1
|
Shi L, Troisi A. High-Throughput Screening of Molecule/Polymer Photocatalysts for the Hydrogen Evolution Reaction. ACS Catal 2025; 15:6690-6701. [PMID: 40337364 PMCID: PMC12054366 DOI: 10.1021/acscatal.5c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Although there has been progress in designing organic photocatalysts, identifying and designing structurally distinct polymeric or molecular photocatalysts with high performance is still challenging. Using the properties of a set of well-known polymer photocatalysts, we performed a virtual screening of a large data set of around 50 000 organic semiconductors. In the initial stage, we looked for candidates with electronic properties similar to those of the best-performing photocatalysts. Next, we screened the data set using reactivity descriptors based on mechanisms derived from quantum chemical calculations for selected cases. We identified 33 candidates with high potential as photocatalysts for the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
2
|
Chen L, Zhang J, Li ZT, Tian J. Systematic Analysis of False-Positive CH 4 Production in Photocatalytic CO 2 Reduction: The Role of Solvent and Reagent Decomposition. Chemistry 2025; 31:e202500403. [PMID: 40042771 DOI: 10.1002/chem.202500403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Indexed: 03/19/2025]
Abstract
Photocatalytic carbon dioxide (CO2) reduction has emerged as a promising strategy for achieving carbon neutrality under mild reaction conditions. While methane (CH4) is widely regarded as a valuable target product in CO2 reduction studies, the reliability of such measurements can be compromised by unintended CH4 generation from solvent or sacrificial reagent decomposition during photoreactions. Herein, we systematically evaluate the stability of seven common solvents and five sacrificial reagents under visible-light irradiation (λ >420 nm) in CO2-, air-, and N2-saturated atmosphere, employing three distinct photosensitizers. Notably, acetone, dimethyl sulfoxide (DMSO), and triethylamine (TEA) were identified as high-risk reagents prone to photodecomposition, generating substantial CH4 yields of up to 2770 μmol ⋅ h-1 ⋅ L-1. Isotopic labeling experiments conclusively demonstrated that the source of CH4 originated from the solvents or sacrificial reagents rather than CO2. These findings highlight critical pitfalls in experimental design for photocatalytic CO2 reduction and emphasize the necessity of rigorous reagent screening to avoid artifactual methane production.
Collapse
Affiliation(s)
- Lingxuan Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiangshan Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Zhan-Ting Li
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia Tian
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Fors SA, Yap YJ, Malapit CA. Effect of Alternating Polarity in Electrochemical Olefin Hydrocarboxylation. Angew Chem Int Ed Engl 2025:e202424865. [PMID: 40192267 DOI: 10.1002/anie.202424865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
The electrochemical generation of radical anions from feedstock olefins offers a selective and efficient route for synthesizing commodity chemicals and pharmaceutical precursors via hydrofunctionalization. Traditional methods for electrochemical olefin hydrofunctionalization, for example, hydrocarboxylation, rely on anion intermediates and follow an electrochemical-chemical-electrochemical-chemical (ECEC) mechanism involving olefin reduction, carboxylation, further reduction, and protonation. Enhancing terminal carboxylate selectivity often requires a proton source, reducing functional group tolerance and favoring proton reduction over olefin reduction. Alternating polarity, a nascent technique in organic electrochemistry, can improve product selectivity by influencing electron transfer rates and electrode surface species. Herein, we report the use of alternating polarity to selectively generate radical anions from styrene derivatives, using electrochemical hydrocarboxylation as a model. This approach shifts the mechanism to an electrochemical-chemical-chemical (ECC) pathway, where the final step involves hydrogen atom transfer. We showcase how alternating polarity modulates product selectivity, yield, and material decomposition, offering new insights into how alternating polarity can advance olefin functionalization by enabling more controlled and selective reaction pathways.
Collapse
Affiliation(s)
- Stella A Fors
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| | - Yong Jia Yap
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| | - Christian A Malapit
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Meindl A, Heffernan D, Kudermann J, Strittmatter N, Senge MO. Direct CO 2 Activation and Conversion to Ethanol via Reactive Oxygen Species. Angew Chem Int Ed Engl 2025; 64:e202422967. [PMID: 39960042 DOI: 10.1002/anie.202422967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
The growing demand for energy and the excessive use of fossil fuels represents one of the main challenges for humanity. Storing solar energy in the form of chemical bonds to generate solar fuels or value-added chemicals without creating additional environmental burdens is a key requirement for a sustainable future. Here we use biomimetic artificial photosynthesis and present a dPCN-224(H) MOF-based photocatalytic system, which uses reactive oxygen species (ROS) to activate and convert CO2 to ethanol under atmospheric conditions, at room temperature and in 2-5 h reaction time. The system provides a CO2-to-ethanol conversion efficiency (CTE) of 92 %. Furthermore, this method also allows the conversion of CO2 through direct air capture (DAC), making it a rapid and versatile method for both dissolved and gaseous CO2.
Collapse
Affiliation(s)
- Alina Meindl
- Department of Design and Green Engineering, Salzburg University of Applied Sciences, Markt 136a, 5431, Kuchl, Austria
| | - Daniel Heffernan
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Jürgen Kudermann
- Catalysis Research Centre (CRC), Technical University of Munich (TUM), Garching, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenbergstrasse 2a, D-85748, Garching, Germany
- School of Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, Ireland
| |
Collapse
|
5
|
Bianco A, Mancini F, Bergamini G. A pH-Switchable System for On-Demand Solar Hydrogen Production. CHEMSUSCHEM 2025:e2500029. [PMID: 40130936 DOI: 10.1002/cssc.202500029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 03/26/2025]
Abstract
Artificial solar-to-fuel conversion is a pivotal pathway toward a sustainable energy future. Molecular hydrogen H2, with its clean energy potential, emerges as a promising candidate to replace fossil fuels. Nevertheless, the intermittent nature of solar irradiation presents a formidable obstacle. Inspired by natural photosynthesis, a well-known three-component system is employed to decouple light absorption and hydrogen evolution. The system utilizes [Ru(bpy)3]2+, triethanolamine, and methyl viologen to store solar energy as reduced viologen (MV•+). By controlling pH, this stored energy can be efficiently released to produce hydrogen on demand. The system demonstrates superior efficiency compared to platinum-based catalysts, along with remarkable reversibility, cyclability, and stability. This work significantly advances solar-to-hydrogen conversion, providing a promising solution for the intermittent nature of solar energy and paving the way to a sustainable energy future.
Collapse
Affiliation(s)
- Alberto Bianco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Francesca Mancini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Giacomo Bergamini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
6
|
Langford D, Reva Y, Bo Y, Gubanov K, Wu M, Günay-Gürer A, Mai LA, Crisp RW, Engelmann I, Spiecker E, Fink RH, Kahnt A, Jana B, Guldi DM. Improving Photocatalytic Hydrogen Generation via Polycitric Acid-based Carbon Nanodots. Angew Chem Int Ed Engl 2025; 64:e202418626. [PMID: 39791497 DOI: 10.1002/anie.202418626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Bottom-up syntheses of carbon nanodots (CND) using solvothermal treatment of citric acid are known to afford nanometer-sized, amorphous polycitric acid-based materials. The addition of suitable co-reactants in the form of in situ synthesized N-hetero-π-conjugated chromophores facilitates hereby the overall functionalization. Reports regarding the influence of CND on the properties of, for example, N-hetero-π-conjugated chromophores are scarce. Thus, our incentive was to design a CND model that features phenazine (P-CND) - a well-known N-hetero-π-conjugated chromophore - to investigate the influence of the CND matrix on its redox chemistry as well as photochemistry. The scope of our work was to go beyond investigating the electrochemical properties of the resulting P-CND by shedding light onto differences relative to nano-aggregates of phenazine (PNZNA), which served as reference. In particular, chemical as well as electrochemical reduction of PNZNA initiated a reaction cascade that affords the primary reduction intermediate, that is, the reduced and protonated (PNZ-H)⋅. In accordance with existing literature, the final product of a bimolecular disproportionation was 5,10-dihydrophenazine (PNZ-H2). Reducing P-CND also resulted in the formation of (PNZ-H)⋅. But, no evidence for a subsequent bimolecular disproportionation was gathered. Instead, (PNZ-H)⋅ as an integrative part of P-CND was found to be actively involved in a H2 generation reaction. A more than twofold increase in efficiency compared to PNZNA under identical conditions was the consequence.
