1
|
McInvale JJ, Kuper LC, Li E, Bonanno J, Lorman D, Gumenick R, Vincenti SL, Newman LA. Estradiol effects on astrocytic aquaporin 4 and glutamate transporter 1 expression contribute to shifts in brain dynamics supporting spatial working memory. Behav Brain Res 2025; 487:115578. [PMID: 40199402 DOI: 10.1016/j.bbr.2025.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/04/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Estrogenic effects on astrocytes improve glutamate recycling and water homeostasis for neuroprotection in pathology. Estrogens also enhance spatial learning and memory. The current study looked at the effect of 17β-estradiol (E2) on astrocytic glutamate transporter 1 (GLT-1) and aquaporin 4 (AQP4) in the prelimbic cortex (PrL) and dorsal hippocampus (dHC), areas active in spatial (allocentric) working memory in comparison to dorsolateral striatum (dlStr) which is involved in response or egocentric learning. Ovariectomized, female, Long Evans rats received 0, 4.5 µg/kg, or 45 µg/kg of E2 in a sesame oil vehicle 24 and 48 h prior to a delayed spontaneous alternation task (dSA). In line with previous research dSA performance significantly improved with administration of E2 as compared to sesame oil vehicle. AQP4 and GLT-1 levels were brain area specific and E2 enhanced AQP4 and GLT-1 in brain areas associated with spatial working memory (PrL and dHC) as compared to dlStr. Additionally, AQP4 was found to have the highest density in the unmyelinated axon rich hilus while GLT-1 showed the highest density in the synaptically dense molecular layer. However, AQP4 density in the stratum radiatum was similar to the hilus after dSA, potentially supporting dynamic changes in AQP4 response to natural cognitive activity. Hilar and prelimbic AQP4 area stained was also negatively correlated with performance on the dSA, which supports the theory of increased polarity of AQP4 with healthy cognitive function. These data suggest astrocytic water and glutamate homeostasis shift with high levels of estrogens to support spatial strategies.
Collapse
Affiliation(s)
- Julie J McInvale
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA
| | - Louisa C Kuper
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA
| | - Evelyn Li
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA
| | - James Bonanno
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA
| | - Daniella Lorman
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA
| | - Ruby Gumenick
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA
| | - Sydney L Vincenti
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA
| | - Lori A Newman
- Department of Psychological Science, Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, USA.
| |
Collapse
|
2
|
Sarti G, Traini C, Magni G, Attorre S, Tognozzi G, Calussi E, Giovannini MG, Vannucchi MG, Lana D. Chronic administration of prebiotics and probiotics prevent pathophysiological hallmarks of Alzheimer's disease in the cortex of APP/PS1 mice. Front Pharmacol 2025; 16:1596469. [PMID: 40444050 PMCID: PMC12119559 DOI: 10.3389/fphar.2025.1596469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Dysbiosis is a characteristic of patients with Alzheimer's disease (AD). The disbalance between Gram-negative and Gram-positive bacteria causes increased production of beta-amyloid (Aβ) in the gut, which can contribute to brain accumulation of Aβ. Recovering microbiota composition with symbiotic administration of prebiotics and probiotics may be a strategy to prevent or reduce AD symptomathology. The aim of this research was to study whether chronic administration of pre- and probiotics modifies the histopathological signs of neurodegeneration in the cortex of APP/PS1 mice, a transgenic mouse model of AD. We focused on neuritic plaques deposition, neuronal degeneration and glia activation. Methods Transgenic (TG) mice and Wild type (WT) littermates were fed daily with a diet supplemented with prebiotics (a multi-extract of fibers and plant complexes, containing inulin/fruit-oligosaccharides) and probiotics (a 50%-50% mixture of Lactobacillus rhamnosus and Lactobacillus paracasei). The treatment started at 2 months of age and lasted for 6 months. Controls were WT and TG mice fed with a standard diet. All groups were evaluated qualitatively and quantitatively by immunofluorescence, confocal microscopy and digital imaging. Cortical sections were immunostained for neuritic plaques, neurons, astrocytes, microglia, and inflammatory proteins. Qualitative and quantitative analyses were carried out by immunofluorescence, confocal microscopy and digital imaging with ImageJ software. Results Quantitative analyses in TG mice demonstrated intense Aβ load and accumulation of neurofilament heavy polypeptide (NHP) in neuritic plaques, neuronal degeneration, shrinkage of the cortex, increase of GFAP expression, and microglia and astrocytes activation. All these effects were mainly evident in cortical Layer 5. The symbiotic treatment with pre- and probiotics decreased Aβ deposition and neuritic plaques in the frontoparietal cortex. In addition, the treatment decreased the degeneration of neurons, the cortical shrinkage, increased GFAP expression, and modified microglia phenomic, decreasing significantly microglia activation. The abovementioned effects of the treatment were mostly evident in cortical Layer 5. Discussion These data confirm that prolonged dietary regimen enriched with pre- and probiotics counteracts many of the histopathological hallmarks of AD, and poses the bases for a simple, affordable treatment that may help prevent AD.
Collapse
Affiliation(s)
- Giorgia Sarti
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Chiara Traini
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Giada Magni
- Cnr-Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giorgio Tognozzi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Edoardo Calussi
- Section of Pathological Anatomy, Careggi University Hospital, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
3
|
De Simone U, Caloni F, Pignatti P, Gaetano C, Locatelli CA, Coccini T. Human stromal cell-based protocol to generate astrocytes: a straightforward in vitro predictive strategy in neurotoxicology. Toxicol Mech Methods 2025; 35:340-355. [PMID: 39626968 DOI: 10.1080/15376516.2024.2435351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 05/04/2025]
Abstract
The inherent adaptability of human mesenchymal stromal cells (hMSCs) to differentiate into neural lineages provides a valuable resource for investigating potential neurotoxicity in humans. By harnessing the ability of hMSCs to transform into astrocytes, we can evaluate the effects of various agents on these vital cells. Our protocol employs hMSCs sourced from umbilical cord tissue, ensuring a readily available supply of high-quality cells. The hMSC-to-neural workflow encompasses six essential steps: hMSC culture, followed by the generation of embryoid bodies (EBs) from these cells on specialized surfaces. Next, EBs and cells are expanded in a growth-promoting medium, directing them toward neural lineages. Subsequent differentiation into immature astrocytes is achieved through the use of specific factors. The process continues with the maturation of EBs/cells into astrocyte-like cells (hALCs) under optimized conditions, culminating in the final development of hALCs in a specialized medium. This methodology yields cells that display astrocyte morphology and express characteristic markers such as GFAP and S100β. The protocol is efficient, requiring roughly 6 weeks to generate hALCs from primary hMSCs without genetic manipulation. The application of hMSCs in evaluating cell damage triggered by neurotoxicants like MeHg and MGO underscores their potential as a valuable component within a more extensive battery of neurotoxicity tests.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
4
|
Guizzetti M, Mangieri RA, Ezerskiy LA, Hashimoto JG, Bajo M, Farris SP, Homanics GE, Lasek AW, Mayfield RD, Messing RO, Roberto M. ASTROCYTES AND ALCOHOL THROUGHOUT THE LIFESPAN. Biol Psychiatry 2025:S0006-3223(25)01147-3. [PMID: 40311830 DOI: 10.1016/j.biopsych.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Evidence for involvement of astrocytes in several neurodegenerative disorders and in drug addiction has been emerging over the last two decades, but only in recent years have astrocytes been investigated for their roles in alcohol use disorder (AUD). As a result, there is a need to evaluate existing preclinical literature supporting involvement of astrocytes in the effects of alcohol exposure. Here we review emerging evidence about responses of astrocytes to alcohol, and the contributions of astrocytes to the development of AUD. We review studies of single-cell RNA sequencing with a focus on alcohol and astrocyte heterogeneity, astrocyte reactivity, and the role of astrocytes in remodeling the extracellular matrix. Effects of alcohol on astrocyte-modulated synaptic transmission are also discussed emphasizing studies never reviewed before. Since astrocytes play essential roles in brain development, we review recent research on the role of astrocytes in fetal alcohol spectrum disorders (FASD) which may also shed light on fetal development of psychiatric disorders that have a high prevalence in individuals affected by FASD. Finally, this review highlights gaps in knowledge about astrocyte biology and alcohol that need further research. Particularly, the dire need to identify astrocyte subpopulations and molecules that are susceptible to alcohol exposure and may be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Guizzetti
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR.
