1
|
Gao J, Hu Y, Xie M, Wu H, Wu J, Xi B, Song R, Ou D. Alterations of Plasma Biochemical and Immunological Parameters and Spatiotemporal Expression of TLR2 and TLR9 in Gibel Carp ( Carassius auratus gibelio) after CyHV-2 Infection. Pathogens 2023; 12:1329. [PMID: 38003793 PMCID: PMC10675598 DOI: 10.3390/pathogens12111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cyprinid herpesvirus II (CyHV-2), a highly contagious pathogen of gibel carp (Carassius auratus gibelio), causes herpesviral hematopoietic necrosis disease (HVHND) and enormous financial losses. However, there is limited information available regarding the changes in plasma biochemical and immunological parameters and the response characteristics of Toll-like receptor 2 (TLR2) and Toll-like receptor 9 (TLR9) in gibel carp after CyHV-2 infection. To address this knowledge gap, a sub-lethal CyHV-2 infection was conducted in gibel carp, and the sample was collected daily from 1 to 7 days post infection. The plasma biochemical analyses showed significant decreases in the content of glucose, total cholesterol (TCHO), and total protein (TP), along with marked increases in the level of uric acid, urea, creatinine (CREA), Complement 3 (C3), immunoglobulin D (IgD), and immunoglobulin M (IgM) as well as in the activity of alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in the infected group. Compared with the control group, the concentration of cortisol, triglyceride (TG), and Complement 4 (C4) had no noticeable alterations in the infected group. Real-time quantitative PCR analysis showed significant upregulation of TLR2 and TLR9 mRNA expression in the spleen, kidney, brain, liver, intestine, and gill post CyHV-2 infection. Interestingly, a time- and tissue-dependent expression profile has been comparatively observed for TLR2 and TLR9 in the above tissues of gibel carp after CyHV-2 infection, suggesting distinct roles between TLR2 and TLR9 in antiviral response to CyHV-2 infection. Overall, our results demonstrated that CyHV-2 infection led to the disruption of the physiological metabolic process and damage to the liver and kidney, and induced different spatiotemporal expression patterns of TLR2 and TLR9, ultimately stimulating antiviral response via innate and adaptive immune system. These findings may provide a deeper understanding of the host immunity response to CyHV-2 infection and offer novel perspectives for the prevention and treatment and therapeutic drug development against CyHV-2.
Collapse
Affiliation(s)
- Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Yiwen Hu
- Changsha Customs, Changsha 410000, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Bingwen Xi
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| |
Collapse
|
2
|
Paulis A, Tramontano E. Unlocking STING as a Therapeutic Antiviral Strategy. Int J Mol Sci 2023; 24:ijms24087448. [PMID: 37108610 PMCID: PMC10138487 DOI: 10.3390/ijms24087448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Invading pathogens have developed weapons that subvert physiological conditions to weaken the host and permit the spread of infection. Cells, on their side, have thus developed countermeasures to maintain cellular physiology and counteract pathogenesis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) is a pattern recognition receptor that recognizes viral DNA present in the cytosol, activating the stimulator of interferon genes (STING) protein and leading to the production of type I interferons (IFN-I). Given its role in innate immunity activation, STING is considered an interesting and innovative target for the development of broad-spectrum antivirals. In this review, we discuss the function of STING; its modulation by the cellular stimuli; the molecular mechanisms developed by viruses, through which they escape this defense system; and the therapeutical strategies that have been developed to date to inhibit viral replication restoring STING functionality.
Collapse
Affiliation(s)
- Annalaura Paulis
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
3
|
Maarifi G, Martin MF, Zebboudj A, Boulay A, Nouaux P, Fernandez J, Lagisquet J, Garcin D, Gaudin R, Arhel NJ, Nisole S. Identifying enhancers of innate immune signaling as broad-spectrum antivirals active against emerging viruses. Cell Chem Biol 2022; 29:1113-1125.e6. [PMID: 35728599 PMCID: PMC9213012 DOI: 10.1016/j.chembiol.2022.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
The increasingly frequent outbreaks of pathogenic viruses have underlined the urgent need to improve our arsenal of antivirals that can be deployed for future pandemics. Innate immunity is a powerful first line of defense against pathogens, and compounds that boost the innate response have high potential to act as broad-spectrum antivirals. Here, we harnessed localization-dependent protein-complementation assays (called Alpha Centauri) to measure the nuclear translocation of interferon regulatory factors (IRFs), thus providing a readout of innate immune activation following viral infection that is applicable to high-throughput screening of immunomodulatory molecules. As proof of concept, we screened a library of kinase inhibitors on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identified Gilteritinib as a powerful enhancer of innate responses to viral infection. This immunostimulatory activity of Gilteritinib was found to be dependent on the AXL-IRF7 axis and results in a broad and potent antiviral activity against unrelated RNA viruses.
Collapse
Affiliation(s)
- Ghizlane Maarifi
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Marie-France Martin
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Abderezak Zebboudj
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Aude Boulay
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Pierre Nouaux
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Juliette Fernandez
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Justine Lagisquet
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1211 Geneva 4, Switzerland
| | - Raphael Gaudin
- Membrane Dynamics & Viruses, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Nathalie J Arhel
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France.
