitumor T cell activity by blocking checkpoint inhibitory receptors has provided clinical benefits for many cancer patients. However, the efficacy of these treatments varies in cancer patients and the mechanisms underlying these diverse responses remain elusive. The density and status of tumor-infiltrating T cells have been shown to positively correlate with patient response to checkpoint blockades. Therefore, further understanding of the heterogeneity, clonal expansion, migration, and effector functions of tumor-infiltrating T cells will provide fundamental insights into antitumor immune responses. To this end, recent advances in single-cell RNA sequencing technology have enabled profound and extensive characterization of intratumoral immune cells and have improved our understanding of their dynamic relationships. Here, we summarize recent progress in single-cell RNA sequencing technology and current strategies to uncover heterogeneous tumor-infiltrating T cell subsets. In particular, we discuss how the coupling of deep transcriptome information with T cell receptor (TCR)-based lineage tracing has furthered our understanding of intratumoral T cell populations. We also discuss the functional implications of various T cell subsets in tumors and highlight the identification of novel T cell markers with therapeutic or prognostic potential.
Collapse
Affiliation(s)
- Xin Yu
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Lei Zhang
- Beijing Advanced Innovation Center for GenomicsPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Ashutosh Chaudhry
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Aaron S. Rapaport
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Wenjun Ouyang
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
37
|
Combination of three adjuvants enhances the immunogenicity of a recombinant protein containing the CTL epitopes of non-structural proteins of hepatitis C virus. Virus Res 2020; 284:197984. [PMID: 32325116 DOI: 10.1016/j.virusres.2020.197984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
Abstract
Hepatitis C virus (HCV) can cause chronic infection and evade the immune response. The generation and maintenance of an effective T-cell response is important for immune-mediated control of HCV infection. The purpose of this study was to obtain recombinant mosaic proteins containing the cytotoxic T lymphocyte (CTL) epitopes of HCV fused with different adjuvants and analyse their immunogenicity. A recombinant polyepitope protein comprising HLA-A2-restricted CTL epitopes of the NS3, NS4ab and NS5a proteins of HCV was designed. Adjuvant compounds, the T-helper (Th) epitope PADRE, lipopeptide from Neisseria meningiditis and interleukin 2 (IL-2) were included in the fusion proteins. Three proteins differing in their adjuvant content were expressed in Escherichia coli and purified. The purified proteins formed nanosized particles. The proteins were characterized by their ability to cause proliferation of spleen cells, induce expression of cytokine genes and production of interferon gamma by T lymphocytes of immunized mice. The obtained recombinant vaccine proteins effectively stimulate dendritic cells, which in turn specifically activate Th1 and Th2 lymphocytes. Adjuvant components act additively to enhance the stimulation of dendritic cells and polarize them in the direction of Th1 lymphocyte activation. Analysis of spleen cell proliferation, expression of Th1 and Th2 cytokines and production of interferon gamma by lymphocytes of immunized mice after specific stimulation in vitro revealed that recombinant protein comprising CTL epitopes of HCV, Th epitope PADRE, lipoprotein and IL-2 induced the highest response of T-lymphocytes.
Collapse
|
38
|
Balkhi MY. Receptor signaling, transcriptional, and metabolic regulation of T cell exhaustion. Oncoimmunology 2020; 9:1747349. [PMID: 32363117 PMCID: PMC7185212 DOI: 10.1080/2162402x.2020.1747349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Exhaustion cripples T cell effector responses against metastatic cancers and chronic infections alike. There has been considerable interest in understanding the molecular and cellular mechanisms driving T cell exhaustion in human cancers fueled by the success of immunotherapy drugs especially the checkpoint receptor blockade (CRB) inhibitory antibodies that reverses T cell functional exhaustion. The current understanding of molecular mechanism of T cell exhaustion has been elucidated from the studies utilizing murine models of chronic viral infections. These studies have formed the basis for much of our understanding of the process of exhaustion and proven vital to developing anti-exhaustion therapies against human cancers. In this review, we discuss the T cell exhaustion differentiation pathway in cancers and chronic viral infections and explore how the transcription factors expression dynamics play role in T cell exhaustion fate choices and maturation. Finally, we summarize the role of some of the most important transcription factors involved in T cell functional exhaustion and construct exhaustion specific signaling pathway maps.
