1
|
Zhang YQ, Cai X, Zhang Q, Yin MY, Guo Y, Li C, Ma G, Wang L, Chang H, Xiao X, Li SW, Li M. Schizophrenia-Related Synaptic Dysfunction and Abnormal Sensorimotor Gating in Akap11-Deficient Mice. Schizophr Bull 2025:sbaf055. [PMID: 40408419 DOI: 10.1093/schbul/sbaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
BACKGROUND AND HYPOTHESIS Large-scale whole exome sequencing (WES) analyses have implicated rare protein-truncating variants (PTVs) in the AKAP11 gene contributing to schizophrenia risk. Previous studies reported alterations of EEG characteristics and synaptic proteome in Akap11 mutant mice. We hypothesize that synaptic dysfunction contributes to AKAP11 deficiency in the pathogenesis of schizophrenia. STUDY DESIGN We generated an Akap11 knockout mouse and employed a series of behavioral evaluations, neuronal sparse labeling assays, electron microscopy, and immunoprecipitation mass spectrometry (IP-MS) to elucidate the impacts of Akap11 on schizophrenia-relevant phenotypes. STUDY RESULTS Our behavioral paradigm evaluations revealed that Akap11 deficient mice exhibited impaired prepulse inhibition and anxiety-like behaviors compared with their wild-type littermates. Neuronal sparse labeling assays indicated a significant reduction in the density of total and thin spines in Akap11 deficient mice, and ultrastructural analysis via electron microscopy disclosed marked alterations in synaptogenesis after suppressing Akap11, including the reduced density of typical synapses, synaptic vesicle density, and postsynaptic density (PSD) length. IP-MS identified 222 high-confidence interaction proteins of Akap11, encompassing synapses-related proteins (eg, Exoc4, Ncam1, Picalm, Vapb) and actin-related proteins (Actb, Diaph1), and enrichment analyses further showed that Akap11 may contribute to RNA splicing, extracellular matrix organization, axon guidance, post-NMDA receptor activation events, GPER1 signaling and PKA activation pathways. CONCLUSIONS Together, these findings delineated the synaptic and behavioral phenotypes in Akap11 deficient mice, shedding light on the potential mechanisms underlying the role of rare PTVs in schizophrenia and substantiating the significance of AKAP11 as a risk gene for this illness.
Collapse
Affiliation(s)
- Ya-Qi Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xin Cai
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qing Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Mei-Yu Yin
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Cong Li
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guolan Ma
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lu Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Hong Chang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao Xiao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shi-Wu Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ming Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
2
|
Wang X, Wang L, Bu Q, Xiao Y, Zhao Y, Jiang L, Dai Y, Li H, Liu H, Chen Y, Flores AD, Zhao Y, Cen X. LUZP1 Regulates Dendritic Spine Maturation and Synaptic Plasticity in the Hippocampal Dentate Gyrus of Mice. J Neurosci 2025; 45:e1867242025. [PMID: 40180573 PMCID: PMC12079723 DOI: 10.1523/jneurosci.1867-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/16/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Leucine zipper protein 1 (LUZP1) functions in the maintenance and dynamics of the cytoskeleton by interacting with actin and microtubules. Deficiency or mutation of LUZP1 is associated with brain developmental disorders; however, its precise role in brain function remains unclear. We showed that LUZP1 localizes to actin and is highly expressed in CaMKIIα-expressing neurons within the mouse hippocampal dentate gyrus. Depletion of LUZP1 impedes dendritic spine maturation, which is characterized by excess immature filopodia and loss of mature mushroom spines both in vitro and in vivo. LUZP1 knockdown reduces spontaneous electrical activity and synaptic plasticity in hippocampal neurons. Conditional deletion of LUZP1 in CaMKIIα-expressing neurons causes impaired learning and memory behavior in mice of both sexes. Mechanistically, LUZP1 control dendritic maturation by directly interacting with filamin A and modulating the Rac1-PAK1 signaling pathway. These findings shed light on the role of LUZP1 in regulating synaptic plasticity and brain function.
Collapse
Affiliation(s)
- Xiaojie Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
| | - Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhou Xiao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haxiaoyu Liu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Angelo D Flores
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Riemann K, von Ahsen J, Böhm T, Schlegel M, Kreuzer M, Fenzl T, Russ H, Parsons CG, Rammes G. GAL-201 as a Promising Amyloid-β-Targeting Small-Molecule Approach for Alzheimer's Disease Treatment: Consistent Effects on Synaptic Plasticity, Behavior and Neuroinflammation. Int J Mol Sci 2025; 26:4167. [PMID: 40362405 PMCID: PMC12071807 DOI: 10.3390/ijms26094167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Soluble oligomeric forms of Amyloid-β (Aβ) are considered the major toxic species leading to the neurodegeneration underlying Alzheimer's disease (AD). Therefore, drugs that prevent oligomer formation might be promising. The atypical dipeptide GAL-201 is orally bioavailable and interferes as a modulator of Aβ aggregation. It binds to aggregation-prone, misfolded Aβ monomers with high selectivity and affinity, thereby preventing the formation of toxic oligomers. Here, we demonstrate that the previously observed protective effect of GAL-201 on synaptic plasticity occurs irrespective of shortages and post-translational modifications (tested isoforms: Aβ1-42, Aβ(p3-42), Aβ1-40 and 3NTyr(10)-Aβ). Interestingly, the neuroprotective activity of a single dose of GAL-201 was still present after one week and correlated with a prevention of Aβ-induced spine loss. Furthermore, we could observe beneficial effects on spine morphology as well as the significantly reduced activation of proinflammatory microglia and astrocytes in the presence of an Aβ1-42-derived toxicity. In line with these in vitro data, GAL-201 additionally improved hippocampus-dependent spatial learning in the "tgArcSwe" AD mouse model after a single subcutaneous administration. By this means, we observed changes in the deposition pattern: through the clustering of misfolded monomers as off-pathway non-toxic Aβ agglomerates, toxic oligomers are removed. Our results are in line with previously collected preclinical data and warrant the initiation of Investigational New Drug (IND)-enabling studies for GAL-201. By demonstrating the highly efficient detoxification of β-sheet monomers, leading to the neutralization of Aβ oligomer toxicity, GAL-201 represents a promising drug candidate against Aβ-derived pathophysiology present in AD.
Collapse
Affiliation(s)
- Katrin Riemann
- Galimedix Therapeutics Inc., 3704 Calvend Lane, Kensington, MD 20895, USA
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jeldrik von Ahsen
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Tamara Böhm
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Hermann Russ
- Galimedix Therapeutics Inc., 3704 Calvend Lane, Kensington, MD 20895, USA
| | | | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
4
|
Bartol TM, Ordyan M, Sejnowski TJ, Rangamani P, Kennedy MB. A spatial model of autophosphorylation of CaMKII predicts that the lifetime of phospho-CaMKII after induction of synaptic plasticity is greatly prolonged by CaM-trapping. Front Synaptic Neurosci 2025; 17:1547948. [PMID: 40255983 PMCID: PMC12006173 DOI: 10.3389/fnsyn.2025.1547948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). A critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca2+ flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca2+ and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activity in vivo, and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measure in vivo. We examine the effects of "CaM-trapping," a process in which the affinity for Ca2+/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca2+/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Bartol
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Mariam Ordyan
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Terrence J. Sejnowski
- The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
5
|
Schünemann KD, Hattingh RM, Verhoog MB, Yang D, Bak AV, Peter S, van Loo KMJ, Wolking S, Kronenberg-Versteeg D, Weber Y, Schwarz N, Raimondo JV, Melvill R, Tromp SA, Butler JT, Höllig A, Delev D, Wuttke TV, Kampa BM, Koch H. Comprehensive analysis of human dendritic spine morphology and density. J Neurophysiol 2025; 133:1086-1102. [PMID: 40013734 DOI: 10.1152/jn.00622.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/14/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025] Open
Abstract
Dendritic spines, small protrusions on neuronal dendrites, play a crucial role in brain function by changing shape and size in response to neural activity. So far, in-depth analysis of dendritic spines in human brain tissue is lacking. This study presents a comprehensive analysis of human dendritic spine morphology and density using a unique dataset from human brain tissue from 27 patients (8 females, 19 males, aged 18-71 yr) undergoing tumor or epilepsy surgery at three neurosurgery sites. We used acute slices and organotypic brain slice cultures to examine dendritic spines, classifying them into the three main morphological subtypes: mushroom, thin, and stubby, via three-dimensional (3-D) reconstruction using ZEISS arivis Pro software. A deep learning model, trained on 39 diverse datasets, automated spine segmentation and 3-D reconstruction, achieving a 74% F1-score and reducing processing time by over 50%. We show significant differences in spine density by sex, dendrite type, and tissue condition. Females had higher spine densities than males, and apical dendrites were denser in spines than basal ones. Acute tissue showed higher spine densities compared with cultured human brain tissue. With time in culture, mushroom spines decreased, whereas stubby and thin spine percentages increased, particularly from 7-9 to 14 days in vitro, reflecting potential synaptic plasticity changes. Our study underscores the importance of using human brain tissue to understand unique synaptic properties and shows that integrating deep learning with traditional methods enables efficient large-scale analysis, revealing key insights into sex- and tissue-specific dendritic spine dynamics relevant to neurological diseases.NEW & NOTEWORTHY This study presents a dataset of nearly 4,000 morphologically reconstructed human dendritic spines across different ages, gender, and tissue conditions. The dataset was further used to evaluate a deep learning algorithm for three-dimensional spine reconstruction, offering a scalable method for semiautomated spine analysis across various tissues and microscopy setups. The findings enhance understanding of human neurology, indicating potential connections between spine morphology, brain function, and the mechanisms of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Kerstin D Schünemann
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Roxanne M Hattingh
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Matthijs B Verhoog
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Danqing Yang
- Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| | - Aniella V Bak
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sabrina Peter
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Karen M J van Loo
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan Wolking
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Deborah Kronenberg-Versteeg