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France.
| |
Collapse
|
4
|
Foss MH, Stevens SL, Jin H, Allen EM, Nelson D, DeFilippis V, Nilsen A, Stenzel-Poore MP. Identification and Characterization of Small-Molecule IRF3-Dependent Immune Activators for Pharmaceutical Development. ACS Chem Biol 2022; 17:1073-1081. [PMID: 35471821 PMCID: PMC10064657 DOI: 10.1021/acschembio.1c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We sought to develop a small-molecule activator of interferon regulatory factor 3 (IRF3), an essential innate immune transcription factor, which could potentially be used therapeutically in multiple disease settings. Using a high-throughput screen, we identified small-molecule entities that activate a type I interferon response, with minimal off-target NFκB activation. We identified 399 compounds at a hit rate of 0.24% from singlicate primary screening. Secondary screening included the primary hits and additional compounds with similar chemical structures obtained from other library sources and resulted in 142 candidate compounds. The hit compounds were sorted and ranked to identify compound groups with activity in both human and mouse backgrounds to facilitate animal model engagement for translational development. Chemical modifications within two groups of small molecules produced leads with improved activity over original hits. Furthermore, these leads demonstrated activity in ex vivo cytokine release assays from human blood- and mouse bone marrow-derived macrophages. Dependence on IRF3 was demonstrated using bone marrow-derived macrophages from IRF3-deficient mice, which were not responsive to the molecules. To identify the upstream pathway leading to IRF3 activation, we used a library of CRISPR knockout cell lines to test the key innate immune adaptor and receptor molecules. These studies indicated a surprising toll-interleukin-1 receptor-domain-containing-adapter-inducing interferon-β-dependent but TLR3/4-independent mechanism of IRF3 activation.
Collapse
Affiliation(s)
- Marie H Foss
- Neuralexo, Inc., Portland, Oregon 97239, United States
| | | | - Haihong Jin
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Elyse M Allen
- Molecular Microbiology and Immunology Department, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Dylan Nelson
- High-Throughput Screening Services Laboratory, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon 97006, United States
| | - Aaron Nilsen
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Mary P Stenzel-Poore
- Molecular Microbiology and Immunology Department, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
5
|
Li M, Ferretti M, Ying B, Descamps H, Lee E, Dittmar M, Lee JS, Whig K, Kamalia B, Dohnalová L, Uhr G, Zarkoob H, Chen YC, Ramage H, Ferrer M, Lynch K, Schultz DC, Thaiss CA, Diamond MS, Cherry S. Pharmacological activation of STING blocks SARS-CoV-2 infection. Sci Immunol 2021; 6:eabi9007. [PMID: 34010142 PMCID: PMC10021026 DOI: 10.1126/sciimmunol.abi9007] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, resulting millions of infections and deaths with few effective interventions available. Here, we demonstrate that SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection. To identify potent antiviral innate immune agonists, we screened a panel of 75 microbial ligands that activate diverse signaling pathways and identified cyclic dinucleotides (CDNs), canonical STING agonists, as antiviral. Since CDNs have poor bioavailability, we tested the small molecule STING agonist diABZI, and found that it potently inhibits SARS-CoV-2 infection of diverse strains including variants of concern (B.1.351) by transiently stimulating IFN signaling. Importantly, diABZI restricts viral replication in primary human bronchial epithelial cells and in mice in vivo. Our study provides evidence that activation of STING may represent a promising therapeutic strategy to control SARS-CoV-2.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia PA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Hélène Descamps
- Department of Microbiology, University of Pennsylvania, Philadelphia PA
| | - Emily Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
| | - Jae Seung Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
| | - Kanupriya Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia PA
- High Throughput Screening Core, University of Pennsylvania, Philadelphia PA
| | - Brinda Kamalia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia PA
- High Throughput Screening Core, University of Pennsylvania, Philadelphia PA
| | - Lenka Dohnalová
- Department of Microbiology, University of Pennsylvania, Philadelphia PA
| | - Giulia Uhr
- Department of Microbiology, University of Pennsylvania, Philadelphia PA
| | - Hoda Zarkoob
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yu-Chi Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Kristen Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia PA
| | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia PA
- High Throughput Screening Core, University of Pennsylvania, Philadelphia PA
| | | | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia PA
- Department of Microbiology, University of Pennsylvania, Philadelphia PA
| |
Collapse
|
6
|
Soraya H. Prophylactic Use of Chloroquine May Impair Innate Immune System Response against SARS-Cov-2. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hamid Soraya
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Abraham J, Botto S, Mizuno N, Pryke K, Gall B, Boehm D, Sali TM, Jin H, Nilsen A, Gough M, Baird J, Chakhtoura M, Subra C, Trautmann L, Haddad EK, DeFilippis VR. Characterization of a Novel Compound That Stimulates STING-Mediated Innate Immune Activity in an Allele-Specific Manner. Front Immunol 2020; 11:1430. [PMID: 32733475 PMCID: PMC7360819 DOI: 10.3389/fimmu.2020.01430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.
