1
|
Wang Y, Chen S, Lu Z, Liu Y, Hu J, Zhou D. Inferring Absolute Cell Numbers from Relative Proportion in Stochastic Models with Cell Plasticity. J Theor Biol 2025:112133. [PMID: 40280232 DOI: 10.1016/j.jtbi.2025.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Quantifying dynamic changes in cell populations is crucial for a comprehensive understanding of biological processes such as cell proliferation, injury repair, and disease progression. However, compared to directly measuring the absolute cell numbers of specific subpopulations, relative proportion data demonstrate greater reproducibility and yield more stable, reliable outcomes. Therefore, inferring absolute cell numbers from relative proportion data may present a novel approach for effectively predicting changes in cell population sizes. To address this, we establish two mathematical mappings between cell proportions and population sizes using moment equations derived from stochastic cell-plasticity models. Notably, our findings indicate that one of these mappings does not require prior knowledge of the initial population size, highlighting the value of incorporating variance information into cell proportion data. We evaluated the robustness of our methods from multiple perspectives and extended their application to various biological mechanisms within the context of cell plasticity models. These methods help mitigate the limitations associated with the direct measurement of absolute cell counts through experimental techniques. Moreover, they provide new insights into leveraging the stochastic dynamics of cell populations to quantify interactions between different biomasses within the system.
Collapse
Affiliation(s)
- Yuman Wang
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, PR China
| | - Shuli Chen
- School of Mathematics, Sun Yat-sen University, Guangdong, 510275, PR China
| | - Zhaolian Lu
- Shenzhen Institute of Advanced Technology, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, 519087, China
| | - Jie Hu
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, PR China.
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
2
|
Yang H, Guo Y, Wang J, Tao C, Cao J, Cheng T, Liu C. Bmgsb is involved in the determination of cell fate by affecting the cell cycle genes in the silk gland of Bombyx mori. Int J Biol Macromol 2024; 283:136914. [PMID: 39515687 DOI: 10.1016/j.ijbiomac.2024.136914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Silk gland is the only organ of silkworm that can produce silk protein, which is a natural macromolecular protein complex and widely utilized in various fields such as biomaterials and biomedicine. The development of silk gland and the expression patterns of silk protein crucial for the silk industry. In this study, the function of a transcription factor Bmgsb was investigated with CRISPR/Cas9 and transgenic system. It was found that the homozygous individuals in the Bmgsb KO line experienced spinning failure and pupae death, the AMSG exhibited defects, and the ASG displayed abnormal curvature. These phenotypes were accompanied by increased DNA endoreplication and significantly upregulated expression of fibroin genes in the ASG. RT-qPCR results confirmed significant upregulation of cell cycle-related genes, including cyclin G and cyclin T in the Bmgsb KO line. Furthermore, ectopic expression of Bmgsb in the PSG weakened PSG curvature, inhibited DNA endoreplication, and downregulated the expression of fibroin genes. These findings strongly suggest that Bmgsb plays a crucial role in determining cell fate in the silk gland and regulating the expression of silk protein through the cyclin pathway. Our research provides a theoretical foundation for further studies on organ differentiation and have implications for the silk industry.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuanyuan Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jinxia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Li X, Poire A, Jeong KJ, Zhang D, Chen G, Sun C, Mills GB. Single-cell trajectory analysis reveals a CD9 positive state to contribute to exit from stem cell-like and embryonic diapause states and transit to drug-resistant states. Cell Death Discov 2023; 9:285. [PMID: 37542044 PMCID: PMC10403509 DOI: 10.1038/s41420-023-01586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Bromo- and extra-terminal domain (BET) inhibitors (BETi) have been shown to decrease tumor growth in preclinical models and clinical trials. However, toxicity and rapid emergence of resistance have limited their clinical implementation. To identify state changes underlying acquisition of resistance to the JQ1 BETi, we reanalyzed single-cell RNAseq data from JQ1 sensitive and resistant SUM149 and SUM159 triple-negative breast cancer cell lines. Parental and JQ1-resistant SUM149 and SUM159 exhibited a stem cell-like and embryonic diapause (SCLED) cell state as well as a transitional cell state between the SCLED state that is present in both treatment naïve and JQ1 treated cells, and a number of JQ1 resistant cell states. A transitional cell state transcriptional signature but not a SCLED state transcriptional signature predicted worsened outcomes in basal-like breast cancer patients suggesting that transit from the SCLED state to drug-resistant states contributes to patient outcomes. Entry of SUM149 and SUM159 into the transitional cell state was characterized by elevated expression of the CD9 tetraspanin. Knockdown or inhibition of CD9-sensitized cells to multiple targeted and cytotoxic drugs in vitro. Importantly, CD9 knockdown or blockade sensitized SUM149 to JQ1 in vivo by trapping cells in the SCLED state and limiting transit to resistant cell states. Thus, CD9 appears to be critical for the transition from a SCLED state into treatment-resistant cell states and warrants exploration as a therapeutic target in basal-like breast cancer.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
4
|
Zhang D, Eguchi N, Okazaki S, Sora I, Hishimoto A. Telencephalon Organoids Derived from an Individual with ADHD Show Altered Neurodevelopment of Early Cortical Layer Structure. Stem Cell Rev Rep 2023:10.1007/s12015-023-10519-z. [PMID: 36872412 PMCID: PMC10366301 DOI: 10.1007/s12015-023-10519-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in early childhood and can persist to adulthood. It can affect many aspects of a patient's daily life, so it is necessary to explore the mechanism and pathological alterations. For this purpose, we applied induced pluripotent stem cell (iPSC)-derived telencephalon organoids to recapitulate the alterations occurring in the early cerebral cortex of ADHD patients. We found that telencephalon organoids of ADHD showed less growth of layer structures than control-derived organoids. On day 35 of differentiation, the thinner cortex layer structures of ADHD-derived organoids contained more neurons than those of control-derived organoids. Furthermore, ADHD-derived organoids showed a decrease in cell proliferation during development from day 35 to 56. On day 56 of differentiation, there was a significant difference in the proportion of symmetric and asymmetric cell division between the ADHD and control groups. In addition, we observed increased cell apoptosis in ADHD during early development. These results show alterations in the characteristics of neural stem cells and the formation of layer structures, which might indicate key roles in the pathogenesis of ADHD. Our organoids exhibit the cortical developmental alterations observed in neuroimaging studies, providing an experimental foundation for understanding the pathological mechanisms of ADHD.