Collapse
Affiliation(s)
- Mumtaz Y Balkhi
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA.,Division of Hematology/Oncology Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA.,Immune Therapy Bio, Nest.Bio Labs, Vassar St. Cambridge, MA, USA
| |
Collapse
|
39
|
Schorer M, Rakebrandt N, Lambert K, Hunziker A, Pallmer K, Oxenius A, Kipar A, Stertz S, Joller N. TIGIT limits immune pathology during viral infections. Nat Commun 2020; 11:1288. [PMID: 32152316 PMCID: PMC7062903 DOI: 10.1038/s41467-020-15025-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Co-inhibitory pathways have a fundamental function in regulating T cell responses and control the balance between promoting efficient effector functions and restricting immune pathology. The TIGIT pathway has been implicated in promoting T cell dysfunction in chronic viral infection. Importantly, TIGIT signaling is functionally linked to IL-10 expression, which has an effect on both virus control and maintenance of tissue homeostasis. However, whether TIGIT has a function in viral persistence or limiting tissue pathology is unclear. Here we report that TIGIT modulation effectively alters the phenotype and cytokine profile of T cells during influenza and chronic LCMV infection, but does not affect virus control in vivo. Instead, TIGIT has an important effect in limiting immune pathology in peripheral organs by inducing IL-10. Our data therefore identify a function of TIGIT in limiting immune pathology that is independent of viral clearance.
Collapse
Affiliation(s)
- Michelle Schorer
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katharina Lambert
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10 8093, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
40
|
Differential phenotypic and functional profile of epitope-specific cytotoxic CD8 + T cells in benznidazole-treated chronic asymptomatic Chagas disease patients. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165629. [PMID: 31816438 DOI: 10.1016/j.bbadis.2019.165629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges in Chagas disease research is the search for tools that will enable the assessment of pharmacological treatment efficacy. A recently described set of serological biomarkers composed of four parasite antigens and established criteria of treatment efficacy allowed the evaluation of the impact of benznidazole treatment a short/medium time after the treatment. In addition, cellular immunological parameters have also been described as potential indicators of the treatment response. The cytotoxic CD8+ T cells specific to five epitopes in the PFR2, PFR3, TcCA-2 and KMP11 antigens have been analysed, and these epitopes have been shown to be recognized, processed and presented in the context of a natural T. cruzi infection. In the present manuscript, we characterized these antigen-specific CD8+ T cells in indeterminate chronic Chagas disease patients both before and after (from 11 to 28 months) benznidazole treatment. The results indicate that there is a differential memory CD8+ T cell profile depending on the antigenic epitope and that the benznidazole treatment modulates the memory, differentiation and senescence phenotypes of the epitope-specific CD8+ T cells. Moreover, in these patients, the reactivity of sera against the referred set of biomarkers was evaluated. The data obtained show that the patients who met the established therapeutic efficacy criteria presented a differential phenotypic profile of the antigen-specific CD8+ T cells even prior to treatment compared to the patients who did not meet the therapeutic efficacy criteria, and this behaviour is associated with a better functionality of these CD8+ T cells.
Collapse
|
41
|
Spontaneous HIV controllers might be the key to prevent accelerated immunosenescence of effector CD8+ T cells. AIDS 2019; 33:2253-2255. [PMID: 31688042 DOI: 10.1097/qad.0000000000002343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Herzig E, Kim KC, Packard TA, Vardi N, Schwarzer R, Gramatica A, Deeks SG, Williams SR, Landgraf K, Killeen N, Martin DW, Weinberger LS, Greene WC. Attacking Latent HIV with convertibleCAR-T Cells, a Highly Adaptable Killing Platform. Cell 2019; 179:880-894.e10. [PMID: 31668804 DOI: 10.1016/j.cell.2019.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/19/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.
