1
|
Shan Q, Qiu J, Dong Z, Xu X, Zhang S, Ma J, Liu S. Lung Immune Cell Niches and the Discovery of New Cell Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405490. [PMID: 39401416 PMCID: PMC11615829 DOI: 10.1002/advs.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Immune cells in the lungs are important for maintaining lung function. The importance of immune cells in defending against lung diseases and infections is increasingly recognized. However, a primary knowledge gaps in current studies of lung immune cells is the understanding of their subtypes and functional heterogeneity. Increasing evidence supports the existence of novel immune cell subtypes that engage in the complex crosstalk between lung-resident immune cells, recruited immune cells, and epithelial cells. Therefore, further studies on how immune cells respond to perturbations in the pulmonary microenvironment are warranted. This review explores the processes behind the formation of the immune cell niche during lung development, and the characteristics and cell interaction modes of several major lung-resident immune cells. It indicates that distinct lung microenvironments or inflammatory niches can mediate the formation of different cell subtypes. These findings summarize and clarify paths to identify new cell subtypes that originate from resident progenitor cells and recruited peripheral cells, which are remodeled by the pulmonary microenvironment. The development of new techniques combining transcriptome analysis and location information is essential for identifying new immune cell subtypes and their relative immune niches, as well as for uncovering the molecular mechanisms of immune cell-mediated lung homeostasis.
Collapse
Affiliation(s)
- Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental MedicineSchool of Public HealthGuangdong Medical UniversityDongguan523808P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
Shan Y, Wu J, Dai X, Yuan C, Jiang J, Yan H, Tang L, Dong Y, Ren L, Pan Q, Ji J, Zhao X. Jiangqi Pingxiao formula regulates dendritic cell apoptosis in an autophagy-dependent manner through the AMPK/mTOR pathway in a murine model of OVA-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117405. [PMID: 37952734 DOI: 10.1016/j.jep.2023.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allergic asthma is a recurring respiratory condition that typically manifests during childhood or adolescence. It is characterized by a dominant type II immune response triggered by the identification and capturing of inhaled allergens by dendritic cells (DCs). Jiangqi Pingxiao Formula (JQPXF), a prescription medicine used for the treatment of pediatric asthma, has been clinically proven to be both safe and effective. However, its mechanism of action in the treatment of asthma has not been fully been fully elucidated. Recent research suggests that several natural compounds have the potential to target dendritic cells (DCs) and alleviate ovalbumin (OVA)-induced asthma, which may also be found within JQPXF. AIM OF THE STUDY This study aimed to elucidate the effect of JQPXF on OVA-induced asthma model and its molecular mechanism targeting DCs. MATERIALS AND METHODS The main constituents of JQPXF were analyzed by ultra performance liquid chromatography (UPLC). An asthma model was established by OVA. Hematoxylin-eosin staining and measurement of respiratory function was used to evaluate the treatment effect of JQPXF on asthmatic mice. Cytokine (IL-5, IL-13 and IgE) concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was employed to evaluate inflammatory cell infiltration (T helper 2 cells and DCs) in vivo and DC survival in vivo and vitro. Western blot and immunofluorescence were used to verify the molecular mechanisms. RESULTS The results suggest that JQPXF can ameliorate pathological conditions and improve lung function in asthmatic mice, as well as the Th2 cells. Treatment with JQPXF significantly reduced the number of DCs and increased the number of Propidium iodide+ (PI) DCs. Furthermore, JQPXF upregulated protein levels of the pro-apoptotic factors Cleaved-caspase-3 and Bax, while downregulating the anti-apoptotic factor Bcl-2. Simultaneously, JQPXF increased autophagy levels by facilitating p62 degradation and promoting translation from LC3B I to LC3B II of DCs in vitro, as well as reducing the integrated optical density (IOD) of p62 within the CD11c-positive area in the lung. 3-Methyladenine (3-MA) was used to block autophagic flux and the apoptotic effect of JQPXF on DCs was abolished in vitro, with the number of DCs decreased by JQPXF being reversed in vivo. We further investigated the upstream key regulator of autophagy, the AMPK/mTOR pathway, and found that JQPXF increased AMPK phosphorylation while decreasing mTOR phosphorylation levels. Additionally, we employed Compound C (CC) as an AMPK inhibitor to inhibit this signaling pathway, and our findings revealed that both autophagic flux and apoptotic levels in DCs were abolished in vitro. CONCLUSIONS In summary, we have demonstrated that JQPXF could alleviate type II inflammation in an asthmatic model by promoting the apoptosis of DCs through an autophagy-dependent mechanism, achieved by regulating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yiwen Shan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabao Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohan Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjin Jiang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingmei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lishun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyun Pan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
4
|
Kim DJ, Lim JE, Jung HU, Chung JY, Baek EJ, Jung H, Kwon SY, Kim HK, Kang JO, Park K, Won S, Kim TB, Oh B. Identification of asthma-related genes using asthmatic blood eQTLs of Korean patients. BMC Med Genomics 2023; 16:259. [PMID: 37875944 PMCID: PMC10599017 DOI: 10.1186/s12920-023-01677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND More than 200 asthma-associated genetic variants have been identified in genome-wide association studies (GWASs). Expression quantitative trait loci (eQTL) data resources can help identify causal genes of the GWAS signals, but it can be difficult to find an eQTL that reflects the disease state because most eQTL data are obtained from normal healthy subjects. METHODS We performed a blood eQTL analysis using transcriptomic and genotypic data from 433 Korean asthma patients. To identify asthma-related genes, we carried out colocalization, Summary-based Mendelian Randomization (SMR) analysis, and Transcriptome-Wide Association Study (TWAS) using the results of asthma GWASs and eQTL data. In addition, we compared the results of disease eQTL data and asthma-related genes with two normal blood eQTL data from Genotype-Tissue Expression (GTEx) project and a Japanese study. RESULTS We identified 340,274 cis-eQTL and 2,875 eGenes from asthmatic eQTL analysis. We compared the disease eQTL results with GTEx and a Japanese study and found that 64.1% of the 2,875 eGenes overlapped with the GTEx eGenes and 39.0% with the Japanese eGenes. Following the integrated analysis of the asthmatic eQTL data with asthma GWASs, using colocalization and SMR methods, we identified 15 asthma-related genes specific to the Korean asthmatic eQTL data. CONCLUSIONS We provided Korean asthmatic cis-eQTL data and identified asthma-related genes by integrating them with GWAS data. In addition, we suggested these asthma-related genes as therapeutic targets for asthma. We envisage that our findings will contribute to understanding the etiological mechanisms of asthma and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Dong Jun Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ju Yeon Chung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | | | - Hyein Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Shin Young Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungtaek Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea.