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yvonne Weber
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joseph V Raimondo
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Roger Melvill
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Sean A Tromp
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - James T Butler
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Anke Höllig
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Björn M Kampa
- Systems Neurophysiology, Institute of Biology II, RWTH Aachen University, Aachen, Germany
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Research Center Juelich, Juelich, Germany
| | - Henner Koch
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Zhang L, Geng C, Li S, Tang Q, Liu P, Liu W, Qiu G, Li A, Hu A, Chen F. Anterior piriform cortex dysfunction underlies autism spectrum disorders-related olfactory deficits in Fmr1 conditional deletion mice. Neuropsychopharmacology 2025; 50:798-807. [PMID: 39550469 PMCID: PMC11914248 DOI: 10.1038/s41386-024-02027-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Previous studies indicated that ASD-related olfactory dysfunctions are rooted in the piriform cortex. However, the direct evidence supporting a causal link between the dysfunction of the piriform cortex and olfactory disorders in ASD is limited. In the present study, we explored the role of anterior piriform cortex (aPC) in ASD-related olfactory disorders by specifically ablating Fmr1, a leading known monogenic cause for ASD, in the pyramidal neurons. Our data demonstrated that the targeted deletion of Fmr1 in aPC pyramidal neurons was sufficient to induce deficits in olfactory detection. In vivo and in vitro electrophysiological recordings showed that the deletion of Fmr1 increased the activity of pyramidal neurons, exhibiting an enhanced excitatory response and a reduced inhibitory response upon odor stimulation. Furthermore, specific deletion of Fmr1 enhanced the power of beta oscillations during odor stimuli, meanwhile, disturbed excitatory and inhibitory synaptic transmission. The abnormal morphology of pyramidal neurons induced by the deletion of Fmr1 may be responsible for the impaired aPC neuronal function. These findings suggest that dysfunction of the aPC may play a role in olfactory impairments observed in ASD models related to Fmr1 deficiency.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qingnan Tang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Gaoxue Qiu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Fengjiao Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Hu B, Yin MY, Zhang CY, Shi Z, Wang L, Lei X, Li M, Li SW, Tuo QH. The INO80E at 16p11.2 locus increases risk of schizophrenia in humans and induces schizophrenia-like phenotypes in mice. EBioMedicine 2025; 114:105645. [PMID: 40088626 PMCID: PMC11957503 DOI: 10.1016/j.ebiom.2025.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Chromosome 16p11.2 is one of the most significant loci in the genome-wide association studies (GWAS) of schizophrenia. Despite several integrative analyses and functional genomics studies having been carried out to identify possible risk genes, their impacts in the pathogenesis of schizophrenia remain to be fully characterized. METHODS We performed expression quantitative trait loci (eQTL) and summary-data-based Mendelian randomization (SMR) analyses to identify schizophrenia risk genes in the 16p11.2 GWAS locus. We constructed a murine model with dysregulated expression of risk gene in the medial prefrontal cortex (mPFC) using stereotaxic injection of adeno-associated virus (AAV), followed by behavioural assessments, dendritic spine analyses and RNA sequencing. FINDINGS We identified significant associations between elevated INO80E mRNA expression in the frontal cortex and risk of schizophrenia. The mice overexpressing Ino80e in mPFC (Ino80e-OE) exhibited schizophrenia-like behaviours, including increased anxiety behaviour, anhedonia, and impaired prepulse inhibition (PPI) when compared with control group. The neuronal sparse labelling assay showed that the density of stubby spines in the pyramidal neurons of mPFC was significantly increased in Ino80e-OE mice compared with control mice. Transcriptomic analysis in the mPFC revealed significant alterations in the mRNA levels of schizophrenia-related genes and processes related to synapses upon overexpressing Ino80e. INTERPRETATION Our results suggest that upregulation of the Ino80e gene in mPFC may induce schizophrenia-like behaviours in mice, further supporting the hypothesis that INO80E is an authentic risk gene. FUNDING This project received support from the National Key Research and Development Program of China, National Natural Science Foundation of China, Key Research and Development Projects of Hunan Provincial Science and Technology Department, Science and Technology Innovation team of Hunan Province, etc.
Collapse
Affiliation(s)
- Bo Hu
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mei-Yu Yin
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Pharmacy of School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lu Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoming Lei
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ming Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wu Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Qin-Hui Tuo
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
8
|
Dovek L, Nguyen AT, Green E, Santhakumar V. Differential Glutamatergic Inputs to Semilunar Granule Cells and Granule Cells Underscore Dentate Gyrus Projection Neuron Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643192. [PMID: 40161709 PMCID: PMC11952520 DOI: 10.1101/2025.03.14.643192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Semilunar Granule Cells (SGCs) are sparse dentate gyrus projection neurons whose role in the dentate circuit, including pathway specific inputs, remains unknown. We report that SGCs receive more frequent spontaneous excitatory synaptic inputs than granule cells (GCs). Dual GC-SGC recordings identified that SGCs receive stronger medial entorhinal cortex and associational synaptic drive but lack short-term facilitation of lateral entorhinal cortex inputs observed in GCs. SGCs dendritic spine density in proximal and middle dendrites was greater than in GCs. However, the strength of commissural inputs and dendritic input integration, examined in passive morphometric simulations, were not different between cell types. Activity dependent labeling identified an overrepresentation of SGCs among neuronal ensembles in both mice trained in a spatial memory task and task naïve controls. The divergence of modality specific inputs to SGCs and GCs can enable parallel processing of information streams and expand the computational capacity of the dentate gyrus.
Collapse
Affiliation(s)
- Laura Dovek
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Anh-Tho Nguyen
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Emmanuel Green
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| |
Collapse
|
9
|
Tennin M, Matkins HT, Rexrode L, Bollavarapu R, Asplund SD, Pareek T, Kroeger D, Pantazopoulos H, Gisabella B. Sleep Deprivation Alters Hippocampal Dendritic Spines in a Contextual Fear Memory Engram. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641043. [PMID: 40093122 PMCID: PMC11908145 DOI: 10.1101/2025.03.02.641043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Sleep is critically involved in strengthening memories. However, our understanding of the morphological changes underlying this process is still emerging. Recent studies suggest that specific subsets of dendritic spines are strengthened during sleep in specific neurons involved in recent learning. Contextual memories associated with traumatic experiences are involved in post-traumatic stress disorder (PTSD) and represent recent learning that may be strengthened during sleep. We tested the hypothesis that dendritic spines encoding contextual fear memories are selectively strengthened during sleep. Furthermore, we tested how sleep deprivation after initial fear learning impacts dendritic spines following re-exposure to fear conditioning. We used ArcCreERT2 mice to visualize neurons that encode contextual fear learning (Arc+ neurons), and concomitantly labeled neurons that did not encode contextual fear learning (Arc- neurons). Dendritic branches of Arc+ and Arc- neurons were sampled using confocal imaging to assess spine densities using three-dimensional image analysis from either sleep deprived (SD) or control mice allowed to sleep normally. Mushroom spines in Arc+ branches displayed decreased density in SD mice, indicating upscaling of mushroom spines during sleep following fear learning. In comparison, no changes were observed in dendritic spines from Arc- branches. When animals were re-exposed to contextual fear conditioning 4 weeks later, we observed lower density of mushroom spines in both Arc+ and Arc- branches, as well as lower density of thin spines in Arc- branches in mice that were SD following the initial fear conditioning trial. Our findings indicate that sleep strengthens dendritic spines in neurons that recently encoded fear memory, and sleep deprivation following initial fear learning impairs dendritic spine strengthening initially and following later re-exposure. SD following a traumatic experience thus may be a viable strategy in weakening the strength of contextual memories associated with trauma and PTSD.
Collapse
Affiliation(s)
- Matthew Tennin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hunter T. Matkins
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Samuel D. Asplund
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanya Pareek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel Kroeger
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
10
|
Nemat P, Semenova S, van der Loo RJ, Smit AB, Spijker S, van den Oever MC, Rao-Ruiz P. Structural synaptic signatures of contextual memory retrieval-reactivated hippocampal engram cells. Neurobiol Learn Mem 2025; 218:108033. [PMID: 39923960 DOI: 10.1016/j.nlm.2025.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Learning enhances hippocampal engram cell synaptic connectivity which is crucial for engram reactivation and recall to natural cues. Memory retrieval engages only a subset of the learning-activated ensemble, indicating potential differences in synaptic connectivity signatures of reactivated and non-reactivated cells. We probed these differences in structural synaptic connectivity patterns after recent memory retrieval, 72 h after either neutral Context Exploration (CE) or aversive Contextual Fear Conditioning (CFC). Using a combination of eGRASP (enhanced green fluorescent protein (GFP) reconstitution across synaptic partners) and viral-TRAP (targeted recombination in activated populations) to label CA3 synapses onto CA1 engram cells, we investigated differences in spine density, clusters, and morphology between the reactivated and non-reactivated population of the learning ensemble. In doing so, we developed a pipeline for reconstruction and analysis of dendrites and spines, taking nested data structure into account. Our data demonstrate an interplay between reactivation status, context valence or both factors on the number, distribution, and morphology of CA1 engram cell synapses. Despite a lack of differences in spine density, reactivated engram cells encoding an aversive context were characterised by a higher probability of forming spine clusters and a more dynamic spine type signature compared to their non-reactivated counterparts or engram cells encoding a neutral context. Together, our data indicate that the learning-activated ensemble undergoes different trajectories in structural synaptic connectivity during engram refinement.