Collapse
Affiliation(s)
- Eytan Herzig
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kaman Chan Kim
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Thomas A Packard
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noam Vardi
- Gladstone Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roland Schwarzer
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrea Gramatica
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | - Kyle Landgraf
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Nigel Killeen
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - David W Martin
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Leor S Weinberger
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Gladstone Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Warner C Greene
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Friedman J, Moore EC, Zolkind P, Robbins Y, Clavijo PE, Sun L, Greene S, Morisada MV, Mydlarz WK, Schmitt N, Hodge JW, Schreiber H, Van Waes C, Uppaluri R, Allen C. Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen-Specific T Cells. Clin Cancer Res 2019; 26:679-689. [PMID: 31645352 DOI: 10.1158/1078-0432.ccr-19-2209] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/26/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Surgical resection of primary tumor with regional lymphadenectomy remains the treatment of choice for patients with advanced human papillomavirus-negative head and neck squamous cell carcinoma. However, even when pathologic disease-free margins can be achieved, locoregional and/or distant disease relapse remains high. Perioperative immunotherapy may improve outcomes, but mechanistic data supporting the use of neoadjuvant or adjuvant treatment clinically are sparse. EXPERIMENTAL DESIGN Two syngeneic models of oral cavity carcinoma with defined T-cell antigens were treated with programmed death receptor 1 (PD-1) mAb before or after surgical resection of primary tumors, and antigen-specific T-cell responses were explored with functional and in vivo challenge assays. RESULTS We demonstrated that functional immunodominance developed among T cells targeting multiple independent tumor antigens. T cells specific for subdominant antigens expressed greater levels of PD-1. Neoadjuvant, but not adjuvant, PD-1 immune checkpoint blockade broke immunodominance and induced T-cell responses to dominant and subdominant antigens. Using tumors lacking the immunodominant antigen as a model of antigen escape, neoadjuvant PD-1 immune checkpoint blockade induced effector T-cell immunity against tumor cells lacking immunodominant but retaining subdominant antigen. When combined with complete surgical excision, neoadjuvant PD-1 immune checkpoint blockade led to formation of immunologic memory capable of preventing engraftment of tumors lacking the immunodominant but retaining subdominant antigen. CONCLUSIONS Together, these results implicate PD-1 expression by T cells in the mechanism of functional immunodominance among independent T-cell clones within a progressing tumor and support the use of neoadjuvant PD-1 immune checkpoint blockade in patients with surgically resectable carcinomas.
Collapse
Affiliation(s)
- Jay Friedman
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ellen C Moore
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul Zolkind
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Yvette Robbins
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul E Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Lilian Sun
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Sarah Greene
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Megan V Morisada
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Wojciech K Mydlarz
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Nicole Schmitt
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hans Schreiber
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ravindra Uppaluri
- Department of Surgery/Otolaryngology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland. .,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Sakellariou-Thompson D, Forget MA, Hinchcliff E, Celestino J, Hwu P, Jazaeri AA, Haymaker C, Bernatchez C. Potential clinical application of tumor-infiltrating lymphocyte therapy for ovarian epithelial cancer prior or post-resistance to chemotherapy. Cancer Immunol Immunother 2019; 68:1747-1757. [PMID: 31602489 DOI: 10.1007/s00262-019-02402-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunotherapy has become a powerful treatment option for several solid tumor types. The presence of tumor-infiltrating lymphocytes (TIL) is correlated with better prognosis in ovarian cancer, pointing at the possibility to benefit from harnessing their anti-tumor activity. This preclinical study explores the feasibility of adoptive cell therapy (ACT) with TIL using an improved culture method. METHODS TIL from high-grade serous ovarian cancer were cultured using a combination of IL-2 with agonistic antibodies targeting 4-1BB and CD3. The cells were phenotyped using flow cytometry in the fresh tissue and after expansion. Tumor reactivity was assessed against HLA-matched ovarian cancer cell lines via IFN-γ ELISPOT. RESULTS Ovarian cancer is highly infiltrated with CD8+ TIL that are preferentially and robustly expanded with the addition of the agonistic antibodies. With a 95% success rate, the TIL are grown to ≥ 100 × 106 cells in 2-3 weeks without over differentiation. In addition, the CD8+ TIL grown with this method showed HLA-restricted tumor recognition. CONCLUSIONS These results indicate the viability of TIL ACT for refractory ovarian cancer by allowing for the large expansion of anti-tumor TIL in a short time and consistent manner.