- Mendel Inc, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Fernandes AMS, da Silva ES, Silveira EF, Belitardo EMMDA, Santiago LF, Silva RC, Dos Santos Alves V, Carneiro DM, Ferreira F, Jacquet A, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. Recombinant T-cell epitope conjugation: A new approach for Dermatophagoides hypoallergen design. Clin Exp Allergy 2023; 53:198-209. [PMID: 36176209 DOI: 10.1111/cea.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only clinical approach that can potentially cure some allergic diseases by inducing immunological tolerance. Dermatophagoides pteronyssinus is considered as the most important source of mite allergens worldwide, with high sensitization rates for the major allergens Der p 1, Der p 2 and Der p 23. The aim of this work is to generate a hypoallergenic hybrid molecule containing T-cell epitopes from these three major allergens. METHODS The hybrid protein termed Der p 2231 containing T-cell epitopes was purified by affinity chromatography. The human IgE reactivity was verified by comparing those with the parental allergens. The hybrid was also characterized immunologically through an in vivo mice model. RESULTS The hybrid rDer p 2231 stimulated in peripheral blood mononuclear cells (PBMCs) isolated from allergic patients with higher levels of IL- 2, IL-10, IL-15 and IFN-γ, as well as lower levels of IL-4, IL-5, IL-13, TNF-α and GM-CSF. The use of hybrid molecules as a therapeutic model in D. pteronyssinus allergic mice led to the reduction of IgE production and lower eosinophilic peroxidase activity in the airways. We found increased levels of IgG antibodies that blocked the IgE binding to the parental allergens in the serum of allergic patients. Furthermore, the stimulation of splenocytes from mice treated with rDer p 2231 induced higher levels of IL-10 and IFN-γ and decreased the secretion of IL-4 and IL-5, when compared with parental allergens and D. pteronyssinus extract. CONCLUSIONS rDer p 2231 has the potential to be used in AIT in patients co-sensitized with D. pteronyssinus major allergens, once it was able to reduce IgE production, inducing allergen-specific blocking antibodies, restoring and balancing Th1/Th2 immune responses, and inducing regulatory T-cells.
Collapse
Affiliation(s)
- Antônio Márcio Santana Fernandes
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Elisânia Fontes Silveira
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Leonardo Freire Santiago
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Raphael Chagas Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vitor Dos Santos Alves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Deise Malta Carneiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
6
|
Packi K, Matysiak J, Klimczak S, Matuszewska E, Bręborowicz A, Pietkiewicz D, Matysiak J. Analysis of the Serum Profile of Cytokines Involved in the T-Helper Cell Type 17 Immune Response Pathway in Atopic Children with Food Allergy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7877. [PMID: 35805534 PMCID: PMC9265836 DOI: 10.3390/ijerph19137877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
The main risk factor for the development of food allergies (FAs) in children is atopic dermatitis (AD). AD is usually recognized as the Th1/Th2 paradigm of allergic disease. Recently, the Th1/Th2 paradigm in allergy and autoimmunity has been revised, including the role of the Th17 cell population and related cytokines. However, there are only a few studies that have found Th17 cytokine involvement in the allergic inflammatory response, especially with food allergens. This research aimed to analyze the serum profile of cytokines involved in the T-helper cell type 17 immune response pathway in young, atopic children with an IgE-mediated and delayed-type FA. The study involved 76 children (0−5 years old) with chronic AD. We used the Bio-Plex system to simultaneously determine the concentrations of 15 different cytokines in one experiment. In accordance with complete dermatological and allergological examination, including OFC testing and ALEX2 assays, participants were divided into 3 groups: IgE-mediated FA, delayed-type FA, and the control group. Data were analyzed using univariate statistical tests. In the IgE-mediated FA group, the circulating levels of tested cytokines had increased compared with those of other patients; however, a statistically significant difference was only obtained for IL-1beta (p < 0.05). According to the ROC curves, IL-1beta may be considered an effective predictor of IgE-mediated FA in AD children (p < 0.05; AUC = 0.67). In the delayed-type FA group, the concentration of most cytokines had slightly decreased compared to the control group. The obtained results suggest that FA influences the Th17-related cytokine profile in the serum of AD children. More advanced studies are needed to confirm the involvement of Th17 cytokines in the allergic inflammatory response and to prove their usefulness in clinical practice.
