1
|
Roa-Linares VC, Betancur-Galvis LA, González-Cardenete MA, Garcia-Blanco MA, Gallego-Gomez JC. Broad-spectrum antiviral ferruginol analog affects the viral proteins translation and actin remodeling during dengue virus infection. Antiviral Res 2025; 237:106139. [PMID: 40043781 DOI: 10.1016/j.antiviral.2025.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Dengue virus infection is the most important arbovirosis around the world. To date, no antiviral drugs have been approved for its treatment. Host-targeted antivirals (HTA) have emerged as a promising strategy, because of their high barrier to resistance. Using plaque-forming unit assays, molecular docking, fluorescence microscopy, image analysis, and molecular/cellular assays, it was found that 18-(phthalimide-2-yl)-ferruginol, a semi-synthetic analog of the bioactive diterpenoid ferruginol, couples with high affinity to RhoA GTPase. In addition, this molecule dramatically reduced actin filament formation and induced cellular morphological changes, when added to cell cultures before or after infection, without effect on microtubules or intermediate filaments. RhoA activation in infected cells was affected when the compound was added after 6 h.p.i. Furthermore, this compound decreased dengue virus-2 (DENV-2) E protein, NS3 protein, and dsRNA as measured by fluorescence microscopy, and changes in the distribution pattern of these viral components. 18-(phthalimide-2-yl)-ferruginol treatment at 6 and 12 h.p.i. reduces the virus yield. Western blot and RT-qPCR assays reveal that this analog decreased viral protein translation. Flow cytometry and wound-healing experiments also hint that cellular effects prompted for this compound do not relate to early apoptotic events and they could be reversible. Overall, our findings strongly suggest that 18-(phthalimide-2-yl)-ferruginol has an HTA mechanism, possibly disrupting the polyprotein translation of DENV-2 via alteration of RhoA-mediated actin remodeling and other related cellular and viral processes.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Translational Medicine Group, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia; Crisalida Research Group, Faculty of Medical and Health Sciences, Universidad de Santander, Cucuta, Colombia.
| | - Liliana A Betancur-Galvis
- Translational Medicine Group, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia; Group of Investigative Dermatology, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia
| | - Miguel A González-Cardenete
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain.
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77550, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Juan C Gallego-Gomez
- Translational Medicine Group, Medicine Faculty, Institute for Medical Research, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
2
|
Wahab A, Laksanawati IS, Padmawati RS, Mulyadi AWE, Triadmajani W, Thobari JA. Knowledge, attitude, and practice regarding dengue vaccine: a baseline study of community members and health providers in Indonesia. Clin Exp Pediatr 2025; 68:228-237. [PMID: 39533719 PMCID: PMC11884950 DOI: 10.3345/cep.2024.00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Despite recent behavioral interventions aimed at reducing the burden of dengue, persistent unfavorable related behaviors in the Indonesian community suggest that vaccination could be effective. However, before this is implemented nationally, public perception and acceptance of the vaccine should be assessed in addition to health providers' points of view. PURPOSE This study aimed to assess the knowledge, attitudes, and practices (KAP) of community members and health providers in Indonesia. METHODS A cross-sectional survey was conducted in 6 districts of 3 Indonesian provinces. Respondents included both community members and health providers living within the territory of the selected primary health care centers. Pretested questionnaires were used to gather information on the sociodemographic characteristics and KAPs regarding dengue vaccines. An independent t test was performed to compare the mean KAP scores between community members and health providers, while a logistic regression analysis was used to identify the predictors in each domain. RESULTS Only 18.5% of health providers possessed high knowledge of the dengue vaccine versus only 12.5% of community members. Approximately one-third of the health providers versus one-fourth of community members displayed a high to moderate score for attitudes about dengue vaccines. Dengue vaccination practices demonstrated a more favorable score for both health providers and community members at 59.1% and 41.1%, respectively. No individual sociodemographic characteristics were associated with KAPs; rather, only education was correlated with better dengue vaccination practices. We also found that good knowledge of dengue was the only factor associated with all domains. CONCLUSION Our findings highlight the urgent need to deliver educational interventions to health providers and community members in Indonesia to improve their awareness of dengue vaccines.
Collapse
Affiliation(s)
- Abdul Wahab
- Center for Child Health-PRO, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Reproductive Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ida Safitri Laksanawati
- Center for Child Health-PRO, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pediatrics, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Retna Siwi Padmawati
- Center for Child Health-PRO, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Health Behavior, Environment, and Social Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Asal Wahyuni Erlin Mulyadi
- Center for Child Health-PRO, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Public Administration, Faculty of Social and Political Science, Universitas Sebelas Maret, Yogyakarta, Indonesia
| | - Wahyu Triadmajani
- Center for Child Health-PRO, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jarir At Thobari
- Center for Child Health-PRO, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Dong B, Feng S, Feng X. Advances in the Epidemiology, Pathogenesis, Diagnostic Methods, and Vaccine Development of Dengue Fever: A Comprehensive Review. Viral Immunol 2025; 38:53-60. [PMID: 39995247 DOI: 10.1089/vim.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Dengue fever (DF) is a common mosquito-borne viral infection caused by any of the four dengue virus (DENV) serotypes. In recent years, the global incidence of DF has risen rapidly, which has widely threatened the health of millions of people in the United States, Southeast Asia, and the Western Pacific. The challenges for the prevention and control of DENV infection have become increasingly severe. Over the years, advances in the area of DF research have been continuously updating. In this review, we provide an updated and more in-depth overview of dengue epidemiology and pathogenesis, along with recent progress in diagnostic approaches (including methods to address cross-reactivity with other flaviviruses) and an expanded discussion of current dengue vaccine development, such as CYD-TDV (Dengvaxia), TV003/TV005, and the new TAK-003. This comprehensive perspective aims to offer references for the prevention, clinical diagnosis, and control of the disease.
Collapse
Affiliation(s)
- Boqi Dong
- Department of Pathogen Biology, School of Basic Medicine, Jilin Medical University, Jilin, China
| | - Sisi Feng
- Jilin Medical University, Jilin, China
| | | |
Collapse
|
4
|
Pourzangiabadi M, Najafi H, Fallah A, Goudarzi A, Pouladi I. Dengue virus: Etiology, epidemiology, pathobiology, and developments in diagnosis and control - A comprehensive review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105710. [PMID: 39732271 DOI: 10.1016/j.meegid.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Dengue flavivirus (DENV) is the virus that causes dengue, one of the most dangerous and common viral diseases in humans that are carried by mosquitoes and can lead to fatalities. Every year, there are over 400 million cases of dengue fever worldwide, and 22,000 fatalities. It has been documented in tropical and subtropical climates in over 100 nations. Unfortunately, there is no specific treatment approach, but prevention, adequate awareness, diagnosis in the early stages of viral infection and proper medical care can reduce the mortality rate. The first licensed vaccine for dengue virus (CYD Denvaxia) was quadrivalent, but it is not approved in all countries. The primary barriers to vaccine development include inadequate animal models, inadequate etiology mechanistic studies, and adverse drug events. This study provides current knowledge and a comprehensive view of the biology, production and reproduction, transmission, pathogenesis and diagnosis, epidemiology and control measures of dengue virus.
Collapse
Affiliation(s)
- Masoud Pourzangiabadi
- Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aida Goudarzi
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Kanga S, Roy P, Singh SK, Meraj G, Kumar P, Debnath J. Delineating dengue risk zones in Jaipur: An interdisciplinary approach to inform public health strategies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:154-176. [PMID: 38987233 DOI: 10.1111/risa.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Dengue fever (DF) is a pervasive public health concern in tropical climates, with densely populated regions, such as India, disproportionately affected. Addressing this issue requires a multifaceted understanding of the environmental and sociocultural factors that contribute to the risk of dengue infection. This study aimed to identify high-risk zones for DF in Jaipur, Rajasthan, India, by integrating physical, demographic, and epidemiological data in a comprehensive risk analysis framework. We investigated environmental variables, such as soil type and plant cover, to characterize the potential habitats of Aedes aegypti, the primary dengue vector. Concurrently, demographic metrics were evaluated to assess the population's susceptibility to dengue outbreaks. High-risk areas were systematically identified through a comparative analysis that integrated population density and incidence rates per ward. The results revealed a significant correlation between high population density and an increased risk of dengue, predominantly facilitated by vertical transmission. Spatially, these high-risk zones are concentrated in the northern and southern sectors of Jaipur, with the northern and southwestern wards exhibiting the most acute risk profiles. This study underscores the importance of targeted public health interventions and vaccination campaigns in vulnerable areas. It further lays the groundwork for future research to evaluate the effectiveness of such interventions, thereby contributing to the development of robust evidence-based strategies for dengue risk mitigation.
Collapse
Affiliation(s)
- Shruti Kanga
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Priyanka Roy
- Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Suraj Kumar Singh
- Centre for Sustainable Development, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Gowhar Meraj
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Pankaj Kumar
- Institute for Global Environmental Strategies, Hayama, Japan
| | - Jatan Debnath
- Department of Geography, Gauhati University, Jalukbari, Assam, India
| |
Collapse
|
6
|
Niu M, Yi W, Dong Z, Li X, Dong X, Yu L, Han Y, Zhang O, Sheng Z, An J, Li H, Sun Y. Effective inhibition of dengue virus replication using 3'UTR-targeted Vivo-Morpholinos. Front Immunol 2024; 15:1491230. [PMID: 39676860 PMCID: PMC11638040 DOI: 10.3389/fimmu.2024.1491230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Due to the impact of antibody-dependent enhancement and viral variation, effective vaccines or antiviral therapies remain lacking for the dengue virus (DENV). Nucleic acid drugs, particularly Vivo-Morpholinos (MOs), have emerged as a promising avenue for antiviral treatment due to their programmability and precise targeting, as well as their safety and stability. Method In this study, we designed and developed 10 morpho-modified (octa-guanidine dendrimer) vivo-MO molecules that target each coding gene of DENV. Subsequently, we assessed the inhibitory impact of vivo-MOs on dengue viral RNA load utilizing qRT-PCR. Furthermore, we examined the inhibitory effect on the live virus through a plaque assay and the TCID50 assay. Results We found that the vivo-3'UTR molecule targeting the 3' untranslated region of the dengue virus exhibited the highest inhibitory rate against viral load. The vivo-3'UTR demonstrated 99% inhibition of dengue virus RNA and the inhibition of up to 98% of the live virus. Additionally, the targeted sequence was conserved among all four DENV serotypes, and treatment with 10 μM of vivo-3'UTR resulted in a reduction of viral titers for all four DENV serotypes by over 99.99%. Additionally, we revealed that pre-treatment with vivo-3'UTR had a notable preventive effect against viral infection. Conclusion This study screened an effective vivo-MO target drug for the treatment of dengue virus infection, demonstrating low toxicity in mammalian cell lines, and proposed a novel preventive antiviral approach.