Collapse
Affiliation(s)
- Danmeng Zhang
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriomi Eguchi
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Nagai M, Iemura K, Kikkawa T, Naher S, Hattori S, Hagihara H, Nagata KI, Anzawa H, Kugisaki R, Wanibuchi H, Abe T, Inoue K, Kinoshita K, Miyakawa T, Osumi N, Tanaka K. Deficiency of CHAMP1, a gene related to intellectual disability, causes impaired neuronal development and a mild behavioural phenotype. Brain Commun 2022; 4:fcac220. [PMID: 36106092 PMCID: PMC9465530 DOI: 10.1093/braincomms/fcac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
CHAMP1 is a gene associated with intellectual disability, which was originally identified as being involved in the maintenance of kinetochore–microtubule attachment. To explore the neuronal defects caused by CHAMP1 deficiency, we established mice that lack CHAMP1. Mice that are homozygous knockout for CHAMP1 were slightly smaller than wild-type mice and died soon after birth on pure C57BL/6J background. Although gross anatomical defects were not found in CHAMP1−/− mouse brains, mitotic cells were increased in the cerebral cortex. Neuronal differentiation was delayed in CHAMP1−/− neural stem cells in vitro, which was also suggested in vivo by CHAMP1 knockdown. In a behavioural test battery, adult CHAMP1 heterozygous knockout mice showed mild memory defects, altered social interaction, and depression-like behaviours. In transcriptomic analysis, genes related to neurotransmitter transport and neurodevelopmental disorder were downregulated in embryonic CHAMP1−/− brains. These results suggest that CHAMP1 plays a role in neuronal development, and CHAMP1-deficient mice resemble some aspects of individuals with CHAMP1 mutations.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Sharmin Naher
- Department of Developmental Neuroscience, Tohoku University Graduate School of Life Sciences , Sendai, Miyagi 980-8575 , Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute of Developmental Research, Aichi Developmental Disability Center , Kasugai, Aichi 480-0392 , Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine , Nagoya, Aichi 466-8550 , Japan
| | - Hayato Anzawa
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
| | - Risa Kugisaki
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine , Osaka 545-8585 , Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
- Division of Integrated Genomics, Tohoku Medical Megabank Organization, Tohoku University , Sendai, 980-8573 , Japan
- Department of In Silico Analysis, Institute of Development, Aging and Cancer, Tohoku University , Sendai, 980-8575 , Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| |
Collapse
|
6
|
Pfeuty B. Multistability and transitions between spatiotemporal patterns through versatile Notch-Hes signaling. J Theor Biol 2022; 539:111060. [DOI: 10.1016/j.jtbi.2022.111060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/02/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
7
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Çekiç D, Yılmaz ŞN, Bölgen N, Ünal S, Duce MN, Bayrak G, Demir D, Türkegün M, Sarı A, Demir Y, Ünal Ş. Impact of injectable chitosan cryogel microspherescaffolds on differentiation and proliferation of adiposederived mesenchymal stem cells into fat cells. J Biomater Appl 2021; 36:1335-1345. [PMID: 34965760 DOI: 10.1177/08853282211048284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Difficulty in the clinical practice of stem cell therapy is often experienced in achieving desired target tissue cell differentiation and migration of stem cells to other tissue compartments where they are destroyed or die. This study was performed to evaluate if mesenchymal stem cells (MSCs) may differentiate into desired cell types when injected after combined with an injectable cryogel scaffold and to investigate if this scaffold may help in preventing cells from passing into different tissue compartments. MSCs were obtained from fat tissue of the rabbits as autografts and nuclei and cytoplasms of these cells were labeled with BrdU and PKH26. In Group 1, only-scaffold; in Group 2, only-MSCs; and in Group 3, combined stem cell/scaffold were injected to the right malar area of the rabbits. At postoperative 3 weeks, volumes of the injected areas were calculated by computer-tomography scans and histopathological evaluation was performed. The increase in the volume of the right malar areas was more in Group 3. In histopathological evaluation, chitosan cryogel microspheres were observed microscopically within the tissue and the scaffold was only partially degraded. Normal tissue form was seen in Group 2. Cells differentiated morphologically into fat cells were detected in Groups 2 and 3. Injectable chitosan cryogel microspheres were used in vivo for the first time in this study. As it was demonstrated to be useful in carrying MSCs to the reconstructed area, help cell differentiation to desired cells and prevent migration to other tissue compartments, it may be used for reconstructive purposes in the future.
Collapse
Affiliation(s)
- Duran Çekiç
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | | | - Nimet Bölgen
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Selma Ünal
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Meltem Nass Duce
- Faculty of Medicine, Department of Radiology, Mersin University, Turkey
| | - Gülsen Bayrak
- Faculty of Medicine, Department of Histology, Mersin University, Turkey
| | - Didem Demir
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Merve Türkegün
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin University, Turkey
| | - Alper Sarı
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Yavuz Demir
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Şakir Ünal
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| |
Collapse
|
9
|
Manzanero-Ortiz S, de Torres-Jurado A, Hernández-Rojas R, Carmena A. Pilot RNAi Screen in Drosophila Neural Stem Cell Lineages to Identify Novel Tumor Suppressor Genes Involved in Asymmetric Cell Division. Int J Mol Sci 2021; 22:11332. [PMID: 34768763 PMCID: PMC8582830 DOI: 10.3390/ijms222111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
A connection between compromised asymmetric cell division (ACD) and tumorigenesis was proven some years ago using Drosophila larval brain neural stem cells, called neuroblasts (NBs), as a model system. Since then, we have learned that compromised ACD does not always promote tumorigenesis, as ACD is an extremely well-regulated process in which redundancy substantially overcomes potential ACD failures. Considering this, we have performed a pilot RNAi screen in Drosophila larval brain NB lineages using RasV12 scribble (scrib) mutant clones as a sensitized genetic background, in which ACD is affected but does not cause tumoral growth. First, as a proof of concept, we have tested known ACD regulators in this sensitized background, such as lethal (2) giant larvae and warts. Although the downregulation of these ACD modulators in NB clones does not induce tumorigenesis, their downregulation along with RasV12 scrib does cause tumor-like overgrowth. Based on these results, we have randomly screened 79 RNAi lines detecting 15 potential novel ACD regulators/tumor suppressor genes. We conclude that RasV12 scrib is a good sensitized genetic background in which to identify tumor suppressor genes involved in NB ACD, whose function could otherwise be masked by the high redundancy of the ACD process.
Collapse
Affiliation(s)
| | | | | | - Ana Carmena
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d’Alacant, Alicante, Spain; (S.M.-O.); (A.d.T.-J.); (R.H.-R.)
| |
Collapse
|
10
|
Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021; 24:102385. [PMID: 33997675 PMCID: PMC8100630 DOI: 10.1016/j.isci.2021.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Here we identify human Kinesin-5, Kif11/HsEg5, as a cellular target of Zika protease. We show that Zika NS2B-NS3 protease targets several sites within the motor domain of HsEg5 irrespective of motor binding to microtubules. The native integral ER-membrane protease triggers mitotic spindle positioning defects and a prolonged metaphase delay in cultured cells. Our data support a model whereby loss of function of HsEg5 is mediated by Zika protease and is spatially restricted to the ER-mitotic spindle interface during mitosis. The resulting phenotype is distinct from the monopolar phenotype that typically results from uniform inhibition of HsEg5 by RNAi or drugs. In addition, our data reveal novel inter-organelle interactions between the mitotic apparatus and the surrounding reticulate ER network. Given that Kif11 is haplo-insufficient in humans, and reduced dosage results in microcephaly, we propose that Zika protease targeting of HsEg5 may be a key event in the etiology of Zika syndrome microcephaly. Zika protease cleavage of Kinesin-5 impairs mitotic progression Inter-organelle interactions spatially control Zika proteolysis of Kinesin-5 Native Zika protease affects mitosis differently than soluble Zika protease Zika protease may elicit fetal microcephaly and blindness via Kif11/Kinesin-5
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Micquel Downs
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Jesse Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
- The Proteomics Core Facility, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Wu Z, Wang Y, Wang K, Zhou D. Stochastic stem cell models with mutation: A comparison of asymmetric and symmetric divisions. Math Biosci 2021; 332:108541. [PMID: 33453222 DOI: 10.1016/j.mbs.2021.108541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
In order to fulfill cell proliferation and differentiation through cellular hierarchy, stem cells can undergo either asymmetric or symmetric divisions. Recent studies pay special attention to the effect of different modes of stem cell division on the lifetime risk of cancer, and report that symmetric division is more beneficial to delay the onset of cancer. The fate uncertainty of symmetric division is considered to be the reason for the cancer-delaying effect. In this paper we compare asymmetric and symmetric divisions of stem cells via studying stochastic stem cell models with mutation. Specially, by using rigorous mathematical analysis we find that both the asymmetric and symmetric models show the same statistical average, but the symmetric model shows higher fluctuation than the asymmetric model. We further show that the difference between the two models would be more remarkable for lower mutation rates. Our work quantifies the uncertainty of cell division and highlights the significance of stochasticity for distinguishing between different modes of stem cell division.