Collapse
Affiliation(s)
- Daniel Langford
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Yana Reva
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Yifan Bo
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Kirill Gubanov
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Ayşe Günay-Gürer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Lukas A Mai
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Ryan W Crisp
- Department of Chemistry and Pharmacy, Chair of Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Iryna Engelmann
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Rainer H Fink
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| | - Bikash Jana
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia San Sebastián, Spain
| | - Dirk M Guldi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Landino LM, Reed JA. Photochemical Redox Cycling of Naphthoquinones Mediated by Methylene Blue and Pheophorbide A. Molecules 2025; 30:1351. [PMID: 40142126 PMCID: PMC11944901 DOI: 10.3390/molecules30061351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The photoreduction of plastoquinone, a para-benzoquinone, by chlorophyll initiates photosynthesis in chloroplasts. The direct photoreduction of biologically relevant quinones by dietary chlorophyll metabolites has been reported and may influence health outcomes. We examined red light-mediated photoreduction of ortho- and para-naphthoquinones including vitamin K3 using the photosensitizers methylene blue and pheophorbide A, a chlorophyll metabolite. Naphthoquinone reduction was monitored by UV/Visible spectroscopy and required a photosensitizer, red light and a tertiary amine electron donor. Combinations of methylene blue and ethylenediaminetetraacetic acid or pheophorbide A and triethanolamine in 20% dimethylformamide were employed for all photoreduction experiments. Hydrogen peroxide was generated during the photochemical reactions by singlet oxygen-dependent oxidation of the reduced naphthoquinones. Hydrogen peroxide was quantified with horseradish peroxidase following irradiation; the reduced naphthoquinones acted as peroxidase co-substrates. Histidine, a singlet oxygen scavenger, enhanced the rate of photoreduction by limiting the re-oxidation process. Catalase slowed the rate of photoreduction by regenerating molecular oxygen from hydrogen peroxide so that it could be photoexcited to singlet oxygen. The rates and extent of naphthoquinone photoreduction were dependent on molecular oxygen exposure in different reaction formats including in a cuvette and a plate well. Reduction of the tetrazolium salt MTT to the formazan via electron transfer from the photoreduced quinones was also used to quantitate the extent of photoreduction.
Collapse
Affiliation(s)
- Lisa M. Landino
- Department of Chemistry, College of William & Mary, Williamsburg, VA 23185, USA
| | | |
Collapse
|
8
|
Eisele L, Bica-Schröder K. Photocatalytic Carbon Dioxide Reduction with Imidazolium-Based Ionic Liquids. CHEMSUSCHEM 2025:e202402626. [PMID: 40066896 DOI: 10.1002/cssc.202402626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/03/2025] [Indexed: 03/20/2025]
Abstract
The growing urgency of addressing climate change caused by greenhouse gas emissions and dwindling fossil fuel supplies has heightened the need for effective strategies to capture and utilize carbon dioxide. Photocatalytic CO2 conversion, inspired by natural photosynthesis, presents a viable approach for transforming CO2 into useful C1-C3 chemical intermediates for industrial purposes. However, the inherent stability of CO2 and the competing hydrogen evolution reaction (HER) introduce significant obstacles. Imidazolium-based ionic liquids can pre-activate CO2, accelerate reaction kinetics, and act as eco-friendly solvents or additives. Systems employing ionic liquids with catalysts, such as homogeneous organocatalysts and heterogeneous materials like Metal-Organic Frameworks (MOFs) and quantum dots, offer potential solutions to these challenges. This review focuses on the role of ionic liquids in both homogeneous and heterogeneous photocatalytic processes, emphasizing their use in CO2 reduction and highlighting recent mechanistic insights for imidazolium-based species.
Collapse
Affiliation(s)
- Lisa Eisele
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Wien, Austria
| | | |
Collapse
|
9
|
Rumporee S, Boonta W, Watwiangkham A, Sudyoadsuk T, Chakarawet K, Vinayavekhin N, Fujii S, Butburee T, Suthirakun S, Unruangsri J. Boosting Dual Photocatalytic Activity of Hydrogen Production and Selective Coupling of Benzyl Alcohol Using Assembled Poly(ionic liquid)s and CdS Quantum Dots. CHEMSUSCHEM 2025:e202402328. [PMID: 40052256 DOI: 10.1002/cssc.202402328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Dual photocatalysis converts renewable solar energy into clean fuel and concomitantly value-added chemical synthesis through hydrogen generation and selective organic transformation, using semiconductor catalysts. The catalytic activity of solitary component semiconductor photocatalysts is impeded by their inefficient charge separation and transfer. We, herein, present a facile method, electrostatic assembly, to create hybrid photocatalysts that consist of CdS quantum dots and non-conjugated poly(ionic liquid)s including poly(diallyl dimethyl ammonium bromide) (P(DADMA)) and poly(1-ethyl-3-vinylimidazolium bromide) (P(VEIM)). Poly(ionic liquid)s acted as electron donors to CdS, resulting in an increase in charge separation and transportation in CdS/P(DADMA) and CdS/P(VEIM) hybrids, as demonstrated by experimental and computational results. The optimal photocatalysis of benzyl alcohol (BA) in water was achieved by CdS/P(DADMA) under 12 h LED370 illumination in a nitrogen-atmosphere. This process produced 12.8 mmol gcat -1 h-1 of H2 and 12.5 mmol gcat -1 h-1 of racemic hydrobenzoin (HB) with 99 % selectivity. In photocatalysis, CdS/P(DADMA) outperformed CdS/P(VEIM) and CdS by a significant margin. Our photocatalytic system enabled the BA-to-HB conversion in water, of which the reaction is commonly sluggish due to a mass transfer constraint. The insightful DFT calculation confirmed that poly(ionic liquid)s may stabilize active intermediate species in the process, significantly enhancing photogenerated charge expedition and photocatalytic performance.
Collapse
Affiliation(s)
- Sanhawat Rumporee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wissuta Boonta
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Athis Watwiangkham
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Taweesak Sudyoadsuk
- Frontier Research Center, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Khetpakorn Chakarawet
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nawaporn Vinayavekhin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, Osaka, 535-8585, Japan
| | - Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Suwit Suthirakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Junjuda Unruangsri
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Photocatalysts for Clean Environment and Energy Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Kunikubo T, Castañeda R, Murugesu M, Brusso JL, Yamauchi K, Ozawa H, Sakai K. Diplatinum Single-Molecular Photocatalyst Capable of Driving Hydrogen Production from Water via Singlet-to-Triplet Transitions. Angew Chem Int Ed Engl 2025; 64:e202418884. [PMID: 39907290 DOI: 10.1002/anie.202418884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Solar-driven hydrogen production is regarded as one of the most ideal methods to achieve a sustainable society. In order to artificially establish efficient photosynthetic systems, efforts have been made to develop single-molecular photocatalysts capable of serving both as a photosensitizer (PS) and a catalyst (Cat) in hydrogen evolution reaction (HER). Although examples of such hybrid molecular photocatalysts have been demonstrated in the literature, their solar energy conversion efficiencies still remain quite limited. Here we demonstrate that a new dinuclear platinum(II) complex Pt2(bpia)Cl3 (bpia=bis(2-pyridylimidoyl)amido) serves as a single-molecular photocatalyst for HER with its performance significantly higher than that of the PtCl(tpy)- and PtCl2(bpy)-type photocatalysts developed in our group (tpy=2,2':6',2''-terpyridine, bpy=2,2'-bipyridine). The outstanding feature is that Pt2(bpia)Cl3 can produce H2 even by irradiating the lower-energy light above 500 nm, which is rationalized due to the direct population of triplet states via singlet-to-triplet transitions (i.e., S-T transitions) accelerated by the diplatinum core. To the best of our knowledge, Pt2(bpia)Cl3 is the first example of a single-molecular photocatalyst enabling hydrogen production from water via the S-T transitions using lower-energy light (>580 nm).