Collapse
Affiliation(s)
- Mengwei Niu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Wenyanbo Yi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Zhuofan Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Xiaofeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Lifang Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Yao Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Oujia Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Ullah H, Ullah S, Li J, Yang F, Tan L. An In Silico Design of a Vaccine against All Serotypes of the Dengue Virus Based on Virtual Screening of B-Cell and T-Cell Epitopes. BIOLOGY 2024; 13:681. [PMID: 39336108 PMCID: PMC11428656 DOI: 10.3390/biology13090681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024]
Abstract
Dengue virus poses a significant global health challenge, particularly in tropical and subtropical regions. Despite the urgent demand for vaccines in the control of the disease, the two approved vaccines, Dengvaxia and TV003/TV005, there are current questions regarding their effectiveness due to an increased risk of antibody-dependent enhancement (ADE) and reduced protection. These challenges have underscored the need for further development of improved vaccines for Dengue Virus. This study presents a new design using an in silico approach to generate a more effective dengue vaccine. Initially, our design process began with the collection of Dengue polyprotein sequences from 10 representative countries worldwide. And then conserved fragments of viral proteins were retrieved as the bases for epitope screening. The selection of epitopes was then carried out with criteria such as antigenicity, immunogenicity, and binding affinity with MHC molecules, while the exclusion criteria were according to their allergenicity, toxicity, and potential for antibody-dependent enhancement. We then constructed a core antigen with the selected epitopes and linked the outcomes with distinct adjuvant proteins, resulting in three candidate vaccines: PSDV-1, PSDV-2, and PSDV-3. Among these, PSDV-2 was selected for further validation due to its superior physicochemical and structural properties. Extensive simulations demonstrated that PSDV-2 exhibited strong binding to pattern recognition receptors, high stability, and robust immune induction, confirming its potential as a high-quality vaccine candidate. For its recombinant expression, a plasmid was subsequently designed. Our new vaccine design offers a promising additional option for Dengue virus protection. Further experimental validations will be conducted to confirm its protective efficacy and safety.
Collapse
Affiliation(s)
- Hikmat Ullah
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaukat Ullah
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinze Li
- School of Basic Medicine and Life Sciences, Hainan Medical University, Longhua, Haikou 571199, China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Protein Cell-Based Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Lei Tan
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Hadpech S, Thongboonkerd V. Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Expert Rev Proteomics 2024; 21:281-295. [PMID: 39049185 DOI: 10.1080/14789450.2024.2383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Dengue virus (DENV) infection remains one of the most significant infectious diseases in humans. Several efforts have been made to address its molecular mechanisms. Over the last 10 years, proteomics has been widely applied to investigate various aspects of DENV infection. AREAS COVERED In this review, we briefly introduce common proteomics approaches using various mass spectrometric modalities followed by summarizing all the discoveries obtained from proteomic investigations of DENV infection over the last 10 years. These include the data on DENV-vector interactions and host responses to address the DENV biology and disease mechanisms. Moreover, applications of proteomics to disease prevention, diagnosis, vaccine design, development of anti-DENV agents and other new treatment strategies are discussed. EXPERT OPINION Despite efforts on disease prevention, DENV infection is still a significant global healthcare burden that affects the general population. As summarized herein, proteomic technologies with high-throughput capabilities have provided more in-depth details of protein dynamics during DENV infection. More extensive applications of proteomics and other powerful research tools would provide a promise to better cope and prevent this mosquito-borne infectious disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
9
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
10
|
Hoffman SA, Maldonado YA. Emerging and re-emerging pediatric viral diseases: a continuing global challenge. Pediatr Res 2024; 95:480-487. [PMID: 37940663 PMCID: PMC10837080 DOI: 10.1038/s41390-023-02878-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The twenty-first century has been marked by a surge in viral epidemics and pandemics, highlighting the global health challenge posed by emerging and re-emerging pediatric viral diseases. This review article explores the complex dynamics contributing to this challenge, including climate change, globalization, socio-economic interconnectedness, geopolitical tensions, vaccine hesitancy, misinformation, and disparities in access to healthcare resources. Understanding the interactions between the environment, socioeconomics, and health is crucial for effectively addressing current and future outbreaks. This scoping review focuses on emerging and re-emerging viral infectious diseases, with an emphasis on pediatric vulnerability. It highlights the urgent need for prevention, preparedness, and response efforts, particularly in resource-limited communities disproportionately affected by climate change and spillover events. Adopting a One Health/Planetary Health approach, which integrates human, animal, and ecosystem health, can enhance equity and resilience in global communities. IMPACT: We provide a scoping review of emerging and re-emerging viral threats to global pediatric populations This review provides an update on current pediatric viral threats in the context of the COVID-19 pandemic This review aims to sensitize clinicians, epidemiologists, public health practitioners, and policy stakeholders/decision-makers to the role these viral diseases have in persistent pediatric morbidity and mortality.
Collapse
Affiliation(s)
- Seth A Hoffman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yvonne A Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Malavige GN, Sjö P, Singh K, Piedagnel JM, Mowbray C, Estani S, Lim SCL, Siquierra AM, Ogg GS, Fraisse L, Ribeiro I. Facing the escalating burden of dengue: Challenges and perspectives. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002598. [PMID: 38100392 PMCID: PMC10723676 DOI: 10.1371/journal.pgph.0002598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Dengue is the most rapidly emerging mosquito-borne infection and, due to climate change and unplanned urbanization, it is predicted that the global burden of dengue will rise further as the infection spreads to new geographical locations. Dengue-endemic countries are often unable to cope with such increases, with health care facilities becoming overwhelmed during each dengue season. Furthermore, although dengue has been predominantly a childhood illness in the past, it currently mostly affects adults in many countries, with higher incidence of severe disease and mortality rates in pregnant women and in those with comorbidities. As there is currently no specific treatment for dengue and no early biomarker to identify those who will progress to develop vascular leakage, all individuals with dengue are closely monitored in case they need fluid management. Furthermore, diagnosing patients with acute dengue is challenging due to the similarity of clinical symptoms during early illness and poor sensitivity and specificity of point-of-care diagnostic tests. Novel vector control methods, such as the release of Wolbachia-infected mosquitoes, have shown promising results by reducing vector density and dengue incidence in clinical trial settings. A new dengue vaccine, TAK-003, had an efficacy of 61.2% against virologically confirmed dengue, 84.1% efficacy against hospitalizations and a 70% efficacy against development of dengue haemorrhagic fever (DHF) at 54 months. While vaccines and mosquito control methods are welcome, they alone are unlikely to fully reduce the burden of dengue, and a treatment for dengue is therefore essential. Several novel antiviral drugs are currently being evaluated along with drugs that inhibit host mediators, such as mast cell products. Although viral proteins such as NS1 contribute to the vascular leak observed in severe dengue, the host immune response to the viral infection also plays a significant role in progression to severe disease. There is an urgent need to discover safe and effective treatments for dengue to prevent disease progression.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Kavita Singh
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Sergio Estani
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | | | - Graham S. Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
12
|
Zong K, Li W, Xu Y, Zhao X, Cao R, Yan H, Li X. Design, Synthesis, Evaluation and Molecular Dynamics Simulation of Dengue Virus NS5-RdRp Inhibitors. Pharmaceuticals (Basel) 2023; 16:1625. [PMID: 38004490 PMCID: PMC10674617 DOI: 10.3390/ph16111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Dengue virus (DENV) is a major mosquito-borne human pathogen in tropical countries; however, there are currently no targeted antiviral treatments for DENV infection. Compounds 27 and 29 have been reported to be allosteric inhibitors of DENV RdRp with potent inhibitory effects. In this study, the structures of compounds 27 and 29 were optimized using computer-aided drug design (CADD) approaches. Nine novel compounds were synthesized based on rational considerations, including molecular docking scores, free energy of binding to receptor proteins, predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters, structural diversity, and feasibility of synthesis. Subsequently, the anti-DENV activity was assessed. In the cytopathic effect (CPE) assay conducted on BHK-21 cells using the DENV2 NGC strain, both SW-b and SW-d demonstrated comparable or superior activity against DENV2, with IC50 values of 3.58 ± 0.29 μM and 23.94 ± 1.00 μM, respectively, compared to that of compound 27 (IC50 = 19.67 ± 1.12 μM). Importantly, both SW-b and SW-d exhibited low cytotoxicity, with CC50 values of 24.65 μmol and 133.70 μmol, respectively, resulting in selectivity indices of 6.89 and 5.58, respectively. Furthermore, when compared to the positive control compound 3'-dATP (IC50 = 30.09 ± 8.26 μM), SW-b and SW-d displayed superior inhibitory activity in an enzyme inhibitory assay, with IC50 values of 11.54 ± 1.30 μM and 13.54 ± 0.32 μM, respectively. Molecular dynamics (MD) simulations elucidated the mode of action of SW-b and SW-d, highlighting their ability to enhance π-π packing interactions between benzene rings and residue W795 in the S1 fragment, compared to compounds 27 and 29. Although the transacylsulphonamide fragment reduced the interaction between T794 and NH, it augmented the interaction between R729 and T794. In summary, our study underscores the potential of SW-b and SW-d as allosteric inhibitors targeting the DENV NS5 RdRp domain. However, further in vivo studies are warranted to assess their pharmacology and toxicity profiles.