Collapse
Affiliation(s)
- Zhijie Wu
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yuman Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Kun Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
12
|
Pacheco-Herrero M, Soto-Rojas LO, Reyes-Sabater H, Garcés-Ramirez L, de la Cruz López F, Villanueva-Fierro I, Luna-Muñoz J. Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. J Alzheimers Dis 2021; 84:917-935. [PMID: 34633316 PMCID: PMC8673502 DOI: 10.3233/jad-200863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases called tauopathies, such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease, among others, are characterized by the pathological processing and accumulation of tau protein. AD is the most prevalent neurodegenerative disease and is characterized by two lesions: neurofibrillary tangles (NFTs) and neuritic plaques. The presence of NFTs in the hippocampus and neocortex in early and advanced stages, respectively, correlates with the patient's cognitive deterioration. So far, no drugs can prevent, decrease, or limit neuronal death due to abnormal pathological tau accumulation. Among potential non-pharmacological treatments, physical exercise has been shown to stimulate the development of stem cells (SCs) and may be useful in early stages. However, this does not prevent neuronal death from the massive accumulation of NFTs. In recent years, SCs therapies have emerged as a promising tool to repopulate areas involved in cognition in neurodegenerative diseases. Unfortunately, protocols for SCs therapy are still being developed and the mechanism of action of such therapy remains unclear. In this review, we show the advances and limitations of SCs therapy. Finally, we provide a critical analysis of its clinical use for AD.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Heidy Reyes-Sabater
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Linda Garcés-Ramirez
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fidel de la Cruz López
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, UNAM, State of Mexico, Mexico
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Dominican Republic
| |
Collapse
|
13
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
14
|
Fourel G, Boscheron C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 2020; 594:3409-3438. [PMID: 33064843 DOI: 10.1002/1873-3468.13958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question. Here, we examined 85 MCD-associated tubulin mutations occurring in TUBA1A, TUBB2, and TUBB3 and their location in a three-dimensional (3D) microtubule cylinder. Mutations hitting residues exposed on the outer microtubule surface are likely to alter microtubule association with partners, while alteration of intradimer contacts may impair dimer stability and straightness. Other types of mutations are predicted to alter interdimer and lateral contacts, which are responsible for microtubule cohesion, rigidity, and dynamics. MCD-associated tubulin mutations surprisingly fall into all categories, thus providing unexpected insights into how a single mutation may impair microtubule function and elicit dominant effects in neurons.
Collapse
|
15
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
16
|
Gong Y, He X, Li Q, He J, Bian B, Li Y, Ge L, Zeng Y, Xu H, Yin ZQ. SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development 2019; 146:dev.174409. [PMID: 31548215 DOI: 10.1242/dev.174409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
The stem cell factor receptor (SCFR) has been demonstrated to be expressed in the neural retina of mice, rat and human for decades. Previous reports indicated that the SCFR correlates with glia differentiation of late retinal progenitor cells (RPCs), retinal vasculogenesis and homeostasis of the blood-retinal barrier. However, the role of SCF/SCFR signaling in the growth and development of the neural retina (NR), especially in the early embryonic stage, remains poorly understood. Here, we show that SCF/SCFR signaling orchestrates invagination of the human embryonic stem cell (hESC)-derived NR via regulation of cell cycle progression, cytoskeleton dynamic and apical constriction of RPCs in the ciliary marginal zone (CMZ). Furthermore, activation of SCF/SCFR signaling promotes neurogenesis in the central-most NR via acceleration of the migration of immature ganglion cells and repressing apoptosis. Our study reveals an unreported role for SCF/SCFR signaling in controlling ciliary marginal cellular behaviors during early morphogenesis and neurogenesis of the human embryonic NR, providing a new potential therapeutic target for human congenital eye diseases such as anophthalmia, microphthalmia and congenital high myopia.
Collapse
Affiliation(s)
- Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Xiangyu He
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Qiyou Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Juncai He
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Baishijiao Bian
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yijian Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Linlin Ge
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yuxiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Haiwei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Zheng Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| |
Collapse
|
17
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
18
|
Lukaszewicz AI, Nguyen C, Melendez E, Lin DP, Teo JL, Lai KKY, Huttner WB, Shi SH, Kahn M. The Mode of Stem Cell Division Is Dependent on the Differential Interaction of β-Catenin with the Kat3 Coactivators CBP or p300. Cancers (Basel) 2019; 11:cancers11070962. [PMID: 31324005 PMCID: PMC6678591 DOI: 10.3390/cancers11070962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Normal long-term repopulating somatic stem cells (SSCs) preferentially divide asymmetrically, with one daughter cell remaining in the niche and the other going on to be a transient amplifying cell required for generating new tissue in homeostatic maintenance and repair processes, whereas cancer stem cells (CSCs) favor symmetric divisions. We have previously proposed that differential β-catenin modulation of transcriptional activity via selective interaction with either the Kat3 coactivator CBP or its closely related paralog p300, regulates symmetric versus asymmetric division in SSCs and CSCs. We have previously demonstrated that SSCs that divide asymmetrically per force retain one of the dividing daughter cells in the stem cell niche, even when treated with specific CBP/β-catenin antagonists, whereas CSCs can be removed from their niche via forced stochastic symmetric differentiative divisions. We now demonstrate that loss of p73 in early corticogenesis biases β-catenin Kat3 coactivator usage and enhances β-catenin/CBP transcription at the expense of β-catenin/p300 transcription. Biased β-catenin coactivator usage has dramatic consequences on the mode of division of neural stem cells (NSCs), but not neurogenic progenitors. The observed increase in symmetric divisions due to enhanced β-catenin/CBP interaction and transcription leads to an immediate increase in NSC symmetric differentiative divisions. Moreover, we demonstrate for the first time that the complex phenotype caused by the loss of p73 can be rescued in utero by treatment with the small-molecule-specific CBP/β-catenin antagonist ICG-001. Taken together, our results demonstrate the causal relationship between the choice of β-catenin Kat3 coactivator and the mode of stem cell division.