Collapse
Affiliation(s)
- Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Kara Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Bryan Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Dylan Boehm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Tina M. Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Haihong Jin
- Veterans Affairs Medical Center, Portland, OR, United States
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, OR, United States
| | - Michael Gough
- Integrated Therapies Laboratory, Earle A. Chiles Research Institute, Portland, OR, United States
| | - Jason Baird
- Integrated Therapies Laboratory, Earle A. Chiles Research Institute, Portland, OR, United States
| | - Marita Chakhtoura
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Caroline Subra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Elias K. Haddad
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
8
|
Sanchez David RY, Combredet C, Najburg V, Millot GA, Beauclair G, Schwikowski B, Léger T, Camadro JM, Jacob Y, Bellalou J, Jouvenet N, Tangy F, Komarova AV. LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses. Sci Signal 2019; 12:eaar3993. [PMID: 31575732 DOI: 10.1126/scisignal.aar3993] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) RIG-I, MDA5, and LGP2 stimulate inflammatory and antiviral responses by sensing nonself RNA molecules produced during viral replication. Here, we investigated how LGP2 regulates the RIG-I- and MDA5-dependent induction of type I interferon (IFN) signaling and showed that LGP2 interacted with different components of the RNA-silencing machinery. We identified a direct protein-protein interaction between LGP2 and the IFN-inducible, double-stranded RNA binding protein PACT. The LGP2-PACT interaction was mediated by the regulatory C-terminal domain of LGP2 and was necessary for inhibiting RIG-I-dependent responses and for amplifying MDA5-dependent responses. We described a point mutation within LGP2 that disrupted the LGP2-PACT interaction and led to the loss of LGP2-mediated regulation of RIG-I and MDA5 signaling. These results suggest a model in which the LGP2-PACT interaction regulates the inflammatory responses mediated by RIG-I and MDA5 and enables the cellular RNA-silencing machinery to coordinate with the innate immune response.
Collapse
Affiliation(s)
- Raul Y Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- Ecole doctorale B3MI/Paris7, Paris, France
| | - Chantal Combredet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Gael A Millot
- Hub de Bioinformatique et Biostatistique-C3BI, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Guillaume Beauclair
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Benno Schwikowski
- Systems Biology Laboratory and USR 3756, Institut Pasteur and CNRS, Paris, France
| | - Thibaut Léger
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
- Mitochondria, Metals, and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
| | - Jacques Bellalou
- Platform of Recombinant Proteins in Prokaryotic Cells, Institut Pasteur, 75015, CNRS UMR 3528, Paris, France
| | - Nolwenn Jouvenet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
9
|
Gall B, Pryke K, Abraham J, Mizuno N, Botto S, Sali TM, Broeckel R, Haese N, Nilsen A, Placzek A, Morrison T, Heise M, Streblow D, DeFilippis V. Emerging Alphaviruses Are Sensitive to Cellular States Induced by a Novel Small-Molecule Agonist of the STING Pathway. J Virol 2018; 92:e01913-17. [PMID: 29263267 PMCID: PMC5827377 DOI: 10.1128/jvi.01913-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
The type I interferon (IFN) system represents an essential innate immune response that renders cells resistant to virus growth via the molecular actions of IFN-induced effector proteins. IFN-mediated cellular states inhibit growth of numerous and diverse virus types, including those of known pathogenicity as well as potentially emerging agents. As such, targeted pharmacologic activation of the IFN response may represent a novel therapeutic strategy to prevent infection or spread of clinically impactful viruses. In light of this, we employed a high-throughput screen to identify small molecules capable of permeating the cell and of activating IFN-dependent signaling processes. Here we report the identification and characterization of N-(methylcarbamoyl)-2-{[5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}-2-phenylacetamide (referred to as C11), a novel compound capable of inducing IFN secretion from human cells. Using reverse genetics-based loss-of-function assays, we show that C11 activates the type I IFN response in a manner that requires the adaptor protein STING but not the alternative adaptors MAVS and TRIF. Importantly, treatment of cells with C11 generated a cellular state that potently blocked replication of multiple emerging alphavirus types, including chikungunya, Ross River, Venezuelan equine encephalitis, Mayaro, and O'nyong-nyong viruses. The antiviral effects of C11 were subsequently abrogated in cells lacking STING or the type I IFN receptor, indicating that they are mediated, at least predominantly, by way of STING-mediated IFN secretion and subsequent autocrine/paracrine signaling. This work also allowed characterization of differential antiviral roles of innate immune signaling adaptors and IFN-mediated responses and identified MAVS as being crucial to cellular resistance to alphavirus infection.IMPORTANCE Due to the increase in emerging arthropod-borne viruses, such as chikungunya virus, that lack FDA-approved therapeutics and vaccines, it is important to better understand the signaling pathways that lead to clearance of virus. Here we show that C11 treatment makes human cells refractory to replication of a number of these viruses, which supports its value in increasing our understanding of the immune response and viral pathogenesis required to establish host infection. We also show that C11 depends on signaling through STING to produce antiviral type I interferon, which further supports its potential as a therapeutic drug or research tool.