Collapse
Affiliation(s)
- Panthea Nemat
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Salimat Semenova
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands.
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Kambali M, Li Y, Unichenko P, Feria Pliego JA, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Hodgson NW, Hensch TK, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. An increased copy number of glycine decarboxylase (GLDC) associated with psychosis reduces extracellular glycine and impairs NMDA receptor function. Mol Psychiatry 2025; 30:927-942. [PMID: 39210012 PMCID: PMC11835546 DOI: 10.1038/s41380-024-02711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Glycine is an obligatory co-agonist at excitatory NMDA receptors in the brain, especially in the dentate gyrus, which has been postulated to be crucial for the development of psychotic associations and memories with psychotic content. Drugs modulating glycine levels are in clinical development for improving cognition in schizophrenia. However, the functional relevance of the regulation of glycine metabolism by endogenous enzymes is unclear. Using a chromosome-engineered allelic series in mice, we report that a triplication of the gene encoding the glycine-catabolizing enzyme glycine decarboxylase (GLDC) - as found on a small supernumerary marker chromosome in patients with psychosis - reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) and suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in schizophrenia-like behaviors which are in part known to be dependent on the activity of the dentate gyrus, e.g., prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results demonstrate that Gldc negatively regulates long-term synaptic plasticity in the dentate gyrus in mice, suggesting that an increase in GLDC copy number possibly contributes to the development of psychosis in humans.
Collapse
Affiliation(s)
- Maltesh Kambali
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yan Li
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Patrick McGuinness
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Johanna G Cobb
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Muxiao Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajasekar Nagarajan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jinrui Lyu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Elif Engin
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Joseph T Coyle
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vadim Y Bolshakov
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
12
|
Qu Y, Gu J, Li L, Yan Y, Yan C, Zhang T. Guilu Erxian Jiao remodels dendritic spine morphology through activation of the hippocampal TRPC6-CaMKIV-CREB signaling pathway and suppresses fear memory generalization in rats with post-traumatic stress disorder. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119252. [PMID: 39681200 DOI: 10.1016/j.jep.2024.119252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guilu Erxian Jiao (GLEXJ) is a renowned traditional Chinese herbal formula used to tonify the kidney. It is employed to treat psychiatric disorders, and alleviate memory impairment, cognitive dysfunction, and behavioral disorders. Modern pharmacological studies have demonstrated GLEXJ's ability to significantly inhibit the fear response in post-traumatic stress disorder (PTSD) and facilitate the extinction of fear memory. However, the underlying pharmacological mechanisms remain elusive. AIM OF THE STUDY Fear memory generalization, a fundamental characteristic of PTSD, remains poorly understood, and optimal pharmacological treatments are lacking. This study aimed to investigate GLEXJ's inhibitory effects on fear memory generalization in PTSD rats and elucidate its underlying mechanisms. MATERIALS AND METHODS PTSD rats were induced using the single prolonged stress and electrical stimulation (SPS&S) protocol and treated with GLEXJ or paroxetine (PRX). Fear memory generalization was assessed using a contextual fear memory test. Hippocampal dendritic spine morphology was analyzed using Golgi-Cox staining. The chemical composition of GLEXJ was determined using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Network pharmacology was employed to predict GLEXJ's therapeutic mechanism in PTSD treatment. Western blotting and immunofluorescence were used to measure indicators of the transient receptor potential channel 6 (TRPC6)-mediated calcium/calmodulin-dependent protein kinase IV-cAMP response element-binding protein (CaMKIV-CREB) signaling pathway. In vitro, TRPC6 was suppressed in rat adrenal pheochromocytoma (PC12) cells using lentiviral vectors, and phalloidin staining was employed to examine changes in Fibros actin (F-actin), elucidating the mechanistic effects of GLEXJ-containing serum. RESULTS GLEXJ significantly mitigated fear memory generalization in PTSD rats, even with repeated stress exposure. It also alleviated abnormal hippocampal dendritic spine morphology. Network pharmacology analysis confirmed that GLEXJ was closely related to the Ca2+ signaling pathway in PTSD treatment. PTSD rats exhibited disrupted TRPC6-mediated CaMKIV-CREB signaling and impaired synaptic plasticity. GLEXJ upregulated TRPC6 expression, reactivated the CaMKIV-CREB pathway, and promoted synaptic remodeling. In vitro studies confirmed that TRPC6 suppression reduced F-actin levels while GLEXJ-containing serum increased TRPC6 expression and F-actin content. CONCLUSIONS GLEXJ activates CaMKIV-CREB signaling by upregulating TRPC6 in the hippocampus of PTSD rats, leading to the positive modulation of dendritic spine morphology and synaptic remodeling. This mechanism contributes to the attenuation of fear memory generalization. Given the limitations of current PTSD treatments, these findings offer potential avenues for developing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Yue Qu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Jingna Gu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Lanxin Li
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Yuqi Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Tiange Zhang
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Bjornson KJ, Kermath BA, Cahill ME. Identification of ARHGEF11 (PDZ-RhoGEF) as an in vivo regulator of synapses and cognition. Proc Natl Acad Sci U S A 2025; 122:e2415316122. [PMID: 39835891 PMCID: PMC11789018 DOI: 10.1073/pnas.2415316122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition. This broad and unbiased screen led to the specific identification of ARHGEF11, which encodes PDZ-RhoGEF. PDZ-RhoGEF is a largely RhoA-specific activator that is highly enriched in dendritic spines, and recent work identified hyperexpression of PDZ-RhoGEF in the prefrontal cortex of bipolar disorder subjects, a disease characterized by an early emergence and persistence of broad scope cognitive dysfunction. Here, we characterize the effects of PDZ-RhoGEF on synaptic and behavioral phenotypes, and we identify molecular and biochemical mechanisms that control PDZ-RhoGEF's expression, synaptic spatial localization, and enzymatic activity. Importantly, our identified direct regulators of PDZ-RhoGEF (miR-132 and DISC1) have themselves been repeatedly implicated in controlling cognitive phenotypes in humans, including those caused by several neuropsychiatric disorders. Taken together, our findings indicate that PDZ-RhoGEF is a key convergence point among multiple synaptic and cognition-relevant signaling cascades with potential translational significance.
Collapse
Affiliation(s)
- Kathryn J. Bjornson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| | - Bailey A. Kermath
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| | - Michael E. Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
14
|
P A H, Basavaraju N, Gupta A, Kommaddi RP. Actin Cytoskeleton at the Synapse: An Alzheimer's Disease Perspective. Cytoskeleton (Hoboken) 2025. [PMID: 39840749 DOI: 10.1002/cm.21993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release. In the postsynapse, actin dynamically modulates dendritic spines, influencing the postsynaptic density organization and anchoring of neurotransmitter receptors. In addition, the dynamic interplay of actin at the synapse underscores its essential role in regulating neural communication. This review strives to offer a comprehensive overview of the recent advancements in understanding the multifaceted role of the actin cytoskeleton in synaptic functions. By emphasizing its aberrant regulation, we aim to provide valuable insights into the underlying mechanisms of Alzheimer's disease pathophysiology.
Collapse
Affiliation(s)
- Haseena P A
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Anant Gupta
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
15
|
Butkovich LM, Yount ST, Allen AT, Seo EH, Swanson AM, Gourley SL. Action inflexibility and compulsive-like behavior accompany neurobiological alterations in the anterior orbitofrontal cortex and associated striatal nuclei. Sci Rep 2025; 15:1863. [PMID: 39805892 PMCID: PMC11730666 DOI: 10.1038/s41598-024-84369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences. We found that these mice also demonstrate insensitivity to Pavlovian-to-instrumental transfer, as well as compulsive-like grooming behavior that is ameliorated by fluoxetine and inhibitory, but not excitatory, chemogenetic modulation of excitatory OFC neurons. Thus, these mice offer the opportunity to identify neurobiological factors associated with inflexible and compulsive-like behavior. Experimentally bred mice suffer excitatory dendritic spine attrition, as well as changes in inhibitory synapse-associated proteins, GAD67/GAD1 and SLITRK3, largely in the anterior and not posterior OFC (or medial frontal cortex). They also display higher levels of the excitatory synaptic marker striatin in the nucleus accumbens and lower levels of the excitatory synaptic marker SAPAP3 in the dorsal striatum, striatal nuclei that receive input from the anterior OFC. Together, our findings point to the anterior OFC as a potential locus controlling action flexibility and compulsive-like behavior alike.