Collapse
Affiliation(s)
- Toma Kunikubo
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Raúl Castañeda
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Jaclyn L Brusso
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hironobu Ozawa
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
11
|
Pfund B, Wenger OS. Excited Organic Radicals in Photoredox Catalysis. JACS AU 2025; 5:426-447. [PMID: 40017739 PMCID: PMC11862960 DOI: 10.1021/jacsau.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
Many important synthetic-oriented works have proposed excited organic radicals as photoactive species, yet mechanistic studies raised doubts about whether they can truly function as photocatalysts. This skepticism originates from the formation of (photo)redox-active degradation products and the picosecond decay of electronically excited radicals, which is considered too short for diffusion-based photoinduced electron transfer reactions. From this perspective, we analyze important synthetic transformations where organic radicals have been proposed as photocatalysts, comparing their theoretical maximum excited state potentials with the potentials required for the observed photocatalytic reactivity. We summarize mechanistic studies of structurally similar photocatalysts indicating different reaction pathways for some catalytic systems, addressing cases where the proposed radical photocatalysts exceed their theoretical maximum reactivity. Additionally, we perform a kinetic analysis to explain the photoinduced electron transfer observed in excited radicals on subpicosecond time scales. We further rationalize the potential anti-Kasha reactivity from higher excited states with femtosecond lifetimes, highlighting how future photocatalysis advancements could unlock new photochemical pathways.
Collapse
Affiliation(s)
- Björn Pfund
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Aranda-Ruiz S, Tatarashvili L, Oppelt K, Hamm P. Unveiling the Activation Pathway of the CO 2 Reduction Catalyst trans(Cl)-[Ru(X,X'-dimethyl-2,2'-bipyridine)(CO) 2Cl 2] by Direct Spectroscopic Observation. ACS Catal 2025; 15:3023-3037. [PMID: 40013246 PMCID: PMC11851782 DOI: 10.1021/acscatal.4c06974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
We report on the activation pathway of a series of CO2 reduction catalysts, trans(Cl)-[Ru(X,X'-dimethyl-2,2'-bipyridine)(CO)2Cl2], with a focus on trans(Cl)-[Ru(6,6'-dimethyl-2,2'-bipyridine)(CO)2Cl2]), in the presence of the reductive quencher 1-benzyl-1,4-dihydronicotinamide and the photosensitizer Ru(bpy)3Cl2. Most mechanistic studies of these types of catalytic systems use spectroelectrochemistry in the IR, where the vibrational frequencies of the carbonyl vibrations report on the electron density on the metal center. However, spectroelectrochemistry may miss short-lived intermediates, while at the same time the spectra can be dominated by accumulating side-products, which may play only a minor role in the reaction cycle. Transient IR spectroscopy on all relevant time scales, from picoseconds to hundreds of milliseconds, can bridge this gap, revealing a surprisingly complex reaction pathway (in combination with NMR spectroscopy as well as DFT calculations). That is, electron transfer from the reduced photosensitizer is followed by a loss of a first chloride ligand, a replacement of the second chloride ligand by a solvent molecule, and a ligand rearrangement that releases the strain between the equatorial carbonyl ligands and the methyl group on the bpy ligand in this catalyst. These reaction steps happen on a tens of nanoseconds to tens of microseconds time scale. In the case of trans(Cl)-[Ru(6,6'-dimethyl-2,2'-bipyridine)(CO)2Cl2]), the complex is then reduced a second time from the oxidized 1-benzyl-1,4-dihydronicotinamide on a significantly slower 10-100 ms time scale, protonated and the solvent ligand is exchanged back to a chloride. The final product hence is a hydride, RuII(6,6'-dmbpy)(CO)2ClH, which is stable on a minute-to-hour time scale. In case of trans(Cl)-[Ru(5,5'-dmbpy)(CO)2Cl2]), dimerization of the reduced species is possible, which eventually leads to the formation of cis(Cl)-[Ru(5,5'-dmbpy)(CO)2Cl2]. The work illustrates the power of transient IR spectroscopy to elucidate complex reaction pathways of such catalytic systems, and provides solid cornerstones for their kinetic control.
Collapse
Affiliation(s)
| | | | - Kerstin Oppelt
- Department of Chemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
13
|
Caniglia G, Horn S, Kranz C. Scanning electrochemical probe microscopy: towards the characterization of micro- and nanostructured photocatalytic materials. Faraday Discuss 2025; 257:224-239. [PMID: 39452692 DOI: 10.1039/d4fd00136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Platinum-black (Pt-B) has been demonstrated to be an excellent electrocatalytic material for the electrochemical oxidation of hydrogen peroxide (H2O2). As Pt-B films can be deposited electrochemically, micro- and nano-sized conductive transducers can be modified with Pt-B. Here, we present the potential of Pt-B micro- and sub-micro-sized sensors for the detection and quantification of hydrogen (H2) in solution. Using these microsensors, no sampling step for H2 determination is required and e.g., in photocatalysis, the onset of H2 evolution can be monitored in situ. We present Pt-B-based H2 micro- and sub-micro-sized sensors based on different electrochemical transducers such as microelectrodes and atomic force microscopy (AFM)-scanning electrochemical microscopy (SECM) probes, which enable local measurements e.g., at heterogenized photocatalytically active samples. The microsensors are characterized in terms of limits of detection (LOD), which ranges from 4.0 μM to 30 μM depending on the size of the sensors and the experimental conditions such as type of electrolyte and pH. The sensors were tested for the in situ H2 evolution by light-driven water-splitting, i.e., using ascorbic acid or triethanolamine solutions, showing a wide linear concentration range, good reproducibility, and high sensitivity. Proof-of-principle experiments using Pt-B-modified cantilever-based sensors were performed using a model sample platinum substrate to map the electrochemical H2 evolution along with the topography using AFM-SECM.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | - Sarah Horn
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| |
Collapse
|
14
|
Bai KP, Wu C, Lu JT, Chen WP, Cui MD, Zheng YZ. Assembling Giant Nanoclusters as Heterogeneous Catalysts for Effectively Converting CO 2 to CO Under Visible Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412630. [PMID: 39924862 DOI: 10.1002/smll.202412630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Indexed: 02/11/2025]
Abstract
Heterometallic lanthanide-transition metal (3d-4f) nanoclusters with well-defined structures and multiple active sites are excellent vehicles for achieving efficient catalysis and studying heterometallic synergism. In this work, two closely related yet different high-nuclearity nanoclusters, 72-nuclear {Ni28RE44} (1, RE = Pr, Nd, Sm, Eu, and Gd) and 111-nuclear {Ni48La63} (2), are synthesized using a mixed-ligand strategy. Importantly, the crystal solids of these giant coordination clusters are insoluble when soaking in H2O/CH3CN and can be used as heterogeneous catalysts for visible-light-driven catalytic conversion of CO2 to CO. Cluster 2 exhibits a maximum CO production rate of 4800 µmol g-1 h-1 and a CO selectivity of 92% over H2. Furthermore, the catalytic properties are investigated of different rare earths in the cluster 1 series, found that 1-Eu exhibited superior catalytic performance under identical conditions, likely due to the lower reduction potential of the europium ions. This study represents the first report of 3d-4f heterometallic nanoclusters as heterogeneous catalysts for photocatalytic reaction and provides a reference for the study of high-nuclearity 3d-4f nanoclusters as catalysts for photocatalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Kai-Peng Bai
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chao Wu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jin-Tao Lu
- Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wei-Peng Chen
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Meng-Di Cui
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
15
|
Kosko RM, Kuphal KL, Salamatian AA, Bren KL. Engineered metallobiocatalysts for energy-relevant reactions. Curr Opin Chem Biol 2025; 84:102545. [PMID: 39591928 DOI: 10.1016/j.cbpa.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Engineering metallobiocatalysts is a promising approach to addressing challenges in energy-relevant electrocatalysis and photocatalysis. The design freedom provided by semisynthetic and fully synthetic approaches to catalyst design allows researchers to demonstrate how structural modifications can improve selectivity and activity of biocatalysts. Furthermore, the provision of a superstructure in many metallobiocatalysts facilitates active-site microenvironment engineering. Recurring themes include the role of the biomolecular scaffold in enhancing reactivity in water and catalyst robustness, the impact of the outer sphere on reactivity, and the importance of tuning system components in full system optimization. In this perspective, recent strategies to design and modify novel biocatalysts, understand proton and electron transfer mechanisms, and tune system activity by modifying catalysts and system conditions are highlighted within the field of energy-related catalysis. Opportunities in this field include developing robust structure-function relationships to support approaches to engineering second-sphere interactions and identifying ways to enhance biocatalyst activity over time.