Collapse
Affiliation(s)
- Kacper Packi
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
- AllerGen, Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland;
| | - Joanna Matysiak
- Faculty of Health Sciences, Calisia University-Kalisz, 62-800 Kalisz, Poland;
| | - Sylwia Klimczak
- AllerGen, Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland;
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
| | - Anna Bręborowicz
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (K.P.); (E.M.); (D.P.)
| |
Collapse
|
7
|
Tseng HH, Li CY, Wu ST, Su HH, Wong TH, Wu HE, Chang YW, Huang SK, Tsai EM, Suen JL. Di-(2-ethylhexyl) Phthalate Promotes Allergic Lung Inflammation by Modulating CD8α + Dendritic Cell Differentiation via Metabolite MEHP-PPARγ Axis. Front Immunol 2022; 13:581854. [PMID: 35663974 PMCID: PMC9160748 DOI: 10.3389/fimmu.2022.581854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a common plasticizer, is a ubiquitous environmental pollutant that can disrupt endocrine function. Epidemiological studies suggest that chronic exposure to DEHP in the environment is associated with the prevalence of childhood allergic diseases; however, the underlying causal relationship and immunological mechanism remain unclear. This study explored the immunomodulatory effect of DEHP on allergic lung inflammation, while particularly focusing on the impact of DEHP and its metabolite on dendritic cell differentiation and activity of peroxisome proliferator-activated receptor gamma (PPARγ). The results showed that exposure to DEHP at a human tolerable daily intake dose exacerbated allergic lung inflammation in mice. Ex vivo flow cytometric analysis revealed that DEHP-exposed mice displayed a significantly decreased number of CD8α+ dendritic cells (DCs) in spleens and DC progenitors in the bone marrow, as well as, less interleukin-12 production in splenic DCs and increased T helper 2 polarization. Pharmacological experiments showed that mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP, significantly hampered the differentiation of CD8α+ DCs from Fms-like tyrosine kinase 3 ligand-differentiated bone marrow culture, by modulating PPARγ activity. These results suggested that chronic exposure to DEHP at environmentally relevant levels, promotes allergic lung inflammation, at least in part, by altering DC differentiation through the MEHP-PPARγ axis. This study has crucial implications for the interaction(s) between environmental pollutants and innate immunity, with respect to the development of allergic asthma.
Collapse
Affiliation(s)
- Hsin-Han Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Ting Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Chang
- Department of Laboratory, Taitung Hospital, Ministry of Health and Welfare, Taitung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eing Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Huang F, Jia H, Zou Y, Yao Y, Deng Z. Exosomes: an important messenger in the asthma inflammatory microenvironment. J Int Med Res 2021; 48:300060520903220. [PMID: 32096421 PMCID: PMC7111029 DOI: 10.1177/0300060520903220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Feng Huang
- The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, China.,The Maternity and Child Care Hospital of Kunshan, Suzhou, China
| | - Haoyuan Jia
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yingfen Zou
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yongliang Yao
- The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, China.,The Maternity and Child Care Hospital of Kunshan, Suzhou, China
| | - Zhiyong Deng
- The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, China
| |
Collapse
|
10
|
Kim B, Lee YE, Yeon JW, Go GY, Byun J, Lee K, Lee HK, Hur JK, Jang M, Kim TH. A novel therapeutic modality using CRISPR-engineered dendritic cells to treat allergies. Biomaterials 2021; 273:120798. [PMID: 33895493 DOI: 10.1016/j.biomaterials.2021.120798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Despite the important roles of dendritic cells (DCs) in airway allergies, current therapeutic strategies such as drugs, allergen immunotherapy and biologics haven't been targeted at them. In this study, we established a promising DC-based therapeutic approach for the alleviation of allergic rhinitis (AR)-associated allergic reactions, using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated targeted gene disruption. RNA sequencing analysis revealed upregulation of vacuolar protein sorting 37 B (VPS37B) in AR-derived DCs, indicating a novel molecular target. Following antigen presentation, VPS37A and VPS37B enabled endocytosis of the mannose receptor, which recognizes the house dust mite (HDM) allergen Der p 1. DCs with targeted disruption of VPS37A/B alleviated Th2 cytokine production when co-cultured in vitro with allogeneic naïve CD4+ T cell from patients with AR. Furthermore, nasal administration of Vps37a/b-disrupted bone marrow DCs to a mouse model of AR resulted in strongly reduced AR-related symptoms. Thus, this novel modality using genetically engineered DCs can provide an effective therapeutic and preventative strategy for allergic diseases.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea; Neuroscience Research Institute, Korea University, College of Medicine, Seoul, 02841, Republic of Korea
| | - Young Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea; Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Woo Yeon
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ga-Yeon Go
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea
| | - Junhyoung Byun
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kijeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyomin K Lee