| | | | | | - Joel G Hashimoto
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR
| | - Michal Bajo
- The Scripps Research Institute, La Jolla, CA
| | | | | | - Amy W Lasek
- Virginia Commonwealth University, Richmond, VA
| | | | | | | |
Collapse
|
5
|
Rocha FM, Roy A, Varshney M, Kumar A. Mapping reactive astrogliosis in Parkinson's brain with astroglial tracers BU99008 and Deprenyl: New insights from a multi-marker postmortem study. Alzheimers Dement 2025; 21:e14488. [PMID: 39936538 PMCID: PMC11848164 DOI: 10.1002/alz.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Despite significant astrocytic involvement in Parkinson's disease (PD), the knowledge regarding the role of reactive astrogliosis is still at the surface level; largely due to lack of specific biomarkers to track these processes. Novel astroglial PET-tracers BU99008 and Deprenyl, hold immense potential for visualizing reactive astrogliosis in PD. However, they have not been thoroughly investigated in PD. METHODS We employed a multi-marker approach and performed in vitro radioligand binding and autoradiography studies with 3H-BU99008 and 3H-Deprenyl together with astrocytic immunofluorescence and morphometric analyses in the frontal cortex, temporal cortex, caudate and putamen brain regions of PD (n = 4) and control (n = 7) cases. RESULTS AND DISCUSSION 3H-BU99008 and 3H-Deprenyl showed distinct binding behavior and displayed a diverse array of binding sites (single or multiple) in PD and control brains. Importantly, 3H-BU99008 and 3H-Deprenyl autoradiography studies captured pronounced reactive astrogliosis in PD brain regions, corroborated by marked changes in astrocytic markers, morphology, and cellular processes. HIGHLIGHTS Astroglial tracers BU99008 and Deprenyl displayed a range of binding sites with different levels of affinity and proportions (%) in healthy control (CN) and Parkinson's disease (PD) brains. Astroglial tracers BU99008 and Deprenyl showed a highly specific (permanent) high-affinity (HA) binding site in the nanomolar range, which might be consistent across different pathologies. Astroglial tracers BU99008 and Deprenyl highlighted distinct tracer binding behavior, indicating that they might be targeting different subpopulations or specific states of astrocytes in CN and PD brains. Astroglial tracers BU99008 and Deprenyl captured prominent reactive astrogliosis at the advanced/end stages of PD, substantiated by a significant increase in intercellular adhesion molecule 1 (ICAM-1)-positive reactive astrocytes and marked changes in astrocytic morphology and processes.
Collapse
Affiliation(s)
- Filipa M. Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Avishek Roy
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Mukesh Varshney
- Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Lahaie SC, Brezner N, Murai KK. Single-cell omics and heterogeneity of neuroglial cells. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:265-275. [PMID: 40122628 DOI: 10.1016/b978-0-443-19104-6.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Our bodies contain a rich diversity of cell types with unique physiologic properties. Interestingly, cells within our bodies contain the same DNA content, yet they can vary dramatically with respect to their molecular, structural, and functional properties. The need to better understand cellular complexity and diversity in biologic systems has led to a technical revolution in the field through the development of sophisticated single-cell "omic" approaches. This allows the investigation of the genome, epigenome, transcriptome, and proteome of individual cells derived from complex samples or tissues, such as nervous system tissue. These methods are allowing scientists to detect distinct cell populations and cellular states in different species (including rodent and human) and molecular transitions of cell populations across the lifespan. Recent studies have revealed that astrocytes, oligodendrocytes, and microglia exhibit greater molecular and functional heterogeneity than originally thought and innovative single-cell technologies have allowed a more comprehensive and less biased view of this cellular diversity. The chapter begins by providing a primer of single-cell transcriptomic and spatial transcriptomic approaches that have been particularly influential in uncovering single-cell diversity of neuroglial cells in the brain. It then takes a closer look at how these technologies have been pivotal in defining neuroglial cell subtypes and for determining their spatial relationships within the CNS. Then, it concludes with discussion of how the recent technical advances and discoveries have provoked new questions about the origin, organization, and functional purpose of diverse neuroglial cell subtypes.
Collapse
Affiliation(s)
- Sylvie C Lahaie
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Naama Brezner
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada; Quantitative Life Sciences Graduate Program, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Covolan L, Motta Pollo ML, Dos Santos PB, Betta VHC, Saad Barbosa FF, Covolan LAM, Gimenes C, Hamani C. Effects and mechanisms of anterior thalamus nucleus deep brain stimulation for epilepsy: A scoping review of preclinical studies. Neuropharmacology 2024; 260:110137. [PMID: 39218248 DOI: 10.1016/j.neuropharm.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a safe and effective intervention for the treatment of certain forms of epilepsy. In preclinical models, electrical stimulation of the ANT has antiepileptogenic effects but its underlying mechanisms remain unclear. In this review, we searched multiple databases for studies that described the effects and mechanisms of ANT low or high frequency stimulation (LFS or HFS) in models of epilepsy. Out of 289 articles identified, 83 were pooled for analysis and 34 were included. Overall, ANT DBS was most commonly delivered at high frequency to rodents injected with kainic acid, pilocarpine, or pentylenetetrazole. In most studies, this therapy increased the latency to the first spontaneous seizure and reduced the frequency of seizures by 20%-80%. Electrophysiology data suggested that DBS reduces the severity of electrographic seizures, decreases the duration and increases the threshold of afterdischarges, reduces the power of low-frequency and increase the power high-frequency bands. Mechanistic studies revealed that ANT DBS leads to a series of short- and long-term changes at multiple levels. Some of its anticonvulsant effects were proposed to occur via the modulation of serotonergic and adenosinergic transmission. The latter seems to be derived from the downregulation of adenosine kinase (ADK). ANT DBS was also shown to increase hippocampal levels of lactate, alter the expression of genes involved in calcium signaling, synaptic glutamate, and the NOD-like receptor signaling pathway. When delivered during status epilepticus or following the injection of convulsant agents, DBS was found to reduce the expression of proinflammatory cytokines and apoptosis. When administered chronically, ANT DBS increased the expression of proteins involved in axonal guidance, changed functional connectivity in limbic circuits, and increased the number of hippocampal cells in epileptic animals, suggesting a neuroprotective effect.