Collapse
Affiliation(s)
- Agnes I Lukaszewicz
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cu Nguyen
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Melendez
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - David P Lin
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keane K Y Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Kahn
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA 90033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Asymmetric Inheritance of Cell Fate Determinants: Focus on RNA. Noncoding RNA 2019; 5:ncrna5020038. [PMID: 31075989 PMCID: PMC6630313 DOI: 10.3390/ncrna5020038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
During the last decade, and mainly primed by major developments in high-throughput sequencing technologies, the catalogue of RNA molecules harbouring regulatory functions has increased at a steady pace. Current evidence indicates that hundreds of mammalian RNAs have regulatory roles at several levels, including transcription, translation/post-translation, chromatin structure, and nuclear architecture, thus suggesting that RNA molecules are indeed mighty controllers in the flow of biological information. Therefore, it is logical to suggest that there must exist a series of molecular systems that safeguard the faithful inheritance of RNA content throughout cell division and that those mechanisms must be tightly controlled to ensure the successful segregation of key molecules to the progeny. Interestingly, whilst a handful of integral components of mammalian cells seem to follow a general pattern of asymmetric inheritance throughout division, the fate of RNA molecules largely remains a mystery. Herein, we will discuss current concepts of asymmetric inheritance in a wide range of systems, including prions, proteins, and finally RNA molecules, to assess overall the biological impact of RNA inheritance in cellular plasticity and evolutionary fitness.
Collapse
|
20
|
Gaitanou M, Segklia K, Matsas R. Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function. Stem Cells Int 2019; 2019:2054783. [PMID: 31191667 PMCID: PMC6525816 DOI: 10.1155/2019/2054783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Neural stem/precursor cells (NPCs) generate the large variety of neuronal phenotypes comprising the adult brain. The high diversity and complexity of this organ have its origin in embryonic life, during which NPCs undergo symmetric and asymmetric divisions and then exit the cell cycle and differentiate to acquire neuronal identities. During these processes, coordinated regulation of cell cycle progression/exit and differentiation is essential for generation of the appropriate number of neurons and formation of the correct structural and functional neuronal circuits in the adult brain. Cend1 is a neuronal lineage-specific modulator involved in synchronization of cell cycle exit and differentiation of neuronal precursors. It is expressed all along the neuronal lineage, from neural stem/progenitor cells to mature neurons, and is associated with the dynamics of neuron-generating divisions. Functional studies showed that Cend1 has a critical role during neurogenesis in promoting cell cycle exit and neuronal differentiation. Mechanistically, Cend1 acts via the p53-dependent/Cyclin D1/pRb signaling pathway as well as via a p53-independent route involving a tripartite interaction with RanBPM and Dyrk1B. Upon Cend1 function, Notch1 signaling is suppressed and proneural genes such as Mash1 and Neurogenins 1/2 are induced. Due to its neurogenic activity, Cend1 is a promising candidate therapeutic gene for brain repair, while the Cend1 minimal promoter is a valuable tool for neuron-specific gene delivery in the CNS. Mice with Cend1 genetic ablation display increased NPC proliferation, decreased migration, and higher levels of apoptosis during development. As a result, they show in the adult brain deficits in a range of motor and nonmotor behaviors arising from irregularities in cerebellar cortex lamination and impaired Purkinje cell differentiation as well as a paucity in GABAergic interneurons of the cerebral cortex, hippocampus, and amygdala. Taken together, these studies highlight the necessity for Cend1 expression in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
21
|
Denarier E, Brousse C, Sissoko A, Andrieux A, Boscheron C. A neurodevelopmental TUBB2B β-tubulin mutation impairs Bim1 (yeast EB1)-dependent spindle positioning. Biol Open 2019; 8:bio.038620. [PMID: 30674462 PMCID: PMC6361202 DOI: 10.1242/bio.038620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Malformations of the human cerebral cortex can be caused by mutations in tubulins that associate to compose microtubules. Cerebral cortical folding relies on neuronal migration and on progenitor proliferation partly dictated by microtubule-dependent mitotic spindle positioning. A single amino acid change, F265L, in the conserved TUBB2B β-tubulin gene has been identified in patients with abnormal cortex formation. A caveat for studying this mutation in mammalian cells is that nine genes encode β-tubulin in human. Here, we generate a yeast strain expressing F265L tubulin mutant as the sole source of β-tubulin. The F265L mutation does not preclude expression of a stable β-tubulin protein which is incorporated into microtubules. However, impaired cell growth was observed at high temperatures along with altered microtubule dynamics and stability. In addition, F265L mutation produces a highly specific mitotic spindle positioning defect related to Bim1 (yeast EB1) dysfunction. Indeed, F265L cells display an abnormal Bim1 recruitment profile at microtubule plus-ends. These results indicate that the F265L β-tubulin mutation affects microtubule plus-end complexes known to be important for microtubule dynamics and for microtubule function during mitotic spindle positioning.
Collapse
Affiliation(s)
- Eric Denarier
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Carine Brousse
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
| | | | - Annie Andrieux
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Cécile Boscheron
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France .,Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38000, Grenoble, France.,Institut de Biologie Structurale (IBS) , F-38000 Grenoble, France
| |
Collapse
|
22
|
Semaphorin signaling via MICAL3 induces symmetric cell division to expand breast cancer stem-like cells. Proc Natl Acad Sci U S A 2018; 116:625-630. [PMID: 30587593 PMCID: PMC6329980 DOI: 10.1073/pnas.1806851116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumors are composed of both cancer stem-like cells (CSCs) and differentiated cancer cells. Each CSC can undergo either a symmetric cell division to produce two CSCs or an asymmetric cell division to produce one CSC and one differentiated cancer cell. It is believed that the rate of symmetric division increases as more CSCs become malignant; however, underlying molecular mechanisms remain elusive. Here we show that stimulation with a cytokine, semaphorin (Sema), activates monooxygenase of MICAL3, a cytoplasmic signal transducer, through the neuropilin (NP) receptor that is specifically expressed on the breast CSC plasma membrane. The activation of MICAL3 induces symmetric division of CSCs. Each molecule in this signaling pathway represents a promising therapeutic target for eliminating CSCs. Cancer stem-like cells (CSCs) are expanded in the CSC niche by increased frequency of symmetric cell divisions at the expense of asymmetric cell divisions. The symmetric division of CSCs is important for the malignant properties of cancer; however, underlying molecular mechanisms remain largely elusive. Here, we show a cytokine, semaphorin 3 (Sema3), produced from the CSC niche, induces symmetric divisions of CSCs to expand the CSC population. Our findings indicate that stimulation with Sema3 induced sphere formation in breast cancer cells through neuropilin 1 (NP1) receptor that was specifically expressed in breast CSCs (BCSCs). Knockdown of MICAL3, a cytoplasmic Sema3 signal transducer, greatly decreased tumor sphere formation and tumor-initiating activity. Mechanistically, Sema3 induced interaction among MICAL3, collapsin response mediator protein 2 (CRMP2), and Numb. It appears that activity of MICAL3 monooxygenase (MO) stimulated by Sema3 is required for tumor sphere formation, interaction between CRMP2 and Numb, and accumulation of Numb protein. We found that knockdown of CRMP2 or Numb significantly decreased tumor sphere formation. Moreover, MICAL3 knockdown significantly decreased Sema3-induced symmetric divisions in NP1/Numb-positive BCSCs and increased asymmetric division that produces NP1/Numb negative cells without stem-like properties. In addition, breast cancer patients with NP1-positive cancer tissues show poor prognosis. Therefore, the niche factor Sema3-stimulated NP1/MICAL3/CRMP2/Numb axis appears to expand CSCs at least partly through increased frequency of MICAL3-mediated symmetric division of CSCs.