- Department of Medicine, Major in Medical Genetics, Graduate School, Hanyang University, Seoul, 04763, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Mihue Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Huang T, Zhou C, Che Y, Zhang M, Ren W, Lei L. Exosomes Derived from Bovine Mammary Epithelial Cells Treated with Transforming Growth Factor-β1 Inhibit the Proliferation of Bovine Macrophages. J Interferon Cytokine Res 2019; 39:752-759. [PMID: 31368820 DOI: 10.1089/jir.2019.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor (TGF)-β1 is a multifunctional cytokine that plays an important role in regulating immune cell proliferation. We speculate that high expression of TGF-β1 may affect the immunity of dairy cows. In this study, untreated exosomes (un-exo) derived from an untreated bovine mammary epithelial cell line (MAC-T) and TGF-β1-treated exosomes (t-exo) derived from TGF-β1-treated MAC-T cells were isolated by ultracentrifugation and identified by electron microscopy and Western blotting. Then, un-exo and t-exo were used to treat a bovine macrophage cell line (BOSMAC), and the proliferative ability of BOSMAC cells was detected by an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and flow cytometry. The expression and phosphorylation levels of p38 were analyzed by q-PCR and Western blotting. The results showed that both exosome types exhibited the basic characteristics of exosomes. In BOSMAC cells treated with t-exo, significant inhibition of cell proliferation was observed, and the cell cycle progression was inhibited, while no difference was found between the un-exo and control groups. Only treatment with t-exo increased the expression and phosphorylation of p38, and the addition of the p38 inhibitor SB203580 abrogated the inhibition of BOSMAC cell proliferation by t-exo. Our results demonstrated that t-exo inhibited the proliferation of bovine macrophages by stimulating p38 MAPK and might interfere with immunity in dairy cattle. This finding may provide a new strategy for improving immunity and preventing breast-related diseases in dairy cows.
Collapse
Affiliation(s)
- Tinghao Huang
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Changhai Zhou
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Yanyi Che
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Meina Zhang
- College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Wenbo Ren
- The First Hospital, Jilin University, Changchun, People's Republic of China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
12
|
Expression and regulation of immune-modulatory enzyme indoleamine 2,3-dioxygenase (IDO) by human airway epithelial cells and its effect on T cell activation. Oncotarget 2018; 7:57606-57617. [PMID: 27613847 PMCID: PMC5295376 DOI: 10.18632/oncotarget.11586] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/20/2016] [Indexed: 12/16/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) catalyzes the degradation of tryptophan, which plays a critical role in immune suppression through regulating the production of a series of metabolites that are generally referred to as kynurenines. It has become increasingly clear that epithelial cells (ECs) play an active role in maintaining lung homeostasis by modulating the function of immune cells via producing cytokines, chemokines, and anti-microbial mediators. In this study we assessed the regulation of IDO activity and expression in human primary ECs and EC lines under steady state conditions and in response to bacterial and allergenic stimuli. We also investigated the potential immune modulatory functions of IDO expression in human airway ECs. Our data clearly show that airway ECs produce IDO, which is down-regulated in response to allergens and TLR ligands while up-regulated in response to IFN-γ. Using gene silencing, we further demonstrate that IDO plays a key role in the EC-mediated suppression of antigen-specific and polyclonal proliferation of T cells. Interestingly, our data also show that ECs lose their inhibitory effect on T cell activation in response to different TLR agonists mimicking bacterial or viral infections. In conclusion, our work provides an understanding of how IDO is regulated in ECs as well as demonstrates that “resting” ECs can suppress T cell activation in an IDO dependent manner. These data provide new insight into how ECs, through the production of IDO, can influence downstream innate and adaptive responses as part of their function in maintaining immune homeostasis in the airways.
Collapse
|
13
|
Han D, Walsh MC, Kim KS, Hong SW, Lee J, Yi J, Rivas G, Choi Y, Surh CD. Dendritic cell expression of the signaling molecule TRAF6 is required for immune tolerance in the lung. Int Immunol 2017; 29:71-78. [PMID: 28338920 PMCID: PMC5890897 DOI: 10.1093/intimm/dxx011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Immune tolerance in the lung is important for preventing hypersensitivity, such as allergic asthma. Maintenance of tolerance in the lung is established by coordinated activities of poorly understood cellular and molecular mechanisms, including participation of dendritic cells (DCs). We have previously identified DC expression of the signaling molecule TRAF6 as a non-redundant requirement for the maintenance of immune tolerance in the small intestine of mice. Because mucosal tissues share similarities in how they interact with exogenous antigens, we examined the role of DC-expressed TRAF6 in the lung. As with the intestine, we found that the absence TRAF6 expression by DCs led to spontaneous generation of Th2-associated immune responses and increased susceptibility to model antigen-induced asthma. To examine the role of commensal microbiota, mice deficient in TRAF6 in DCs were treated with broad-spectrum antibiotics and/or re-derived on a germ-free (GF) background. Interestingly, we found that antibiotics-treated specific pathogen-free, but not GF, mice showed restored immune tolerance in the absence of DC-expressed TRAF6. We further found that antibiotics mediate microbiota-independent effects on lung T cells to promote immune tolerance in the lung. This work provides both a novel tool for studying immune tolerance in the lung and an advance in our conceptual understanding of potentially common molecular mechanisms of immune tolerance in both the intestine and the lung.