Collapse
Affiliation(s)
- Laura M Butkovich
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA
| | - Sophie T Yount
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Aylet T Allen
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA
| | - Esther H Seo
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA
| | - Andrew M Swanson
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Bartol TM, Ordyan M, Sejnowski TJ, Rangamani P, Kennedy MB. A spatial model of autophosphorylation of Ca 2+/calmodulin-dependent protein kinase II (CaMKII) predicts that the lifetime of phospho-CaMKII after induction of synaptic plasticity is greatly prolonged by CaM-trapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578696. [PMID: 38352446 PMCID: PMC10862815 DOI: 10.1101/2024.02.02.578696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). The critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca2+ flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca2+ and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activity in vivo, and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measure in vivo. We examine the effects of "CaM-trapping," a process in which the affinity for Ca2+/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca2+/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
| | - Mariam Ordyan
- The Salk Institute for Biological Studies, La Jolla, CA
| | - Terrence J Sejnowski
- The Salk Institute for Biological Studies, La Jolla, CA
- Department of Neurobiology, University of California at San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Mary B Kennedy
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
17
|
Ku MJ, Kim CY, Park JW, Lee S, Jeong EY, Jeong JW, Kim WY, Kim JH. Wireless optogenetic stimulation on the prelimbic to the nucleus accumbens core circuit attenuates cocaine-induced behavioral sensitization. Neurobiol Dis 2024; 203:106733. [PMID: 39536953 DOI: 10.1016/j.nbd.2024.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Behavioral sensitization is defined as the heightened and persistent behavioral response to repeated drug exposure as a manifestation of drug craving. Psychomotor stimulants such as cocaine can induce strong behavioral sensitization. In this study, we explored the effects of optogenetic stimulation of the prelimbic (PL) to the nucleus accumbnes (NAc) core on the expression of cocaine-induced behavioral sensitization. Using wireless optogenetics, we selectively stimulated the PL-NAc core circuit, and assessed the effects of this treatment on cocaine-induced locomotor activity and accompanying changes in neuronal activation and dendritic spine density. Our findings revealed that optogenetic stimulation of the PL-NAc core circuit effectively suppressed the cocaine-induced locomotor sensitization, accompanied by a reduction in c-Fos expression within the NAc core. Moreover, optogenetic stimulation led to reduction in dendritic spine density, particularly thin and mushroom spine densities, in the NAc core. This study demonstrates that cocaine-induced locomotor sensitization can be regulated by optogenetic stimulation of the PL-NAc core circuit, providing insights into the crucial role of this circuit in psychomotor stimulant addiction.
Collapse
Affiliation(s)
- Min Jeong Ku
- Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Information & Electronics Research Institute, Daejeon 34141, Republic of Korea
| | - Jong Woo Park
- Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seohyeon Lee
- Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Young Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Institute for NanoCentury, Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea.
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jeong-Hoon Kim
- Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
18
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
19
|
Jasińska M, Jasek-Gajda E, Ziaja M, Litwin JA, Lis GJ, Pyza E. Light-Modulated Circadian Synaptic Plasticity in the Somatosensory Cortex: Link to Locomotor Activity. Int J Mol Sci 2024; 25:12870. [PMID: 39684579 DOI: 10.3390/ijms252312870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day-night cycle. This study examined the effects of the circadian clock and light on synaptic plasticity, and explored how locomotor activity contributes to these processes. We analyzed synaptic protein expression and excitatory synapse density in the somatosensory cortex of mice from four groups exposed to different lighting conditions (LD 12:12, DD, LD 16:8, and LL). Locomotor activity was assessed through individual wheel-running monitoring. To explore daily and circadian changes in synaptic proteins, we performed double-immunofluorescence labeling and laser scanning confocal microscopy imaging, targeting three pairs of presynaptic and postsynaptic proteins (Synaptophysin 1/PSD95, Piccolo/Homer 1, Neurexins/PICK1). Excitatory synapse density was evaluated by co-labeling presynaptic and postsynaptic markers. Our results demonstrated that all the analyzed synaptic proteins exhibited circadian regulation modulated by light. Under constant light conditions, only Piccolo and Homer 1 showed rhythmicity. Locomotor activity was also associated with the circadian clock's effects on synaptic proteins, showing a stronger connection to changes in postsynaptic protein levels. Excitatory synapse density peaked during the day/subjective day and exhibited an inverse relationship with locomotor activity. Continued light exposure disrupted cyclic changes in synapse density but kept it consistently elevated. These findings underscore the crucial roles of light and locomotor activity in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Małgorzata Jasińska
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Marek Ziaja
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jan A Litwin
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
20
|
Martínez-Torres NI, Cárdenas-Bedoya J, Torres-Mendoza BM. Cerebrolysin Induces Motor Recovery Along with Plastic Changes in Motoneurons and an Increase in GAP43 Protein in the Ventral Spinal Cord Following a Kainic Acid Excitotoxic Lesion in the Rat Motor Cortex. Neurochem Res 2024; 50:31. [PMID: 39580783 DOI: 10.1007/s11064-024-04288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Lesions in the motor cortex induced by contusions or pathological insults can exert the degeneration of afferent neurons lying distal to these lesions. Axon degeneration and demyelination are hallmarks of several diseases sharing pathophysiological and clinical characteristics. These conditions are very disabling due to the disruption of motor abilities, with lesions that affect this area proving to be a therapeutic challenge, which has driven increasing efforts to search for treatments. Cerebrolysin (CBL) contains a mix of pig brain-derived peptides with activity similar to neurotrophic factors. Here, the effect of cerebrolysin administration on the motor impairment produced by kainic acid (KA) lesion of the motor cortex was evaluated in Sprague-Dawley female rats (n = 27), defining its effect on motoneurons dendritic tree changes, dendritic spine density and GAP43 presence in the ventral thoracolumbar regions of the spinal cord. Ten days after the KA lesion of the motor cortex, rats were administered cerebrolysin, and their motor performance was evaluated using the "Basso, Beattie, and Bresnahan" (BBB) and Bederson scores. Cerebrolysin administration improved motor activity according to the BBB and Bederson scales, along with increased dendritic intersections and dendritic spine density on motoneurons. There was also a significant increase in GAP43 protein, suggesting that CBL may promote plastic changes through this protein, among others. Hence, this study proposes that cerebrolysin could promote motor recovery following motor cortex lesions by driving neuronal changes and dendritic spine plasticity on motoneurons and an increase in GAP43 protein, along with other mechanisms.
Collapse
Affiliation(s)
- Nestor I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
- Departamento de Bienestar y Desarrollo Sustentable, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, México.
| | - Jhonathan Cárdenas-Bedoya
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
- Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Blanca Miriam Torres-Mendoza
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
- Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
21
|
Svirsky SE, Henchir J, Parry M, Holets E, Zhang T, Gittes GK, Carlson SW, Dixon CE. Viral-mediated increased hippocampal neurogranin modulate synapses at one month in a rat model of controlled cortical impact. Sci Rep 2024; 14:28998. [PMID: 39578516 PMCID: PMC11584851 DOI: 10.1038/s41598-024-77682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Reductions of neurogranin (Ng), a calcium-sensitive calmodulin-binding protein, result in significant impairment across various hippocampal-dependent learning and memory tasks. Conversely, increasing levels of Ng facilitates synaptic plasticity, increases synaptogenesis and boosts cognitive abilities. Controlled cortical impact (CCI), an experimental traumatic brain injury (TBI) model, results in significantly reduced hippocampal Ng protein expression up to 4 weeks post-injury, supporting a strategy to increase Ng to improve function. In this study, hippocampal Ng expression was increased in adult, male Sham and CCI injured animals using intraparenchymal injection of adeno-associated virus (AAV) 30 min post-injury, thereby also affording the ability to differentiate endogenous and exogenous Ng. At 4 weeks, molecular, anatomical, and behavioral measures of synaptic plasticity were evaluated to determine the therapeutic potential of Ng modulation post-TBI. Increasing Ng had a TBI-dependent effect on hippocampal expression of synaptic proteins and dendritic spine morphology. Increasing Ng did not improve behavior across all outcomes in both Sham and CCI groups at the 4 week time-point. Overall, increasing Ng expression modulated protein expression and dendritic spine morphology, but exerted limited functional benefit after CCI. This study furthers our understanding of Ng, and mechanisms of cognitive dysfunction within the synapse sub-acutely after TBI.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Madison Parry
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Erik Holets
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Ting Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- V.A. Pittsburgh Healthcare System, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
22
|
Wu PY, Inglebert Y, McKinney RA. Synaptopodin: a key regulator of Hebbian plasticity. Front Cell Neurosci 2024; 18:1482844. [PMID: 39569068 PMCID: PMC11576213 DOI: 10.3389/fncel.2024.1482844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Synaptopodin, an actin-associated protein found in a subset of dendritic spines in telencephalic neurons, has been described to influence both functional and morphological plasticity under various plasticity paradigms. Synaptopodin is necessary and sufficient for the formation of the spine apparatus, stacks of smooth endoplasmic reticulum cisternae. The spine apparatus is a calcium store that locally regulates calcium dynamics in response to different patterns of activity and is also thought to be a site for local protein synthesis. Synaptopodin is present in ~30% of telencephalic large dendritic spines in vivo and in vitro highlighting the heterogeneous microanatomy and molecular architecture of dendritic spines, an important but not well understood aspect of neuroplasticity. In recent years, it has become increasingly clear that synaptopodin is a formidable regulator of multiple mechanisms essential for learning and memory. In fact, synaptopodin appears to be the decisive factor that determines whether plasticity can occur, acting as a key regulator for synaptic changes. In this review, we summarize the current understanding of synaptopodin's role in various forms of Hebbian synaptic plasticity.