Collapse
|
23
|
Bianchi FT, Berto GE, Di Cunto F. Impact of DNA repair and stability defects on cortical development. Cell Mol Life Sci 2018; 75:3963-3976. [PMID: 30116853 PMCID: PMC11105354 DOI: 10.1007/s00018-018-2900-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Maintenance of genome stability is a crucial cellular function for normal mammalian development and physiology. However, despite the general relevance of this process, genome stability alteration due to genetic or non-genetic conditions has a particularly profound impact on the developing cerebral cortex. In this review, we will analyze the main pathways involved in maintenance of genome stability, the consequences of their alterations with regard to central nervous system development, as well as the possible molecular and cellular basis of this specificity.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
24
|
Kullmann L, Krahn MP. Redundant regulation of localization and protein stability of DmPar3. Cell Mol Life Sci 2018; 75:3269-3282. [PMID: 29523893 PMCID: PMC11105499 DOI: 10.1007/s00018-018-2792-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Apical-basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical-basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical-basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical-basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical-basal cell polarization.
Collapse
Affiliation(s)
- Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
25
|
Geng A, Qiu R, Murai K, Liu J, Wu X, Zhang H, Farhoodi H, Duong N, Jiang M, Yee JK, Tsark W, Lu Q. KIF20A/MKLP2 regulates the division modes of neural progenitor cells during cortical development. Nat Commun 2018. [PMID: 30006548 DOI: 10.1038/s41467-01805152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Balanced symmetric and asymmetric divisions of neural progenitor cells (NPCs) are crucial for brain development, but the underlying mechanisms are not fully understood. Here we report that mitotic kinesin KIF20A/MKLP2 interacts with RGS3 and plays a crucial role in controlling the division modes of NPCs during cortical neurogenesis. Knockdown of KIF20A in NPCs causes dislocation of RGS3 from the intercellular bridge (ICB), impairs the function of Ephrin-B-RGS cell fate signaling complex, and leads to a transition from proliferative to differentiative divisions. Germline and inducible knockout of KIF20A causes a loss of progenitor cells and neurons and results in thinner cortex and ventriculomegaly. Interestingly, loss of function of KIF20A induces early cell cycle exit and precocious neuronal differentiation without causing substantial cytokinesis defect or apoptosis. Our results identify a RGS-KIF20A axis in the regulation of cell division and suggest a potential link of the ICB to regulation of cell fate determination.
Collapse
Affiliation(s)
- Anqi Geng
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Runxiang Qiu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Kiyohito Murai
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
- Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jiancheng Liu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Heying Zhang
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Henry Farhoodi
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Nam Duong
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiing-Kuan Yee
- Department of Virology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Walter Tsark
- Transgenic/Knockout Mice Facility, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Qiang Lu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
26
|
KIF20A/MKLP2 regulates the division modes of neural progenitor cells during cortical development. Nat Commun 2018; 9:2707. [PMID: 30006548 PMCID: PMC6045631 DOI: 10.1038/s41467-018-05152-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Balanced symmetric and asymmetric divisions of neural progenitor cells (NPCs) are crucial for brain development, but the underlying mechanisms are not fully understood. Here we report that mitotic kinesin KIF20A/MKLP2 interacts with RGS3 and plays a crucial role in controlling the division modes of NPCs during cortical neurogenesis. Knockdown of KIF20A in NPCs causes dislocation of RGS3 from the intercellular bridge (ICB), impairs the function of Ephrin-B–RGS cell fate signaling complex, and leads to a transition from proliferative to differentiative divisions. Germline and inducible knockout of KIF20A causes a loss of progenitor cells and neurons and results in thinner cortex and ventriculomegaly. Interestingly, loss of function of KIF20A induces early cell cycle exit and precocious neuronal differentiation without causing substantial cytokinesis defect or apoptosis. Our results identify a RGS–KIF20A axis in the regulation of cell division and suggest a potential link of the ICB to regulation of cell fate determination. The division of neural progenitors is closely regulated but how is unclear. Here, the authors show that mitotic kinesin KIF20A/MKLP2 interacts with a regulator of G protein signaling RGS3 in neural progenitor cells, dislodging it from the intercellular bridge of dividing cortical cells.
Collapse
|
27
|
Mendoza-Ortíz MA, Murillo-Maldonado JM, Riesgo-Escovar JR. aaquetzalli is required for epithelial cell polarity and neural tissue formation in Drosophila. PeerJ 2018; 6:e5042. [PMID: 29942698 PMCID: PMC6015755 DOI: 10.7717/peerj.5042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023] Open
Abstract
Morphogenetic movements during embryogenesis require dynamic changes in epithelial cell polarity and cytoskeletal reorganization. Such changes involve, among others, rearrangements of cell-cell contacts and protein traffic. In Drosophila melanogaster, neuroblast delamination during early neurogenesis is a well-characterized process requiring a polarized neuroepithelium, regulated by the Notch signaling pathway. Maintenance of epithelial cell polarity ensues proper Notch pathway activation during neurogenesis. We characterize here aaquetzalli (aqz), a gene whose mutations affect cell polarity and nervous system specification. The aqz locus encodes a protein that harbors a domain with significant homology to a proline-rich conserved domain of nuclear receptor co-activators. aqz expression occurs at all stages of the fly life cycle, and is dynamic. aqz mutants are lethal, showing a disruption of cell polarity during embryonic ventral neuroepithelium differentiation resulting in loss of epithelial integrity and mislocalization of membrane proteins (shown by mislocalization of Crumbs, DE-Cadherin, and Delta). As a consequence, aqz mutant embryos with compromised apical-basal cell polarity develop spotty changes of neuronal and epithelial numbers of cells.
Collapse
Affiliation(s)
- Miguel A Mendoza-Ortíz
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Juan M Murillo-Maldonado
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Juan R Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
28
|
Clinical application of cell, gene and tissue therapies in Spain. Rev Clin Esp 2018. [DOI: 10.1016/j.rceng.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Mora N, Oliva C, Fiers M, Ejsmont R, Soldano A, Zhang TT, Yan J, Claeys A, De Geest N, Hassan BA. A Temporal Transcriptional Switch Governs Stem Cell Division, Neuronal Numbers, and Maintenance of Differentiation. Dev Cell 2018; 45:53-66.e5. [DOI: 10.1016/j.devcel.2018.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023]
|
30
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Gálvez-Martín P, Ruiz A, Clares B. Clinical application of cell, gene and tissue therapies in Spain. Rev Clin Esp 2017; 218:199-206. [PMID: 29032959 DOI: 10.1016/j.rce.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 08/13/2017] [Indexed: 11/30/2022]
Abstract
Scientific and technical advances in the areas of biomedicine and regenerative medicine have enabled the development of new treatments known as "advanced therapies", which encompass cell therapy, genetics and tissue engineering. The biologic products that can be manufactured from these elements are classified from the standpoint of the Spanish Agency of Medication and Health Products in advanced drug therapies, blood products and transplants. This review seeks to provide scientific and administrative information for clinicians on the use of these biologic resources.