Collapse
Affiliation(s)
- Keli Zong
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Wei Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Yijie Xu
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, 100 West Fourth Ring Road, Beijing 100071, China;
| | - Ruiyuan Cao
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Hong Yan
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;
| | - Xingzhou Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| |
Collapse
|
13
|
Ji JS, Xia Y, Liu L, Zhou W, Chen R, Dong G, Hu Q, Jiang J, Kan H, Li T, Li Y, Liu Q, Liu Y, Long Y, Lv Y, Ma J, Ma Y, Pelin K, Shi X, Tong S, Xie Y, Xu L, Yuan C, Zeng H, Zhao B, Zheng G, Liang W, Chan M, Huang C. China's public health initiatives for climate change adaptation. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100965. [PMID: 38116500 PMCID: PMC10730322 DOI: 10.1016/j.lanwpc.2023.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023]
Abstract
China's health gains over the past decades face potential reversals if climate change adaptation is not prioritized. China's temperature rise surpasses the global average due to urban heat islands and ecological changes, and demands urgent actions to safeguard public health. Effective adaptation need to consider China's urbanization trends, underlying non-communicable diseases, an aging population, and future pandemic threats. Climate change adaptation initiatives and strategies include urban green space, healthy indoor environments, spatial planning for cities, advance location-specific early warning systems for extreme weather events, and a holistic approach for linking carbon neutrality to health co-benefits. Innovation and technology uptake is a crucial opportunity. China's successful climate adaptation can foster international collaboration regionally and beyond.
Collapse
Affiliation(s)
- John S. Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yanjie Xia
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Linxin Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weiju Zhou
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National School of Public Health, Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National School of Public Health, Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Li
- Public Meteorological Service Centre, China Meteorological Administration, Beijing, China
| | - Qiyong Liu
- National Institute of Infectious Diseases at China, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanxiang Liu
- Public Meteorological Service Centre, China Meteorological Administration, Beijing, China
| | - Ying Long
- School of Architecture, Tsinghua University, Beijing, China
| | - Yuebin Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jian Ma
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yue Ma
- School of Architecture, Tsinghua University, Beijing, China
| | - Kinay Pelin
- School of Climate Change and Adaptation, University of Prince Edward Island, Prince Edward Island, Canada
| | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shilu Tong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Queensland University of Technology, Brisbane, Australia
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
| | - Guangjie Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Wannian Liang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Margaret Chan
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Anantharaj A, Agrawal T, Shashi PK, Tripathi A, Kumar P, Khan I, Pareek M, Singh B, Pattabiraman C, Kumar S, Pandey R, Chandele A, Lodha R, Whitehead SS, Medigeshi GR. Neutralizing antibodies from prior exposure to dengue virus negatively correlate with viremia on re-infection. COMMUNICATIONS MEDICINE 2023; 3:148. [PMID: 37857747 PMCID: PMC10587183 DOI: 10.1038/s43856-023-00378-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND India is hyperendemic to dengue and over 50% of adults are seropositive. There is limited information on the association between neutralizing antibody profiles from prior exposure and viral RNA levels during subsequent infection. METHODS Samples collected from patients with febrile illness was used to assess seropositivity by indirect ELISA. Dengue virus (DENV) RNA copy numbers were estimated by quantitative RT-PCR and serotype of the infecting DENV was determined by nested PCR. Focus reduction neutralizing antibody titer (FRNT) assay was established using Indian isolates to measure the levels of neutralizing antibodies and also to assess the cross-reactivity to related flaviviruses namely Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV). RESULTS In this cross-sectional study, we show that dengue seropositivity increased from 52% in the 0-15 years group to 89% in >45 years group. Antibody levels negatively correlate with dengue RNAemia on the day of sample collection and higher RNAemia is observed in primary dengue as compared to secondary dengue. The geometric mean FRNT50 titers for DENV-2 is significantly higher as compared to the other three DENV serotypes. We observe cross-reactivity with ZIKV and significantly lower or no neutralizing antibodies against JEV and WNV. The FRNT50 values for international isolates of DENV-1, DENV-3 and DENV-4 is significantly lower as compared to Indian isolates. CONCLUSIONS Majority of the adult population in India have neutralizing antibodies to all the four DENV serotypes which correlates with reduced RNAemia during subsequent infection suggesting that antibodies can be considered as a good correlate of protection.
Collapse
Affiliation(s)
- Anbalagan Anantharaj
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tanvi Agrawal
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Pooja Kumari Shashi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Alok Tripathi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Parveen Kumar
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Imran Khan
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Madhu Pareek
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Balwant Singh
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | | - Saurabh Kumar
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guruprasad R Medigeshi
- Bioassay laboratory and Clinical and Cellular Virology lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
15
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
16
|
Kim CL, Agampodi S, Marks F, Kim JH, Excler JL. Mitigating the effects of climate change on human health with vaccines and vaccinations. Front Public Health 2023; 11:1252910. [PMID: 37900033 PMCID: PMC10602790 DOI: 10.3389/fpubh.2023.1252910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Climate change represents an unprecedented threat to humanity and will be the ultimate challenge of the 21st century. As a public health consequence, the World Health Organization estimates an additional 250,000 deaths annually by 2030, with resource-poor countries being predominantly affected. Although climate change's direct and indirect consequences on human health are manifold and far from fully explored, a growing body of evidence demonstrates its potential to exacerbate the frequency and spread of transmissible infectious diseases. Effective, high-impact mitigation measures are critical in combating this global crisis. While vaccines and vaccination are among the most cost-effective public health interventions, they have yet to be established as a major strategy in climate change-related health effect mitigation. In this narrative review, we synthesize the available evidence on the effect of climate change on vaccine-preventable diseases. This review examines the direct effect of climate change on water-related diseases such as cholera and other enteropathogens, helminthic infections and leptospirosis. It also explores the effects of rising temperatures on vector-borne diseases like dengue, chikungunya, and malaria, as well as the impact of temperature and humidity on airborne diseases like influenza and respiratory syncytial virus infection. Recent advances in global vaccine development facilitate the use of vaccines and vaccination as a mitigation strategy in the agenda against climate change consequences. A focused evaluation of vaccine research and development, funding, and distribution related to climate change is required.
Collapse
Affiliation(s)
- Cara Lynn Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
- College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
17
|
Urmi TJ, Mosharrafa RA, Hossain MJ, Rahman MS, Kadir MF, Islam MR. Frequent outbreaks of dengue fever in South Asian countries-A correspondence analyzing causative factors and ways to avert. Health Sci Rep 2023; 6:e1598. [PMID: 37779664 PMCID: PMC10539675 DOI: 10.1002/hsr2.1598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
| | - Rana Al Mosharrafa
- Department of Business AdministrationFaculty of Business Studies, Prime UniversityDhakaBangladesh
| | | | | | - Mohammad Fahim Kadir
- Department of PharmacologyLake Erie College of Osteopathic Medicine (LECOM)EriePennsylvaniaUSA
| | | |
Collapse
|
18
|
Khan MB, Yang ZS, Lin CY, Hsu MC, Urbina AN, Assavalapsakul W, Wang WH, Chen YH, Wang SF. Dengue overview: An updated systemic review. J Infect Public Health 2023; 16:1625-1642. [PMID: 37595484 DOI: 10.1016/j.jiph.2023.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Dengue is caused by the dengue virus (DENVs) infection and clinical manifestations include dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). Due to a lack of antiviral drugs and effective vaccines, several therapeutic and control strategies have been proposed. A systemic literature review was conducted according to PRISMA guidelines to select proper references to give an overview of DENV infection. Results indicate that understanding the virus characteristics and epidemiology are essential to gain the basic and clinical knowledge as well as dengue disseminated pattern and status. Different factors and mechanisms are thought to be involved in the presentation of DHF and DSS, including antibody-dependent enhancement, immune dysregulation, viral virulence, host genetic susceptibility, and preexisting dengue antibodies. This study suggests that dissecting pathogenesis and risk factors as well as developing different types of therapeutic and control strategies against DENV infection are urgently needed.