Collapse
Affiliation(s)
- Ryan M Kosko
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Kaye L Kuphal
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| |
Collapse
|
16
|
Silva IF, Pulignani C, Odutola J, Galushchinskiy A, Teixeira IF, Isaacs M, Mesa CA, Scoppola E, These A, Badamdorj B, Ángel Muñoz-Márquez M, Zizak I, Palgrave R, Tarakina NV, Gimenez S, Brabec C, Bachmann J, Cortes E, Tkachenko N, Savateev O, Jiménez-Calvo P. Enhancing deep visible-light photoelectrocatalysis with a single solid-state synthesis: Carbon nitride/TiO 2 heterointerface. J Colloid Interface Sci 2025; 678:518-533. [PMID: 39260300 DOI: 10.1016/j.jcis.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Visible-light responsive, stable, and abundant absorbers are required for the rapid integration of green, clean, and renewable technologies in a circular economy. Photoactive solid-solid heterojunctions enable multiple charge pathways, inhibiting recombination through efficient charge transfer across the interface. This study spotlights the physico-chemical synergy between titanium dioxide (TiO2) anatase and carbon nitride (CN) to form a hybrid material. The CN(10%)-TiO2(90%) hybrid outperforms TiO2 and CN references and literature homologs in four photo and photoelectrocatalytic reactions. CN-TiO2 achieved a four-fold increase in benzylamine conversion, with photooxidation conversion rates of 51, 97, and 100 % at 625, 535, and 465 nm, respectively. The associated energy transfer mechanism was elucidated. In photoelectrochemistry, CN-TiO2 exhibited 23 % photoactivity of the full-spectrum measurement when using a 410 nm filter. Our findings demonstrate that CN-TiO2 displayed a band gap of 2.9 eV, evidencing TiO2 photosensitization attributed to enhanced charge transfer at the heterointerface boundaries via staggered heterojunction type II.
Collapse
Affiliation(s)
- Ingrid F Silva
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Carolina Pulignani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jokotadeola Odutola
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, 33101 Finland
| | - Alexey Galushchinskiy
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ivo F Teixeira
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Mark Isaacs
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Lab, Didcot OX11 0FA, United Kingdom; Department of Chemistry, University College London, 20 Gower Street, London, WC1H 0AJ, United Kingdom
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), University Jaume I, 12006 Castello de la Plana, Spain
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Albert These
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Bolortuya Badamdorj
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Miguel Ángel Muñoz-Márquez
- Chemistry Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, Italy
| | - Ivo Zizak
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Robert Palgrave
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Lab, Didcot OX11 0FA, United Kingdom; Department of Chemistry, University College London, 20 Gower Street, London, WC1H 0AJ, United Kingdom
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sixto Gimenez
- Institute of Advanced Materials (INAM), University Jaume I, 12006 Castello de la Plana, Spain
| | - Christoph Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany; Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Emiliano Cortes
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539, München, Germany
| | - Nikolai Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, 33101 Finland
| | - Oleksandr Savateev
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Pablo Jiménez-Calvo
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539, München, Germany.
| |
Collapse
|
17
|
Kobayashi A. Photoredox Cascade Catalysts for Solar Hydrogen Production From Sustainable Hydrogen Sources. CHEMSUSCHEM 2025; 18:e202400688. [PMID: 39019797 DOI: 10.1002/cssc.202400688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Visible-light-driven photocatalytic hydrogen (H2) production has been extensively studied as a clean and sustainable energy resource. Although sacrificial electron donors (SEDs) are commonly used to evaluate photocatalytic activity, their irreversible decomposition forces charge separation, which disrupts the inherent dual productivity of photocatalysis, that is, the formation of both the reduction and oxidation products. To achieve highly efficient photoinduced charge separation without SED decomposition, the layer-by-layer assembly of redox-active photosensitizing dyes and electron mediators through Zr4+-phosphonate bonds has been extensively studied as an artificial mimic of the electron transport chain in natural photosynthesis. This concept paper presents an overview of photoredox cascade catalytic (PRCC) systems comprising multiple Ru(II)-trisbipyridine-type dyes and mediator layers on Pt-loaded TiO2 nanoparticles for H2 production from redox reversible electron donors (RREDs). The PRCC structure-activity relationship for photocatalytic H2 production is briefly discussed in terms of layer thickness, surface structure and modification, and cooperativity with molecular oxidation catalysts. Finally, new insights into the design of efficient dual-production photocatalysts based on the PRCC structure are presented.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, 060-0810, Japan
| |
Collapse
|
18
|
Yang J, Jiang Q, Chen Y, Wen Q, Ge X, Zhu Q, Zhao W, Adegbite O, Yang H, Luo L, Qu H, Del-Angel-Hernandez V, Clowes R, Gao J, Little MA, Cooper AI, Liu LN. Light-Driven Hybrid Nanoreactor Harnessing the Synergy of Carboxysomes and Organic Frameworks for Efficient Hydrogen Production. ACS Catal 2024; 14:18603-18614. [PMID: 39722887 PMCID: PMC11667666 DOI: 10.1021/acscatal.4c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures. Here, we report the bottom-up construction of a visible-light-driven chemical-biological hybrid nanoreactor with augmented photocatalytic efficiency by anchoring an α-carboxysome shell encasing [FeFe]-hydrogenases (H-S) on the surface of a hydrogen-bonded organic molecular crystal, a microporous α-polymorph of 1,3,6,8-tetra(4'-carboxyphenyl)pyrene (TBAP-α). The self-association of this chemical-biological hybrid system is facilitated by hydrogen bonds, as revealed by molecular dynamics simulations. Within this hybrid photobiocatalyst, TBAP-α functions as an antenna for visible-light absorption and exciton generation, supplying electrons for sacrificial hydrogen production by H-S in aqueous solutions. This coordination allows the hybrid nanoreactor, H-S|TBAP-α, to execute hydrogen evolution exclusively driven by light irradiation with a rate comparable to that of photocatalyst-loaded precious cocatalyst. The established approach to constructing new light-driven biocatalysts combines the synergistic power of biological nanotechnology with the multilength-scale structure and functional control offered by supramolecular organic semiconductors. It opens up innovative opportunities for the fabrication of biomimetic nanoreactors for sustainable fuel production and enzymatic reactions.