Collapse
Affiliation(s)
- Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil.
| | - Maria Luiza Motta Pollo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Pedro Bastos Dos Santos
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | | | | | | | - Christiane Gimenes
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, ON, M4N3M5, Canada
| |
Collapse
|
8
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
9
|
Schroeder ME, McCormack DM, Metzner L, Kang J, Li KX, Yu E, Levandowski KM, Zaniewski H, Zhang Q, Boyden ES, Krienen FM, Feng G. Astrocyte regional specialization is shaped by postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617802. [PMID: 39416060 PMCID: PMC11482951 DOI: 10.1101/2024.10.11.617802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Astrocytes are an abundant class of glial cells with critical roles in neural circuit assembly and function. Though many studies have uncovered significant molecular distinctions between astrocytes from different brain regions, how this regionalization unfolds over development is not fully understood. We used single-nucleus RNA sequencing to characterize the molecular diversity of brain cells across six developmental stages and four brain regions in the mouse and marmoset brain. Our analysis of over 170,000 single astrocyte nuclei revealed striking regional heterogeneity among astrocytes, particularly between telencephalic and diencephalic regions, at all developmental time points surveyed in both species. At the stages sampled, most of the region patterning was private to astrocytes and not shared with neurons or other glial types. Though astrocytes were already regionally patterned in late embryonic stages, this region-specific astrocyte gene expression signature changed dramatically over postnatal development, and its composition suggests that regional astrocytes further specialize postnatally to support their local neuronal circuits. Comparing across species, we found divergence in the expression of astrocytic region- and age-differentially expressed genes and the timing of astrocyte maturation relative to birth between mouse and marmoset, as well as hundreds of species differentially expressed genes. Finally, we used expansion microscopy to show that astrocyte morphology is largely conserved across gray matter regions of prefrontal cortex, striatum, and thalamus in the mouse, despite substantial molecular divergence.
Collapse
Affiliation(s)
- Margaret E Schroeder
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | | | - Lukas Metzner
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Jinyoung Kang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Katelyn X Li
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Eunah Yu
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Kirsten M Levandowski
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Qiangge Zhang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
10
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
11
|
Amontree M, Nelson M, Stefansson L, Pak D, Maguire-Zeiss K, Turner RS, Conant K. Resveratrol differentially affects MMP-9 release from neurons and glia; implications for therapeutic efficacy. J Neurochem 2024; 168:1895-1908. [PMID: 38163875 DOI: 10.1111/jnc.16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Resveratrol, a naturally occurring polyphenol that activates sirtuin 1 (SIRT1), has been shown to reduce overall levels of matrix metalloprotease-9 (MMP-9) in cerebrospinal fluid (CSF) samples from patients with Alzheimer's dementia (AD). Depending on the site of release, however, MMP-9 has the potential to improve or impair cognition. In particular, its release from microglia or pericytes proximal to the blood brain barrier can damage the basement membrane, while neuronal activity-dependent release of this protease from glutamatergic neurons can instead promote dendritic spine expansion and long-term potentiation of synaptic plasticity. In the present study, we test the hypothesis that resveratrol reduces overall MMP-9 levels in CSF samples from patients with APOE4, an allele associated with increased glial inflammation. We also examine the possibility that resveratrol reduces inflammation-associated MMP release from cultured glia but spares neuronal activity-dependent release from cultured cortical neurons. We observe that resveratrol decreases overall levels of MMP-2 and MMP-9 in CSF samples from AD patients. Resveratrol also reduces CSF levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), glial-derived protein that restricts long-term potentiation of synaptic transmission, in individuals homozygous for APOE4. Consistent with these results, we observe that resveratrol reduces basal and lipopolysaccharide (LPS)-stimulated MMP and TIMP-1 release from cultured microglia and astrocytes. In contrast, however, resveratrol does not inhibit release of MMP-9 from cortical neurons. Overall, these results are consistent with the possibility that while resveratrol reduces potentially maladaptive MMP and TIMP-1 release from activated glia, neuroplasticity-promoting MMP release from neurons is spared. In contrast, resveratrol reduces release of neurocan and brevican, extracellular matrix components that restrict neuroplasticity, from both neurons and glia. These data underscore the diversity of resveratrol's actions with respect to affected cell types and molecular targets and also suggest that further studies may be warranted to determine if its effects on glial MMP release could make it a useful adjunct for AD- and/or anti-amyloid therapy-related damage to the blood brain barrier.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Matthew Nelson
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Lara Stefansson
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Daniel Pak
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Kharlamova A, Krivova Y, Proshchina A, Godovalova O, Otlyga D, Andreeva E, Shachina M, Grushetskaya E, Saveliev S. Spatial-temporal representation of the astroglial markers in the developing human cortex. Brain Struct Funct 2024:10.1007/s00429-024-02850-z. [PMID: 39153086 DOI: 10.1007/s00429-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.
Collapse
Affiliation(s)
- A Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418.
| | - Yu Krivova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - A Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - O Godovalova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - D Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - E Andreeva
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
- FGBEU APE Russian Medical Academy Continuous Professional Education, Barrikadnaya St., 2/1, S.1, Moscow, Russia, 125993
| | - M Shachina
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
| | - E Grushetskaya
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - S Saveliev
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| |
Collapse
|
13
|
Dillon AP, Moslehi S, Brouse B, Keremane S, Philliber S, Griffiths W, Rowland C, Smith JH, Taylor RP. Evolution of Retinal Neuron Fractality When Interfacing with Carbon Nanotube Electrodes. Bioengineering (Basel) 2024; 11:823. [PMID: 39199781 PMCID: PMC11351692 DOI: 10.3390/bioengineering11080823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Exploring how neurons in the mammalian body interact with the artificial interface of implants can be used to learn about fundamental cell behavior and to refine medical applications. For fundamental and applied research, it is crucial to determine the conditions that encourage neurons to maintain their natural behavior during interactions with non-natural interfaces. Our previous investigations quantified the deterioration of neuronal connectivity when their dendrites deviate from their natural fractal geometry. Fractal resonance proposes that neurons will exhibit enhanced connectivity if an implant's electrode geometry is matched to the fractal geometry of the neurons. Here, we use in vitro imaging to quantify the fractal geometry of mouse retinal neurons and show that they change during interaction with the electrode. Our results demonstrate that it is crucial to understand these changes in the fractal properties of neurons for fractal resonance to be effective in the in vivo mammalian system.