Collapse
Affiliation(s)
- Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
19
|
Zohra T, Saeed F, Ikram A, Khan T, Alam S, Adil M, Gul A, Almawash S, Ayaz M. Nanomedicine as a potential novel therapeutic approach against the dengue virus. Nanomedicine (Lond) 2023; 18:1567-1584. [PMID: 37753727 DOI: 10.2217/nnm-2022-0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Dengue is an arbovirus infection which is transmitted by Aedes mosquitoes. Its prompt detection and effective treatment is a global health challenge. Various nanoparticle-based vaccines have been formulated to present immunogen (antigens) to instigate an immune response or prevent virus spread, but no specific treatment has been devised. This review explores the role of nanomedicine-based therapeutic agents against dengue virus, taking into consideration the applicable dengue virus assays that are sensitive, specific, have a short turnaround time and are inexpensive. Various kinds of metallic, polymeric and lipid nanoparticles with safe and effective profiles present an alternative strategy that could provide a better remedy for eradicating the dengue virus.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Faryal Saeed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Siyab Alam
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Muhammad Adil
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Ayesha Gul
- Department of Chemical Engineering, Polytechnique Montreal, H3T IJ4, Canada
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| |
Collapse
|
20
|
Lun X, Yang R, Lin L, Wang Y, Wang J, Guo Y, Xiu P, Zhu C, Liu Q, Xu L, Meng F. Effects of the source of information and knowledge of dengue fever on the mosquito control behavior of residents of border areas of Yunnan, China. Parasit Vectors 2023; 16:311. [PMID: 37658374 PMCID: PMC10472605 DOI: 10.1186/s13071-023-05916-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Strengthening the mosquito control measures undertaken by residents of an area where dengue fever is present can significantly decrease the spread of this disease. The aim of this study was to explore the effects of the source of information and knowledge of dengue fever on the mosquito control behavior of residents of areas at high risk of this disease to determine effective ways of enhancing this behavior. METHODS A survey was conducted via face-to-face interviews or questionnaires between March and May 2021 in three regions of the province of Yunnan, China. The survey included basic information about the respondents, the source(s) of their dengue fever information, the level of their dengue fever knowledge, and the measures they had implemented to control mosquitoes. Principal component analysis was used to extract the main components of the sources of information. Correlation analysis and structural equation analysis were used to explore the impact of the sources of information and residents' dengue fever knowledge on their mosquito control behavior. RESULTS Publicity achieved through mass media, including official WeChat accounts, magazines/newspapers, poster leaflets, television/radio and the Internet, had a direct effect on dengue fever knowledge and mosquito control behavior, and indirectly affected mosquito control behavior through dengue fever knowledge. Organized publicity campaigns, including information provided by medical staff and through community publicity, had a direct effect on dengue fever knowledge and indirectly affected mosquito control behavior through dengue fever knowledge. The residents' level of dengue fever knowledge had a significant, positive, direct effect on their mosquito control behavior. CONCLUSIONS Mosquito control is an important measure for the prevention and control of outbreaks of dengue fever. An effective source of information can improve the level of dengue fever knowledge among residents and thus enhance their mosquito control behavior.
Collapse
Affiliation(s)
- Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Rui Yang
- Yunnan Institute of Parasitic Diseases Control, Pu´er, 665000, Yunnan, People's Republic of China
| | - Linghong Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, People's Republic of China
| | - Yiguan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yuhong Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Pengcheng Xiu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Caiying Zhu
- Changsha Center for Disease Control and Prevention, Changsha, 410004, Hunan, People's Republic of China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
21
|
Malik S, Ahsan O, Mumtaz H, Tahir Khan M, Sah R, Waheed Y. Tracing down the Updates on Dengue Virus-Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines (Basel) 2023; 11:1328. [PMID: 37631896 PMCID: PMC10458802 DOI: 10.3390/vaccines11081328] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Nearly half of the world is at risk of developing dengue infection. Dengue virus is the causative agent behind this public healthcare concern. Millions of dengue cases are reported every year, leading to thousands of deaths. The scientific community is working to develop effective therapeutic strategies in the form of vaccines and antiviral drugs against dengue. METHODS In this review, a methodological approach has been used to gather data from the past five years to include the latest developments against the dengue virus. RESULTS Different therapeutics and antiviral targets against the dengue virus are at different stages of development, but none have been approved by the FDA. Moreover, various vaccination strategies have also been discussed, including attenuated virus vaccines, recombinant subunit vaccines, viral vector vaccines, DNA vaccines, nanotechnology, and plant-based vaccines, which are used to develop effective vaccines for the dengue virus. Many dengue vaccines pass the initial phases of evaluation, but only two vaccines have been approved for public use. DENGVAXIA is the only FDA-approved vaccine against all four stereotypes of the dengue virus, but it is licensed for use only in individuals 6-16 years of age with laboratory-confirmed previous dengue infection and living in endemic countries. Takeda is the second vaccine approved for use in the European Union, the United Kingdom, Brazil, Argentina, Indonesia, and Thailand. It produced sustained antibody responses against all four serotypes of dengue virus, regardless of previous exposure and dosing schedule. Other dengue vaccine candidates at different stages of development are TV-003/005, TDENV PIV, V180, and some DNA vaccines. CONCLUSION There is a need to put more effort into developing effective vaccines and therapeutics for dengue, as already approved vaccines and therapeutics have limitations. DENGVAXIA is approved for use in children and teenagers who are 6-16 years of age and have confirmed dengue infection, while Takeda is approved for use in certain countries, and it has withdrawn its application for FDA approval.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Omar Ahsan
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Hassan Mumtaz
- Innovation, Implementation, and Partnership Unit, Association for Social Development, Islamabad 44000, Pakistan
- Health Services Academy, Islamabad 44000, Pakistan
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, 1KM Defence Road, Lahore 58810, Pakistan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
22
|
Piamonte BLC, Easton A, Wood GK, Davies NWS, Granerod J, Michael BD, Solomon T, Thakur KT. Addressing vaccine-preventable encephalitis in vulnerable populations. Curr Opin Neurol 2023; 36:185-197. [PMID: 37078664 DOI: 10.1097/wco.0000000000001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Vaccinations have been pivotal in lowering the global disease burden of vaccine-preventable encephalitides, including Japanese encephalitis, tick-borne encephalitis, measles encephalitis, and rabies encephalitis, among others. RECENT FINDINGS Populations vulnerable to vaccine-preventable infections that may lead to encephalitis include those living in endemic and rural areas, military members, migrants, refugees, international travelers, younger and older persons, pregnant women, the immunocompromised, outdoor, healthcare and laboratory workers, and the homeless. There is scope for improving the availability and distribution of vaccinations, vaccine equity, surveillance of vaccine-preventable encephalitides, and public education and information. SUMMARY Addressing these gaps in vaccination strategies will allow for improved vaccination coverage and lead to better health outcomes for those most at risk for vaccine-preventable encephalitis.
Collapse
Affiliation(s)
- Bernadeth Lyn C Piamonte
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Ava Easton
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
| | - Greta K Wood
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
| | - Nicholas W S Davies
- The Encephalitis Society, Malton
- Department of Neurology, Chelsea and Westminster Hospital, NHS Trust
| | - Julia Granerod
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- Dr JGW Consulting Ltd., London
| | - Benedict D Michael
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
- Department of Neurology, The Walton Centre NHS Foundation Trust
| | - Tom Solomon
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
- Department of Neurology, The Walton Centre NHS Foundation Trust
- Department of Neurological Science, University of Liverpool, Liverpool, United Kingdom
| | - Kiran T Thakur
- The Encephalitis Society, Malton
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, USA
| |
Collapse
|
23
|
Odio CD, Lowman KE, Law M, Aogo RA, Hunsberger S, Wood BJ, Kassin M, Levy E, Callier V, Firdous S, Hasund CM, Voirin C, Kattappuram R, Yek C, Manning J, Durbin A, Whitehead SS, Katzelnick LC. Phase 1 trial to model primary, secondary, and tertiary dengue using a monovalent vaccine. BMC Infect Dis 2023; 23:345. [PMID: 37221466 DOI: 10.1186/s12879-023-08299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The four co-circulating and immunologically interactive dengue virus serotypes (DENV1-4) pose a unique challenge to vaccine design because sub-protective immunity can increase the risk of severe dengue disease. Existing dengue vaccines have lower efficacy in DENV seronegative individuals but higher efficacy in DENV exposed individuals. There is an urgent need to identify immunological measures that are strongly associated with protection against viral replication and disease following sequential exposure to distinct serotypes. METHODS/DESIGN This is a phase 1 trial wherein healthy adults with neutralizing antibodies to zero (seronegative), one non-DENV3 (heterotypic), or more than one (polytypic) DENV serotype will be vaccinated with the live attenuated DENV3 monovalent vaccine rDEN3Δ30/31-7164. We will examine how pre-vaccine host immunity influences the safety and immunogenicity of DENV3 vaccination in a non-endemic population. We hypothesize that the vaccine will be safe and well tolerated, and all groups will have a significant increase in the DENV1-4 neutralizing antibody geometric mean titer between days 0 and 28. Compared to the seronegative group, the polytypic group will have lower mean peak vaccine viremia, due to protection conferred by prior DENV exposure, while the heterotypic group will have higher mean peak viremia, due to mild enhancement. Secondary and exploratory endpoints include characterizing serological, innate, and adaptive cell responses; evaluating proviral or antiviral contributions of DENV-infected cells; and immunologically profiling the transcriptome, surface proteins, and B and T cell receptor sequences and affinities of single cells in both peripheral blood and draining lymph nodes sampled via serial image-guided fine needle aspiration. DISCUSSION This trial will compare the immune responses after primary, secondary, and tertiary DENV exposure in naturally infected humans living in non-endemic areas. By evaluating dengue vaccines in a new population and modeling the induction of cross-serotypic immunity, this work may inform vaccine evaluation and broaden potential target populations. TRIAL REGISTRATION NCT05691530 registered on January 20, 2023.
Collapse
Affiliation(s)
- Camila D Odio
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Kelsey E Lowman
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Melissa Law
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rosemary A Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sally Hunsberger
- Division of Clinical Research, Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brad J Wood
- Interventional Radiology and Center for Interventional Oncology, NIH Clinical Center and National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Kassin
- Interventional Radiology and Center for Interventional Oncology, NIH Clinical Center and National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elliot Levy
- Interventional Radiology and Center for Interventional Oncology, NIH Clinical Center and National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Viviane Callier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Saba Firdous
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chloe M Hasund
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charlie Voirin
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robbie Kattappuram
- Department of Pharmacy, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Christina Yek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Manning
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Durbin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephen S Whitehead
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Huang Z, Zhang Y, Li H, Zhu J, Song W, Chen K, Zhang Y, Lou Y. Vaccine development for mosquito-borne viral diseases. Front Immunol 2023; 14:1161149. [PMID: 37251387 PMCID: PMC10213220 DOI: 10.3389/fimmu.2023.1161149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.