Collapse
Affiliation(s)
- Jing Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Qiuyao Jiang
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Yu Chen
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Quan Wen
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingwu Ge
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Qiang Zhu
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Wei Zhao
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Oluwatobi Adegbite
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Haofan Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Liang Luo
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Hang Qu
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | | | - Rob Clowes
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Jun Gao
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Marc A. Little
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Andrew I. Cooper
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| |
Collapse
|
19
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
20
|
Yu Y, Guo S, Lv S, Tian R, Cheng S, Chen Y. Eradicating the Photogenerated Holes in a Photocatalyst-Microbe Hybrid System: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56545-56554. [PMID: 39404055 DOI: 10.1021/acsami.4c12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Finding advanced technologies to store solar energy in chemical bonds efficiently is of great significance for the sustainable development of our society. The recently reported photocatalyst-microbe hybrid (PMH) system couples photocatalysts intimately with microbes and endows heterotrophic microbes with light-harvesting capacity. Generally, when PMH systems are exposed to light, photocatalytic reactions occur on the surface of photocatalysts and the photogenerated electrons enter microbial cells to promote the generation of energy carriers (such as nicotinamide adenine dinucleotide phosphate hydrogen and adenosine triphosphate) and the following chemical synthesis. PMH system applications have expanded from synthesizing value-added products (chemicals, fuels, and polymers) to treating pollutants. However, the successful operation of the PMH system relies on the timely eradication of the photogenerated holes as they recombine with the photogenerated electrons and cause the photocorrosion of the photocatalyst. This review summarizes the strategies for scavenging the photogenerated holes in PMH systems and provides insight into the current gaps and outlooks for future opportunities in this field.
Collapse
Affiliation(s)
- Yadong Yu
- Jiangsu Provincial Key Laboratory of Multi-energy Integration and Flexible Power Generation Technology, School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, China
| | - Shaopeng Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ruirui Tian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, China
| | - Yaozhong Chen
- Department of Operative Dentistry and Endodontics, Zhongda Hospital, Medical College, Southeast University, Nanjing 210009, China
| |
Collapse
|
21
|
Baran T, Caringella D, Dibenedetto A, Aresta M. Pitfalls in Photochemical and Photoelectrochemical Reduction of CO 2 to Energy Products. Molecules 2024; 29:4758. [PMID: 39407686 PMCID: PMC11477605 DOI: 10.3390/molecules29194758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The photochemical and photoelectrochemical reduction of CO2 is a promising approach for converting carbon dioxide into valuable chemicals (materials) and fuels. A key issue is ensuring the accuracy of experimental results in CO2 reduction reactions (CO2RRs) because of potential sources of false positives. This paper reports the results of investigations on various factors that may contribute to erroneous attribution of reduced-carbon species, including degradation of carbon species contained in photocatalysts, residual contaminants from synthetic procedures, laboratory glassware, environmental exposure, and the operator. The importance of rigorous experimental protocols, including the use of labeled 13CO2 and blank tests, to identify true CO2 reduction products (CO2RPs) accurately is highlighted. Our experimental data (eventually complemented with or compared to literature data) underline the possible sources of errors and, whenever possible, quantify the false positives with respect to the effective conversion of CO2 in clean conditions. This paper clarifies that the incidence of false positives is higher in the preliminary phase of photo-material development when CO2RPs are in the range of a few 10s of μg gcat-1 h-1, reducing its importance when significant conversions of CO2 are performed reaching 10s of mol gcat-1 h-1. This paper suggests procedures for improving the reliability and reproducibility of CO2RR experiments, thus validating such technologies.
Collapse
Affiliation(s)
- Tomasz Baran
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Domenico Caringella
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Angela Dibenedetto
- Interuniversity Consortium on Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michele Aresta
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| |
Collapse
|
22
|
Draper F, DiLuzio S, Sayre HJ, Pham LN, Coote ML, Doeven EH, Francis PS, Connell TU. Maximizing Photon-to-Electron Conversion for Atom Efficient Photoredox Catalysis. J Am Chem Soc 2024; 146:26830-26843. [PMID: 39302225 DOI: 10.1021/jacs.4c07396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Photoredox catalysis is a powerful tool to access challenging and diverse syntheses. Absorption of visible light forms the excited state catalyst (*PC) but photons may be wasted if one of several unproductive pathways occur. Facile dissociation of the charge-separated encounter complex [PC•-:D•+], also known as (solvent) cage escape, is required for productive chemistry and directly governs availability of the critical PC•- intermediate. Competitive charge recombination, either inside or outside the solvent cage, may limit the overall efficiency of a photochemical reaction or internal quantum yield (defined as the moles of product formed per mole of photons absorbed by PC). Measuring the cage escape efficiency (ϕCE) typically requires time-resolved spectroscopy; however, we demonstrate how to estimate ϕCE using steady-state techniques that measure the efficiency of PC•- formation (ϕPC). Our results show that choice of electron donor critically impacts ϕPC, which directly correlates to improved synthetic and internal quantum yields. Furthermore, we demonstrate how modest structural differences between photocatalysts may afford a sizable effect on reactivity due to changes in ϕPC, and by extension ϕCE. Optimizing experimental conditions for cage escape provides photochemical reactions with improved atom economy and energy input, paving the way for sustainable design of photocatalytic systems.
Collapse
Affiliation(s)
- Felicity Draper
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephen DiLuzio
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hannah J Sayre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Le Nhan Pham
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
23
|
Wakabayashi T, Kametani Y, Tanahashi E, Shiota Y, Yoshizawa K, Jung J, Saito S. Ferrocenyl PNNP Ligands-Controlled Chromium Complex-Catalyzed Photocatalytic Reduction of CO 2 to Formic Acid. J Am Chem Soc 2024; 146:25963-25975. [PMID: 39240025 DOI: 10.1021/jacs.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
3d-transition metal complexes have been gaining much attention as promising candidates for photocatalytic carbon dioxide (CO2) reduction systems. In contrast to the group 7-12 elements, Cr in group 6 has not yet been investigated as the catalyst of CO2 photoreduction because of its intrinsic disadvantages. Cr has a weak reducing ability due to an insufficient number of d electrons and high Lewis acidity which may deactivate the catalyst by strong coordination with a product formate. To overcome these drawbacks, we rationally designed molecular Cr complexes bearing ferrocenyl PNNP tetradentate ligands (FcCrCy, FcCriPr, FcCrtBu, and FcCrPh). These Cr complexes selectively converted CO2 into formic acid (HCO2H) under photocatalytic conditions and, to our knowledge, represent the first molecular Cr catalysts for CO2 photoreduction. The best catalyst FcCrPh achieved a turnover number of 1180 for HCO2H formation with 86% selectivity after 48 h of light irradiation, with a combined use of an organic photosensitizer. Electrochemical and continuous UV-vis absorption analyses clarified the sequential reaction pathways involving multielectron reduction and protonation of a Cr complex. Moreover, through detailed computational studies, photoinduced electron transfer mediated by ferrocenyl groups and intramolecular proton transfer attributed to hemilabile phosphine ligands would be key to the efficient catalysis that overwhelms the inherent disadvantages of Cr.