Collapse
Affiliation(s)
- Bryan Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Kara Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tina M Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | | | - Thomas Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Lee K, Kim DE, Jang KS, Kim SJ, Cho S, Kim C. Gemcitabine, a broad-spectrum antiviral drug, suppresses enterovirus infections through innate immunity induced by the inhibition of pyrimidine biosynthesis and nucleotide depletion. Oncotarget 2017; 8:115315-115325. [PMID: 29383162 PMCID: PMC5777774 DOI: 10.18632/oncotarget.23258] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
Gemcitabine, an anti-cancer chemotherapy drug, has additionally shown the antiviral activity against a broad range of viruses and we also have previously reported its synergistic antiviral activity with ribavirin against enteroviruses. As a cytidine analog, gemcitabine has been reported to have an inhibitory activity on the pyrimidine biosynthesis. In addition, a few inhibitors of the pyrimidine biosynthesis have shown to induce the innate immunity in a yet-to-be-determined manner and inhibit the virus infection. Thus, we also investigated whether the anti-enteroviral activity of gemcitabine is mediated by innate immunity, induction of which is related with the inhibition of the pyrimidine synthesis. In this study, we found that the addition of exogenous cytidine, uridine and uridine mono-phosphate (UMP) effectively reversed the antiviral activity of gemcitabine in enterovirus-infected as well as enteroviral replicon-harboring cells, demonstrating gemcitabine's targeting of the salvage pathway. Moreover, the expression of several interferon (IFN)-stimulated genes (ISGs) was significantly induced by the treatment of gemcitabine, which was also suppressed by the co-treatment with cytidine. These results suggest that the antiviral activity of gemcitabine involves ISGs induced by the inhibition of the pyrimidine biosynthesis.
Collapse
Affiliation(s)
- Kyungjin Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Dong-Eun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Chonsaeng Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Department of Medicinal and Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
11
|
Khiar S, Lucas-Hourani M, Nisole S, Smith N, Helynck O, Bourgine M, Ruffié C, Herbeuval JP, Munier-Lehmann H, Tangy F, Vidalain PO. Identification of a small molecule that primes the type I interferon response to cytosolic DNA. Sci Rep 2017; 7:2561. [PMID: 28566766 PMCID: PMC5451460 DOI: 10.1038/s41598-017-02776-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
The type I interferon response plays a pivotal role in host defense against infectious agents and tumors, and promising therapeutic approaches rely on small molecules designed to boost this system. To identify such compounds, we developed a high-throughput screening assay based on HEK-293 cells expressing luciferase under the control of Interferon-Stimulated Response Elements (ISRE). An original library of 10,000 synthetic compounds was screened, and we identified a series of 1H-benzimidazole-4-carboxamide compounds inducing the ISRE promoter sequence, specific cellular Interferon-Stimulated Genes (ISGs), and the phosphorylation of Interferon Regulatory Factor (IRF) 3. ISRE induction by ChX710, a prototypical member of this chemical series, was dependent on the adaptor MAVS and IRF1, but was IRF3 independent. Although it was unable to trigger type I IFN secretion per se, ChX710 efficiently primed cellular response to transfected plasmid DNA as assessed by potent synergistic effects on IFN-β secretion and ISG expression levels. This cellular response was dependent on STING, a key adaptor involved in the sensing of cytosolic DNA and immune activation by various pathogens, stress signals and tumorigenesis. Our results demonstrate that cellular response to cytosolic DNA can be boosted with a small molecule, and potential applications in antimicrobial and cancer therapies are discussed.
Collapse
Affiliation(s)
- Samira Khiar
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, Paris, France
| | | | - Sébastien Nisole
- Mécanismes d'action des interférons et voies bio-thérapeutiques, Université Paris Descartes, INSERM UMR-S1124, Paris, France
| | - Nikaïa Smith
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, Paris, France
| | - Maryline Bourgine
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France
| | - Claude Ruffié
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, Paris, France
| | - Jean-Philippe Herbeuval
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR8601, Paris, France
| | | | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, Paris, France.
| | - Pierre-Olivier Vidalain
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR8601, Paris, France.