Collapse
Affiliation(s)
- Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Dengue is the most important arthropod-borne viral disease of public health significance. Its geographic distribution includes 128 countries worldwide, affecting 390 million people every year causing significant morbidity and mortality in children and adults everywhere. RECENT FINDINGS In the past, severe dengue affected mostly adults in the Americas; this scenario has changed and now cases of dengue, severe dengue, and dengue deaths have increased in children under 15 years in Brazil and in Colombia. Dengue and COVID-19 co-infections have been reported in South America, with increased hospitalization. A dengue vaccine for 9-year-old children and older children and adults who have serological evidence of previous dengue has been licensed in many countries; a different dengue vaccine trial for 4-16-year-old children has demonstrated decrease in clinical dengue and decrease in dengue hospitalizations. SUMMARY There is no specific treatment of dengue, and a changing climate, insecticide resistance and urban expansion have permitted the vector's spread, making the vector control almost impossible. The hope for dengue control relies on vaccine development; there is important research on this area with one vaccine already licensed and another one showing promising results.
Collapse
Affiliation(s)
- Silvia Nunes Szente Fonseca
- Hospital Epidemiology and Infection Control, Hospital São Lucas
- Escola de Medicina Estácio-Idomed, Ribeirão Preto, São Paulo State, Brazil
| |
Collapse
|
26
|
Hussain Z, Rani S, Ma F, Li W, Shen W, Gao T, Wang J, Pei R. Dengue determinants: Necessities and challenges for universal dengue vaccine development. Rev Med Virol 2023; 33:e2425. [PMID: 36683235 DOI: 10.1002/rmv.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Dengue illness can range from mild illness to life-threatening haemorrhage. It is an Aedes-borne infectious disease caused by the dengue virus, which has four serotypes. Each serotype acts as an independent infectious agent. The antibodies against one serotype confer homotypic immunity but temporary protection against heterotypic infection. Dengue has become a growing health concern for up to one third of the world's population. Currently, there is no potent anti-dengue medicine, and treatment for severe dengue relies on intravenous fluid management and pain medications. The burden of dengue dramatically increases despite advances in vector control measures. These factors underscore the need for a vaccine. Various dengue vaccine strategies have been demonstrated, that is, live attenuated vaccine, inactivated vaccine, DNA vaccine, subunit vaccine, and viral-vector vaccines, some of which are at the stage of clinical testing. Unfortunately, the forefront candidate vaccine is less than satisfactory, and its performance depends on serostatus and age factors. The lessons from clinical studies depicted ambiguity concerning the efficacy of dengue vaccine. Our study highlighted that viral structural heterogeneity, epitope accessibility, autoimmune complications, genetic variants, genetic diversities, antigen competition, virulence variation, host-pathogen specific interaction, antibody-dependent enhancement, cross-reactive immunity among Flaviviruses, and host-susceptibility determinants not only influence infection outcomes but also hampered successful vaccine development. This review integrates dengue determinants allocated necessities and challenges, which would provide insight for universal dengue vaccine development.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China.,Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Saima Rani
- Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenqi Shen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Jine Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
27
|
Villanueva-Aguilar ME, Rizo-de-la-Torre LDC, Granados-Muñiz MDP, Montoya-Fuentes A, Montoya-Fuentes H. The Genetic Variant TNFA (rs361525) Is Associated with Increased Susceptibility to Developing Dengue Symptoms. Viral Immunol 2023; 36:229-237. [PMID: 36730734 DOI: 10.1089/vim.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dengue virus (DENV) is the causal agent of dengue fever. The symptoms and signs of dengue vary from febrile illness to hemorrhagic syndrome. IFITM3 and TNFA are genes of the innate immune system. Variants IFITM3 (rs12252 T>C) and TNFA (rs1800629 G > A and rs361525 G>A) might alter gene expression and change the course of the disease. Our first objective was to determine whether these variants were associated with the susceptibility and severity of dengue. The second was to assess the association of these variants with each symptom. We studied 272 cases with suspected dengue infection, of which 102 were confirmed dengue cases (DENV+) and 170 were dengue-like cases without DENV infection (DENV-). Samples of 201 individuals from the general population of Mexico were included as a reference. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism technique. Odds ratios and confidence intervals were calculated using Pearson's chi-square test and later adjusted for age and sex with a binary logistic regression model. Haldane correction is applied when necessary. We found a significantly higher frequency of the A allele of TNFA rs361525 in both the DENV+ and DENV- groups compared with the general population. Focusing on DENV+ and DENV-, the frequency of the A allele of TNFA rs361525 was higher in the DENV+ group. A broad spectrum of symptoms was related to the A allele of both TNFA variants. We conclude that TNFA rs361525 increases the susceptibility to symptomatic dengue but can also be associated with susceptibility to other dengue-like symptoms from unknown causes.
Collapse
Affiliation(s)
- Mónica Edith Villanueva-Aguilar
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.,Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara, Jalisco, México
| | - Lourdes Del Carmen Rizo-de-la-Torre
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - María Del Pilar Granados-Muñiz
- Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Andrea Montoya-Fuentes
- Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Héctor Montoya-Fuentes
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.,Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| |
Collapse
|
28
|
Aggarwal C, Ramasamy V, Garg A, Shukla R, Khanna N. Cellular T-cell immune response profiling by tetravalent dengue subunit vaccine (DSV4) candidate in mice. Front Immunol 2023; 14:1128784. [PMID: 36926350 PMCID: PMC10011089 DOI: 10.3389/fimmu.2023.1128784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
While most vaccines aim to develop a solid humoral and neutralizing antibody response against the pathogen, an effective vaccine candidate should be able to stimulate both the B-cell mediated humoral immunity, and T-cell mediated cellular immunity. The focus of vaccinology is rapidly gaining to generate T cell responses, which can mediate pathogen clearance and help B cells leading to protective antibody responses. Here we evaluate the cellular immune response of the pre-clinical tetravalent dengue subunit vaccine candidate, DSV4, in mice. While we have shown previously that DSV4 induces type-specific neutralizing antibody responses in mice, in this study, we show that the vaccine candidate DSV4 well induces dengue-specific T- cell responses evaluated by their ability to produce IFN-γ. In addition to IFN-γ secretion by both CD4+ and CD8+ T-cells in immunized mice, we observed that DSV4 also induces a higher frequency and cytokine functions of follicular CD4+ helper T-cells (TFH). These cytokines lead to an efficient germinal center reaction and potent B cell antibody response. Apart from TFH response, DSV4 stimulated Type 1 T helper cells (TH1) which is characteristic of a viral infection leading to secretion of pro-inflammatory cytokines and phagocyte-dependent protective immune responses. Our study highlights that DSV4 can mediate both arms of adaptive immunity-humoral and cell-mediated immunity in mice. By elucidating vaccine-specific T cell response, our work has implications in showing DSV4 as an effective, type-specific and safe dengue vaccine candidate.
Collapse
Affiliation(s)
- Charu Aggarwal
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Viswanathan Ramasamy
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Garg
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Shukla
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Navin Khanna
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
29
|
Arham AF, Hasim NA, Mokhtar MI, Zainal N, Rusly NS, Amin L, Saifuddeen SM, Mustapa MAC, Mahadi Z. The Lesser of Two Evils: Application of Maslahah-Mafsadah Criteria in Islamic Ethical-Legal Assessment of Genetically Modified Mosquitoes in Malaysia. JOURNAL OF BIOETHICAL INQUIRY 2022; 19:587-598. [PMID: 36350531 DOI: 10.1007/s11673-022-10216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
The release of over 6,000 genetically modified mosquitoes (GMM) into uninhabited Malaysian forests in 2010 was a frantic step on the part of the Malaysian government to combat the spread of dengue fever. The field trial was designed to control and reduce the dengue vector by producing offspring that die in the early developmental stage, thus decreasing the local Aedes aegypti population below the dengue transmission threshold. However, the GMM trials were discontinued in Malaysia despite being technologically feasible. The lack of systematic studies in terms of cost-benefit analysis, questionable research efficacy and safety-related concerns might have contributed to the termination of the field trial. Hence, this research aims to evaluate the feasibility of GMM release in Malaysia by using a holistic approach based on an Islamic ethical-legal assessment under the maslahah-mafsadah (benefit-risk) concept. Three main strategies based on the maslahah-mafsadah concept approach have been applied: 1) an evidence-based approach, 2) an impact-based approach and, 3) a priority approach. The analysis concluded that GMM could be categorised as zanniyyah (probable). GMM is a promising alternative for dengue control, but many issues must be addressed before its widespread adoption.
Collapse
Affiliation(s)
- Ahmad Firdhaus Arham
- Pusat Pengajian Citra Universiti, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Nur Asmadayana Hasim
- Pusat Pengajian Citra Universiti, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Mohd Istajib Mokhtar
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Sharizad Rusly
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Latifah Amin
- Pusat Pengajian Citra Universiti, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- The Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Shaikh Mohd Saifuddeen
- Centre for Science and Environment Studies, Institute of Islamic Understanding Malaysia, (IKIM), No. 2, Langgak Tunku Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
- Academy of Islamic Civilisation, Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | | | - Zurina Mahadi
- Pusat Pengajian Citra Universiti, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
30
|
Immune-Mediated Pathogenesis in Dengue Virus Infection. Viruses 2022; 14:v14112575. [PMID: 36423184 PMCID: PMC9699586 DOI: 10.3390/v14112575] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Dengue virus (DENV) infection is one of the major public health concerns around the globe, especially in the tropical regions of the world that contribute to 75% percent of dengue cases. While the majority of DENV infections are mild or asymptomatic, approximately 5% of the cases develop a severe form of the disease that is mainly attributed to sequential infection with different DENV serotypes. The severity of dengue depends on many immunopathogenic mechanisms involving both viral and host factors. Emerging evidence implicates an impaired immune response as contributing to disease progression and severity by restricting viral clearance and inducing severe inflammation, subsequently leading to dengue hemorrhagic fever and dengue shock syndrome. Moreover, the ability of DENV to infect a wide variety of immune cells, including monocytes, macrophages, dendritic cells, mast cells, and T and B cells, further dysregulates the antiviral functions of these cells, resulting in viral dissemination. Although several risk factors associated with disease progression have been proposed, gaps persist in the understanding of the disease pathogenesis and further investigations are warranted. In this review, we discuss known mechanisms of DENV-mediated immunopathogenesis and its association with disease progression and severity.