Collapse
Affiliation(s)
- Aiden P. Dillon
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Saba Moslehi
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Bret Brouse
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Saumya Keremane
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, Institute of Neurobiology, University of Oregon, Eugene, OR 97403, USA
| | - Sam Philliber
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Willem Griffiths
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Conor Rowland
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Julian H. Smith
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Richard P. Taylor
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
14
|
Benazzato C, Lojudice F, Pöehlchen F, Leite PEC, Manucci AC, Van der Linden V, Jungmann P, Sogayar MC, Bruni-Cardoso A, Russo FB, Beltrão-Braga P. Zika virus vertical transmission induces neuroinflammation and synapse impairment in brain cells derived from children born with Congenital Zika Syndrome. Sci Rep 2024; 14:18002. [PMID: 39097642 PMCID: PMC11297915 DOI: 10.1038/s41598-024-65392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/18/2024] [Indexed: 08/05/2024] Open
Abstract
Zika virus (ZIKV) infection was first reported in 2015 in Brazil as causing microcephaly and other developmental abnormalities in newborns, leading to the identification of Congenital Zika Syndrome (CZS). Viral infections have been considered an environmental risk factor for neurodevelopmental disorders outcome, such as Autism Spectrum Disorder (ASD). Moreover, not only the infection per se, but maternal immune system activation during pregnancy, has been linked to fetal neurodevelopmental disorders. To understand the impact of ZIKV vertical infection on brain development, we derived induced pluripotent stem cells (iPSC) from Brazilian children born with CZS, some of the patients also being diagnosed with ASD. Comparing iPSC-derived neurons from CZS with a control group, we found lower levels of pre- and postsynaptic proteins and reduced functional synapses by puncta co-localization. Furthermore, neurons and astrocytes derived from the CZS group showed decreased glutamate levels. Additionally, the CZS group exhibited elevated levels of cytokine production, one of which being IL-6, already associated with the ASD phenotype. These preliminary findings suggest that ZIKV vertical infection may cause long-lasting disruptions in brain development during fetal stages, even in the absence of the virus after birth. These disruptions could contribute to neurodevelopmental disorders manifestations such as ASD. Our study contributes with novel knowledge of the CZS outcomes and paves the way for clinical validation and the development of potential interventions to mitigate the impact of ZIKV vertical infection on neurodevelopment.
Collapse
Affiliation(s)
- Cecilia Benazzato
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
| | - Fernando Lojudice
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
| | - Felizia Pöehlchen
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
- Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Paulo Emílio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, 24220-900, Brazil
| | - Antonio Carlos Manucci
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Patricia Jungmann
- Pathology Department, University of Pernambuco, Recife, 50670-901, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Alexandre Bruni-Cardoso
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Fabiele B Russo
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
| | - Patricia Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
- Institute Pasteur of São Paulo, Av. Prof. Lucio Martins Rodrigues 370, A-Building, 4Th Floor, São Paulo-SP, 05508-020, Brazil.
| |
Collapse
|
15
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
16
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Ojalvo-Sanz AC, Pernia-Solanilla C, López-Mascaraque L. Spatial organization of astrocyte clones: The role of developmental progenitor timing. Glia 2024; 72:1290-1303. [PMID: 38506330 DOI: 10.1002/glia.24529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Astrocytes represent a diverse and morphologically complex group of glial cells critical for shaping and maintaining nervous system homeostasis, as well as responding to injuries. Understanding the origins of astroglial heterogeneity, originated from a limited number of progenitors, has been the focus of many studies. Most of these investigations have centered on protoplasmic and pial astrocytes, while the clonal relationship of fibrous astrocytes or juxtavascular astrocytes has remained relatively unexplored. In this study, we sought to elucidate the morphological diversity and clonal distribution of astrocytes across adult cortical layers, with particular emphasis on their ontogenetic origins. Using the StarTrack lineage tracing tool, we explored the characteristics of adult astroglial clones derived from single and specific progenitors at various embryonic stages. Our results revealed a heterogeneous spatial distribution of astroglial clones, characterized by variations in location, clonal size, and rostro-caudal dispersion. While a considerable proportion of clones were confined within specific cortical layers, others displayed sibling cells crossing layer boundaries. Notably, we observed a correlation between clone location and developmental stage at earlier embryonic stages, although this relationship diminished in later stages. Fibrous astrocyte clones were exclusively confined to the corpus callosum. In contrast, protoplasmic or juxtavascular clones were located in either the upper or lower cortical layers, with certain clones displayed sibling cells distributed across both regions. Our findings underscore the developmental origins and spatial distribution of astroglial clones within cortical layers, providing new insights into the interplay between their morphology, clonal sizes, and progenitor heterogeneity.
Collapse
Affiliation(s)
- Ana Cristina Ojalvo-Sanz
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Madrid, Spain
| | | | - Laura López-Mascaraque
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Madrid, Spain
| |
Collapse
|
18
|
Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, Papadimitriou J, Zong Y, Yuan J, Chen P, Chen Z, Ding P, Zheng Y, Zhang C, Zheng M, Gao J. Regulation of blood-brain barrier integrity by Dmp1-expressing astrocytes through mitochondrial transfer. SCIENCE ADVANCES 2024; 10:eadk2913. [PMID: 38941455 PMCID: PMC11212732 DOI: 10.1126/sciadv.adk2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.