Collapse
Affiliation(s)
- P Gálvez-Martín
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España.
| | - A Ruiz
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España
| | - B Clares
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, España
| |
Collapse
|
32
|
Dynamics of the cell division orientation of granule cell precursors during cerebellar development. Mech Dev 2017. [DOI: 10.1016/j.mod.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Busengdal H, Rentzsch F. Unipotent progenitors contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis. Dev Biol 2017; 431:59-68. [PMID: 28827097 DOI: 10.1016/j.ydbio.2017.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022]
Abstract
Nervous systems often consist of a large number of different types of neurons which are generated from neural stem and progenitor cells by a series of symmetric and asymmetric divisions. The origin and early evolution of these neural progenitor systems is not well understood. Here we use a cnidarian model organism, Nematostella vectensis, to gain insight into the generation of neural cell type diversity in a non-bilaterian animal. We identify NvFoxQ2d as a transcription factor that is expressed in a population of spatially restricted, proliferating ectodermal cells that are derived from NvSoxB(2)-expressing neural progenitor cells. Using a transgenic reporter line we show that the NvFoxQ2d cells undergo a terminal, symmetric division to generate a morphologically homogeneous population of putative sensory cells. The abundance of these cells, but not their proliferation status is affected by treatment with the γ-secretase inhibitor DAPT, suggesting regulation by Notch signalling. Our data suggest that intermediate progenitor cells and symmetric divisions contribute to the formation of the seemingly simple nervous system of a sea anemone.
Collapse
Affiliation(s)
- Henriette Busengdal
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006 Bergen, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006 Bergen, Norway.
| |
Collapse
|
34
|
Dhanesh SB, Subashini C, Riya PA, Rasheed VA, James J. Pleiotropic Hes-1 Concomitant with its Differential Activation Mediates Neural Stem Cell Maintenance and Radial Glial Propensity in Developing Neocortex. Cereb Cortex 2017; 27:3943-3961. [PMID: 27405330 DOI: 10.1093/cercor/bhw207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
Notch signaling pathway and its downstream effector Hes-1 are well known for their role in cortical neurogenesis. Despite the canonical activation of Hes-1 in developing neocortex, recent advances have laid considerable emphasis on Notch/CBF1-independent Hes-1 (NIHes-1) expression with poor understanding of its existence and functional significance. Here, using reporter systems and in utero electroporation, we could qualitatively unravel the existence of NIHes-1 expressing neural stem cells from the cohort of dependent progenitors throughout the mouse neocortical development. Though Hes-1 expression is maintained in neural progenitor territory at all times, a simple shift from Notch-independent to -dependent state makes it pleiotropic as the former maintains the neural stem cells in a non-dividing/slow-dividing state, whereas the latter is very much required for maintenance and proliferation of radial glial cells. Therefore, our results provide an additional complexity in neural progenitor heterogeneity regarding differential Hes-1 expression in the germinal zone during neo-cortical development.
Collapse
Affiliation(s)
- Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Vazhanthodi Abdul Rasheed
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| |
Collapse
|
35
|
Wu YC, Lee KS, Song Y, Gehrke S, Lu B. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain. PLoS Genet 2017; 13:e1006785. [PMID: 28520736 PMCID: PMC5453605 DOI: 10.1371/journal.pgen.1006785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/01/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.
Collapse
Affiliation(s)
- Yen-Chi Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kyu-Sun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yan Song
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Stephan Gehrke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
36
|
Ravindran E, Hu H, Yuzwa SA, Hernandez-Miranda LR, Kraemer N, Ninnemann O, Musante L, Boltshauser E, Schindler D, Hübner A, Reinecker HC, Ropers HH, Birchmeier C, Miller FD, Wienker TF, Hübner C, Kaindl AM. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation. PLoS Genet 2017; 13:e1006746. [PMID: 28453519 PMCID: PMC5428974 DOI: 10.1371/journal.pgen.1006746] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 05/12/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
- Sozialpädiatrisches Zentrum (SPZ), Center for Chronic Sick Children, Charité University, Berlin, Germany
| | - Hao Hu
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Scott A. Yuzwa
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | | | - Nadine Kraemer
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
- Sozialpädiatrisches Zentrum (SPZ), Center for Chronic Sick Children, Charité University, Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
| | - Luciana Musante
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Detlev Schindler
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Angela Hübner
- Pediatrics, University Hospital, Technical University Dresden, Dresden, Germany
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | - Freda D. Miller
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | | | - Christoph Hübner
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Angela M. Kaindl
- Institute of Cell Biology and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité University Medicine Berlin, Berlin, Germany
- Sozialpädiatrisches Zentrum (SPZ), Center for Chronic Sick Children, Charité University, Berlin, Germany
- * E-mail:
| |
Collapse
|
37
|
Bone Marrow Homing and Engraftment Defects of Human Hematopoietic Stem and Progenitor Cells. Mediterr J Hematol Infect Dis 2017; 9:e2017032. [PMID: 28512561 PMCID: PMC5419183 DOI: 10.4084/mjhid.2017.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022] Open
Abstract
Homing of hematopoietic stem cells (HSC) to their microenvironment niches in the bone marrow is a complex process with a critical role in repopulation of the bone marrow after transplantation. This active process allows for migration of HSC from peripheral blood and their successful anchoring in bone marrow before proliferation. The process of engraftment starts with the onset of proliferation and must, therefore, be functionally dissociated from the former process. In this overview, we analyze the characteristics of stem cells (SCs) with particular emphasis on their plasticity and ability to find their way home to the bone marrow. We also address the problem of graft failure which remains a significant contributor to morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Within this context, we discuss non-malignant and malignant hematological disorders treated with reduced-intensity conditioning regimens or grafts from human leukocyte antigen (HLA)-mismatched donors.
Collapse
|
38
|
Inscuteable maintains type I neuroblast lineage identity via Numb/Notch signaling in the Drosophila larval brain. J Genet Genomics 2017; 44:151-162. [DOI: 10.1016/j.jgg.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/11/2023]
|
39
|
Dhanesh SB, Subashini C, James J. Hes1: the maestro in neurogenesis. Cell Mol Life Sci 2016; 73:4019-42. [PMID: 27233500 PMCID: PMC11108451 DOI: 10.1007/s00018-016-2277-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
The process of neurogenesis is well orchestrated by the harmony of multiple cues in a spatiotemporal manner. In this review, we focus on how a dynamic gene, Hes1, is involved in neurogenesis with the view of its regulation and functional implications. Initially, we have reviewed the immense functional significance drawn by this maestro during neural development in a context-dependent manner. How this indispensable role of Hes1 in conferring the competency for neural differentiation partly relies on the direct/indirect mode of repression mediated by very specific structural and functional arms of this protein has also been outlined here. We also review the detailed molecular mechanisms behind the well-tuned oscillatory versus sustained expression of this antineurogenic bHLH repressor, which indeed makes it a master gene to implement the elusive task of neural progenitor propensity. Apart from the functional aspects of Hes1, we also discuss the molecular insights into the endogenous regulatory machinery that regulates its expression. Though Hes1 is a classical target of the Notch signaling pathway, we discuss here its differential expression at the molecular, cellular, and/or regional level. Moreover, we describe how its expression is fine-tuned by all possible ways of gene regulation such as epigenetic, transcriptional, post-transcriptional, post-translational, and environmental factors during vertebrate neurogenesis.