Collapse
Affiliation(s)
- Daehee Han
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Junyoung Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Jaeu Yi
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea
| | - Gloriany Rivas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37666, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37666, Republic of Korea.,Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Association of stem cell factor gene expression with severity and atopic state in patients with bronchial asthma. Respir Res 2017; 18:21. [PMID: 28100228 PMCID: PMC5241923 DOI: 10.1186/s12931-017-0504-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
Background Bronchial asthma is a chronic inflammatory and remodeling disorder of the airways, in which many cells, cellular elements, and cytokines play important roles. Stem cell factor (SCF) may contribute to the inflammatory changes occurring in asthma. We aimed to show the expression of SCF gene in patients with asthma as a means of diagnosis and its association with severity and atopic state in these patients. Methods This study was carried out on 80 subjects, 50 asthmatic patients and 30 age and gender matched healthy control persons. They were subjected to full history taking, general and local chest examination, spirometric measurements (pre and post broncodilators) using a spirometer, serum IgE, and real time PCR for assessment of SCF mRNA expression. Results This study showed significant difference between the studied groups regarding pulmonary function tests (P < 0.001). Asthmatic patients had significant higher SCF expression compared to control (P < 0.001), also atopic patients vs non atopic (P = 0.03) and severe asthmatic patients vs mild ones (P < 0.001). SCF expression at cut off point (0.528) is sufficient to discriminate asthmatic patients from control while at cut off point (1.84) for discrimination of atopic patients from non-atopic patients and at cut off point (1.395) for discrimination of severe asthmatic patients from mild ones. A significant negative correlation between SCF expression and inhaled steroid while significant positive correlation with serum IgE was found. Conclusion Measuring SCF mRNA expression can be used as an efficient marker for evaluation of atopy and detection of severity of bronchial asthma.
Collapse
|
15
|
Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunol 2017; 10:128-138. [PMID: 27007676 PMCID: PMC5035164 DOI: 10.1038/mi.2016.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/18/2016] [Indexed: 02/04/2023]
Abstract
Allergic asthma is a chronic inflammatory disorder of the airways that affects >300 million people worldwide. The pro-inflammatory cytokines interleukin (IL)-1α and IL-1β have essential roles in the pathogenesis of asthma. However, the mechanisms underlying the production of IL-1 cytokines in allergic asthma remain unclear. In this study, we used a mouse model of ovalbumin-induced asthma to identify a crucial role for caspase-8 in the development of allergic airway inflammation. We further demonstrated that hematopoietic cells have dominant roles in caspase-8-mediated allergic airway inflammation. Caspase-8 was required for the production of IL-1 cytokines to promote Th2 immune response, which promotes the development of pulmonary eosinophilia and inflammation. Thus, our study identifies caspase-8 as a master regulator of IL-1 cytokines that contribute to the pathogenesis of asthma and implicates caspase-8 inhibition as a potential therapeutic strategy for asthmatic patients.
Collapse
|
16
|
Heme Oxygenase-1-Expressing Dendritic Cells Promote Foxp3+ Regulatory T Cell Differentiation and Induce Less Severe Airway Inflammation in Murine Models. PLoS One 2016; 11:e0168919. [PMID: 28033400 PMCID: PMC5199094 DOI: 10.1371/journal.pone.0168919] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are critical for instructing immune responses toward inflammatory or anti-inflammatory status. Heme oxygenase-1 (HO-1) is known for its cytoprotective effect against oxidative stress and inflammation, suggesting its immune regulatory role in allergic lung inflammation. HO-1 has been implicated in affecting DC maturation; however, its role in DC-mediated T-cell differentiation is unclear. In this study, we demonstrated that HO-1-expressing bone marrow-derived dendritic cells (BM-DCs) displayed tolerogenic phenotypes, including their resistance to lipopolysaccharide (LPS)-induced maturation, high level expression of IL-10, and low T-cell stimulatory activity. In addition, HO-1-expressing DCs were able to induce antigen-specific Foxp3+ regulatory T cells (Treg) differentiation in vitro and in vivo. Also, HO-1-expressing DCs modulated the severity of lung inflammatory responses in two murine models of airway inflammation. This study provided evidence supporting the role of HO-1-expressing DCs in tolerance induction and as a potential therapeutic target for allergic asthma as well as other inflammatory diseases.