Collapse
Affiliation(s)
- Pei You Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Yanis Inglebert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
24
|
Hernández-González M, de la Torre-Vázquez J, Barrera-Cobos FJ, Flores-Soto M, Guevara MA, González-Burgos I. Correlation between compulsive behaviors and plastic changes in the dendritic spines of the prefrontal cortex and dorsolateral striatum of male rats. Behav Brain Res 2024; 475:115199. [PMID: 39182621 DOI: 10.1016/j.bbr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a mental affliction characterized by compulsive behaviors often manifested in intrusive thoughts and repetitive actions. The quinpirole model has been used with rats to replicate compulsive behaviors and study the neurophysiological processes associated with this pathology. Several changes in the dendritic spines of the medial prefrontal cortex (mPFC) and dorsolateral striatum (DLS) have been related to the occurrence of compulsive behaviors. Dendritic spines regulate excitatory synaptic contacts, and their morphology is associated with various brain pathologies. The present study was designed to correlate the occurrence of compulsive behaviors (generated by administering the drug quinpirole) with the morphology of the different types of dendritic spines in the mPFC and DLS. A total of 18 male rats were used. Half were assigned to the experimental group, the other half to the control group. The former received injections of quinpirole, while the latter rats were injected with physiological saline solution, for 10 days in both cases. After the experimental treatment, the quinpirole rats exhibited all the parameters indicative of compulsive behavior and a significant correlation with the density of stubby and wide neckless spines in both the mPFC and DLS. Dendritic spines from both mPFC and DLS neurons showed plastic changes correlatively with the expression of compulsive behavior induced by quinpirole. Further studies are suggested to evaluate the involvement of glutamatergic neurotransmission in the neurobiology of OCD.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Jahaziel de la Torre-Vázquez
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Francisco Javier Barrera-Cobos
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS. Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
25
|
Kauer SD, Benson CA, Carrara JM, Tarafder AA, Ibrahim YH, Estacion MA, Waxman SG, Tan AM. PAK1 inhibition with Romidepsin attenuates H-reflex hyperexcitability after spinal cord injury. J Physiol 2024; 602:5061-5081. [PMID: 39231098 DOI: 10.1113/jp284976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Hyperreflexia associated with spasticity is a prevalent neurological condition characterized by excessive and exaggerated reflex responses to stimuli. Hyperreflexia can be caused by several diseases including multiple sclerosis, stroke and spinal cord injury (SCI). Although we have previously identified the contribution of the RAC1-PAK1 pathway underlying spinal hyperreflexia with SCI-induced spasticity, a feasible druggable target has not been validated. To assess the utility of targeting PAK1 to attenuate H-reflex hyperexcitability, we administered Romidepsin, a clinically available PAK1 inhibitor, in Thy1-YFP reporter mice. We performed longitudinal EMG studies with a study design that allowed us to assess pathological H-reflex changes and drug intervention effects over time, before and after contusive SCI. As expected, our results show a significant loss of rate-dependent depression - an indication of hyperreflexia and spasticity - 1 month following SCI as compared with baseline, uninjured controls (or before injury). Romidepsin treatment reduced signs of hyperreflexia in comparison with control cohorts and in pre- and post-drug intervention in SCI animals. Neuroanatomical study further confirmed drug response, as romidepsin treatment also reduced the presence of SCI-induced dendritic spine dysgenesis on α-motor neurons. Taken together, our findings extend previous work demonstrating the utility of targeting PAK1 activity in SCI-induced spasticity and support the novel use of romidepsin as an effective tool for managing spasticity. KEY POINTS: PAK1 plays a role in contributing to the development of spinal cord injury (SCI)-induced spasticity by contributing to dendritic spine dysgenesis. In this study, we explored the preclinical utility of inhibiting PAK1 to reduce spasticity and dendritic spine dysgenesis in an SCI mouse model. Romidepsin is a PAK1 inhibitor approved in the US in 2009 for the treatment of cutaneous T-cell lymphoma. Here we show that romidepsin treatment after SCI reduced SCI-induced H-reflex hyperexcitability and abnormal α-motor neuron spine morphology. This study provides compelling evidence that romidepsin may be a promising therapeutic approach for attenuating SCI-induced spasticity.
Collapse
Affiliation(s)
- Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jennifer M Carrara
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Afrin A Tarafder
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Youssef H Ibrahim
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Maile A Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
26
|
Wang J, Chen L, Wang Z, Zhang S, Ding D, Lin G, Zhang H, Boda VK, Kong D, Ortyl TC, Wang X, Lu L, Zhou FM, Bezprozvanny I, Du J, Wu Z, Li W, Liao FF. TRPC3 suppression ameliorates synaptic dysfunctions and memory deficits in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.611061. [PMID: 39345364 PMCID: PMC11430068 DOI: 10.1101/2024.09.16.611061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Transient receptor potential canonical (TRPC) channels are widely expressed in the brain; however, their precise roles in neurodegeneration, such as Alzheimer's disease (AD) remain elusive. Bioinformatic analysis of the published single-cell RNA-seq data collected from AD patient cohorts indicates that the Trpc3 gene is uniquely upregulated in excitatory neurons. TRPC3 expression is also upregulated in post-mortem AD brains, and in both acute and chronic mouse models of AD. Functional screening of TRPC3 antagonists resulted in a lead inhibitor JW-65, which completely rescued Aβ-induced neurotoxicity, impaired synaptic plasticity (e.g., LTP), and learning memory in acute and chronic experimental AD models. In cultured rat hippocampal neurons, we found that treatment with soluble β-amyloid oligomers (AβOs) induces rapid and sustained upregulation of the TRPC3 expression selectively in excitatory neurons. This aberrantly upregulated TRPC3 contributes to AβOs-induced Ca 2+ overload through the calcium entry and store-release mechanisms. The neuroprotective action of JW-65 is primarily mediated via restoring AβOs-impaired Ca 2+ /calmodulin-mediated signaling pathways, including calmodulin kinases CaMKII/IV and calcineurin (CaN). The synaptic protective mechanism via TRPC3 inhibition was further supported by hippocampal RNA-seq data from the symptomatic 5xFAD mice after chronic treatment with JW-65. Overall, these findings not only validate TRPC3 as a novel therapeutic target for treating synaptic dysfunction of AD but most importantly, disclose a distinct role of upregulated TRPC3 in AD pathogenesis in mediating Ca 2+ dyshomeostasis.
Collapse
|
27
|
Toren Y, Ziv Y, Sragovich S, McKinney RA, Barak S, Shazman S, Gozes I. Sex-Specific ADNP/NAP (Davunetide) Regulation of Cocaine-Induced Plasticity. J Mol Neurosci 2024; 74:76. [PMID: 39251453 PMCID: PMC11384652 DOI: 10.1007/s12031-024-02234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 09/11/2024]
Abstract
Cocaine use disorder (CUD) is a chronic neuropsychiatric disorder estimated to effect 1-3% of the population. Activity-dependent neuroprotective protein (ADNP) is essential for brain development and functioning, shown to be protective in fetal alcohol syndrome and to regulate alcohol consumption in adult mice. The goal of this study was to characterize the role of ADNP, and its active peptide NAP (NAPVSIPQ), which is also known as davunetide (investigational drug) in mediating cocaine-induced neuroadaptations. Real time PCR was used to test levels of Adnp and Adnp2 in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal hippocampus (DH) of cocaine-treated mice (15 mg/kg). Adnp heterozygous (Adnp +/-)and wild-type (Adnp +/-) mice were further tagged with excitatory neuronal membrane-expressing green fluorescent protein (GFP) that allowed for in vivo synaptic quantification. The mice were treated with cocaine (5 injections; 15 mg/kg once every other day) with or without NAP daily injections (0.4 µg/0.1 ml) and sacrificed following the last treatment. We analyzed hippocampal CA1 pyramidal cells from 3D confocal images using the Imaris x64.8.1.2 (Oxford Instruments) software to measure changes in dendritic spine density and morphology. In silico ADNP/NAP/cocaine structural modeling was performed as before. Cocaine decreased Adnp and Adnp2 expression 2 h after injection in the NAc and VTA of male mice, with mRNA levels returning to baseline levels after 24 h. Cocaine further reduced hippocampal spine density, particularly synaptically weaker immature thin and stubby spines, in male Adnp+/+) mice while increasing synaptically stronger mature (mushroom) spines in Adnp+/-) male mice and thin and stubby spines in females. Lastly, we showed that cocaine interacts with ADNP on a zinc finger domain identical to ketamine and adjacent to a NAP-zinc finger interaction site. Our results implicate ADNP in cocaine abuse, further placing the ADNP gene as a key regulator in neuropsychiatric disorders. Ketamine/cocaine and NAP treatment may be interchangeable to some degree, implicating an interaction with adjacent zinc finger motifs on ADNP and suggestive of a potential sex-dependent, non-addictive NAP treatment for CUD.
Collapse
Affiliation(s)
- Yael Toren
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yarden Ziv
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shlomo Sragovich
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Segev Barak
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
28
|
Gabele L, Bochow I, Rieke N, Sieben C, Michaelsen-Preusse K, Hosseini S, Korte M. H7N7 viral infection elicits pronounced, sex-specific neuroinflammatory responses in vitro. Front Cell Neurosci 2024; 18:1444876. [PMID: 39171200 PMCID: PMC11335524 DOI: 10.3389/fncel.2024.1444876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Influenza A virus (IAV) infection can increase the risk of neuroinflammation, and subsequent neurodegenerative diseases. Certain IAV strains, such as avian H7N7 subtype, possess neurotropic properties, enabling them to directly invade the brain parenchyma and infect neurons and glia cells. Host sex significantly influences the severity of IAV infections. Studies indicate that females of the reproductive age exhibit stronger innate and adaptive immune responses to IAVs compared to males. This heightened immune response correlates with increased morbidity and mortality, and potential neuronal damage in females. Understanding the sex-specific neurotropism of IAV and associated mechanisms leading to adverse neurological outcomes is essential. Our study reveals that primary hippocampal cultures from female mice show heightened interferon-β and pro-inflammatory chemokine secretion following neurotropic IAV infection. We observed sex-specific differences in microglia activation: both sexes showed a transition into a hyper-ramified state, but only male-derived microglia exhibited an increase in amoeboid-shaped cells. These disparities extended to alterations in neuronal morphology. Neurons derived from female mice displayed increased spine density within 24 h post-infection, while no significant change was observed in male cultures. This aligns with sex-specific differences in microglial synaptic pruning. Data suggest that amoeboid-shaped microglia preferentially target postsynaptic terminals, potentially reducing neuronal hyperexcitability. Conversely, hyper-ramified microglia may focus on presynaptic terminals, potentially limiting viral spread. In conclusion, our findings underscore the utility of primary hippocampal cultures, incorporating microglia, as an effective model to study sex-specific, virus-induced effects on brain-resident cells.