Collapse
Affiliation(s)
- Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695 014, Kerala, India
| | - Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695 014, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695 014, Kerala, India.
| |
Collapse
|
40
|
Sun T, Li W, Ling S. miR-30c and semaphorin 3A determine adult neurogenesis by regulating proliferation and differentiation of stem cells in the subventricular zones of mouse. Cell Prolif 2016; 49:270-80. [PMID: 27198082 DOI: 10.1111/cpr.12261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Mechanisms that regulate proliferation of adult neural stem cells are largely unknown. Here, we have investigated the role of microR-30c (miR-30c) and its target, semaphoring 3A (sema3A), in regulating adult neurogenesis and mechanisms underlying this process. MATERIALS AND METHODS In situ hybridization, immunofluorescence and quantitative real-time PCR were used to assess complementary expression patterns of miR-30c and sema3A in mice. Effects of miR-30c in the subventricular zone (SVZ) were examined by stereotaxic injection of up- and down-regulating lentiviruses. 5'-bromo-2'-deoxyuridine labelling was performed to investigate effects of miR-30c and sema3A on adult neurogenesis. Real-time cell assays, morphological analysis and cell cycle measurements were used to reveal the mechanisms by which miR-30c and sema3A regulate adult neurogenesis. RESULTS Expression of miR-30c negatively correlated with that of sema3A in neurons, and levels of miR-30c and sema3A correlated positively with numbers of newborn cells in the SVZ and rostral migration stream. miR-30c and sema3A affected adult neurogenesis by regulating proliferation and differentiation, as well as cycles of stem cells in the SVZ. CONCLUSIONS miR-30c and sema3A regulate adult neurogenesis by controlling proliferation and differentiation of stem cells in the SVZ. This finding reveals a novel regulatory mechanism of adult neurogenesis.
Collapse
Affiliation(s)
- Tingting Sun
- Institute of Neuroscience and Anatomy, Zhejiang University, School of Medicine, Hangzhou, 310058, China
| | - Weiyun Li
- Institute of Neuroscience and Anatomy, Zhejiang University, School of Medicine, Hangzhou, 310058, China
| | - Shucai Ling
- Institute of Neuroscience and Anatomy, Zhejiang University, School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
41
|
Jin X. The role of neurogenesis during development and in the adult brain. Eur J Neurosci 2016; 44:2291-9. [DOI: 10.1111/ejn.13251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Xing Jin
- Department of Pharmacy; the Affiliated Suzhou Municipal Hospital; Nanjing Medical University; Suzhou 215001 China
| |
Collapse
|
42
|
Edessy M, Hosni H, Shady Y, Waf Y, Bakr S, Kamel M. Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure. ACTA MEDICA INTERNATIONAL 2016. [DOI: 10.5530/ami.2016.1.7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Yigit G, Wieczorek D, Bögershausen N, Beleggia F, Möller-Hartmann C, Altmüller J, Thiele H, Nürnberg P, Wollnik B. A syndrome of microcephaly, short stature, polysyndactyly, and dental anomalies caused by a homozygous KATNB1 mutation. Am J Med Genet A 2015; 170:728-33. [PMID: 26640080 DOI: 10.1002/ajmg.a.37484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/04/2015] [Indexed: 12/26/2022]
Abstract
Using whole-exome sequencing, we identified a homozygous acceptor splice-site mutation in intron 6 of the KATNB1 gene in a patient from a consanguineous Turkish family who presented with congenital microcephaly, lissencephaly, short stature, polysyndactyly, and dental abnormalities. cDNA analysis revealed complete loss of the natural acceptor splice-site resulting either in the usage of an alternative, exonic acceptor splice-site inducing a frame-shift and premature protein truncation or, to a minor extent, in complete skipping of exon 7. Both effects most likely lead to complete loss of KATNB1 function. Homozygous and compound heterozygous mutations in KATNB1 have very recently been described as a cause of microcephaly with brain malformations and seizures. We extend the KATNB1 associated phenotype by describing a syndrome characterized by primordial dwarfism, lissencephaly, polysyndactyly, and dental anomalies, which is caused by a homozygous truncating KATNB1 mutation.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Nina Bögershausen
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claudia Möller-Hartmann
- Department of Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
44
|
Yang R, Wang M, Wang J, Huang X, Yang R, Gao WQ. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling. Stem Cell Reports 2015; 5:816-828. [PMID: 26527387 PMCID: PMC4649382 DOI: 10.1016/j.stemcr.2015.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patched ± mice in which SHH signaling is activated, we find evidence for the existence of symmetric and asymmetric divisions that are closely associated with progenitor proliferation and differentiation. While activation of the SHH pathway enhances symmetric progenitor cell divisions, blockade of the SHH pathway reverses the cell division mode change in Math1-GFP; Dcx-DsRed; Patched ± mice by promoting asymmetric divisions or terminal neuronal symmetric divisions. Thus, cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by SHH signaling.
Collapse
Affiliation(s)
- Rong Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minglei Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Ru Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai 200240, China.
| |
Collapse
|
45
|
Yigit G, Brown KE, Kayserili H, Pohl E, Caliebe A, Zahnleiter D, Rosser E, Bögershausen N, Uyguner ZO, Altunoglu U, Nürnberg G, Nürnberg P, Rauch A, Li Y, Thiel CT, Wollnik B. Mutations in CDK5RAP2 cause Seckel syndrome. Mol Genet Genomic Med 2015; 3:467-80. [PMID: 26436113 PMCID: PMC4585455 DOI: 10.1002/mgg3.158] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 11/08/2022] Open
Abstract
Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Karen E Brown
- Chromosome Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital London, W12 0NN, UK
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University Istanbul, Turkey
| | - Esther Pohl
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Diana Zahnleiter
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg Erlangen, Germany
| | - Elisabeth Rosser
- Department of Clinical Genetics, Great Ormond Street Hospital for Children London, WC1N 3EH, UK
| | - Nina Bögershausen
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University Istanbul, Turkey
| | - Gudrun Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Center for Genomics, University of Cologne Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Center for Genomics, University of Cologne Cologne, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich Schwerzenbach-Zurich, Switzerland
| | - Yun Li
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| | - Christian Thomas Thiel
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg Erlangen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany
| |
Collapse
|
46
|
Eddison M, Weber SJ, Ariza-McNaughton L, Lewis J, Daudet N. Numb is not a critical regulator of Notch-mediated cell fate decisions in the developing chick inner ear. Front Cell Neurosci 2015; 9:74. [PMID: 25814931 PMCID: PMC4357303 DOI: 10.3389/fncel.2015.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/19/2015] [Indexed: 11/27/2022] Open
Abstract
The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.