Collapse
|
31
|
Odio CD, Katzelnick LC. 'Mix and Match' vaccination: Is dengue next? Vaccine 2022; 40:6455-6462. [PMID: 36195473 PMCID: PMC9526515 DOI: 10.1016/j.vaccine.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
The severity of the COVID-19 pandemic and the development of multiple SARS-CoV-2 vaccines expedited vaccine 'mix and match' trials in humans and demonstrated the benefits of mixing vaccines that vary in formulation, strength, and immunogenicity. Heterologous sequential vaccination may be an effective approach for protecting against dengue, as this strategy would mimic the natural route to broad dengue protection and may overcome the imbalances in efficacy of the individual leading live attenuated dengue vaccines. Here we review 'mix and match' vaccination trials against SARS-CoV-2, HIV, and dengue virus and discuss the possible advantages and concerns of future heterologous immunization with the leading dengue vaccines. COVID-19 trials suggest that priming with a vaccine that induces strong cellular responses, such as an adenoviral vectored product, followed by heterologous boost may optimize T cell immunity. Moreover, heterologous vaccination may induce superior humoral immunity compared to homologous vaccination when the priming vaccine induces a narrower response than the boost. The HIV trials reported that heterologous vaccination was associated with broadened antigen responses and that the sequence of the vaccines significantly impacts the regimen's immunogenicity and efficacy. In heterologous dengue immunization trials, where at least one dose was with a live attenuated vaccine, all reported equivalent or increased immunogenicity compared to homologous boost, although one study reported increased reactogenicity. The three leading dengue vaccines have been evaluated for safety and efficacy in thousands of study participants but not in combination in heterologous dengue vaccine trials. Various heterologous regimens including different combinations and sequences should be trialed to optimize cellular and humoral immunity and the breadth of the response while limiting reactogenicity. A blossoming field dedicated to more accurate correlates of protection and enhancement will help confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Camila D Odio
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States.
| |
Collapse
|
32
|
Sankar S. In silico design of a multi-epitope Chimera from Aedes aegypti salivary proteins OBP 22 and OBP 10: A promising candidate vaccine. J Vector Borne Dis 2022; 59:327-336. [PMID: 36751764 DOI: 10.4103/0972-9062.353271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES The emergence and re-emergence of arboviruses such as dengue, Chikungunya and Zika viruses causing morbidity and mortality around the globe are of serious concern. A safe and effective vaccine is essential to control viral transmission. The salivary proteins of the mosquito that aid in blood probing, feeding and development are immunogenic. We aimed to report a multi-epitope candidate vaccine chimera from Aedes aegyptii mosquito salivary proteins OBP 22 and OBP 10 that could confer protection against all pathogens transmitted by the vector. METHODS Linear and conformation B-cell epitopes and MHC class-I and class-II binding T- cell epitopes were predicted using bioinformatic tools. Selected B- and T-cell epitopes were chosen for designing a multiepitope vaccine construct. The chimeric construct was analyzed for its immunogenicity, TAP and proteasomal cleavage, allergenicity, and structural validation for its suitability to be used as a candidate vaccine. Molecular docking was carried out to analyze the binding interactions with TLRs molecules. RESULTS A chimeric multiepitope vaccine was designed with the best-selected combination of immunogenic B-cell epitope, cytotoxic and helper T-cell and gamma interferon inducing epitopes with suitable adjuvant and linkers. The interacting residues between the candidate vaccine and the TLR molecules have been identified. INTERPRETATION & CONCLUSION The proposed multiepitope candidate vaccine was designed from the mosquito salivary protein OBP 22 and OBP 10. The candidate vaccine was found promising for the protection against arboviruses. Further clinical validation is warranted to prove its efficacy, safety and immunogenicity for its potential use.
Collapse
Affiliation(s)
- Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
33
|
Vaccines against Emerging and Neglected Infectious Diseases: An Overview. Vaccines (Basel) 2022; 10:vaccines10091385. [PMID: 36146463 PMCID: PMC9503027 DOI: 10.3390/vaccines10091385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/25/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) are a group of diseases that are highly prevalent in tropical and subtropical regions, and closely associated with poverty and marginalized populations. Infectious diseases affect over 1.6 billion people annually, and vaccines are the best prophylactic tool against them. Along with NTDs, emerging and reemerging infectious diseases also threaten global public health, as they can unpredictably result in pandemics. The recent advances in vaccinology allowed the development and licensing of new vaccine platforms that can target and prevent these diseases. In this work, we discuss the advances in vaccinology and some of the difficulties found in the vaccine development pipeline for selected NTDs and emerging and reemerging infectious diseases, including HIV, Dengue, Ebola, Chagas disease, malaria, leishmaniasis, zika, and chikungunya.
Collapse
|
34
|
Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus. Acta Trop 2022; 235:106668. [PMID: 36030882 DOI: 10.1016/j.actatropica.2022.106668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Aedes aegypti and Aedes albopictus are important vectors for several arboviruses such as the dengue virus. The chemical control of Aedes spp., which is usually implemented, affects both humans and the environment. The biological control of Aedes spp. with entomopathogenic bacteria such as Photorhabdus and Xenorhabdus may be an alternative method that can overcome such issues. This study aimed to isolate and identify Photorhabdus and Xenorhabdus bacteria from entomopathogenic nematodes (EPNs) collected in Thailand and evaluate their larvicidal properties in controlling A. aegypti and A. albopictus. Colony morphology and recA sequencing of the 118 symbiotic isolated bacteria indicated that most were P. luminescens subsp. akhurstii and X. stockiae with minor prevalence of P. luminescens subsp. hainanensis, P. asymbiotica subsp. australis, X. indica, X. griffiniae, X. japonica, X. thuongxuanensis, and X. eapokensis . The larvicidal bioassay with the third- and fourth-instar mosquito larvae suggested that a whole-cell suspension of X. griffiniae (bMSN3.3_TH) had the highest efficiency in eradicating A. aegypti and A. albopictus, with 90 ± 3.71% and 81 ± 2.13% mortality, respectively, after 96 h exposure. In contrast, 1% of ethyl acetate extracted from X. indica (bSNK8.5_TH) showed reduced mortality for A. aegypti of only 50 ± 3.66% after 96 h exposure. The results indicate that both X. griffiniae (bMSN3.3_TH) and X. indica (bSNK8.5_TH) could be used as biocontrol agents against Aedes larvae.
Collapse
|
35
|
Tikhe CV, Cardoso-Jaime V, Dong S, Rutkowski N, Dimopoulos G. Trypsin-like Inhibitor Domain (TIL)-Harboring Protein Is Essential for Aedes aegypti Reproduction. Int J Mol Sci 2022; 23:ijms23147736. [PMID: 35887084 PMCID: PMC9319116 DOI: 10.3390/ijms23147736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cysteine-rich trypsin inhibitor-like domain (TIL)-harboring proteins are broadly distributed in nature but remain understudied in vector mosquitoes. Here we have explored the biology of a TIL domain-containing protein of the arbovirus vector Aedes aegypti, cysteine-rich venom protein 379 (CRVP379). CRVP379 was previously shown to be essential for dengue virus infection in Ae. aegypti mosquitoes. Gene expression analysis showed CRVP379 to be highly expressed in pupal stages, male testes, and female ovaries. CRVP379 expression is also increased in the ovaries at 48 h post-blood feeding. We used CRISPR-Cas9 genome editing to generate two mutant lines of CRVP379 with mutations inside or outside the TIL domain. Female mosquitoes from both mutant lines showed severe defects in their reproductive capability; mutant females also showed differences in their follicular cell morphology. However, the CRVP379 line with a mutation outside the TIL domain did not affect male reproductive performance, suggesting that some CRVP379 residues may have sexually dimorphic functions. In contrast to previous reports, we did not observe a noticeable difference in dengue virus infection between the wild-type and any of the mutant lines. The importance of CRVP379 in Ae. aegypti reproductive biology makes it an interesting candidate for the development of Ae. aegypti population control methods.
Collapse
Affiliation(s)
- Chinmay Vijay Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
36
|
Maia PCR, La Corte R, Pires LB, Banfield L, Logan JG, Lima-Camara TN. Increased Repellent Effect of DEET on Aedes aegypti (Diptera: Culicidae) Field Population. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1368-1375. [PMID: 35686335 DOI: 10.1093/jme/tjac068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 06/15/2023]
Abstract
Insecticides and repellents are routinely used in Brazil because of the high rates of arbovirus transmission and the nuisance caused by mosquitoes. However, few studies have assessed the effectiveness of repellents against mosquito populations that have been under exposure to xenobiotics, mainly insecticides and repellents. This study investigated the sensitivity of a field population of Aedes aegypti (Linnaeus, 1762) from a dengue-endemic area under high insecticide pressure to N,N-diethylmethylbenzamide (DEET), the active ingredient in common repellent products. The field (Laranjeiras, Sergipe, Brazil) and laboratory (Rockefeller) populations were characterized for the presence of the Val1016Ile kdr mutation, associated with pyrethroid resistance, and locomotor activity. Repellency bioassays were performed to assess the response of the mosquitoes to human odor by exposing them to 10% DEET applied to the skin in ethanol. Samples from the field population showed higher frequency of the kdr mutation, 21.9% homozygous and 21.9% heterozygous, greater locomotor activity and greater sensitivity to DEET than the laboratory population. These results suggest increased sensitivity to DEET in field populations and a possible interaction between insecticide exposure and sensitivity to DEET.