Collapse
Affiliation(s)
- Lea Gabele
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Isabell Bochow
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nele Rieke
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
| | - Christian Sieben
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
29
|
Mozafari R, Khodagholi F, Kaveh N, Zibaii ME, Kalivas P, Haghparast A. Blockade of mGluR5 in nucleus accumbens modulates calcium sensor proteins, facilitates extinction, and attenuates reinstated morphine place preference in rats. J Psychiatr Res 2024; 176:23-32. [PMID: 38833749 DOI: 10.1016/j.jpsychires.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Numerous findings confirm that the metabotropic glutamate receptors (mGluRs) are involved in the conditioned place preference (CPP) induced by morphine. Here we focused on the role of mGluR5 in the nucleus accumbens (NAc) as a main site of glutamate action on the rewarding effects of morphine. Firstly, we investigated the effects of intra-NAc administrating mGluR5 antagonist 3-((2-Methyl-1,3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP; 1, 3, and 10 μg/μl saline) on the extinction and the reinstatement phase of morphine CPP. Moreover, to determine the downstream signaling cascades of mGluR5 in morphine CPP, the protein levels of stromal interaction molecules (STIM1 and 2) in the NAc and hippocampus (HPC) were measured by western blotting. The behavioral data indicated that the mGluR5 blockade by MTEP at the high doses of 3 and 10 μg facilitated the extinction of morphine-induced CPP and attenuated the reinstatement to morphine in extinguished rats. Molecular results showed that the morphine led to increased levels of STIM proteins in the HPC and increased the level of STIM1 without affecting STIM2 in the NAc. Furthermore, intra-NAc microinjection of MTEP (10 μg) in the reinstatement phase decreased STIM1 in the NAc and HPC and reduced the STIM2 in the HPC. Collectively, our data show that morphine could facilitate brain reward function in part by increasing glutamate-mediated transmission through activation of mGluR5 and modulation of STIM proteins. Therefore, these results highlight the therapeutic potential of mGluR5 antagonists in morphine use disorder.
Collapse
Affiliation(s)
- Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Kaveh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Li YX, Tan ZN, Li XH, Ma B, Adu Nti F, Lv XQ, Tian ZJ, Yan R, Man HY, Ma XM. Increased gene dosage of RFWD2 causes autistic-like behaviors and aberrant synaptic formation and function in mice. Mol Psychiatry 2024; 29:2496-2509. [PMID: 38503925 PMCID: PMC11412905 DOI: 10.1038/s41380-024-02515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.
Collapse
Affiliation(s)
- Yong-Xia Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Nei Tan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Boyu Ma
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Adu Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Qiang Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhen-Jun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA.
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
31
|
Voglewede MM, Ozsen EN, Ivak N, Bernabucci M, Tang R, Sun M, Pang ZP, Zhang H. Loss of the polarity protein Par3 promotes dendritic spine neoteny and enhances learning and memory. iScience 2024; 27:110308. [PMID: 39045101 PMCID: PMC11263792 DOI: 10.1016/j.isci.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The Par3 polarity protein is critical for subcellular compartmentalization in different developmental processes. Variants of PARD3, encoding PAR3, are associated with intelligence and neurodevelopmental disorders. However, the role of Par3 in glutamatergic synapse formation and cognitive functions in vivo remains unknown. Here, we show that forebrain-specific Par3 conditional knockout leads to increased long, thin dendritic spines in vivo. In addition, we observed a decrease in the amplitude of miniature excitatory postsynaptic currents. Surprisingly, loss of Par3 enhances hippocampal-dependent spatial learning and memory and repetitive behavior. Phosphoproteomic analysis revealed proteins regulating cytoskeletal dynamics are significantly dysregulated downstream of Par3. Mechanistically, we found Par3 deletion causes increased Rac1 activation and dysregulated microtubule dynamics through CAMSAP2. Together, our data reveal an unexpected role for Par3 as a molecular gatekeeper in regulating the pool of immature dendritic spines, a rate-limiting step of learning and memory, through modulating Rac1 activation and microtubule dynamics in vivo.
Collapse
Affiliation(s)
- Mikayla M. Voglewede
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Noah Ivak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ruizhe Tang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Smith SS, Benanni S, Jones Q, Kenney L, Evrard MR. Manipulation of α4βδ GABA A receptors alters synaptic pruning in layer 3 prelimbic prefrontal cortex and impairs temporal order recognition: Implications for schizophrenia and autism. Brain Res 2024; 1835:148929. [PMID: 38599510 DOI: 10.1016/j.brainres.2024.148929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4βδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4βδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4βδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density ∼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4βδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Safae Benanni
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Quiana Jones
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Lindsay Kenney
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Matthew R Evrard
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
33
|
Tekin M, Shen H, Smith SS. Sex differences in motor learning flexibility are accompanied by sex differences in mushroom spine pruning of the mouse primary motor cortex during adolescence. Front Neurosci 2024; 18:1420309. [PMID: 39040633 PMCID: PMC11262054 DOI: 10.3389/fnins.2024.1420309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4βδ GABAA receptors (GABARs); defective synaptic pruning impairs this process. Methods We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4βδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks. Results Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 μm; post-pubertal: 0.81 ± 0.14 spines/10 μm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4βδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility. Conclusions These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.
Collapse
Affiliation(s)
- Michael Tekin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
34
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
35
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
36
|
Jabra S, Rietsche M, Muellerleile J, O'Leary A, Slattery DA, Deller T, Fellenz M. Sex- and cycle-dependent changes in spine density and size in hippocampal CA2 neurons. Sci Rep 2024; 14:12252. [PMID: 38806649 PMCID: PMC11133407 DOI: 10.1038/s41598-024-62951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.
Collapse
Affiliation(s)
- Sharif Jabra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Meike Fellenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Cauzzo S, Bruno E, Boulet D, Nazac P, Basile M, Callara AL, Tozzi F, Ahluwalia A, Magliaro C, Danglot L, Vanello N. A modular framework for multi-scale tissue imaging and neuronal segmentation. Nat Commun 2024; 15:4102. [PMID: 38778027 PMCID: PMC11111705 DOI: 10.1038/s41467-024-48146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The development of robust tools for segmenting cellular and sub-cellular neuronal structures lags behind the massive production of high-resolution 3D images of neurons in brain tissue. The challenges are principally related to high neuronal density and low signal-to-noise characteristics in thick samples, as well as the heterogeneity of data acquired with different imaging methods. To address this issue, we design a framework which includes sample preparation for high resolution imaging and image analysis. Specifically, we set up a method for labeling thick samples and develop SENPAI, a scalable algorithm for segmenting neurons at cellular and sub-cellular scales in conventional and super-resolution STimulated Emission Depletion (STED) microscopy images of brain tissues. Further, we propose a validation paradigm for testing segmentation performance when a manual ground-truth may not exhaustively describe neuronal arborization. We show that SENPAI provides accurate multi-scale segmentation, from entire neurons down to spines, outperforming state-of-the-art tools. The framework will empower image processing of complex neuronal circuitries.
Collapse
Affiliation(s)
- Simone Cauzzo
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy.
| | - Ester Bruno
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Miriam Basile
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Federico Tozzi
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Chiara Magliaro
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France.
| | - Nicola Vanello
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy.
| |
Collapse
|
38
|
Zong R, Zhang X, Dong X, Liu G, Zhang J, Gao Y, Zhang Z, Ma Y, Gao H, Gamper N. Genetic deletion of zinc transporter ZnT 3 induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism. Front Mol Neurosci 2024; 17:1375925. [PMID: 38807922 PMCID: PMC11130425 DOI: 10.3389/fnmol.2024.1375925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guan Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jieyao Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Ma
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
39
|
Merino‐Serrais P, Plaza‐Alonso S, Hellal F, Valero‐Freitag S, Kastanauskaite A, Plesnila N, DeFelipe J. Structural changes of CA1 pyramidal neurons after stroke in the contralesional hippocampus. Brain Pathol 2024; 34:e13222. [PMID: 38012061 PMCID: PMC11007010 DOI: 10.1111/bpa.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Significant progress has been made with regard to understanding how the adult brain responds after a stroke. However, a large number of patients continue to suffer lifelong disabilities without adequate treatment. In the present study, we have analyzed possible microanatomical alterations in the contralesional hippocampus from the ischemic stroke mouse model tMCAo 12-14 weeks after transient middle cerebral artery occlusion. After individually injecting Lucifer yellow into pyramidal neurons from the CA1 field of the hippocampus, we performed a detailed three-dimensional analysis of the neuronal complexity, dendritic spine density, and morphology. We found that, in both apical (stratum radiatum) and basal (stratum oriens) arbors, CA1 pyramidal neurons in the contralesional hippocampus of tMCAo mice have a significantly higher neuronal complexity, as well as reduced spine density and alterations in spine volume and spine length. Our results show that when the ipsilateral hippocampus is dramatically damaged, the contralesional hippocampus exhibits several statistically significant selective alterations. However, these alterations are not as significant as expected, which may help to explain the recovery of hippocampal function after stroke. Further anatomical and physiological studies are necessary to better understand the modifications in the "intact" contralesional lesioned brain regions, which are probably fundamental to recover functions after stroke.