Collapse
Affiliation(s)
- Delin Liu
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Linjing Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - John Papadimitriou
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Pathology, Pathwest, Nedlands, Western Australia 6009, Australia
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Jun Yuan
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Peilin Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| |
Collapse
|
19
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
20
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
22
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
23
|
Bobermin LD, Sesterheim P, da Costa DS, Rezena E, Schmitz I, da Silva A, de Moraes ADM, Souza DO, Wyse AT, Leipnitz G, Netto CA, Quincozes-Santos A, Gonçalves CA. Simvastatin Differentially Modulates Glial Functions in Cultured Cortical and Hypothalamic Astrocytes Derived from Interferon α/β Receptor Knockout mice. Neurochem Res 2024; 49:732-743. [PMID: 38063948 DOI: 10.1007/s11064-023-04073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
Astrocytes have key regulatory roles in central nervous system (CNS), integrating metabolic, inflammatory and synaptic responses. In this regard, type I interferon (IFN) receptor signaling in astrocytes can regulate synaptic plasticity. Simvastatin is a cholesterol-lowering drug that has shown anti-inflammatory properties, but its effects on astrocytes, a main source of cholesterol for neurons, remain to be elucidated. Herein, we investigated the effects of simvastatin in inflammatory and functional parameters of primary cortical and hypothalamic astrocyte cultures obtained from IFNα/β receptor knockout (IFNα/βR-/-) mice. Overall, simvastatin decreased extracellular levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), which were related to a downregulation in gene expression in hypothalamic, but not in cortical astrocytes. Moreover, there was an increase in anti-inflammatory interleukin-10 (IL-10) in both structures. Effects of simvastatin in inflammatory signaling also involved a downregulation of cyclooxygenase 2 (COX-2) gene expression as well as an upregulation of nuclear factor κB subunit p65 (NFκB p65). The expression of cytoprotective genes sirtuin 1 (SIRT1) and nuclear factor erythroid derived 2 like 2 (Nrf2) was also increased by simvastatin. In addition, simvastatin increased glutamine synthetase (GS) activity and glutathione (GSH) levels only in cortical astrocytes. Our findings provide evidence that astrocytes from different regions are important cellular targets of simvastatin in the CNS, even in the absence of IFNα/βR, which was showed by the modulation of cytokine production and release, as well as the expression of cytoprotective genes and functional parameters.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Daniele Schauren da Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Daniel Moreira de Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Laricchiuta D, Papi M, Decandia D, Panuccio A, Cutuli D, Peciccia M, Mazzeschi C, Petrosini L. The role of glial cells in mental illness: a systematic review on astroglia and microglia as potential players in schizophrenia and its cognitive and emotional aspects. Front Cell Neurosci 2024; 18:1358450. [PMID: 38419655 PMCID: PMC10899480 DOI: 10.3389/fncel.2024.1358450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Schizophrenia is a complex and severe mental disorder that affects approximately 1% of the global population. It is characterized by a wide range of symptoms, including delusions, hallucinations, disorganized speech and behavior, and cognitive impairment. Recent research has suggested that the immune system dysregulation may play a significant role in the pathogenesis of schizophrenia, and glial cells, such as astroglia and microglia known to be involved in neuroinflammation and immune regulation, have emerged as potential players in this process. The aim of this systematic review is to summarize the glial hallmarks of schizophrenia, choosing as cellular candidate the astroglia and microglia, and focusing also on disease-associated psychological (cognitive and emotional) changes. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed, Scopus, and Web of Science for articles that investigated the differences in astroglia and microglia in patients with schizophrenia, published in the last 5 years. The present systematic review indicates that changes in the density, morphology, and functioning of astroglia and microglia may be involved in the development of schizophrenia. The glial alterations may contribute to the pathogenesis of schizophrenia by dysregulating neurotransmission and immune responses, worsening cognitive capabilities. The complex interplay of astroglial and microglial activation, genetic/epigenetic variations, and cognitive assessments underscores the intricate relationship between biological mechanisms, symptomatology, and cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Martina Papi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Davide Decandia
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Anna Panuccio
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Debora Cutuli
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Maurizio Peciccia
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Laura Petrosini
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
25
|
Moslehi S, Rowland C, Smith JH, Watterson WJ, Griffiths W, Montgomery RD, Philliber S, Marlow CA, Perez MT, Taylor RP. Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties. ADVANCES IN NEUROBIOLOGY 2024; 36:849-875. [PMID: 38468067 DOI: 10.1007/978-3-031-47606-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Imagine a world in which damaged parts of the body - an arm, an eye, and ultimately a region of the brain - can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of human life would revolutionize the medical world and produce sweeping changes across society. In this chapter, we discuss several approaches to the fabrication of fractal electronics designed to interface with neural networks. We consider two fundamental functions - stimulating electrical signals in the neural networks and sensing the location of the signals as they pass through the network. Using experiments and simulations, we discuss the favorable electrical performances that arise from adopting fractal rather than traditional Euclidean architectures. We also demonstrate how the fractal architecture induces favorable physical interactions with the cells they interact with, including the ability to direct the growth of neurons and glia to specific regions of the neural-electronic interface.
Collapse
Affiliation(s)
- S Moslehi
- Physics Department, University of Oregon, Eugene, OR, USA
| | - C Rowland
- Physics Department, University of Oregon, Eugene, OR, USA
| | - J H Smith
- Physics Department, University of Oregon, Eugene, OR, USA
| | - W J Watterson
- Physics Department, University of Oregon, Eugene, OR, USA
| | - W Griffiths
- Physics Department, University of Oregon, Eugene, OR, USA
| | - R D Montgomery
- Physics Department, University of Oregon, Eugene, OR, USA
| | - S Philliber
- Physics Department, University of Oregon, Eugene, OR, USA
| | - C A Marlow
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - M-T Perez
- Department of Clinical Sciences Lund, Division of Ophthalmology, Lund University, Lund, Sweden
| | - R P Taylor
- Physics Department, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
26
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
27
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
28
|
Gao MY, Wang JQ, He J, Gao R, Zhang Y, Li X. Single-Cell RNA-Sequencing in Astrocyte Development, Heterogeneity, and Disease. Cell Mol Neurobiol 2023; 43:3449-3464. [PMID: 37552355 PMCID: PMC11409980 DOI: 10.1007/s10571-023-01397-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Astrocytes are the most plentiful cell type in the central nervous system (CNS) and perform complicated functions in health and disease. It is obvious that different astrocyte subpopulations, or activation states, are relevant with specific genomic programs and functions. In recent years, the emergence of new technologies such as single-cell RNA sequencing (scRNA-seq) has made substantial advance in the characterization of astrocyte heterogeneity, astrocyte developmental trajectory, and its role in CNS diseases which has had a significant impact on neuroscience. In this review, we present an overview of astrocyte development, heterogeneity, and its essential role in the physiological and pathological environments of the CNS. We focused on the critical role of single-cell sequencing in revealing astrocyte development, heterogeneity, and its role in different CNS diseases.
Collapse
Affiliation(s)
- Meng-Yuan Gao
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jia-Qi Wang
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jin He
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Rui Gao
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuan Zhang
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xing Li
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
29
|
Mockenhaupt K, Tyc KM, McQuiston A, Gonsiewski AK, Zarei-Kheirabadi M, Hariprashad A, Biswas DD, Gupta AS, Olex AL, Singh SK, Waters MR, Dupree JL, Dozmorov MG, Kordula T. Yin Yang 1 controls cerebellar astrocyte maturation. Glia 2023; 71:2437-2455. [PMID: 37417428 PMCID: PMC10529878 DOI: 10.1002/glia.24434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.