Collapse
Affiliation(s)
- Pollyana Conceição Romão Maia
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade de São Paulo. Av. Dr. Arnaldo, 715-Cerqueira César, São Paulo-SP, 01246-904, Brazil
| | - Roseli La Corte
- Departamento de Morfologia, Universidade Federal de Sergipe. Av. Mal Rondon s/n São Cristóvão-SE, 49100-000, Brazil
| | - Liandra Brasil Pires
- Departamento de Morfologia, Universidade Federal de Sergipe. Av. Mal Rondon s/n São Cristóvão-SE, 49100-000, Brazil
| | - Lydia Banfield
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - James G Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Tamara Nunes Lima-Camara
- Faculdade de Saúde Pública, Universidade de São Paulo. Av. Dr. Arnaldo, 715-Cerqueira César, São Paulo-SP, 01246-904, Brazil
| |
Collapse
|
37
|
Wong JM, Adams LE, Durbin AP, Muñoz-Jordán JL, Poehling KA, Sánchez-González LM, Volkman HR, Paz-Bailey G. Dengue: A Growing Problem With New Interventions. Pediatrics 2022; 149:187012. [PMID: 35543085 DOI: 10.1542/peds.2021-055522] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dengue is the disease caused by 1 of 4 distinct, but closely related dengue viruses (DENV-1-4) that are transmitted by Aedes spp. mosquito vectors. It is the most common arboviral disease worldwide, with the greatest burden in tropical and sub-tropical regions. In the absence of effective prevention and control measures, dengue is projected to increase in both disease burden and geographic range. Given its increasing importance as an etiology of fever in the returning traveler or the possibility of local transmission in regions in the United States with competent vectors, as well as the risk for large outbreaks in endemic US territories and associated states, clinicians should understand its clinical presentation and be familiar with appropriate testing, triage, and management of patients with dengue. Control and prevention efforts reached a milestone in June 2021 when the Advisory Committee on Immunization Practices (ACIP) recommended Dengvaxia for routine use in children aged 9 to 16 years living in endemic areas with laboratory confirmation of previous dengue virus infection. Dengvaxia is the first vaccine against dengue to be recommended for use in the United States and one of the first to require laboratory testing of potential recipients to be eligible for vaccination. In this review, we outline dengue pathogenesis, epidemiology, and key clinical features for front-line clinicians evaluating patients presenting with dengue. We also provide a summary of Dengvaxia efficacy, safety, and considerations for use as well as an overview of other potential new tools to control and prevent the growing threat of dengue .
Collapse
Affiliation(s)
- Joshua M Wong
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Laura E Adams
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jorge L Muñoz-Jordán
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Liliana M Sánchez-González
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Hannah R Volkman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
38
|
Subkrasae C, Ardpairin J, Dumidae A, Janthu P, Meesil W, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Molecular identification and phylogeny of Steinernema and Heterorhabditis nematodes and their efficacy in controlling the larvae of Aedes aegypti, a major vector of the dengue virus. Acta Trop 2022; 228:106318. [PMID: 35063414 DOI: 10.1016/j.actatropica.2022.106318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
Abstract
Aedes aegypti is the mosquito vector of several arboviruses, especially the dengue virus. Aedes aegypti strain resistant to chemical insecticides have been reported worldwide. To tackle this, an entomopathogenic nematode (EPN) may be an alternative bio-control agent. To this end, this study aims to isolate, identify, and analyze the phylogeny of EPNs in Thailand and evaluate their efficacy for controlling the Ae. aegypti larvae. From 12 provinces in Thailand, soil samples were randomly collected, with 118 out of 1,100 them being positive for EPNs (10.73% prevalence) in genera Steinernema (4.46%) and Heterorhabditis (6.27%). Then, molecular discrimination of these two genus was performed based on the sequencing and phylogenetic analysis of the 28S rDNA and internal transcribed spacer regions. The most abundant species of EPN were Heterorhabditis indica, with minor species of Heterorhabditis sp. SGmg3, H. baujardi, S. surkhetense, S. kushidai, S. siamkayai, Steinernema sp. YNd80, Steinernema sp. YNc215, S. guangdongense, and S. huense. The larvicidal activity of five selected EPN isolates were tested against Ae. aegypti. Ten larvae of Ae. aegypti were incubated with different concentration (80, 160, 320, and 640 IJs/larva) of the infective juveniles of EPN in a 24-well and 6-well plates for 4 days. The mortality rates of the larvae were observed daily. Steinernema surkhetense (ePYO8.5_TH) showed the potential to kill mosquito larvae, with the highest mortality rate of 92 ± 9.37% and 89 ± 9.91% after it was treated with 640 IJs/larva in a 24-well plate and 1600 IJs/larva in a 6-well plate, respectively. There is an abundant distribution of EPNs across the country, and S. surkhetense ePYO8.5_TH may be used as a biocontrol agent against Ae. aegypti larvae.
Collapse
Affiliation(s)
- Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
39
|
Mohanty L, Prabhu M, Kumar Mishra A, Purty AJ, Kanungo R, Ghosh G, Prahan Kumar R, Newton Raj A, Bhushan S, Kumar Jangir M, Gupta A, Bhakri A. Safety and immunogenicity of a single dose, live-attenuated 'tetravalent dengue vaccine' in healthy Indian adults; a randomized, double-blind, placebo controlled phase I/II trial. Vaccine X 2022; 10:100142. [PMID: 35252836 PMCID: PMC8892502 DOI: 10.1016/j.jvacx.2022.100142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Dengue Tetravalent Vaccine, Live-attenuated Recombinant of Panacea Biotec is a lyophilized vaccine based on novel formulation. Dengue Tetravalent Vaccine targets protection against dengue disease caused by all four dengue virus serotypes. Dengue Tetravalent Vaccine Phase I/II clinical trial is the first study conducted in an Indian population and proved to be safe and immunogenic.
Background Dengue fever is the most prevalent mosquito-borne viral disease in the world, with 390 million dengue infections occurring every year. There is an unmet medical need to develop a safe, effective and affordable dengue vaccine against all four Dengue serotype viruses-DENV1, DENV-2, DENV-3 and DENV-4. Panacea Biotec Ltd (PBL) has developed a cell culture-derived, live-attenuated, lyophilized Tetravalent Dengue Vaccine (TDV). Here, in phase I/II study we assessed the safety and immunogenicity of single dose ‘Dengue Tetravalent Vaccine’ in healthy Indian adults. Methods In the study, 100 healthy adult volunteers aged 18–60 years were enrolled. The participants were allocated to TDV and placebo groups in 3:1 ratio, i.e. 75 participants to TDV group and 25 participants to the placebo group. Enrolled participants were administered a single dose of 0.5 ml of the test vaccine / placebo by subcutaneous route. Primary outcome for safety included all solicited AEs up to 21 days, unsolicited AEs up to 28 days and all AEs/serious adverse events (SAEs) till day 90 post-vaccination. For immunogenicity assessment the primary outcome was seroconversion & seropositivity rate by PRNT50 to all four serotype till 90 days. Results Overall, 100 subjects were vaccinated out of which 8 subjects (5 subjects in vaccine group and 3 subjects in placebo group) dropped out from the study. The most commonly reported solicited local AE was pain and most common solicited systemic AE was headache and fever. No SAE was reported during the study. There was no statistically significant difference between TDV and placebo groups in terms of AEs. Of the 92 subjects who completed all scheduled visits in the study, 59 (81.9%) achieved seroconversion for DENV-1, 56 (77.8%) for DENV-2; 59 (81.9%) for DENV-3 and 57 (79.2%) for DENV-4 in TDV group. The seroconversion rate in the TDV group was statistically significant (p < 0.001) compared to placebo. Clinical trial registration: CTRI/2017/02/007923.
Collapse
Key Words
- ADE, Antibody Dependent Enhancement
- Antibody dependent enhancement”
- Dengue prevalence,
- Dengue vaccine development” and
- Dengue vaccine”,
- Dengue”,
- GMT, Geometric Mean Titer
- PFU, Plaque Forming Unit
- PP, Per Protocol
- PRNT, Plaque Reduction Neutralization Test
- SAE, Serious Adverse Event
- TDV, Tetravalent Dengue Vaccine
Collapse
Affiliation(s)
- Lalitendu Mohanty
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Madhav Prabhu
- KLES Dr Prabhakar Kore Hospital and Medical Research Centre, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Amit Kumar Mishra
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Anil J Purty
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Reba Kanungo
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Goutam Ghosh
- GIET University, Gunupur, Gobriguda, Po-Kharling, Rayagada, Odisha-765022, India
| | - R Prahan Kumar
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - A Newton Raj
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Sumit Bhushan
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Manoj Kumar Jangir
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Anu Gupta
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Anju Bhakri
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| |
Collapse
|
40
|
Aguiar M, Anam V, Blyuss KB, Estadilla CDS, Guerrero BV, Knopoff D, Kooi BW, Srivastav AK, Steindorf V, Stollenwerk N. Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys Life Rev 2022; 40:65-92. [PMID: 35219611 PMCID: PMC8845267 DOI: 10.1016/j.plrev.2022.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Mathematical models have a long history in epidemiological research, and as the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. Mathematical models describing dengue fever epidemiological dynamics are found back from 1970. Dengue fever is a viral mosquito-borne infection caused by four antigenically related but distinct serotypes (DENV-1 to DENV-4). With 2.5 billion people at risk of acquiring the infection, it is a major international public health concern. Although most of the cases are asymptomatic or mild, the disease immunological response is complex, with severe disease linked to the antibody-dependent enhancement (ADE) - a disease augmentation phenomenon where pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection. Here, we present a 10-year systematic review on mathematical models for dengue fever epidemiology. Specifically, we review multi-strain frameworks describing host-to-host and vector-host transmission models and within-host models describing viral replication and the respective immune response. Following a detailed literature search in standard scientific databases, different mathematical models in terms of their scope, analytical approach and structural form, including model validation and parameter estimation using empirical data, are described and analyzed. Aiming to identify a consensus on infectious diseases modeling aspects that can contribute to public health authorities for disease control, we revise the current understanding of epidemiological and immunological factors influencing the transmission dynamics of dengue. This review provide insights on general features to be considered to model aspects of real-world public health problems, such as the current epidemiological scenario we are living in.