Collapse
|
17
|
Nikolić J, Nešić A, Čavić M, Đorđević N, Anđelković U, Atanasković-Marković M, Drakulić B, Gavrović-Jankulović M. Effect of malondialdehyde on the ovalbumin structure and its interactions with T84 epithelial cells. Biochim Biophys Acta Gen Subj 2016; 1861:126-134. [PMID: 27864150 DOI: 10.1016/j.bbagen.2016.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Protein oxidation can occur as a consequence of lipid peroxidation during food processing. The aim of this work was to explore the effect of malondialdehyde (MDA) modification of ovalbumin (OVA) on its interaction with T84 intestinal cells. METHODS Molecular dynamics simulation was employed for the prediction of MDA modification in the OVA, while introduced structural changes were evaluated by measurement of carbonyl group content, fluorescence spectra, MS/MS analysis, and IgE reactivity. Effects of MDA modified OVA on T84 epithelial cells were analyzed by gene expression for pro-inflammatory cytokines and protein secretion. RESULTS Out of 9 predicted, five modified Lys residues were confirmed by MS/MS analysis: 51TQINKVVR58, 85DILNQITKPNDVYSFSLASR104, 111YPILPEYLQCVKELYR126, 187AFKDEDTQAMPFR199, 277KIKVYLPR284, and 278IKVYLPR284. The introduced MDA modifications influenced profile of IgE reactivity to OVA. Treatment of T84 epithelial cells with OVA and OVA modified with 1mM MDA, induced up-regulation of pro-inflammatory cytokines (IL-1β, IL-25, IL-33, TSLP and TNFα), while OVA modification with 10mM MDA induced down regulation of the cytokine expression profile, except for IL-1β. OVA and OVA modified with 1mM MDA induced secretion of epithelial cells specific cytokine IL-33. CONCLUSIONS This finding indicated that OVA and its MDA modified form have the potential to trigger the innate immunity by inducing up-regulation and secretion of pro-allergenic IL-33 in T84 intestinal epithelial cells. GENERAL SIGNIFICANCE Interactions of ovalbumin and its MDA modified form with intestinal epithelial cells can induce a specific immunological priming necessary for the downstream activation of innate immunity.
Collapse
Affiliation(s)
- Jasna Nikolić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Andrijana Nešić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Milena Čavić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Neda Đorđević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Uroš Anđelković
- Centre for High-Throughput Technologies, Department of Biotechnology, University of Rijeka, Rijeka, Croatia; Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Marina Atanasković-Marković
- Medical Faculty, University of Belgrade, Belgrade, Serbia; University Children's Hospital of Belgrade, Belgrade, Serbia
| | - Branko Drakulić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
18
|
Papazian D, Wagtmann VR, Hansen S, Würtzen PA. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro. Clin Exp Immunol 2015; 181:207-18. [PMID: 25707463 PMCID: PMC4516436 DOI: 10.1111/cei.12611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/29/2023] Open
Abstract
Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation.
Collapse
Affiliation(s)
- D Papazian
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern DenmarkOdense
- ALK, Global ResearchHørsholm, Denmark
| | | | - S Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern DenmarkOdense
| | | |
Collapse
|
19
|
Joo H, Upchurch K, Zhang W, Ni L, Li D, Xue Y, Li XH, Hori T, Zurawski S, Liu YJ, Zurawski G, Oh S. Opposing Roles of Dectin-1 Expressed on Human Plasmacytoid Dendritic Cells and Myeloid Dendritic Cells in Th2 Polarization. THE JOURNAL OF IMMUNOLOGY 2015; 195:1723-31. [PMID: 26123355 DOI: 10.4049/jimmunol.1402276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) can induce and control host immune responses. DC subset-dependent functional specialties and their ability to display functional plasticity, which is mainly driven by signals via pattern recognition receptors, identify DCs as immune orchestrators. A pattern recognition receptor, Dectin-1, is expressed on myeloid DCs and known to play important roles in Th17 induction and activation during fungal and certain bacterial infections. In this study, we first demonstrate that human plasmacytoid DCs express Dectin-1 in both mRNA and protein levels. More interestingly, Dectin-1-activated plasmacytoid DCs promote Th2-type T cell responses, whereas Dectin-1-activated myeloid DCs decrease Th2-type T cell responses. Such contrasting outcomes of Th2-type T cell responses by the two DC subsets are mainly due to their distinct abilities to control surface OX40L expression in response to β-glucan. This study provides new insights for the regulation of host immune responses by Dectin-1 expressed on DCs.
Collapse
Affiliation(s)
- HyeMee Joo
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Katherine Upchurch
- Baylor Institute for Immunology Research, Dallas, TX 75204; Baylor University, Institute for Biomedical Studies, Waco, TX 76706; and
| | - Wei Zhang
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Ling Ni
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Dapeng Li
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Yaming Xue
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Xiao-Hua Li
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Toshiyuki Hori
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | - Yong-Jun Liu
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Dallas, TX 75204; Baylor University, Institute for Biomedical Studies, Waco, TX 76706; and
| | - SangKon Oh
- Baylor Institute for Immunology Research, Dallas, TX 75204; Baylor University, Institute for Biomedical Studies, Waco, TX 76706; and
| |
Collapse
|
20
|
Verheijden KAT, Willemsen LEM, Braber S, Leusink-Muis T, Jeurink PV, Garssen J, Kraneveld AD, Folkerts G. The development of allergic inflammation in a murine house dust mite asthma model is suppressed by synbiotic mixtures of non-digestible oligosaccharides and Bifidobacterium breve M-16V. Eur J Nutr 2015; 55:1141-51. [PMID: 26003185 PMCID: PMC4819948 DOI: 10.1007/s00394-015-0928-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/09/2015] [Indexed: 12/27/2022]
Abstract
Purpose
The incidence and severity of allergic asthma is rising, and novel strategies to prevent or treat this disease are needed. This study investigated the effects of different mixtures of non-digestible oligosaccharides combined with Bifidobacterium breve M-16V (BB) on the development of allergic airway inflammation in an animal model for house dust mite (HDM)-induced allergic asthma. Methods BALB/c mice were sensitized intranasally (i.n.) with HDM and subsequently challenged (i.n.) with PBS or HDM while being fed diets containing different oligosaccharide mixtures in combination with BB or an isocaloric identical control diet. Bronchoalveolar lavage fluid (BALF) inflammatory cell influx, chemokine and cytokine concentrations in lung homogenates and supernatants of ex vivo HDM-restimulated lung cells were analyzed. Results The HDM-induced influx of eosinophils and lymphocytes was reduced by the diet containing the short-chain and long-chain fructo-oligosaccharides and BB (FFBB). In addition to the HDM-induced cell influx, concentrations of IL-33, CCL17, CCL22, IL-6, IL-13 and IL-5 were increased in supernatants of lung homogenates or BALF and IL-4, IFN-γ and IL-10 were increased in restimulated lung cell suspensions of HDM-allergic mice. The diet containing FFBB reduced IL-6, IFN-γ, IL-4 and IL-10 concentrations, whereas the combination of galacto-oligosaccharides and long-chain fructo-oligosaccharides with BB was less potent in this model. Conclusion These findings show that synbiotic dietary supplementation can affect respiratory allergic inflammation induced by HDM. The combination of FFBB was most effective in the prevention of HDM-induced airway inflammation in mice.