| |
Collapse
|
12
|
Cheung NN, Lai KK, Dai J, Kok KH, Chen H, Chan KH, Yuen KY, Kao RYT. Broad-spectrum inhibition of common respiratory RNA viruses by a pyrimidine synthesis inhibitor with involvement of the host antiviral response. J Gen Virol 2017; 98:946-954. [PMID: 28555543 DOI: 10.1099/jgv.0.000758] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our previous screening of 50 240 structurally diverse compounds led to the identification of 39 influenza A virus infection inhibitors (Kao R.Y., Yang D., Lau L.S., Tsui W.H., Hu L. et al. Nat Biotechnol 2010;28:600-605). Further screening of these compounds against common respiratory viruses led to the discovery of compound FA-613. This inhibitor exhibited low micromolar antiviral activity against various influenza A and B virus strains, including the highly pathogenic influenza A strains H5N1 and H7N9, enterovirus A71, respiratory syncytial virus, human rhinovirus A, SARS- and MERS-coronavirus. No significant cellular toxicity was observed at the effective concentrations. Animal studies showed an improved survival rate in BALB/c mice that received intranasal FA-613 treatments against a lethal dose infection of A/HK/415742Md/2009 (H1N1). Further cell-based assays indicated that FA-613 interfer with the de novo pyrimidine biosynthesis pathway by targeting the dihydroorotate dehydrogenase. Surprisingly, FA-613 lost its antiviral potency in the interferon-deficient Vero cell line, while maintaining its inhibitory activity in an interferon-competent cell line which showed elevated expression of host antiviral genes when infected in the presence of FA-613. Further investigation of the specific connection between pyrimidine synthesis inhibition and the induction of host innate immunity might aid clinical development of this type of drug in antiviral therapies. Therefore, in acute cases of respiratory tract infections, when rapid diagnostics of the causative agent are not readily available, an antiviral drug with properties like FA-613 could prove to be very valuable.
Collapse
Affiliation(s)
- Nam Nam Cheung
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kin Kui Lai
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Jun Dai
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kin Hang Kok
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Honglin Chen
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory for Emerging Infectious Disease and the Research Centre of Infection and Immunology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Hung Chan
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Disease and the Research Centre of Infection and Immunology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Richard Yi Tsun Kao
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory for Emerging Infectious Disease and the Research Centre of Infection and Immunology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
13
|
Pryke KM, Abraham J, Sali TM, Gall BJ, Archer I, Liu A, Bambina S, Baird J, Gough M, Chakhtoura M, Haddad EK, Kirby IT, Nilsen A, Streblow DN, Hirsch AJ, Smith JL, DeFilippis VR. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. mBio 2017; 8:e00452-17. [PMID: 28465426 PMCID: PMC5414005 DOI: 10.1128/mbio.00452-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023] Open
Abstract
The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy's potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity.IMPORTANCE The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.
Collapse
Affiliation(s)
- Kara M Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tina M Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Bryan J Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Iris Archer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Andrew Liu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Jason Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Michael Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Marita Chakhtoura
- Division of Infectious Diseases and HIV Medicine, Drexel College of Medicine, Philadelphia, Pennsylvania, USA
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ilsa T Kirby
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Victor R DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
14
|
Jeidane S, Scott-Boyer MP, Tremblay N, Cardin S, Picard S, Baril M, Lamarre D, Deschepper CF. Association of a Network of Interferon-Stimulated Genes with a Locus Encoding a Negative Regulator of Non-conventional IKK Kinases and IFNB1. Cell Rep 2016; 17:425-435. [PMID: 27705791 DOI: 10.1016/j.celrep.2016.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/11/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Functional genomic analysis of gene expression in mice allowed us to identify a quantitative trait locus (QTL) linked in trans to the expression of 190 gene transcripts and in cis to the expression of only two genes, one of which was Ypel5. Most of the trans-expression QTL genes were interferon-stimulated genes (ISGs), and their expression in mouse macrophage cell lines was stimulated in an IFNB1-dependent manner by Ypel5 silencing. In human HEK293T cells, YPEL5 silencing enhanced the induction of IFNB1 by pattern recognition receptors and phosphorylation of TBK1/IKBKE kinases, whereas co-immunoprecipitation experiments revealed that YPEL5 interacted physically with IKBKE. We thus found that the Ypel5 gene (contained in a locus linked to a network of ISGs in mice) is a negative regulator of IFNB1 production and innate immune responses that interacts functionally and physically with TBK1/IKBKE kinases.
Collapse
Affiliation(s)
- Saloua Jeidane
- Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC J2S 2M2, Canada
| | - Marie-Pier Scott-Boyer
- Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC J2S 2M2, Canada
| | - Nicolas Tremblay
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC J2S 2M2, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC H2X 3J4, Canada
| | - Sophie Cardin
- Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC J2S 2M2, Canada
| | - Sylvie Picard
- Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Martin Baril
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC J2S 2M2, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC H2X 3J4, Canada
| | - Daniel Lamarre
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC J2S 2M2, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC H2X 3J4, Canada
| | - Christian F Deschepper
- Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC J2S 2M2, Canada.
| |
Collapse
|
15
|
Sanchez David RY, Combredet C, Sismeiro O, Dillies MA, Jagla B, Coppée JY, Mura M, Guerbois Galla M, Despres P, Tangy F, Komarova AV. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. eLife 2016; 5:e11275. [PMID: 27011352 PMCID: PMC4841775 DOI: 10.7554/elife.11275] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3' untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection.