Collapse
Affiliation(s)
- Paula Merino‐Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Sergio Plaza‐Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Farida Hellal
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
- iTERM, Helmholtz CenterMunichGermany
- Munich Cluster of Systems Neurology (Synergy)MunichGermany
| | - Susana Valero‐Freitag
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig‐Maximilians‐University Munich (LMU)MunichGermany
- Munich Cluster of Systems Neurology (Synergy)MunichGermany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
- Departamento de Neurobiología Funcional y de SistemasInstituto Cajal, CSICMadridSpain
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
40
|
Yu Y, Adsit LM, Smith IT. Comprehensive software suite for functional analysis and synaptic input mapping of dendritic spines imaged in vivo. NEUROPHOTONICS 2024; 11:024307. [PMID: 38628980 PMCID: PMC11021036 DOI: 10.1117/1.nph.11.2.024307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Significance Advances in genetically encoded sensors and two-photon imaging have unlocked functional imaging at the level of single dendritic spines. Synaptic activity can be measured in real time in awake animals. However, tools are needed to facilitate the analysis of the large datasets acquired by the approach. Commonly available software suites for imaging calcium transients in cell bodies are ill-suited for spine imaging as dendritic spines have structural characteristics distinct from those of the cell bodies. We present an automated tuning analysis tool (AUTOTUNE), which provides analysis routines specifically developed for the extraction and analysis of signals from subcellular compartments, including dendritic subregions and spines. Aim Although the acquisition of in vivo functional synaptic imaging data is increasingly accessible, a hurdle remains in the computation-heavy analyses of the acquired data. The aim of this study is to overcome this barrier by offering a comprehensive software suite with a user-friendly interface for easy access to nonprogrammers. Approach We demonstrate the utility and effectiveness of our software with demo analyses of dendritic imaging data acquired from layer 2/3 pyramidal neurons in mouse V1 in vivo. A user manual and demo datasets are also provided. Results AUTOTUNE provides a robust workflow for analyzing functional imaging data from neuronal dendrites. Features include source image registration, segmentation of regions-of-interest and detection of structural turnover, fluorescence transient extraction and smoothing, subtraction of signals from putative backpropagating action potentials, and stimulus and behavioral parameter response tuning analyses. Conclusions AUTOTUNE is open-source and extendable for diverse functional synaptic imaging experiments. The ease of functional characterization of dendritic spine activity provided by our software can accelerate new functional studies that complement decades of morphological studies of dendrites, and further expand our understanding of neural circuits in health and in disease.
Collapse
Affiliation(s)
- Yiyi Yu
- University of California, Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Liam M. Adsit
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
| | - Ikuko T. Smith
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
- University of California, Santa Barbara, Neuroscience Research Institute, Santa Barbara, California, United States
- University of California, Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
41
|
Vásquez CE, Knak Guerra KT, Renner J, Rasia-Filho AA. Morphological heterogeneity of neurons in the human central amygdaloid nucleus. J Neurosci Res 2024; 102:e25319. [PMID: 38629777 DOI: 10.1002/jnr.25319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
The central amygdaloid nucleus (CeA) has an ancient phylogenetic development and functions relevant for animal survival. Local cells receive intrinsic amygdaloidal information that codes emotional stimuli of fear, integrate them, and send cortical and subcortical output projections that prompt rapid visceral and social behavior responses. We aimed to describe the morphology of the neurons that compose the human CeA (N = 8 adult men). Cells within CeA coronal borders were identified using the thionine staining and were further analyzed using the "single-section" Golgi method followed by open-source software procedures for two-dimensional and three-dimensional image reconstructions. Our results evidenced varied neuronal cell body features, number and thickness of primary shafts, dendritic branching patterns, and density and shape of dendritic spines. Based on these criteria, we propose the existence of 12 morphologically different spiny neurons in the human CeA and discuss the variability in the dendritic architecture within cellular types, including likely interneurons. Some dendritic shafts were long and straight, displayed few collaterals, and had planar radiation within the coronal neuropil volume. Most of the sampled neurons showed a few to moderate density of small stubby/wide spines. Long spines (thin and mushroom) were observed occasionally. These novel data address the synaptic processing and plasticity in the human CeA. Our morphological description can be combined with further transcriptomic, immunohistochemical, and electrophysiological/connectional approaches. It serves also to investigate how neurons are altered in neurological and psychiatric disorders with hindered emotional perception, in anxiety, following atrophy in schizophrenia, and along different stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Carlos E Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
42
|
Hashimoto J, Fujita E, Tanimoto K, Kondo S, Matsumoto-Miyai K. Effects of Cardiac Glycoside Digoxin on Dendritic Spines and Motor Learning Performance in Mice. Neuroscience 2024; 541:77-90. [PMID: 38278474 DOI: 10.1016/j.neuroscience.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Synapse formation following the generation of postsynaptic dendritic spines is essential for motor learning and functional recovery after brain injury. The C-terminal fragment of agrin cleaved by neurotrypsin induces dendritic spine formation in the adult hippocampus. Since the α3 subunit of sodium-potassium ATPase (Na/K ATPase) is a neuronal receptor for agrin in the central nervous system, cardiac glycosides might facilitate dendritic spine formation and subsequent improvements in learning. This study investigated the effects of cardiac glycoside digoxin on dendritic spine turnover and learning performance in mice. Golgi-Cox staining revealed that intraperitoneal injection of digoxin less than its IC50 in the brain significantly increased the density of long spines (≥2 µm) in the cerebral cortex in wild-type mice and neurotrypsin-knockout (NT-KO) mice showing impairment of activity-dependent spine formation. Although the motor learning performance of NT-KO mice was significantly lower than control wild-type mice under the control condition, low doses of digoxin enhanced performance to a similar degree in both strains. In NT-KO mice, lower digoxin doses equivalent to clinical doses also significantly improved motor learning performance. These data suggest that lower doses of digoxin could modify dendritic spine formation or recycling and facilitate motor learning in compensation for the disruption of neurotrypsin-agrin pathway.
Collapse
Affiliation(s)
- Junichi Hashimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Erika Fujita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Keisuke Tanimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Suzuo Kondo
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Kazumasa Matsumoto-Miyai
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan.
| |
Collapse
|
43
|
Go J, Maeng SY, Chang DH, Park HY, Min KS, Kim JE, Choi YK, Noh JR, Ro H, Kim BC, Kim KS, Lee CH. Agathobaculum butyriciproducens improves ageing-associated cognitive impairment in mice. Life Sci 2024; 339:122413. [PMID: 38219919 DOI: 10.1016/j.lfs.2024.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
AIMS The gut microbiota is increasingly recognised as a pivotal regulator of immune system homeostasis and brain health. Recent research has implicated the gut microbiota in age-related cognitive impairment and dementia. Agathobaculum butyriciproducens SR79 T (SR79), which was identified in the human gut, has been reported to be beneficial in addressing cognitive deficits and pathophysiologies in a mouse model of Alzheimer's disease. However, it remains unknown whether SR79 affects age-dependent cognitive impairment. MAIN METHOD To explore the effects of SR79 on cognitive function during ageing, we administered SR79 to aged mice. Ageing-associated behavioural alterations were examined using the open field test (OFT), tail suspension test (TST), novel object recognition test (NORT), Y-maze alternation test (Y-maze), and Morris water maze test (MWM). We investigated the mechanisms of action in the gut and brain using molecular and histological analyses. KEY FINDINGS Administration of SR79 improved age-related cognitive impairment without altering general locomotor activity or depressive behaviour in aged mice. Furthermore, SR79 increased mature dendritic spines in the pyramidal cells of layer III and phosphorylation of CaMKIIα in the cortex of aged mice. Age-related activation of astrocytes in the cortex of layers III-V of the aged brain was reduced following SR79 administration. Additionally, SR79 markedly increased IL-10 production and Foxp3 and Muc2 mRNA expression in the colons of aged mice. SIGNIFICANCE These findings suggest that treatment with SR79 may be a beneficial microbial-based approach for enhancing cognitive function during ageing.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; College of Biosciences & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyunju Ro
- College of Biosciences & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; HealthBiome, Inc., Daejeon, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Youseong-gu, Daejeon, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Youseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
44
|
Li C, Ma Y, Chai X, Feng X, Feng W, Zhao Y, Cui C, Wang J, Zhao S, Zhu X. Ketogenic diet attenuates cognitive dysfunctions induced by hypoglycemia via inhibiting endoplasmic reticulum stress-dependent pathways. Food Funct 2024; 15:1294-1309. [PMID: 38197246 DOI: 10.1039/d3fo04007k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Hypoglycemia can potentially cause severe damage to the central nervous system. The ketogenic diet (KD), characterized by high-fat and extremely low-carbohydrate content, can modulate homeostasis and nutrient metabolism, thereby influencing body health. However, the effects and underlying mechanisms of KD on hypoglycemia-induced brain injury have not been thoroughly investigated. We aimed to explore the modulating effects of KD on cognitive functions and elucidate the underlying mechanisms. In this study, one-month-old mice were fed with KD for 2 weeks, and the changes in the gut microbiota were detected using the 16S rRNA gene amplicon sequencing method. The hypoglycemic model of mice was established using insulin, and the potential protective effect of KD on hypoglycemia-induced brain injury in mice was evaluated through immunofluorescence staining, western blotting, transmission electron microscopy, and Golgi staining. Our results showed that the intestinal flora of Dorea increased and Rikenella decreased in KD-fed mice. KD can not only alleviate anxiety-like behavior induced by hypoglycemia, but also increase the proportion of mushroom dendritic spines in the hippocampus by modulating changes in the gut microbiota. KD regulated synaptic plasticity by increasing the levels of SPN, PSD95, and SYP, which relieve cognitive impairment caused by hypoglycemia. Moreover, KD can promote the proliferation and survival of adult neural stem cells in the hippocampus, while reducing apoptosis by suppressing the activation of the IRE1-XBP1 and ATF6 endoplasmic reticulum stress pathways in mice with hypoglycemia. This study provides new evidence for demonstrating that KD may alleviate cognitive dysfunctions caused by hypoglycemia by modulating the gut microbiota.