Collapse
Affiliation(s)
- K A T Verheijden
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - L E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - S Braber
- Division of Veterinary Pharmacy, Pharmacology and Toxicology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Leusink-Muis
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - P V Jeurink
- Nutricia Research, Immunology, Utrecht, The Netherlands
| | - J Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Nutricia Research, Immunology, Utrecht, The Netherlands
| | - A D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - G Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
21
|
Vroman H, van den Blink B, Kool M. Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology 2014; 220:254-61. [PMID: 25245013 DOI: 10.1016/j.imbio.2014.09.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 11/16/2022]
Abstract
Asthma is a heterogeneous chronic inflammatory disease of the airways, with reversible airflow limitations and airway remodeling. The classification of asthma phenotypes was initially based on different combinations of clinical symptoms, but they are now unfolding to link biology to phenotype. As such, patients can suffer from a predominant eosinophilic, neutrophilic or even mixed eosinophilic/neutrophilic inflammatory response. In adult asthma patients, eosinophilic inflammation is usually seen in mild-to-moderate disease and neutrophilic inflammation in more severe disease. The underlying T cell response is predominated by T helper (Th) 2, Th17, or a mixed Th2/Th17 cell immune response. Dendritic cells (DCs) are "professional" antigen presenting cells (APCs), since their principal function is to present antigens and induce a primary immune response in resting naive T cells. DCs also drive the differentiation into distinctive Th subsets. The expression of co-stimulatory molecules and cytokines by DCs and surrounding cells determines the outcome of Th cell differentiation. The nature of DC activation will determine the expression of specific co-stimulatory molecules and cytokines, specifically needed for induction of the different Th cell programs. Thus DC activation is crucial for the subsequent effector Th immune responses. In this review, we will discuss underlying mechanisms that initiate DC activation in favor of Th2 differentiation versus Th1/Th17 and Th17 differentiation in the development of mild versus moderate to severe asthma.
Collapse
Affiliation(s)
- Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 2014; 9:899-919. [PMID: 24128155 DOI: 10.1586/1744666x.2013.837260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen-presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Biomedical Sciences and Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza Omaha, NE 68178, USA
| | | |
Collapse
|
23
|
Winkler C, Witte L, Moraw N, Faulenbach C, Müller M, Holz O, Schaumann F, Hohlfeld JM. Impact of endobronchial allergen provocation on macrophage phenotype in asthmatics. BMC Immunol 2014; 15:12. [PMID: 24612750 PMCID: PMC4007705 DOI: 10.1186/1471-2172-15-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 02/08/2023] Open
Abstract
Background The role of M2 polarized macrophages (MΦ) during the allergic airway inflammation has been discussed in various animal models. However, their presence and relevance during the chronic and acute phase of allergic airway inflammation in humans has not been fully elucidated so far. In the present study we phenotypically characterized macrophages with regard to M2 polarization in mice, a human in vitro and a human ex vivo model with primary lung cells after endobronchial provocation. Results Macrophages remained polarized beyond clearance of the acute allergic airway inflammation in mice. Alveolar macrophages of asthmatics revealed increased mRNA expression of CCL13, CCL17 and CLEC10A in response to allergen challenge as well as increased surface expression of CD86. Further, mRNA expression of CCL13, CCL17, and CLEC10A was increased in asthmatics at baseline compared to healthy subjects. The mRNA expression of CCL17 and CLEC10A correlated significantly with the degree of eosinophilia (each P < .01). Furthermore, macrophages from asthmatics released significant amounts of CCL17 protein in vitro which was also found increased in BAL fluid after allergen provocation. Conclusions This study supports previous findings of M2 macrophage polarization in asthmatic subjects during the acute course of the allergic inflammation and provides evidence for their contribution to the Th2 inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jens M Hohlfeld
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
24
|
Salazar F, Ghaemmaghami AM. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol 2013; 4:356. [PMID: 24204367 PMCID: PMC3816228 DOI: 10.3389/fimmu.2013.00356] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/21/2013] [Indexed: 11/13/2022] Open
Abstract
Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors DCs are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence DCs behavior through the release of a number of Th2 promoting cytokines. In this review we will summarize current understanding of how allergens are recognized by DCs and epithelial cells and what are the consequences of such interaction in the context of allergic sensitization and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signaling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitization hence hindering development or progression of allergic diseases.