Collapse
Affiliation(s)
- Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Katarzyna M. Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center Bioinformatics Shared Resource Core, Virginia Commonwealth University, Richmond, Virginia
| | - Adam McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Alexandra K. Gonsiewski
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Masoumeh Zarei-Kheirabadi
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Avani Hariprashad
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Debolina D. Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Angela S. Gupta
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Amy L. Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Sandeep K. Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Michael R. Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeff L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
- Research Service, Central Virginia VA Health Care System, Richmond, Virginia
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
30
|
Xing Y, Zhang D, Fang L, Wang J, Liu C, Wu D, Liu X, Wang X, Min W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023; 12:3580. [PMID: 37835232 PMCID: PMC10572247 DOI: 10.3390/foods12193580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The complement pathway is a major component of the innate immune system, which is critical for recognizing and clearing pathogens that rapidly react to defend the body against external pathogens. Many components of this pathway are expressed throughout the brain and play a beneficial role in synaptic pruning in the developing central nervous system (CNS). However, excessive complement-mediated synaptic pruning in the aging or injured brain may play a contributing role in a wide range of neurodegenerative diseases. Complement Component 1q (C1q), an initiating recognition molecule of the classical complement pathway, can interact with a variety of ligands and perform a range of functions in physiological and pathophysiological conditions of the CNS. This review considers the function and immunomodulatory mechanisms of C1q; the emerging role of C1q on synaptic pruning in developing, aging, or pathological CNS; the relevance of C1q; the complement pathway to neurodegenerative diseases; and, finally, it summarizes the foods with beneficial effects in neurodegenerative diseases via C1q and complement pathway and highlights the need for further research to clarify these roles. This paper aims to provide references for the subsequent study of food functions related to C1q, complement, neurodegenerative diseases, and human health.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
31
|
Sheloukhova L, Watanabe H. Analysis of cnidarian Gcm suggests a neuronal origin of glial EAAT1 function. Sci Rep 2023; 13:14790. [PMID: 37684386 PMCID: PMC10491807 DOI: 10.1038/s41598-023-42046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
In bilaterian central nervous systems, coordination of neurotransmission by glial cells enables highly sophisticated neural functions. The diversity of transcription factors (TFs) involved in gliogenesis suggests multiple evolutionary origins of various glial cell types of bilaterians. Many of these TFs including the glial cells missing (Gcm) are also present in genomes of Cnidaria, the closest outgroup to Bilateria, but their function remains to be elucidated. In this study, we analyzed the function of Gcm, a multifunctional TF involved in development of glial and non-glial cell types, in the sea anemone, Nematostella vectensis. siRNA-mediated knockdown of Nematostella Gcm altered expression of cell adhesion proteins, glutamate and GABA transporters, ion channels, metabolic enzymes, and zinc finger and Ets-related TFs. NvGcm and mRNAs of downstream genes are expressed in broad neural cell clusters. However, immunostaining of a NvGcm target protein, the glutamate transporter, NvEAAT1, visualized a novel class of cells with flat cell bodies and no clear processes. Together with the finding of unique morphological features of NvEAAT1-functioning cells, these data suggest that extracellular glutamate metabolism, one of major glial functions, is deployed downstream of Gcm in specific neural cell types in Cnidaria.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
32
|
Lana D, Magni G, Landucci E, Wenk GL, Pellegrini-Giampietro DE, Giovannini MG. Phenomic Microglia Diversity as a Druggable Target in the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13668. [PMID: 37761971 PMCID: PMC10531074 DOI: 10.3390/ijms241813668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA;
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| |
Collapse
|
33
|
Tripodi F, Motta Z, Murtas G, Rabattoni V, Nonnis S, Grassi Scalvini F, Rinaldi AM, Rizzi R, Bearzi C, Badone B, Sacchi S, Tedeschi G, Maffioli E, Coccetti P, Pollegioni L. Serine metabolism during differentiation of human iPSC-derived astrocytes. FEBS J 2023; 290:4440-4464. [PMID: 37166453 DOI: 10.1111/febs.16816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Astrocytes are essential players in development and functions, being particularly relevant as regulators of brain energy metabolism, ionic homeostasis and synaptic transmission. They are also the major source of l-serine in the brain, which is synthesized from the glycolytic intermediate 3-phosphoglycerate through the phosphorylated pathway. l-Serine is the precursor of the two main co-agonists of the N-methyl-d-aspartate receptor, glycine and d-serine. Strikingly, dysfunctions in both l- and d-serine metabolism are associated with neurological and psychiatric disorders. Here, we exploited a differentiation protocol, based on the generation of human mature astrocytes from neural stem cells, and investigated the modification of the proteomic and metabolomic profile during the differentiation process. We show that differentiated astrocytes are more similar to mature rather than to reactive ones, and that axogenesis and pyrimidine metabolism increase up to 30 days along with the folate cycle and sphingolipid metabolism. Consistent with the proliferation and cellular maturation processes that are taking place, also the intracellular levels of l-serine, glycine, threonine, l- and d-aspartate (which level is unexpectedly higher than that of d-serine) show the same biosynthetic time course. A significant utilization of l-serine from the medium is apparent while glycine is first consumed and then released with a peak at 30 days, parallel to its intracellular level. These results underline how metabolism changes during astrocyte differentiation, highlight that d-serine synthesis is restricted in differentiated astrocytes and provide a valuable model for developing potential novel therapeutic approaches to address brain diseases, especially the ones related to serine metabolism alterations.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Simona Nonnis
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, Italy
| | | | | | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy
- Department of Medical-Surgical Science and Biotechnologies, University of Rome La Sapienza, Italy
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy
- Institute for Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Beatrice Badone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gabriella Tedeschi
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, Italy
- CIMAINA, University of Milano, Italy
| | - Elisa Maffioli
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
34
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Lindblad C, Neumann S, Kolbeinsdóttir S, Zachariadis V, Thelin EP, Enge M, Thams S, Brundin L, Svensson M. Stem cell-derived brainstem mouse astrocytes obtain a neurotoxic phenotype in vitro upon neuroinflammation. J Inflamm (Lond) 2023; 20:22. [PMID: 37370141 PMCID: PMC10303821 DOI: 10.1186/s12950-023-00349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Astrocytes respond to injury and disease through a process known as reactive astrogliosis, of which inflammatory signaling is one subset. This inflammatory response is heterogeneous with respect to the inductive stimuli and the afflicted central nervous system region. This is of plausible importance in e.g. traumatic axonal injury (TAI), where lesions in the brainstem carries a particularly poor prognosis. In fact, astrogliotic forebrain astrocytes were recently suggested to cause neuronal death following axotomy. We therefore sought to assess if ventral brainstem- or rostroventral spinal astrocytes exert similar effects on motor neurons in vitro. METHODS We derived brainstem/rostroventral spinal astrocyte-like cells (ES-astrocytes) and motor neurons using directed differentiation of mouse embryonic stem cells (ES). We activated the ES-astrocytes using the neurotoxicity-eliciting cytokines interleukin- (IL-) 1α and tumor necrosis factor-(TNF-)α and clinically relevant inflammatory mediators. In co-cultures with reactive ES-astrocytes and motor neurons, we assessed neurotoxic ES-astrocyte activity, similarly to what has previously been shown for other central nervous system (CNS) regions. RESULTS We confirmed the brainstem/rostroventral ES-astrocyte identity using RNA-sequencing, immunocytochemistry, and by comparison with primary subventricular zone-astrocytes. Following cytokine stimulation, the c-Jun N-terminal kinase pathway down-stream product phosphorylated c-Jun was increased, thus demonstrating ES-astrocyte reactivity. These reactive ES-astrocytes conferred a contact-dependent neurotoxic effect upon co-culture with motor neurons. When exposed to IL-1β and IL-6, two neuroinflammatory cytokines found in the cerebrospinal fluid and serum proteome following human severe traumatic brain injury (TBI), ES-astrocytes exerted similar effects on motor neurons. Activation of ES-astrocytes by these cytokines was associated with pathways relating to endoplasmic reticulum stress and altered regulation of MYC. CONCLUSIONS Ventral brainstem and rostroventral spinal cord astrocytes differentiated from mouse ES can exert neurotoxic effects in vitro. This highlights how neuroinflammation following CNS lesions can exert region- and cell-specific effects. Our in vitro model system, which uniquely portrays astrocytes and neurons from one niche, allows for a detailed and translationally relevant model system for future studies on how to improve neuronal survival in particularly vulnerable CNS regions following e.g. TAI.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden.