Collapse
Affiliation(s)
- Maíra Aguiar
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Vizda Anam
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Konstantin B Blyuss
- VU University, Faculty of Science, De Boelelaan 1085, NL 1081, HV Amsterdam, the Netherlands
| | - Carlo Delfin S Estadilla
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Bruno V Guerrero
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Damián Knopoff
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Centro de Investigaciones y Estudios de Matemática CIEM, CONICET, Medina Allende s/n, Córdoba, 5000, Argentina
| | - Bob W Kooi
- University of Sussex, Department of Mathematics, Falmer, Brighton, UK
| | - Akhil Kumar Srivastav
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Vanessa Steindorf
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Nico Stollenwerk
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy
| |
Collapse
|
41
|
Perera N, Brun J, Alonzi DS, Tyrrell BE, Miller JL, Zitzmann N. Antiviral effects of deoxynojirimycin (DNJ)-based iminosugars in dengue virus-infected primary dendritic cells. Antiviral Res 2022; 199:105269. [DOI: 10.1016/j.antiviral.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
|
42
|
Abstract
Prevention of emerging infections in children is a dynamic arena where substantial medical advances have enabled intervention and prevention of infection outbreaks. This article discusses 5 infections causing significant morbidity and mortality across Asia, Latin America, and Africa. Avian influenza and the Middle East respiratory syndrome are highly contagious zoonoses spread through aerosol and droplets, affecting predominantly Asia. Dengue infection and chikungunya are endemic mosquito-borne viruses in tropical regions across Asia, Latin America, and Africa. Ebola is a highly contagious virus spread through human-to-human contact. The latest information in clinical manifestations, infection, prevention control, chemoprophylaxis, vaccination, and public health measures is reviewed.
Collapse
Affiliation(s)
- Thanyawee Puthanakit
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, 9th Floor, Sor Kor Building, Rama 4 Road, Patumwan, Bangkok 10330, Thailand.
| | | | - Watsamon Jantarabenjakul
- Center of Excellence for Pediatric Infectious Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
43
|
Anasir MI, Poh CL. Discovery of B-cell epitopes for development of dengue vaccines and antibody therapeutics. Med Microbiol Immunol 2022; 211:1-18. [PMID: 35059822 DOI: 10.1007/s00430-021-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Dengue is one of the most frequently transmitted viral infections globally which creates a serious burden to the healthcare system in many countries in the tropical and subtropical regions. To date, no vaccine has demonstrated balanced protection against the four dengue serotypes. Dengvaxia as the only vaccine that has been licensed for use in endemic areas has shown an increased risk in dengue-naïve vaccines to develop severe dengue. A crucial element in protection from dengue infection is the neutralizing antibody responses. Therefore, the identification of protective linear B-cell epitopes can guide vaccine design and facilitate the development of monoclonal antibodies as dengue therapeutics. This review summarizes the identification of dengue B-cell epitopes within the envelope (E) protein of dengue that can be incorporated into peptide vaccine constructs. These epitopes have been identified through approaches such as bioinformatics, three-dimensional structure analysis of antibody-dengue complexes, mutagenesis/alanine scanning and escape mutant studies. Additionally, the therapeutic potential of monoclonal antibodies targeting the E protein of dengue is reviewed. This can provide a basis for the design of future dengue therapies.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam, Selangor, Malaysia
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
44
|
Sheng ZY, Li M, Yang R, Liu YH, Yin XX, Mao JR, Brown HE, Zhou HN, Wang PG, An J. COVID-19 prevention measures reduce dengue spread in Yunnan Province, China, but do not reduce established outbreak. Emerg Microbes Infect 2021; 11:240-249. [PMID: 34935597 PMCID: PMC8745368 DOI: 10.1080/22221751.2021.2022438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The COVID-19 pandemic and measures against it provided a unique opportunity to understand the transmission of other infectious diseases and to evaluate the efficacy of COVID-19 prevention measures on them. Here we show a dengue epidemic in Yunnan, China, during the pandemic of COVID-19 was dramatically reduced compared to non-pandemic years and, importantly, spread was confined to only one city, Ruili. Three key features characterized this dengue outbreak: (i) the urban-to-suburban spread was efficiently blocked; (ii) the scale of epidemic in urban region was less affected; (iii) co-circulation of multiple strains was attenuated. These results suggested that countermeasures taken during COVID-19 pandemic are efficient to prevent dengue transmission between cities and from urban to suburban, as well to reduce the co-circulation of multiple serotypes or genotypes. Nevertheless, as revealed by the spatial analysis, once the dengue outbreak was established, its distribution was very stable and resistant to measures against COVID-19, implying the possibility to develop a precise prediction method.
Collapse
Affiliation(s)
- Z Y Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - M Li
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Simao Pu'er, Yunnan, PR China
| | - R Yang
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Simao Pu'er, Yunnan, PR China
| | - Y H Liu
- Ruili Center of Disease Prevention and Control, Ruili, Yunnan, PR China
| | - X X Yin
- Ruili Center of Disease Prevention and Control, Ruili, Yunnan, PR China
| | - J R Mao
- Ruili People's Hospital, Ruili, Yunnan, PR China
| | - Heidi E Brown
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona
| | - H N Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Simao Pu'er, Yunnan, PR China
| | - P G Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - J An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
45
|
Paz-Bailey G, Adams L, Wong JM, Poehling KA, Chen WH, McNally V, Atmar RL, Waterman SH. Dengue Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021. MMWR Recomm Rep 2021; 70:1-16. [PMID: 34978547 PMCID: PMC8694708 DOI: 10.15585/mmwr.rr7006a1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dengue is a vectorborne infectious disease caused by dengue viruses (DENVs), which are predominantly transmitted by Aedes aegypti and Aedes albopictus mosquitos. Dengue is caused by four closely related viruses (DENV-1–4), and a person can be infected with each serotype for a total of four infections during their lifetime. Areas where dengue is endemic in the United States and its territories and freely associated states include Puerto Rico, American Samoa, the U.S. Virgin Islands, the Federated States of Micronesia, the Republic of Marshall Islands, and the Republic of Palau. This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the Dengvaxia vaccine in the United States. The vaccine is a live-attenuated, chimeric tetravalent dengue vaccine built on a yellow fever 17D backbone. Dengvaxia is safe and effective in reducing dengue-related hospitalizations and severe dengue among persons who have had dengue infection in the past. Previous natural infection is important because Dengvaxia is associated with an increased risk for severe dengue in those who experience their first natural infection (i.e., primary infection) after vaccination. Dengvaxia was licensed by the Food and Drug Administration for use among children and adolescents aged 9–16 years (referred to in this report as children). ACIP recommends vaccination with Dengvaxia for children aged 9–16 having evidence of a previous dengue infection and living in areas where dengue is endemic. Evidence of previous dengue infection, such as detection of anti-DENV immunoglobulin G with a highly specific serodiagnostic test, will be required for eligible children before vaccination.
Collapse
|
46
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
47
|
Wang WH, Urbina AN, Lin CY, Yang ZS, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 2021; 144:112304. [PMID: 34634560 DOI: 10.1016/j.biopha.2021.112304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
48
|
Dechtawewat T, Roytrakul S, Yingchutrakul Y, Charoenlappanit S, Siridechadilok B, Limjindaporn T, Mangkang A, Prommool T, Puttikhunt C, Songprakhon P, Kongmanas K, Kaewjew N, Avirutnan P, Yenchitsomanus PT, Malasit P, Noisakran S. Potential Phosphorylation of Viral Nonstructural Protein 1 in Dengue Virus Infection. Viruses 2021; 13:v13071393. [PMID: 34372598 PMCID: PMC8310366 DOI: 10.3390/v13071393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Yodying Yingchutrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Bunpote Siridechadilok
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Arunothai Mangkang
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuttapong Kaewjew
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: or ; Tel.: +66-2-419-6666
| |
Collapse
|
49
|
Abstract
Introduction: Dengue virus is a global health threat, with approximately 390 million dengue infections annually. Efficient vaccines for dengue prevention are currently lacking. This review aims to summarize the current progress in dengue vaccine development.Area covered: This article discusses recent dengue vaccine developments based on the published literature and ClinicalTrials.gov website up to December 2020.Expert opinion: The first live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV), Dengvaxia, has been licensed in several countries. However, the low efficacy of this vaccine was observed in children and dengue-naïve individuals. It also increased the risk of severe dengue in people who had not been exposed to dengue. The heterologous prime-boost regimen of sequential immunization with DENVax and Dengvaxia covers four serotypes of immunogenicity, eliminating the effect of ADE. Moreover, a heterologous prime-boost regimen that combines inactivated vaccines with alum and live attenuated vaccines might increase the immunogenic response. The lack of an ideal animal model is an obstacle to the development of dengue vaccines, and the macaque model may be considered for similar immunologic responses in humans.
Collapse
Affiliation(s)
- Chung-Hao Huang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Te Tsai
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Seng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Abstract
Recent field trials have demonstrated that dengue incidence can be substantially reduced by introgressing strains of the endosymbiotic bacterium Wolbachia into Aedes aegypti mosquito populations. This strategy relies on Wolbachia reducing the susceptibility of Ae. aegypti to disseminated infection by positive-sense RNA viruses like dengue. However, RNA viruses are well known to adapt to antiviral pressures. Here, we review the viral infection stages where selection for Wolbachia-resistant virus variants could occur. We also consider the genetic constraints imposed on viruses that alternate between vertebrate and invertebrate hosts, and the likely selection pressures to which dengue virus might adapt in order to be effectively transmitted by Ae. aegypti that carry Wolbachia. While there are hurdles to dengue viruses developing resistance to Wolbachia, we suggest that long-term surveillance for resistant viruses should be an integral component of Wolbachia-introgression biocontrol programs.
Collapse
Affiliation(s)
| | - Heather A. Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Johanna E. Fraser
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|