Collapse
Affiliation(s)
- Fabián Salazar
- Division of Immunology, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham , UK
| | | |
Collapse
|
25
|
Abstract
CD4(+) T-helper subsets are lineages of T cells that have effector function in the lung and control critical aspects of lung immunity. Depletion of these cells experimentally or by drugs or human immunodeficiency virus (HIV) infection in humans leads to the development of opportunistic infections as well as increased rates of bacteremia with certain bacterial pneumonias. Recently, it has been proposed that CD4(+) T-cell subsets may also be excellent targets for mucosal vaccination to prevent pulmonary infections in susceptible hosts. Here, we review recent findings that increase our understanding of T-cell subsets and their effector cytokines in the context of pulmonary infection.
Collapse
Affiliation(s)
- Jay K Kolls
- Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol 2013; 131:1194-203, 1203.e1-14. [PMID: 23414598 DOI: 10.1016/j.jaci.2012.12.1565] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Exosomes are nanovesicles involved in intercellular communication. Their roles in various diseases are often contextual, depending on the cell type producing them. Although few studies hint toward the proinflammatory role of bronchoalveolar lavage fluid-derived exosomes in asthmatic progression, the cell types in lungs associated with exosome-mediated crosstalk and their resultant effects remain unexplored. OBJECTIVE It is well established that exosome-mediated cellular communication can influence disease phenotypes. This study explores exosome-mediated cellular crosstalk between structural and immune cells in asthma pathogenesis. METHODS Exosomes were isolated and detected from bronchoalveolar lavage fluid of control and asthmatic mice and were quantified by using a bead-based assay. Involvement of epithelial cells and macrophages were established by using immunohistochemical techniques in lung tissue sections. The role of IL-13 in exosome production was ascertained by using various in vitro and in vivo techniques. Exosome secretion was blocked in in vitro and in vivo settings by using a chemical inhibitor, and the effects on various asthmatic features were studied. RESULTS Using combinatorial in vitro and in vivo approaches, we found that exosome secretion and production of exosome-associated proteins are higher in lungs of asthmatic mice compared with that seen in sham mice. Asthma is marked by enhanced secretion of exosomes by epithelial cells, but not macrophages, under the influence of IL-13. These epithelial cell exosomes induce proliferation and chemotaxis of undifferentiated macrophages. On the other hand, GW4869, which inhibited exosome production, resulted in a reduced population of proliferating monocytes and alleviation of various asthmatic features. CONCLUSION Under the influence of IL-13, epithelial cell-derived exosomes can induce enhanced proliferation and chemotaxis of undifferentiated macrophages in the lungs during asthmatic inflammatory conditions.
Collapse
Affiliation(s)
- Ankur Kulshreshtha
- Molecular Immunogenetics Laboratory and the Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | |
Collapse
|
27
|
Golebski K, Röschmann KIL, Toppila-Salmi S, Hammad H, Lambrecht BN, Renkonen R, Fokkens WJ, van Drunen CM. The multi-faceted role of allergen exposure to the local airway mucosa. Allergy 2013; 68:152-60. [PMID: 23240614 DOI: 10.1111/all.12080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 12/13/2022]
Abstract
Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses.
Collapse
Affiliation(s)
- K. Golebski
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - K. I. L. Röschmann
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - S. Toppila-Salmi
- Helsinki University Central Hospital, Skin and Allergy Hospital & Transplantation Laboratory, Haartman Institute, University of Helsinki; Helsinki; Finland
| | | | | | - R. Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki & Helsinki University Central Hospital, HUSLAB; Helsinki; Finland
| | - W. J. Fokkens
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - C. M. van Drunen
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| |
Collapse
|
28
|
Willart MAM, Poulliot P, Lambrecht BN, Kool M. PAMPs and DAMPs in allergy exacerbation models. Methods Mol Biol 2013; 1032:185-204. [PMID: 23943454 DOI: 10.1007/978-1-62703-496-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Sensitization of mice to real-life allergens or harmless antigen with the use of adjuvants will lead to the induction of DAMPs in the immune system. We have shown that the Th2-inducing adjuvant aluminum hydroxide or exposure of the airways to house dust mite leads to the release of DAMPs: uric acid, ATP, and IL-1. Exposure to DAMPs or PAMPs present in allergens or added to harmless allergens, such as the experimental allergen ovalbumin, induces several immune responses, including cellular influx and activation. Cellular influx can be analyzed by flow cytometry. Likewise, cellular activation can be assessed by measuring increased expression and release of chemokines and cytokines. These inflammatory mediators can be analyzed by ELISA or confocal microscopy. Here, we describe the protocols for these assessments and a protocol that takes advantage of bone marrow chimeric mice to further elucidate mechanism.
Collapse
Affiliation(s)
- Monique A M Willart
- Department for Molecular Biomedical Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
29
|
Reske-Kunz AB. Dendritische Zellen: Induktoren und Modulatoren allergischer Reaktionen. ALLERGO JOURNAL 2012. [DOI: 10.1007/s15007-012-0351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|