| | - Susanne Neumann
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
| | | | | | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Enge
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Thams
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
37
|
Mohamed W, Kumar J, Alghamdi BS, Soliman AH, Toshihide Y. Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. IBRO Neurosci Rep 2023; 14:95-110. [PMID: 37388502 PMCID: PMC10300452 DOI: 10.1016/j.ibneur.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Glia, which was formerly considered to exist just to connect neurons, now plays a key function in a wide range of physiological events, including formation of memory, learning, neuroplasticity, synaptic plasticity, energy consumption, and homeostasis of ions. Glial cells regulate the brain's immune responses and confers nutritional and structural aid to neurons, making them an important player in a broad range of neurological disorders. Alzheimer's, ALS, Parkinson's, frontotemporal dementia (FTD), and epilepsy are a few of the neurodegenerative diseases that have been linked to microglia and astroglia cells, in particular. Synapse growth is aided by glial cell activity, and this activity has an effect on neuronal signalling. Each glial malfunction in diverse neurodegenerative diseases is distinct, and we will discuss its significance in the progression of the illness, as well as its potential for future treatment.
Collapse
Affiliation(s)
- Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
38
|
Gradisnik L, Velnar T. Astrocytes in the central nervous system and their functions in health and disease: A review. World J Clin Cases 2023; 11:3385-3394. [PMID: 37383914 PMCID: PMC10294192 DOI: 10.12998/wjcc.v11.i15.3385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/19/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Astrocytes are key cells in the central nervous system. They are involved in many important functions under physiological and pathological conditions. As part of neuroglia, they have been recognised as cellular elements in their own right. The name astrocyte was first proposed by Mihaly von Lenhossek in 1895 because of the finely branched processes and star-like appearance of these particular cells. As early as the late 19th and early 20th centuries, Ramon y Cajal and Camillo Golgi had noted that although astrocytes have stellate features, their morphology is extremely diverse. Modern research has confirmed the morphological diversity of astrocytes both in vitro and in vivo and their complex, specific, and important roles in the central nervous system. In this review, the functions of astrocytes and their roles are described.
Collapse
Affiliation(s)
- Lidija Gradisnik
- Institute of Biomedical Sciences, Medical Faculty Maribor, Maribor 2000, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- AMEU ECM Maribor, Maribor 2000, Slovenia
| |
Collapse
|
39
|
Goenaga J, Araque A, Kofuji P, Herrera Moro Chao D. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci 2023; 15:1138577. [PMID: 36937570 PMCID: PMC10017551 DOI: 10.3389/fnsyn.2023.1138577] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Glia are as numerous in the brain as neurons and widely known to serve supportive roles such as structural scaffolding, extracellular ionic and neurotransmitter homeostasis, and metabolic support. However, over the past two decades, several lines of evidence indicate that astrocytes, which are a type of glia, play active roles in neural information processing. Astrocytes, although not electrically active, can exhibit a form of excitability by dynamic changes in intracellular calcium levels. They sense synaptic activity and release neuroactive substances, named gliotransmitters, that modulate neuronal activity and synaptic transmission in several brain areas, thus impacting animal behavior. This "dialogue" between astrocytes and neurons is embodied in the concept of the tripartite synapse that includes astrocytes as integral elements of synaptic function. Here, we review the recent work and discuss how astrocytes via calcium-mediated excitability modulate synaptic information processing at various spatial and time scales.
Collapse
Affiliation(s)
| | | | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
40
|
Barros LF, Ruminot I, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I. Metabolic Recruitment in Brain Tissue. Annu Rev Physiol 2023; 85:115-135. [PMID: 36270291 DOI: 10.1146/annurev-physiol-021422-091035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - T Sotelo-Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - R Lerchundi
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
| | - I Fernández-Moncada
- NeuroCentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
41
|
Peng W, Liu X, Ma G, Wu Z, Wang Z, Fei X, Qin M, Wang L, Li Y, Zhang S, Xu M. Adenosine-independent regulation of the sleep-wake cycle by astrocyte activity. Cell Discov 2023; 9:16. [PMID: 36746933 PMCID: PMC9902472 DOI: 10.1038/s41421-022-00498-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/20/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior, and adenosine signaling is generally thought to be involved. Here we show multiple lines of evidence supporting that modulation of the sleep-wake behavior by astrocyte Ca2+ activity could occur without adenosine signaling. In the basal forebrain and the brainstem, two brain regions that are known to be essential for sleep-wake regulation, chemogenetically-induced astrocyte Ca2+ elevation significantly modulated the sleep-wake cycle. Although astrocyte Ca2+ level positively correlated with the amount of extracellular adenosine, as revealed by a genetically encoded adenosine sensor, we found no detectable change in adenosine level after suppressing astrocyte Ca2+ elevation, and transgenic mice lacking one of the major extracellular ATP-adenosine conversion enzymes showed similar extracellular adenosine level and astrocyte Ca2+-induced sleep modulation. Furthermore, astrocyte Ca2+ is dependent primarily on local neuronal activity, causing brain region-specific regulation of the sleep-wake cycle. Thus, neural activity-dependent astrocyte activity could regulate the sleep-wake behavior independent of adenosine signaling.
Collapse
Affiliation(s)
- Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaotong Liu
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Guofen Ma
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaofa Wu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziyue Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Fei
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Meiling Qin
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lizhao Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulong Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Siyu Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shangha, China.
| |
Collapse
|
42
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
43
|
Fan Y, Huang H, Shao J, Huang W. MicroRNA-mediated regulation of reactive astrocytes in central nervous system diseases. Front Mol Neurosci 2023; 15:1061343. [PMID: 36710937 PMCID: PMC9877358 DOI: 10.3389/fnmol.2022.1061343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Astrocytes (AST) are abundant glial cells in the human brain, accounting for approximately 20-50% percent of mammalian central nervous system (CNS) cells. They display essential functions necessary to sustain the physiological processes of the CNS, including maintaining neuronal structure, forming the blood-brain barrier, coordinating neuronal metabolism, maintaining the extracellular environment, regulating cerebral blood flow, stabilizing intercellular communication, participating in neurotransmitter synthesis, and defending against oxidative stress et al. During the pathological development of brain tumors, stroke, spinal cord injury (SCI), neurodegenerative diseases, and other neurological disorders, astrocytes undergo a series of highly heterogeneous changes, which are called reactive astrocytes, and mediate the corresponding pathophysiological process. However, the pathophysiological mechanisms of reactive astrocytes and their therapeutic relevance remain unclear. The microRNAs (miRNAs) are essential for cell differentiation, proliferation, and survival, which play a crucial role in the pathophysiological development of CNS diseases. In this review, we summarize the regulatory mechanism of miRNAs on reactive astrocytes in CNS diseases, which might provide a theoretical basis for the diagnosis and treatment of CNS diseases.