Collapse
Affiliation(s)
- Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yohei Kametani
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Eimi Tanahashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
24
|
Schmitz M, Bertrams MS, Sell AC, Glaser F, Kerzig C. Efficient Energy and Electron Transfer Photocatalysis with a Coulombic Dyad. J Am Chem Soc 2024; 146:25799-25812. [PMID: 39227057 DOI: 10.1021/jacs.4c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photocatalysis holds great promise for changing the way value-added molecules are currently prepared. However, many photocatalytic reactions suffer from quantum yields well below 10%, hampering the transition from lab-scale reactions to large-scale or even industrial applications. Molecular dyads can be designed such that the beneficial properties of inorganic and organic chromophores are combined, resulting in milder reaction conditions and improved reaction quantum yields of photocatalytic reactions. We have developed a novel approach for obtaining the advantages of molecular dyads without the time- and resource-consuming synthesis of these tailored photocatalysts. Simply by mixing a cationic ruthenium complex with an anionic pyrene derivative in water a salt bichromophore is produced owing to electrostatic interactions. The long-lived organic triplet state is obtained by static and quantitative energy transfer from the preorganized ruthenium complex. We exploited this so-called Coulombic dyad for energy transfer catalysis with similar reactivity and even higher photostability compared to a molecular dyad and reference photosensitizers in several photooxygenations. In addition, it was shown that this system can also be used to maximize the quantum yield of photoredox reactions. This is due to an intrinsically higher cage escape quantum yield after photoinduced electron transfer for purely organic compounds compared to heavy atom-containing molecules. The combination of laboratory-scale as well as mechanistic irradiation experiments with detailed spectroscopic investigations provided deep mechanistic insights into this easy-to-use photocatalyst class.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Arne C Sell
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
25
|
He S, Ni A, Gebre ST, Hang R, McBride JR, Kaledin AL, Yang W, Lian T. Doping of Colloidal Nanocrystals for Optimizing Interfacial Charge Transfer: A Double-Edged Sword. J Am Chem Soc 2024; 146:24925-24934. [PMID: 39189788 PMCID: PMC11403596 DOI: 10.1021/jacs.4c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Doping of colloidal nanocrystals offers versatile ways to improve their optoelectronic properties, with potential applications in photocatalysis and photovoltaics. However, the precise role of dopants on the interfacial charge transfer properties of nanocrystals remains poorly understood. Here, we use a Cu-doped InP@ZnSe quantum dot as a model system to investigate the dopant effects on both the intrinsic photophysics and their interfacial charge transfer by combining time-resolved transient absorption and photoluminescent spectroscopic methods. Our results revealed that the Cu dopant can cause the generation of the self-trapped exciton, which prolongs the exciton lifetime from 48.3 ± 1.7 to 369.0 ± 4.3 ns, facilitating efficient charge separation to slow electron and hole acceptors. However, hole localization into the Cu site alters their energetic levels, slowing hole transfer and accelerating charge recombination loss. This double-edged sword role of dopants in charge transfer properties is important in the future design of nanocrystals for their optoelectronic and photocatalytic applications.
Collapse
Affiliation(s)
- Sheng He
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Anji Ni
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Sara T Gebre
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Rui Hang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - James R McBride
- Department of Chemistry, The Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexey L Kaledin
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
- The Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Dreher T, Geciauskas L, Steinfeld S, Procacci B, Whitwood AC, Lynam JM, Douthwaite RE, Duhme-Klair AK. Ligand-to-metal charge transfer facilitates photocatalytic oxygen atom transfer (OAT) with cis-dioxo molybdenum(vi)-Schiff base complexes. Chem Sci 2024:d4sc02784a. [PMID: 39282649 PMCID: PMC11396016 DOI: 10.1039/d4sc02784a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Systems incorporating the cis-Mo(O)2 motif catalyse a range of important thermal homogeneous and heterogeneous oxygen atom transfer (OAT) reactions spanning biological oxidations to platform chemical synthesis. Analogous light-driven processes could offer a more sustainable approach. The cis-Mo(O)2 complexes reported here photocatalyse OAT under visible light irradiation, and operate via a non-emissive excited state with substantial ligand-to-metal charge-transfer (LMCT) character, in which a Mo[double bond, length as m-dash]O π*-orbital is populated via transfer of electron density from a chromophoric salicylidene-aminophenol (SAP) ligand. SAP ligands can be prepared from affordable commercially-available precursors. The respective cis-Mo(O)2-SAP catalysts are air stable, function in the presence of water, and do not require additional photosensitisers or redox mediators. Benchmark OAT between phosphines and sulfoxides shows that electron withdrawing groups (e.g. C(O)OMe, CF3) are necessary for photocatalytic activity. The photocatalytic system described here is mechanistically distinct from both thermally catalysed OAT by the cis-Mo(O)2 motif, as well as typical photoredox systems that operate by outer sphere electron transfer mediated by long-lived emissive states. Both photoactivated and thermally activated OAT steps are coupled to establish a catalytic cycle, offering new opportunities for the development of photocatalytic atom transfer based on readily-available, high-valent metals, such as molybdenum.
Collapse
Affiliation(s)
- Thorsten Dreher
- Department of Chemistry, University of York Heslington YO10 5DD York UK
| | - Lukas Geciauskas
- Department of Chemistry, University of York Heslington YO10 5DD York UK
| | - Samuel Steinfeld
- Department of Chemistry, University of York Heslington YO10 5DD York UK
| | - Barbara Procacci
- Department of Chemistry, University of York Heslington YO10 5DD York UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York Heslington YO10 5DD York UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington YO10 5DD York UK
| | | | | |
Collapse
|
27
|
Beil SB, Bonnet S, Casadevall C, Detz RJ, Eisenreich F, Glover SD, Kerzig C, Næsborg L, Pullen S, Storch G, Wei N, Zeymer C. Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop. JACS AU 2024; 4:2746-2766. [PMID: 39211583 PMCID: PMC11350580 DOI: 10.1021/jacsau.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a versatile and rapidly developing field with applications spanning artificial photosynthesis, photo-biocatalysis, photoredox catalysis in solution or supramolecular structures, utilization of abundant metals and organocatalysts, sustainable synthesis, and plastic degradation. In this Perspective, we summarize conclusions from an interdisciplinary workshop of young principal investigators held at the Lorentz Center in Leiden in March 2023. We explore how diverse fields within photocatalysis can benefit from one another. We delve into the intricate interplay between these subdisciplines, by highlighting the unique challenges and opportunities presented by each field and how a multidisciplinary approach can drive innovation and lead to sustainable solutions for the future. Advanced collaboration and knowledge exchange across these domains can further enhance the potential of photocatalysis. Artificial photosynthesis has become a promising technology for solar fuel generation, for instance, via water splitting or CO2 reduction, while photocatalysis has revolutionized the way we think about assembling molecular building blocks. Merging such powerful disciplines may give rise to efficient and sustainable protocols across different technologies. While photocatalysis has matured and can be applied in industrial processes, a deeper understanding of complex mechanisms is of great importance to improve reaction quantum yields and to sustain continuous development. Photocatalysis is in the perfect position to play an important role in the synthesis, deconstruction, and reuse of molecules and materials impacting a sustainable future. To exploit the full potential of photocatalysis, a fundamental understanding of underlying processes within different subfields is necessary to close the cycle of use and reuse most efficiently. Following the initial interactions at the Lorentz Center Workshop in 2023, we aim to stimulate discussions and interdisciplinary approaches to tackle these challenges in diverse future teams.