Collapse
Affiliation(s)
- Donastas Sakellariou-Thompson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Emily Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, UT MDACC, Unit 2951, 2130 W. Holcombe Blvd., Houston, TX, 77030, USA.
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA. .,Department of Translational Molecular Pathology, UT MDACC, Unit 2951, 2130 W. Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Targeting PD-1 in cancer: Biological insights with a focus on breast cancer. Crit Rev Oncol Hematol 2019; 142:35-43. [DOI: 10.1016/j.critrevonc.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022] Open
|
46
|
Viral Infections and Autoimmune Disease: Roles of LCMV in Delineating Mechanisms of Immune Tolerance. Viruses 2019; 11:v11100885. [PMID: 31546586 PMCID: PMC6832701 DOI: 10.3390/v11100885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Viral infections are a natural part of our existence. They can affect us in many ways that are the result of the interaction between the viral pathogen and our immune system. Most times, the resulting immune response is beneficial for the host. The pathogen is cleared, thus protecting our vital organs with no other consequences. Conversely, the reaction of our immune system against the pathogen can cause organ damage (immunopathology) or lead to autoimmune disease. To date, there are several mechanisms for virus-induced autoimmune disease, including molecular mimicry and bystander activation, in support of the “fertile field” hypothesis (terms defined in our review). In contrast, viral infections have been associated with protection from autoimmunity through mechanisms that include Treg invigoration and immune deviation, in support of the “hygiene hypothesis”, also defined here. Infection with lymphocytic choriomeningitis virus (LCMV) is one of the prototypes showing that the interaction of our immune system with viruses can either accelerate or prevent autoimmunity. Studies using mouse models of LCMV have helped conceive and establish several concepts that we now know and use to explain how viruses can lead to autoimmune activation or induce tolerance. Some of the most important mechanisms established during the course of LCMV infection are described in this short review.
Collapse
|
47
|
Fenton SE, Sosman JA, Chandra S. Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:744-761. [PMID: 35582566 PMCID: PMC8992532 DOI: 10.20517/cdr.2019.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/14/2022]
Abstract
Checkpoint inhibitors act by blocking physiologic mechanisms coopted by tumor cells to evade immune surveillance, restoring the immune system's ability to identify and kill malignant cells. These therapies have dramatically improved outcomes in multiple tumor types with durable responses in many patients, leading to FDA approval first in advanced melanoma, then in many other malignancies. However, as experience with checkpoint inhibitors has grown, populations of patients who are primary nonresponders or develop secondary resistance have been the majority of cases, even in melanoma. Mechanisms of resistance include those inherent to the tumor microenvironment, the tumor cells themselves, and the function of the patient's native immune cells. This review will discuss resistance to checkpoint inhibitors in melanoma as well as possible methods to restore sensitivity.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey A. Sosman
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Sunandana Chandra
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
48
|
LaFleur MW, Nguyen TH, Coxe MA, Miller BC, Yates KB, Gillis JE, Sen DR, Gaudiano EF, Al Abosy R, Freeman GJ, Haining WN, Sharpe AH. PTPN2 regulates the generation of exhausted CD8 + T cell subpopulations and restrains tumor immunity. Nat Immunol 2019; 20:1335-1347. [PMID: 31527834 PMCID: PMC6754306 DOI: 10.1038/s41590-019-0480-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
CD8+ T cell exhaustion is a state of dysfunction acquired in chronic viral infection and cancer, characterized by the formation of Slamf6+ progenitor exhausted and Tim-3+ terminally exhausted subpopulations through unknown mechanisms. Here we establish the phosphatase PTPN2 as a new regulator of the differentiation of the terminally exhausted subpopulation that functions by attenuating type 1 interferon signaling. Deletion of Ptpn2 in CD8+ T cells increased the generation, proliferative capacity and cytotoxicity of Tim-3+ cells without altering Slamf6+ numbers during lymphocytic choriomeningitis virus clone 13 infection. Likewise, Ptpn2 deletion in CD8+ T cells enhanced Tim-3+ anti-tumor responses and improved tumor control. Deletion of Ptpn2 throughout the immune system resulted in MC38 tumor clearance and improved programmed cell death-1 checkpoint blockade responses to B16 tumors. Our results indicate that increasing the number of cytotoxic Tim-3+CD8+ T cells can promote effective anti-tumor immunity and implicate PTPN2 in immune cells as an attractive cancer immunotherapy target.