Collapse
Affiliation(s)
- Raul Y Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- Ecole doctorale, Biochimie, Biothérapies, Biologie Moléculaire et Infectiologie (B3MI), Université Paris Diderot - Paris 7, Paris, France
| | - Chantal Combredet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Odile Sismeiro
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Marie-Agnès Dillies
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Bernd Jagla
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Marie Mura
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- Unité Interactions Hôte-Agents Pathogens, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | | | - Philippe Despres
- Technology Platform CYROI, University of Reunion Island, Saint-Clotilde, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| |
Collapse
|
16
|
Sali TM, Pryke KM, Abraham J, Liu A, Archer I, Broeckel R, Staverosky JA, Smith JL, Al-Shammari A, Amsler L, Sheridan K, Nilsen A, Streblow DN, DeFilippis VR. Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses. PLoS Pathog 2015; 11:e1005324. [PMID: 26646986 PMCID: PMC4672893 DOI: 10.1371/journal.ppat.1005324] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022] Open
Abstract
Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.
Collapse
Affiliation(s)
- Tina M. Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Kara M. Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Andrew Liu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Iris Archer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Rebecca Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Julia A. Staverosky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jessica L. Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ahmed Al-Shammari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Iraqi Centre for Cancer and Medical Genetics Research, Baghdad, Iraq
| | - Lisi Amsler
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Kayla Sheridan
- Veterans Affairs Medical Center, Portland, Oregon, United States of America
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
17
|
Khiar S, Pietrancosta N, Vidalain PO. [Stimulating Type I interferon response with small molecules: revival of an old idea]. Biol Aujourdhui 2015; 209:145-59. [PMID: 26514384 DOI: 10.1051/jbio/2015015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 01/04/2023]
Abstract
Type I interferons play a central role in the establishment of an innate immune response against viral infections and tumor cells. Shortly after their discovery in 1957, several groups have looked for small molecules capable of inducing the expression of these cytokines with therapeutic applications in mind. A set of active compounds in mice were identified, but because of their relative inefficiency in humans for reasons not understood at the time, these studies fell into oblivion. In recent years, the characterization of pathogen recognition receptors and the signaling pathways they activate, together with the discovery of plasmacytoid dendritic cells, have revolutionized our understanding of innate immunity. These discoveries and the popularization of high-throughput screening technologies have renewed the interest for small molecules that can induce type I interferons. Proofs about their therapeutic potency in humans are expected very soon.
Collapse
Affiliation(s)
- Samira Khiar
- Unitéde Génomique Virale et Vaccination, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France - CNRS UMR3569, 28 rue du Dr. Roux, 75015 Paris, France
| | - Nicolas Pietrancosta
- Plateau 2MI, CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CICB-Paris (FR 3567), Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Pierre-Olivier Vidalain
- qÉuipe Chimie et Biologie, Nucléo(s)tides & Immunologie pour la Thérapie, CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CICB-Paris (FR 3567), Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
18
|
Vidalain PO, Lucas-Hourani M, Helynck O, Tangy F, Munier-Lehmann H. [Stimulation of the antiviral innate immune response by pyrimidine biosynthesis inhibitors: a surprise of phenotypic screening]. Med Sci (Paris) 2015; 31:98-104. [PMID: 25658737 DOI: 10.1051/medsci/20153101019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. In particular, several academic laboratories and private companies are now seeking molecules that stimulate the host innate antiviral response. One appealing strategy is to identify molecules that induce the large cluster of antiviral genes known as Interferon-Stimulated Genes (ISGs). To reach this goal, we have developed a phenotypic assay based on human cells transfected with a luciferase reporter gene under control of an interferon-stimulated response element (ISRE). This system was used in a high-throughput screening of chemical libraries comprising around 54,000 compounds. Among validated hits, compound DD264 was shown to boost the innate immune response in cell cultures, and displayed a broad-spectrum antiviral activity. While deciphering its mode of action, DD264 was found to target the fourth enzyme of de novo pyrimidine biosynthesis, namely the dihydroorotate dehydrogenase (DHODH). Thus, our data unraveled a yet unsuspected link between pyrimidine biosynthesis and the innate antiviral response.
Collapse
Affiliation(s)
- Pierre-Olivier Vidalain
- Unité de génomique virale et vaccination, département de virologie, Institut Pasteur, CNRS UMR 3569, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marianne Lucas-Hourani
- Unité de génomique virale et vaccination, département de virologie, Institut Pasteur, CNRS UMR 3569, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Olivier Helynck
- Unité de chimie et biocatalyse, département de biologie structurale et chimie Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Frédéric Tangy
- Unité de génomique virale et vaccination, département de virologie, Institut Pasteur, CNRS UMR 3569, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Hélène Munier-Lehmann
- Unité de chimie et biocatalyse, département de biologie structurale et chimie Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
19
|
Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. MyD88-mediated TLR signaling protects against acute rotavirus infection while inflammasome cytokines direct Ab response. Innate Immun 2014; 21:416-28. [PMID: 25213347 DOI: 10.1177/1753425914547435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/24/2014] [Indexed: 11/16/2022] Open
Abstract
Rotavirus (RV) infects small intestinal epithelial cells, inducing severe diarrhea in children, resulting in over 500,000 deaths annually. Relatively little is known about how innate immunity contains acute infection and drives adaptive immune responses that afford complete clearance of RV and protection against future infection. Hence, we examined the consequence of the absence of MyD88, known to be central to innate immunity, in a mouse model of RV infection. The absence of MyD88, but not combined blockade of IL-1β and IL-18 signaling, resulted in greater infectivity, as reflected by levels of RV in feces, intestinal lysates and viremia. Such increased RV levels correlated with an increase in incidence and duration of diarrhea. Loss of MyD88 also impaired humoral immunity to RV. Specifically, MyD88 knockout generated less RV-specific IgA and exhibited profoundly reduced RV-specific IgG2c/IgG1 ratios suggesting that MyD88 signaling drives RV-induced Th1 responses. A study of MyD88 bone marrow chimeras indicated that MyD88-dependent control of acute RV infection was mediated by both hemopoietic and non-hemopoietic cells, while generation of RV-specific humoral immunity was driven by MyD88 signaling in hemopoietic cells, which reflected the loss of IL-1β and IL-18 expression by these cells. Thus, TLR signaling and inflammasome cytokines drive innate and adaptive immunity to RV.