Collapse
Affiliation(s)
- Mark Eddison
- Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Sara J Weber
- Ear Institute, University College London London, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem cell Laboratory, Cancer Research UK, London Research Institute London, UK
| | - Julian Lewis
- Formerly of Vertebrate Development Laboratory, Cancer Research UK London, UK
| | | |
Collapse
|
47
|
Signal transducer and activator of transcription-3 maintains the stemness of radial glia at mid-neurogenesis. J Neurosci 2015; 35:1011-23. [PMID: 25609618 DOI: 10.1523/jneurosci.2119-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radial glial cells are stem cell-like populations of glial nature that supply neurons either directly or indirectly via basal progenitors that give rise to neurons. Here we show that signal transducer and activator of transcription-3 (STAT3) signaling, a cytokine signaling mediated by Janus tyrosine kinase (Jak), is active during neurogenesis in radial glia (RG) but not in basal progenitors. Enhanced STAT3 signaling in cortical progenitors caused more RG to persist rather than become neurons. Targeted deletion or RNAi-mediated knockdown of Stat3 resulted in fewer radial glial cells and more basal progenitors and led to premature neurogenesis. The neuronal populations affected in Stat3 mutant mice were the late-born neurons that constitute the upper cortical layers rather than early-born neurons, thus supporting the view that the role of STAT3 at mid-neurogenesis is layer specific. Analysis of dividing RG revealed that STAT3 selectively increased the proportion of dividing RG, whereas downregulation of STAT3 reduced the proportion. Consistent with this, STAT3 activity in dividing RG was associated frequently with vertical cleavage. Pair-cell analysis showed that elevated STAT3 activity correlated with symmetric division of RG, producing more RG, whereas elimination of STAT3 generated more neurogenic cells. Together, our results suggest that STAT3 maintains the stemness of RG and inhibits their transition to basal progenitors at mid-neurogenesis, so probably preserving a pool of RG for later neurogenesis or gliogenesis.
Collapse
|
48
|
Gan Q, Lee A, Suzuki R, Yamagami T, Stokes A, Nguyen BC, Pleasure D, Wang J, Chen HW, Zhou CJ. Pax6 mediates ß-catenin signaling for self-renewal and neurogenesis by neocortical radial glial stem cells. Stem Cells 2014; 32:45-58. [PMID: 24115331 DOI: 10.1002/stem.1561] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022]
Abstract
The Wnt/ß-catenin pathway is a critical stem cell regulator and plays important roles in neuroepithelial cells during early gestation. However, the role of Wnt/ß-catenin signaling in radial glia, a major neural stem cell population expanded by midgestation, remains poorly understood. This study shows that genetic ablation of ß-catenin with hGFAP-Cre mice inhibits neocortical formation by disrupting radial glial development. Reduced radial glia and intermediate progenitors are found in the ß-catenin-deficient neocortex during late gestation. Increased apoptosis and divergent localization of radial glia in the subventricular zone are also observed in the mutant neocortex. In vivo and in vitro proliferation and neurogenesis as well as oligodendrogenesis by cortical radial glia or by dissociated neural stem cells are significantly defective in the mutants. Neocortical layer patterning is not apparently altered, while astrogliogenesis is ectopically increased in the mutants. At the molecular level, the expression of the transcription factor Pax6 is dramatically diminished in the cortical radial glia and the sphere-forming neural stem cells of ß-catenin-deficient mutants. Chromatin immunoprecipitation and luciferase assays demonstrate that ß-catenin/Tcf complex binds to Pax6 promoter and induces its transcriptional activities. The forced expression of Pax6 through lentiviral transduction partially rescues the defective proliferation and neurogenesis by ß-catenin-deficient neural stem cells. Thus, Pax6 is a novel downstream target of the Wnt/ß-catenin pathway, and ß-catenin/Pax6 signaling plays critical roles in self-renewal and neurogenesis of radial glia/neural stem cells during neocortical development.
Collapse
Affiliation(s)
- Qini Gan
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, Sacramento, California, USA; Department of Cell Biology and Human Anatomy, University of California at Davis, School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tassano E, Accogli A, Panigada S, Ronchetto P, Cuoco C, Gimelli G. Phenotypic and genetic characterization of a patient with a de novo interstitial 14q24.1q24.3 deletion. Mol Cytogenet 2014; 7:49. [PMID: 25076984 PMCID: PMC4115490 DOI: 10.1186/1755-8166-7-49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/30/2014] [Indexed: 11/23/2022] Open
Abstract
Background Interstitial deletions of chromosome bands 14q24.1q24.3 are very rare with only three reported cases. Results We describe a 7-year-old boy with a 5.345 Mb de novo interstitial deletion at 14q24.1q24.3 band detected by array-CGH who had a complex phenotype characterized by seizures, congenital heart defects, dysmorphisms, psychomotor delay, and bronchopulmonary, skeletal, and brain anomalies. Conclusion The deleted region contains numerous genes, but we focused our attention on three of them (C14orf169, NUMB, and PSEN1), which could account, at least partially, for the phenotype of the boy. We therefore discuss the involvement of these genes and the observed phenotype compared to that of previously described patients.
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, Genoa 16147, Italy
| | - Andrea Accogli
- Pediatric Pulmonology and Allergy Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Panigada
- Pediatric Pulmonology and Allergy Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Ronchetto
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, Genoa 16147, Italy
| | - Cristina Cuoco
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, Genoa 16147, Italy
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, Genoa 16147, Italy
| |
Collapse
|
50
|
Tzou WS, Lo YT, Pai TW, Hu CH, Li CH. Stochastic simulation of notch signaling reveals novel factors that mediate the differentiation of neural stem cells. J Comput Biol 2014; 21:548-67. [PMID: 24798230 PMCID: PMC4082354 DOI: 10.1089/cmb.2014.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Notch signaling controls cell fate decisions and regulates multiple biological processes, such as cell proliferation, differentiation, and apoptosis. Computational modeling of the deterministic simulation of Notch signaling has provided important insight into the possible molecular mechanisms that underlie the switch from the undifferentiated stem cell to the differentiated cell. Here, we constructed a stochastic model of a Notch signaling model containing Hes1, Notch1, RBP-Jk, Mash1, Hes6, and Delta. mRNA and protein were represented as a discrete state, and 334 reactions were employed for each biochemical reaction using a graphics processing unit-accelerated Gillespie scheme. We employed the tuning of 40 molecular mechanisms and revealed several potential mediators capable of enabling the switch from cell stemness to differentiation. These effective mediators encompass different aspects of cellular regulations, including the nuclear transport of Hes1, the degradation of mRNA (Hes1 and Notch1) and protein (Notch1), the association between RBP-Jk and Notch intracellular domain (NICD), and the cleavage efficiency of the NICD. These mechanisms overlap with many modifiers that have only recently been discovered to modulate the Notch signaling output, including microRNA action, ubiquitin-mediated proteolysis, and the competitive binding of the RBP-Jk-DNA complex. Moreover, we identified the degradation of Hes1 mRNA and nuclear transport of Hes1 as the dominant mechanisms that were capable of abolishing the cell state transition induced by other molecular mechanisms.
Collapse
Affiliation(s)
- Wen-Shyong Tzou
- Department of Life Sciences, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Ying-Tsang Lo
- Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Chin-Hwa Hu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, R.O.C.
| | - Chung-Hao Li
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, R.O.C.
| |
Collapse
|