Collapse
Affiliation(s)
- Sebastian B. Beil
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Sylvestre Bonnet
- Leiden Institute
of Chemistry, Leiden University, Gorlaeus
Laboratories, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Carla Casadevall
- Department
of Physical and Inorganic Chemistry, University
Rovira i Virgili (URV), C/Marcel.lí Domingo, 1, 43007 Tarragona, Spain
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Remko J. Detz
- Energy Transition
Studies (ETS), Netherlands Organization
for Applied Scientific Research (TNO), Radarweg 60, 1043
NT Amsterdam, The
Netherlands
| | - Fabian Eisenreich
- Department
of Chemical Engineering and Chemistry & Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Starla D. Glover
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Line Næsborg
- Department
of Organic Chemistry, University of Münster, Correnstr. 40, 48149 Münster, Germany
| | - Sonja Pullen
- Homogeneous
and Supramolecular Catalysis, Van ’t Hoff Institute for Molecular
Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Golo Storch
- Technical
University of Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ning Wei
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Cathleen Zeymer
- Center for
Functional Protein Assemblies & Department of Bioscience, TUM
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
| |
Collapse
|
28
|
Macpherson S, Lawson T, Abfalterer A, Andrich P, Lage A, Reisner E, Euser TG, Stranks SD, Gentleman AS. Influence of Electron Donors on the Charge Transfer Dynamics of Carbon Nanodots in Photocatalytic Systems. ACS Catal 2024; 14:12006-12015. [PMID: 39169903 PMCID: PMC11334169 DOI: 10.1021/acscatal.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Carbon nanodots (CNDs) are nanosized light-harvesters emerging as next-generation photosensitizers in photocatalytic reactions. Despite their ever-increasing potential applications, the intricacies underlying their photoexcited charge carrier dynamics are yet to be elucidated. In this study, nitrogen-doped graphitic CNDs (NgCNDs) are selectively excited in the presence of methyl viologen (MV2+, redox mediator) and different electron donors (EDs), namely ascorbic acid (AA) and ethylenediaminetetraacetic acid (EDTA). The consequent formation of the methyl viologen radical cation (MV•+) is investigated, and the excited charge carrier dynamics of the photocatalytic system are understood on a 0.1 ps-1 ms time range, providing spectroscopic evidence of oxidative or reductive quenching mechanisms experienced by optically excited NgCNDs (NgCNDs*) depending on the ED implemented. In the presence of AA, NgCNDs* undergo oxidative quenching by MV2+ to form MV•+, which is short-lived due to dehydroascorbic acid, a product of photoinduced hole quenching of oxidized NgCNDs. The EDTA-mediated reductive quenching of NgCNDs* is observed to be at least 2 orders of magnitude slower due to screening by EDTA-MV2+ complexes, but the MV•+ population is stable due to the irreversibly oxidized EDTA preventing a back reaction. In general, our methodology provides a distinct solution with which to study charge transfer dynamics in photocatalytic systems on an extended time range spanning 10 orders of magnitude. This approach generates a mechanistic understanding to select and develop suitable EDs to promote photocatalytic reactions.
Collapse
Affiliation(s)
- Stuart Macpherson
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Takashi Lawson
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Anna Abfalterer
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Paolo Andrich
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Ava Lage
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tijmen G. Euser
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Samuel D. Stranks
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Alexander S. Gentleman
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
29
|
Lyons RJ, Sprick RS. Processing polymer photocatalysts for photocatalytic hydrogen evolution. MATERIALS HORIZONS 2024; 11:3764-3791. [PMID: 38895815 DOI: 10.1039/d4mh00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Conjugated materials have emerged as competitive photocatalysts for the production of sustainable hydrogen from water over the last decade. Interest in these polymer photocatalysts stems from the relative ease to tune their electronic properties through molecular engineering, and their potentially low cost. However, most polymer photocatalysts have only been utilised in rudimentary suspension-based photocatalytic reactors, which are not scalable as these systems can suffer from significant optical losses and often require constant agitation to maintain the suspension. Here, we will explore research performed to utilise polymeric photocatalysts in more sophisticated systems, such as films or as nanoparticulate suspensions, which can enhance photocatalytic performance or act as a demonstration of how the polymer can be scaled for real-world applications. We will also discuss how the systems were prepared and consider both the benefits and drawbacks of each system before concluding with an outlook on the field of processable polymer photocatalysts.
Collapse
Affiliation(s)
- Richard Jack Lyons
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | | |
Collapse
|
30
|
Bruschi C, Gui X, Rauthe P, Fuhr O, Unterreiner AN, Klopper W, Bizzarri C. Dual Role of a Novel Heteroleptic Cu(I) Complex in Visible-Light-Driven CO 2 Reduction. Chemistry 2024; 30:e202400765. [PMID: 38742808 DOI: 10.1002/chem.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
A novel mononuclear Cu(I) complex was synthesized via coordination with a benzoquinoxalin-2'-one-1,2,3-triazole chelating diimine and the bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), to target a new and efficient photosensitizer for photocatalytic CO2 reduction. The Cu(I) complex absorbs in the blue-green region of the visible spectrum, with a broad band having a maximum at 475 nm (ϵ =4500 M-1 cm-1), which is assigned to the metal-to-ligand charge transfer (MLCT) transition from the Cu(I) to the benzoquinoxalin-2'-one moiety of the diimine. Surprisingly, photo-driven experiments for the CO2 reduction showed that this complex can undergo a photoinduced electron transfer with a sacrificial electron donor and accumulate electrons on the diimine backbone. Photo-driven experiments in a CO2 atmosphere revealed that this complex can not only act as a photosensitizer, when combined with an Fe(III)-porphyrin, but can also selectively produce CO from CO2. Thus, owing to its charge-accumulation properties, the non-innocent benzoquinoxalin-2-one based ligand enabled the development of the first copper(I)-based photocatalyst for CO2 reduction.
Collapse
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
31
|
Rojas-Luna R, Romero-Salguero FJ, Esquivel D, Roy S. Manipulating the Coordination Structure of Molecular Cobalt Sites in Periodic Mesoporous Organosilica for CO 2 Photoreduction. ACS APPLIED ENERGY MATERIALS 2024; 7:5924-5936. [PMID: 39055067 PMCID: PMC11267497 DOI: 10.1021/acsaem.4c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Photocatalytic CO2 reduction, including reaction rate, product selectivity, and longevity, is highly sensitive to the coordination structure of the catalytic active sites, and the precise design of the active site remains a challenge in heterogeneous catalysts. Herein, we report on the modulation of the coordination structure of MN x -type active sites (M = Co or Ni; x = 4 or 5) anchored on a periodic mesoporous organosilica (PMO) support to improve photocatalytic CO2 reduction. The PMO was functionalized with pendant 3,6-di(2'-pyridyl)pyridazine (dppz) groups to allow immobilization of molecular Co and Ni complexes with polypyridine ligands. A comparative analysis of CO2 photoreduction in the presence of an organic photosensitizer (4CzIPN, 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene) and a conventional [Ru(bpy)3]Cl2 sensitizer revealed strong influence of the coordination environment on the catalytic performance. CoN5-PMO demonstrated a superior CO2 photoreduction activity than the other materials and displayed a cobalt-based turnover number (TONCO) of 92 for CO evolution at ∼75% selectivity after 3 h irradiation in the presence of 4CzIPN. The hybrid CoN5-PMO catalyst exhibited better activity than its homogeneous [CoN5] counterpart, indicating that the heterogenization promotes the formation of isolated active sites with improved longevity and faster catalytic rate.
Collapse
Affiliation(s)
- Raúl Rojas-Luna
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| | - Francisco J. Romero-Salguero
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Dolores Esquivel
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Souvik Roy
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| |
Collapse
|
32
|
Okumura S, Hattori S, Fang L, Uozumi Y. Multielectron Reduction of Esters by a Diazabenzacenaphthenium Photoredox Catalyst. J Am Chem Soc 2024; 146:16990-16995. [PMID: 38871673 PMCID: PMC11212623 DOI: 10.1021/jacs.4c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
A novel diazabenzacenaphthenium photocatalyst, N-BAP, with high photoredox abilities and visible-light absorption was designed and prepared in one step. Under visible-light irradiation, N-BAP promoted the four-electron reduction of esters in the presence of ammonium oxalate as a "traceless reductant" to generate carbinol anion intermediates that underwent protonation with water to give the corresponding alcohols. The resulting carbinol anions also exhibited nucleophilic reactivity under the photocatalytic conditions to undergo a 1,2-addition to a second carbonyl compound, affording unsymmetric 1,2-diols.