Collapse
Affiliation(s)
- Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, Shaanxi 710021, PR China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Wenyu Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
45
|
Yang X, Li T, Liu J, Sun H, Cheng L, Song X, Han Z, Luo H, Han W, Xie L, Jiang L. Effects of minocycline on dendrites, dendritic spines, and microglia in immature mouse brains after kainic acid-induced status epilepticus. CNS Neurosci Ther 2024; 30:e14352. [PMID: 37438982 PMCID: PMC10848062 DOI: 10.1111/cns.14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
PURPOSE This study aimed to investigate whether minocycline could influence alterations of microglial subtypes, the morphology of dendrites and dendritic spines, the microstructures of synapses and synaptic proteins, or even cognition outcomes in immature male mice following status epilepticus (SE) induced by kainic acid. METHODS Golgi staining was performed to visualize the dendrites and dendritic spines of neurons of the hippocampus. The microstructures of synapses and synaptic proteins were observed using transmission electron microscopy and western blotting analysis, respectively. Microglial reactivation and their markers were evaluated using flow cytometry. The Morris water maze (MWM) test was used to analyze spatial learning and memory ability. RESULTS Significant partial spines increase (predominate in thin spines) was observed in the dendrites of neurons after acute SE and partial loss (mainly in thin spines) was presented by days 14 and 28 post-SE. The postsynaptic ultrastructure was impaired on the 7th and 14th days after SE. The proportion of M1 microglia increased significantly only after acute SE Similarly, the proportion of M2 microglia increased in the acute stage with high expression levels of all surface markers. In contrast, a decrease in M2 microglia and their markers was noted by day 14 post-SE. Minocycline could reverse the changes in dendrites and synaptic proteins caused by SE, and increase the levels of synaptic proteins. Meanwhile, minocycline could inhibit the reactivation of M1 microglia and the expression of their markers, except for promoting CD200R. In addition, treatment with minocycline could regulate the expression of M2 microglia and their surface markers, as well as ameliorating the impaired spatial learning and memory on the 28th day after SE. CONCLUSIONS Dendritic spines and microglia are dynamically changed after SE. Minocycline could ameliorate the impaired cognition in the kainic acid-induced mouse model by decreasing the damage to dendrites and altering microglial reactivation.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Tianyi Li
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Jie Liu
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Hong Sun
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Li Cheng
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Xiaojie Song
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Ziyao Han
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Hanyu Luo
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Wei Han
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Lingling Xie
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| | - Li Jiang
- Department of NeurologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
- National Clinical Research Center for Child Health and DisordersChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChongqingChina
- Chongqing Key Laboratory of PediatricsChongqingChina
| |
Collapse
|
46
|
Mohrmann L, Seebach J, Missler M, Rohlmann A. Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins. Int J Mol Sci 2024; 25:1285. [PMID: 38279285 PMCID: PMC10817056 DOI: 10.3390/ijms25021285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of β-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of β-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of β-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic β-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns.
Collapse
Affiliation(s)
| | | | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| |
Collapse
|
47
|
Wan C, Song X, Zhang Z, Hu W, Chen Y, Sun W, Liu Z, Wang S, Meng W. Voluntary exercise during puberty promotes spatial memory and hippocampal DG/CA3 synaptic transmission in mice. Cereb Cortex 2024; 34:bhad497. [PMID: 38124544 DOI: 10.1093/cercor/bhad497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Physical exercise has been shown to have an impact on memory and hippocampal function across different age groups. Nevertheless, the influence and mechanisms underlying how voluntary exercise during puberty affects memory are still inadequately comprehended. This research aims to examine the impacts of self-initiated physical activity throughout adolescence on spatial memory. Developing mice were exposed to a 4-wk voluntary wheel running exercise protocol, commencing at the age of 30 d. After engaging in voluntary wheel running exercise during development, there was an enhancement in spatial memory. Moreover, hippocampal dentate gyrus and CA3 neurons rather than CA1 neurons exhibited an increase in the miniature excitatory postsynaptic currents and miniature inhibitory postsynaptic currents. In addition, there was an increase in the expression of NR2A/NR2B subunits of N-methyl-D-aspartate receptors and α1GABAA subunit of gamma-aminobutyric acid type A receptors, as well as dendritic spine density, specifically within dentate gyrus and CA3 regions rather than CA1 region. The findings suggest that voluntary exercise during development can enhance spatial memory in mice by increasing synapse numbers and improving synaptic transmission in hippocampal dentate gyrus and CA3 regions, but not in CA1 region. This study sheds light on the neural mechanisms underlying how early-life exercise improves cognitive function.
Collapse
Affiliation(s)
- Changjian Wan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Xueqing Song
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Zhuyu Zhang
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Wenxiang Hu
- School of Life Sciences, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 33001, China
| | - Yanhua Chen
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Wei Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Zhibin Liu
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| |
Collapse
|
48
|
Glærum IL, Dunville K, Moan K, Krause M, Montaldo NP, Kirikae H, Nigro MJ, Sætrom P, van Loon B, Quattrocolo G. Postnatal persistence of hippocampal Cajal-Retzius cells has a crucial role in the establishment of the hippocampal circuit. Development 2024; 151:dev202236. [PMID: 38095282 PMCID: PMC10820737 DOI: 10.1242/dev.202236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Cajal-Retzius (CR) cells are a transient neuron type that populate the postnatal hippocampus. To understand how the persistence of CR cells influences the maturation of hippocampal circuits, we combined a specific transgenic mouse line with viral vector injection to selectively ablate CR cells from the postnatal hippocampus. We observed layer-specific changes in the dendritic complexity and spine density of CA1 pyramidal cells. In addition, transcriptomic analysis highlighted significant changes in the expression of synapse-related genes across development. Finally, we were able to identify significant changes in the expression levels of latrophilin 2, a postsynaptic guidance molecule known for its role in the entorhinal-hippocampal connectivity. These findings were supported by changes in the synaptic proteomic content in CA1 stratum lacunosum-moleculare. Our results reveal a crucial role for CR cells in the establishment of the hippocampal network.
Collapse
Affiliation(s)
- Ingvild Lynneberg Glærum
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
- Mohn Research Center for the Brain, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Keagan Dunville
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Kristian Moan
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Maike Krause
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Hinako Kirikae
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Maximiliano Jose Nigro
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Center for Algorithms of the Cortex, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
- Mohn Research Center for the Brain, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
49
|
Concina G, Gurgone A, Boggio EM, Raspanti A, Pizzo R, Morello N, Castroflorio E, Pizzorusso T, Sacchetti B, Giustetto M. Stabilizing Immature Dendritic Spines in the Auditory Cortex: A Key Mechanism for mTORC1-Mediated Enhancement of Long-Term Fear Memories. J Neurosci 2023; 43:8744-8755. [PMID: 37857485 PMCID: PMC10727119 DOI: 10.1523/jneurosci.0204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.
Collapse
Affiliation(s)
- Giulia Concina
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | - Antonia Gurgone
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | - Elena M Boggio
- Institute of Neuroscience, National Research Council, Pisa, 56124, Italy
| | | | - Riccardo Pizzo
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | - Noemi Morello
- Department of Neuroscience, University of Turin, Turin, 10125, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council, Pisa, 56124, Italy
- Scuola Normale Superiore, Biology Laboratory BIO@SNS, Pisa, 56124, Italy
| | | | | |
Collapse
|
50
|
Sarkala HB, Jahanshahi M, Dolatabadi LK, Namavar MR. G-CSF improved the memory and dendritic morphology impairments in the hippocampal CA1 pyramidal neurons after brain ischemia in the male rats. Metab Brain Dis 2023; 38:2573-2581. [PMID: 37728699 DOI: 10.1007/s11011-023-01286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Stroke remains the leading cause of death and disability in the world. A new potential treatment for stroke is the granulocyte colony-stimulating factor (G-CSF), which exerts neuroprotective effects through multiple mechanisms. Memory impairment is the most common cognitive problem after a stroke. The suggested treatment for memory impairments is cognitive rehabilitation, which is often ineffective. The hippocampus plays an important role in memory formation. This project aimed to study the effect of G-CSF on memory and dendritic morphology of hippocampal CA1 pyramidal neurons after middle cerebral artery occlusion (MCAO)in rats. METHODS Male Sprague-Dawley rats were divided into three groups: the sham, control (MCAO + Vehicle), and treatment (MCAO + G-CSF) groups. G-CSF (50 µg/kg S.C) was administered at 6, 24, and 48 h after brain ischemia induction. The passive avoidance task to evaluate learning and memory was performed on days 6 and 7 post-ischemia. Seven days after MCAO, the brain was removed and the hippocampal slices were stained with Golgi. After that, the neurons were analyzed for dendritic morphology and maturity. OUTCOMES The data showed that stroke was associated with a significant impairment in the acquisition and retention of passive avoidance tasks, while the G-CSF improved learning and memory loss. The dendritic length, arborization, spine density, and mature spines of the hippocampus CA1 neurons were significantly reduced in the control group, and treatment with G-CSF significantly increased these parameters. CONCLUSION G-CSF, even with three doses, improved learning and memory deficits, and dendritic morphological changes in the CA1 hippocampal neurons resulted from brain ischemia.
Collapse
Affiliation(s)
- Hamzeh Badeli Sarkala
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leila Kamali Dolatabadi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|