Collapse
|
44
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
45
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
46
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
47
|
Mukhtar T, Breda J, Adam MA, Boareto M, Grobecker P, Karimaddini Z, Grison A, Eschbach K, Chandrasekhar R, Vermeul S, Okoniewski M, Pachkov M, Harwell CC, Atanasoski S, Beisel C, Iber D, van Nimwegen E, Taylor V. Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis. EMBO J 2022; 41:e111132. [PMID: 36345783 PMCID: PMC9753470 DOI: 10.15252/embj.2022111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Jeremie Breda
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Manal A Adam
- Eli and Edythe Broad Center of Regeneration Medicine and Stem cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Weill Institute for NeuroscienceSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Marcelo Boareto
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Computational Biology Group, D‐BSSEETH ZürichBaselSwitzerland
| | - Pascal Grobecker
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Zahra Karimaddini
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Computational Biology Group, D‐BSSEETH ZürichBaselSwitzerland
| | - Alice Grison
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Katja Eschbach
- Department of Biosystems Science and EngineeringETH ZürichBaselSwitzerland
| | | | - Swen Vermeul
- Scientific IT ServicesETH ZürichZürichSwitzerland
| | | | - Mikhail Pachkov
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Corey C Harwell
- Eli and Edythe Broad Center of Regeneration Medicine and Stem cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Weill Institute for NeuroscienceSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Suzana Atanasoski
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Faculty of MedicineUniversity of ZürichZürichSwitzerland
| | - Christian Beisel
- Department of Biosystems Science and EngineeringETH ZürichBaselSwitzerland
| | - Dagmar Iber
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Weill Institute for NeuroscienceSan FranciscoCAUSA
| | - Erik van Nimwegen
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Verdon Taylor
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
48
|
Sun J, Song Y, Chen Z, Qiu J, Zhu S, Wu L, Xing L. Heterogeneity and Molecular Markers for CNS Glial Cells Revealed by Single-Cell Transcriptomics. Cell Mol Neurobiol 2022; 42:2629-2642. [PMID: 34704168 PMCID: PMC11421601 DOI: 10.1007/s10571-021-01159-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
Glial cells, including astrocytes, oligodendrocytes, and microglia, are the major components in the central nervous system (CNS). Studies have revealed the heterogeneity of each glial cell type and that they each may play distinct roles in physiological processes and/or neurological diseases. Single-cell sequencing (scRNA-seq) technology developed in recent years has extended our understanding of glial cell heterogeneity from the perspective of transcriptome profiling. This review summarizes the marker genes of major glial cells in the CNS and reveals their heterogeneity in different species, CNS regions, developmental stages, and pathological states (Alzheimer's disease and spinal cord injury), expanding our knowledge of glial cell heterogeneity on both molecular and functional levels.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhiheng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Nantong Maternal and Child Health Hospital affiliated to Nantong University, Nantong, 226001, Jiangsu, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
49
|
Moslehi S, Rowland C, Smith JH, Griffiths W, Watterson WJ, Niell CM, Alemán BJ, Perez MT, Taylor RP. Comparison of fractal and grid electrodes for studying the effects of spatial confinement on dissociated retinal neuronal and glial behavior. Sci Rep 2022; 12:17513. [PMID: 36266414 PMCID: PMC9584887 DOI: 10.1038/s41598-022-21742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Understanding the impact of the geometry and material composition of electrodes on the survival and behavior of retinal cells is of importance for both fundamental cell studies and neuromodulation applications. We investigate how dissociated retinal cells from C57BL/6J mice interact with electrodes made of vertically-aligned carbon nanotubes grown on silicon dioxide substrates. We compare electrodes with different degrees of spatial confinement, specifically fractal and grid electrodes featuring connected and disconnected gaps between the electrodes, respectively. For both electrodes, we find that neuron processes predominantly accumulate on the electrode rather than the gap surfaces and that this behavior is strongest for the grid electrodes. However, the 'closed' character of the grid electrode gaps inhibits glia from covering the gap surfaces. This lack of glial coverage for the grids is expected to have long-term detrimental effects on neuronal survival and electrical activity. In contrast, the interconnected gaps within the fractal electrodes promote glial coverage. We describe the differing cell responses to the two electrodes and hypothesize that there is an optimal geometry that maximizes the positive response of both neurons and glia when interacting with electrodes.
Collapse
Affiliation(s)
- Saba Moslehi
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Conor Rowland
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Julian H. Smith
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Willem Griffiths
- grid.170202.60000 0004 1936 8008Department of Biology, 1210 University of Oregon, Eugene, OR 97403 USA
| | - William J. Watterson
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA
| | - Cristopher M. Niell
- grid.170202.60000 0004 1936 8008Department of Biology, 1210 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403 USA
| | - Benjamín J. Alemán
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Oregon Center for Optical, Molecular and Quantum Science, 1274 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Phil and Penny Knight Campus for Accelerating Scientific Impact, 1505 University of Oregon, Franklin Blvd., Eugene, OR 97403 USA
| | - Maria-Thereza Perez
- grid.4514.40000 0001 0930 2361Division of Ophthalmology, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden ,grid.4514.40000 0001 0930 2361NanoLund, Lund University, 221 00 Lund, Sweden
| | - Richard P. Taylor
- grid.170202.60000 0004 1936 8008Physics Department, 1371 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403 USA ,grid.170202.60000 0004 1936 8008Phil and Penny Knight Campus for Accelerating Scientific Impact, 1505 University of Oregon, Franklin Blvd., Eugene, OR 97403 USA
| |
Collapse
|
50
|
Cholesterol-induced robust Ca oscillation in astrocytes required for survival and lipid droplet formation in high-cholesterol condition. iScience 2022; 25:105138. [PMID: 36185358 PMCID: PMC9523397 DOI: 10.1016/j.isci.2022.105138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/08/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol, one of the major cell membrane components, stabilizes membrane fluidity and regulates signal transduction. Beside its canonical roles, cholesterol has been reported to directly activate signaling pathways such as hedgehog (Hh). We recently found that astrocytes, one of the glial cells, respond to Hh pathway stimulation by Ca signaling. These notions led us to test if extracellularly applied cholesterol triggers Ca signaling in astrocytes. Here, we found that cholesterol application induces robust Ca oscillation only in astrocytes with different properties from the Hh-induced Ca response. The Ca oscillation has a long delay which corresponds to the onset of cholesterol accumulation in the plasma membrane. Blockade of the Ca oscillation resulted in enhancement of astrocytic cell death and disturbance of lipid droplet formation, implying a possibility that the cholesterol-induced Ca oscillation plays important roles in astrocytic survival and cholesterol handling under pathological conditions of cholesterol load such as demyelination. Robust Ca oscillation by cholesterol in astrocytes but not in neurons and microglia Cholesterol-induced Ca oscillation relates to membrane cholesterol accumulation The Ca oscillation is driven via the PLC-IP3 signaling pathway Ca oscillation inhibition leads to astrocytic death and lipid droplet malformation
Collapse
|