Collapse
Affiliation(s)
- Robin Uchiyama
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benyue Zhang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Santos-Martins M, Sameiro-Faria M, Ribeiro S, Rocha-Pereira P, Nascimento H, Reis F, Miranda V, Quintanilha A, Belo L, Beirão I, Santos-Silva A, Bronze-Da-Rocha E, Costa E. TLR4 and TLR9 Polymorphisms Effect on Inflammatory Response in End-Stage Renal Disease Patients. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) play a key role in the response of innate and adaptive immune system to microbial and endogenous ligands. Inflammation is a common feature in end-stage renal disease (ESRD) patients; however, the mechanisms/factors triggering the inflammatory process are still poorly clarified. Our aim was to analyze the impact of the c.-1486T>C and c.896A>G polymorphisms in TLR9 and TLR4 genes, respectively, on the inflammatory response of ESRD patients. Clinical and laboratory evaluation was carried out on 184 ESRD patients. Polymerase chain reaction followed by restriction fragmens length polymorphisms (PCR-RFLP) was employed for genotyping of TLR-4 c.896A>G and TLR-9 c.-1486T>C polymorphisms. The prevalence of AA and AG of TLR4 c.896A>G polymorphism in ESRD patients was 97.8% and 2.2%, respectively. None of the individuals showed a homozygous TLR4 polymorphism. Concerning the TLR9 c.-1486T>C polymorphism, we found that ESRD patients showed a prevalence of TC and CC genotypes of 57.1% and 20.6%, respectively. We found that the heterozygous patients for the TLR4 c.896A>G polymorphism presented an increased level in lymphocyte count, a decrease in neutrophil/lymphocyte ratio and in serum levels of hepcidin. Regarding the TLR9 c.-1486T>C polymorphism, we found that it is associated with decreased white blood cell and neutrophil counts, ferritin and CRP serum levels, and with an increase in serum levels of creatinine. Our data suggest that the presence of the studied polymorphisms is associated with a decreased inflammatory response in ESRD patients under hemodialysis, and, thus its presence might have beneficial effects in ESRD patients. Moreover, our data provide new insights in the role of TLR polymorphisms in renal disease, which might have impact in the near future for the development of innovative therapies.
Collapse
Affiliation(s)
- M. Santos-Martins
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - M. Sameiro-Faria
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Nephrocare Portugal, SA-Nephrocare Maia, Maia, Portugal
| | - S. Ribeiro
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - P. Rocha-Pereira
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - H. Nascimento
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - F. Reis
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - V. Miranda
- Nephrocare Portugal, SA-Nephrocare Maia, Maia, Portugal
| | - A. Quintanilha
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - L. Belo
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - I. Beirão
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Nephrology Service, Hospital Centre of Porto, Porto, Portugal
- UMIB, Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, Porto, Portugal
| | - A. Santos-Silva
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - E. Bronze-Da-Rocha
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - E. Costa
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Villena J, Chiba E, Vizoso-Pinto MG, Tomosada Y, Takahashi T, Ishizuka T, Aso H, Salva S, Alvarez S, Kitazawa H. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells. BMC Microbiol 2014; 14:126. [PMID: 24886142 PMCID: PMC4035899 DOI: 10.1186/1471-2180-14-126] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2014] [Indexed: 01/24/2023] Open
Abstract
Background Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. Results We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. Conclusions It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge.
Collapse
Affiliation(s)
- Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Toll-like receptors in antiviral innate immunity. J Mol Biol 2013; 426:1246-64. [PMID: 24316048 PMCID: PMC3943763 DOI: 10.1016/j.jmb.2013.11.024] [Citation(s) in RCA: 533] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. TLRs are membrane-bound sensors that activate innate immune responses to viruses. TLRs recognize viral proteins on cell surface or viral nucleic acids in endosomes. TLRs employ distinct pathways to induce interferon (IFN) antiviral and/or inflammatory responses. Viruses have evolved elaborate tactics to circumvent TLR-mediated innate immunity. TLRs regulate viral pathogenesis and are amenable to therapeutic purposes.