Collapse
Affiliation(s)
- Martin W LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Thao H Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew A Coxe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Brian C Miller
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob E Gillis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Debattama R Sen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily F Gaudiano
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Rose Al Abosy
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. .,Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA. .,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
49
|
Wolski D, Lauer GM. Hepatitis C Virus as a Unique Human Model Disease to Define Differences in the Transcriptional Landscape of T Cells in Acute versus Chronic Infection. Viruses 2019; 11:v11080683. [PMID: 31357397 PMCID: PMC6723887 DOI: 10.3390/v11080683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus is unique among chronic viral infections in that an acute outcome with complete viral elimination is observed in a minority of infected patients. This unique feature allows direct comparison of successful immune responses with those that fail in the setting of the same human infection. Here we review how this scenario can be used to achieve better understanding of transcriptional regulation of T-cell differentiation. Specifically, we discuss results from a study comparing transcriptional profiles of hepatitis C virus (HCV)-specific CD8 T-cells during early HCV infection between patients that do and do not control and eliminate HCV. Identification of early gene expression differences in key T-cell differentiation molecules as well as clearly distinct transcriptional networks related to cell metabolism and nucleosomal regulation reveal novel insights into the development of exhausted and memory T-cells. With additional transcriptional studies of HCV-specific CD4 and CD8 T-cells in different stages of infection currently underway, we expect HCV infection to become a valuable model disease to study human immunity to viruses.
Collapse
Affiliation(s)
- David Wolski
- Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
50
|
Schaeuble K, Cannelle H, Favre S, Huang HY, Oberle SG, Speiser DE, Zehn D, Luther SA. Attenuation of chronic antiviral T-cell responses through constitutive COX2-dependent prostanoid synthesis by lymph node fibroblasts. PLoS Biol 2019; 17:e3000072. [PMID: 31306410 PMCID: PMC6657915 DOI: 10.1371/journal.pbio.3000072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/25/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Lymphoid T-zone fibroblastic reticular cells (FRCs) actively promote T-cell trafficking, homeostasis, and expansion but can also attenuate excessive T-cell responses via inducible nitric oxide (NO) and constitutive prostanoid release. It remains unclear how these FRC-derived mediators dampen T-cell responses and whether this occurs in vivo. Here, we confirm that murine lymph node (LN) FRCs produce prostaglandin E2 (PGE2) in a cyclooxygenase-2 (COX2)-dependent and inflammation-independent fashion. We show that this COX2/PGE2 pathway is active during both strong and weak T-cell responses, in contrast to NO, which only comes into play during strong T-cell responses. During chronic infections in vivo, PGE2-receptor signaling in virus-specific cluster of differentiation (CD)8 cytotoxic T cells was shown by others to suppress T-cell survival and function. Using COX2flox/flox mice crossed to mice expressing Cre recombinase expression under control of the CC chemokine ligand (CCL19) promoter (CCL19cre), we now identify CCL19+ FRC as the critical source of this COX2-dependent suppressive factor, suggesting PGE2-expressing FRCs within lymphoid tissues are an interesting therapeutic target to improve T-cell–mediated pathogen control during chronic infection. Fibroblasts in secondary lymphoid organs can be active participants in adaptive immunity, often enhancing T-cell responses. This study shows how these fibroblasts dampen T-cell responses via the constitutive production of the COX2-dependent prostaglandin PGE2, including during persistent viral infection.
Collapse
Affiliation(s)
- Karin Schaeuble
- Center for Immunity and Infection Lausanne, Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, University of Lausanne and University Hospital, Epalinges, Switzerland
| | - Hélène Cannelle
- Center for Immunity and Infection Lausanne, Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Stéphanie Favre
- Center for Immunity and Infection Lausanne, Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Hsin-Ying Huang
- Center for Immunity and Infection Lausanne, Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Susanne G Oberle
- Swiss Vaccine Research Institute, Epalinges, Switzerland.,Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne and University Hospital, Epalinges, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Epalinges, Switzerland.,Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland.,Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sanjiv A Luther
- Center for Immunity and Infection Lausanne, Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|