Collapse
|
23
|
Magor KE, Miranzo Navarro D, Barber MRW, Petkau K, Fleming-Canepa X, Blyth GAD, Blaine AH. Defense genes missing from the flight division. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:377-88. [PMID: 23624185 PMCID: PMC7172724 DOI: 10.1016/j.dci.2013.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 05/12/2023]
Abstract
Birds have a smaller repertoire of immune genes than mammals. In our efforts to study antiviral responses to influenza in avian hosts, we have noted key genes that appear to be missing. As a result, we speculate that birds have impaired detection of viruses and intracellular pathogens. Birds are missing TLR8, a detector for single-stranded RNA. Chickens also lack RIG-I, the intracellular detector for single-stranded viral RNA. Riplet, an activator for RIG-I, is also missing in chickens. IRF3, the nuclear activator of interferon-beta in the RIG-I pathway is missing in birds. Downstream of interferon (IFN) signaling, some of the antiviral effectors are missing, including ISG15, and ISG54 and ISG56 (IFITs). Birds have only three antibody isotypes and IgD is missing. Ducks, but not chickens, make an unusual truncated IgY antibody that is missing the Fc fragment. Chickens have an expanded family of LILR leukocyte receptor genes, called CHIR genes, with hundreds of members, including several that encode IgY Fc receptors. Intriguingly, LILR homologues appear to be missing in ducks, including these IgY Fc receptors. The truncated IgY in ducks, and the duplicated IgY receptor genes in chickens may both have resulted from selective pressure by a pathogen on IgY FcR interactions. Birds have a minimal MHC, and the TAP transport and presentation of peptides on MHC class I is constrained, limiting function. Perhaps removing some constraint, ducks appear to lack tapasin, a chaperone involved in loading peptides on MHC class I. Finally, the absence of lymphotoxin-alpha and beta may account for the observed lack of lymph nodes in birds. As illustrated by these examples, the picture that emerges is some impairment of immune response to viruses in birds, either a cause or consequence of the host-pathogen arms race and long evolutionary relationship of birds and RNA viruses.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lucas-Hourani M, Dauzonne D, Jorda P, Cousin G, Lupan A, Helynck O, Caignard G, Janvier G, André-Leroux G, Khiar S, Escriou N, Desprès P, Jacob Y, Munier-Lehmann H, Tangy F, Vidalain PO. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog 2013; 9:e1003678. [PMID: 24098125 PMCID: PMC3789760 DOI: 10.1371/journal.ppat.1003678] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/16/2013] [Indexed: 12/19/2022] Open
Abstract
Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response. Our therapeutic arsenal to treat viral diseases is extremely limited, and there is a critical need for molecules that could be used against multiple viruses. Among possible strategies, there is a growing interest for molecules stimulating cellular defense mechanisms. We recently developed a functional assay to identify stimulators of antiviral genes, and selected compound DD264 from a chemical library using this approach. While searching for its mode of action, we identified this molecule as an inhibitor of pyrimidine biosynthesis, a metabolic pathway that fuels the cell with pyrimidine nucleobases for both DNA and RNA synthesis. Interestingly, it was recently shown that inhibitors of this metabolic pathway prevent the replication of RNA viruses. Here, we established a functional link between pyrimidine biosynthesis pathway and the induction of antiviral genes, and demonstrated that pyrimidine biosynthesis inhibitors like DD264 or brequinar critically rely on cellular immune response to inhibit virus growth. Thus, pyrimidine deprivation is not directly responsible for the antiviral activity of pyrimidine biosynthesis inhibitors, which rather involves the induction of a metabolic stress and subsequent triggering of cellular defense mechanisms.
Collapse
Affiliation(s)
- Marianne Lucas-Hourani
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Daniel Dauzonne
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Pierre Jorda
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Gaëlle Cousin
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Alexandru Lupan
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Grégory Caignard
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Geneviève Janvier
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Gwénaëlle André-Leroux
- Institut Pasteur, Unité de Biochimie Structurale, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Samira Khiar
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Philippe Desprès
- Institut Pasteur, Unité Interactions moléculaires Flavivirus-Hôtes, Paris, France
| | - Yves Jacob
- CNRS, UMR3569, Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- Dana-Farber Cancer Institute, Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Boston, Massachusetts, United States of America
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| |
Collapse
|
25
|
Ballana E, Esté JA. Insights from host genomics into HIV infection and disease: Identification of host targets for drug development. Antiviral Res 2013; 100:473-86. [PMID: 24084487 DOI: 10.1016/j.antiviral.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023]
Abstract
HIV susceptibility and disease progression show a substantial degree of individual heterogeneity, ranging from fast progressors to long-term non progressors or elite controllers, that is, subjects that control infection in the absence of therapy. Recent years have seen a significant increase in understanding of the host genetic determinants of susceptibility to HIV infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale functional screens. These studies have identified common variants in host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogue of genes and pathways involved in viral replication. This review highlights the potential of host genomic influences in antiviral therapy by pointing to promising novel drug targets but also providing the basis of the identification and validation of host mechanisms that might be susceptible targets for novel antiviral therapies.
Collapse
Affiliation(s)
- Ester Ballana
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|