Collapse
Affiliation(s)
- Shintaro Okumura
- Institute
for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
- Department
of Functional Molecular Science, SOKENDAI
(The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Shusuke Hattori
- Institute
for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
- Department
of Functional Molecular Science, SOKENDAI
(The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Lisa Fang
- Institute
for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
| | - Yasuhiro Uozumi
- Institute
for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
- Department
of Functional Molecular Science, SOKENDAI
(The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
33
|
Jiang Q, Li Y, Wang M, Cao W, Yang X, Zhang S, Guo L. Light energy utilization and microbial catalysis for enhanced biohydrogen: Ternary coupling system of triethanolamine-mediated Fe@C-Rhodobacter sphaeroides. BIORESOURCE TECHNOLOGY 2024; 401:130733. [PMID: 38670287 DOI: 10.1016/j.biortech.2024.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
This study investigated the mediating effect of Triethanolamine on Fe@C-Rhodobacter sphaeroides hybrid photosynthetic system to achieve efficient biohydrogen production. The biocompatible Fe@C generates excited electrons upon exposure to light, releasing ferrum for nitrogenase synthesis, and regulating the pH of the fermentation environment. Triethanolamine was introduced to optimize the electron transfer chain, thereby improving system stability, prolonging electron lifespan, and facilitating ferrum corrosion. This, in turn, stimulated the lactic acid synthetic metabolic pathway of Rhodobacter sphaeroides, resulting in increased reducing power in the biohybrid system. The ternary coupling system was analyzed through the regulation of concentration, initial pH, and light intensity. The system achieved the highest total H2 production of 5410.9 mL/L, 1.29 times higher than the control (2360.5 mL/L). This research provides a valuable strategy for constructing ferrum-carbon-based composite-cellular biohybrid systems for photo-fermentation H2 production.
Collapse
Affiliation(s)
- Qiushi Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Yanjing Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Minmin Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China.
| | - Xueying Yang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Sihu Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
34
|
Hu X, Yin R, Jeong J, Matyjaszewski K. Robust Miniemulsion PhotoATRP Driven by Red and Near-Infrared Light. J Am Chem Soc 2024; 146:13417-13426. [PMID: 38691625 PMCID: PMC11099965 DOI: 10.1021/jacs.4c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Photoinduced polymerization techniques have gathered significant attention due to their mild conditions, spatiotemporal control, and simple setup. In addition to homogeneous media, efforts have been made to implement photopolymerization in emulsions as a practical and greener process. However, previous photoinduced reversible deactivation radical polymerization (RDRP) in heterogeneous media has relied on short-wavelength lights, which have limited penetration depth, resulting in slow polymerization and relatively poor control. In this study, we demonstrate the first example of a highly efficient photoinduced miniemulsion ATRP in the open air driven by red or near-infrared (NIR) light. This was facilitated by the utilization of a water-soluble photocatalyst, methylene blue (MB+). Irradiation by red/NIR light allowed for efficient excitation of MB+ and subsequent photoreduction of the ATRP deactivator in the presence of water-soluble electron donors to initiate and mediate the polymerization process. The NIR light-driven miniemulsion photoATRP provided a successful synthesis of polymers with low dispersity (1.09 ≤ Đ ≤ 1.29) and quantitative conversion within an hour. This study further explored the impact of light penetration on polymerization kinetics in reactors of varying sizes and a large-scale reaction (250 mL), highlighting the advantages of longer-wavelength light, particularly NIR light, for large-scale polymerization in dispersed media owing to its superior penetration. This work opens new avenues for robust emulsion photopolymerization techniques, offering a greener and more practical approach with improved control and efficiency.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
35
|
Wang HF, Wang HJ, Zhong DC, Lu TB. Unveiling the role of proton concentration in dinuclear metal complexes for boosting photocatalytic CO 2 reduction. Proc Natl Acad Sci U S A 2024; 121:e2318384121. [PMID: 38713627 PMCID: PMC11098096 DOI: 10.1073/pnas.2318384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
The reaction kinetics of photocatalytic CO2 reduction is highly dependent on the transfer rate of electrons and protons to the CO2 molecules adsorbed on catalytic centers. Studies on uncovering the proton effect in catalysts on photocatalytic activity of CO2 reduction are significant but rarely reported. In this paper, we, from the molecular level, revealed that the photocatalytic activity of CO2 reduction is closely related to the proton availability in catalysts. Specifically, four dinuclear Co(II) complexes based on Robson-type ligands with different number of carboxylic groups (-nCOOH; n = 0, 2, 4, 6) were designed and synthesized. All these complexes show photocatalytic activity for CO2 reduction to CO in a water-containing system upon visible-light illumination. Interestingly, the CO yields increase positively with the increase of the carboxylic-group number in dinuclear Co(II) complexes. The one containing -6COOH shows the best photocatalytic activity for CO2 reduction to CO, with the TON value reaching as high as 10,294. The value is 1.8, 3.4, and 7.8 times higher than those containing -4COOH, -2COOH, and -0COOH, respectively. The high TON value also makes the dinuclear Co(II) complex with -6COOH outstanding among reported homogeneous molecular catalysts for photocatalytic CO2 reduction. Control experiments and density functional theory calculation indicated that more carboxylic groups in the catalyst endow the catalyst with more proton relays, thus accelerating the proton transfer and boosting the photocatalytic CO2 reduction. This study, at a molecular level, elucidates that more carboxylic groups in catalysts are beneficial for boosting the reaction kinetics of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Hui-Feng Wang
- Ministry of Education (MOE) International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| | - Hong-Juan Wang
- Ministry of Education (MOE) International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| | - Di-Chang Zhong
- Ministry of Education (MOE) International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| | - Tong-Bu Lu
- Ministry of Education (MOE) International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| |
Collapse
|
36
|
Wang H, Zhang X, Zhang W, Zhou M, Jiang HL. Heteroatom-Doped Ag 25 Nanoclusters Encapsulated in Metal-Organic Frameworks for Photocatalytic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202401443. [PMID: 38407530 DOI: 10.1002/anie.202401443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal-organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g-1 h-1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
37
|
Clinger A, Yang ZY, Pellows LM, King P, Mus F, Peters JW, Dukovic G, Seefeldt LC. Hole-scavenging in photo-driven N 2 reduction catalyzed by a CdS-nitrogenase MoFe protein biohybrid system. J Inorg Biochem 2024; 253:112484. [PMID: 38219407 DOI: 10.1016/j.jinorgbio.2024.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The light-driven reduction of dinitrogen (N2) to ammonia (NH3) catalyzed by a cadmium sulfide (CdS) nanocrystal‑nitrogenase MoFe protein biohybrid is dependent on a range of different factors, including an appropriate hole-scavenging sacrificial electron donor (SED). Here, the impact of different SEDs on the overall rate of N2 reduction catalyzed by a CdS quantum dot (QD)-MoFe protein system was determined. The selection of SED was guided by several goals: (i) molecules with standard reduction potentials sufficient to reduce the oxidized CdS QD, (ii) molecules that do not absorb the excitation wavelength of the CdS QD, and (iii) molecules that could be readily reduced by sustainable processes. Earlier studies utilized buffer molecules or ascorbic acid as the SED. The effectiveness of ascorbic acid as SED was compared to dithionite (DT), triethanolamine (TEOA), and hydroquinone (HQ) across a range of concentrations in supporting N2 reduction to NH3 in a CdS QD-MoFe protein photocatalytic system. It was found that TEOA supported N2 reduction rates comparable to those observed for dithionite and ascorbic acid. HQ was found to support significantly higher rates of N2 reduction compared to the other SEDs at a concentration of 50 mM. A comparison of the rates of N2 reduction by the biohybrid complex to the standard reduction potential (Eo) of the SEDs reveals that Eo is not the only factor impacting the efficiency of hole-scavenging. These findings reveal the importance of the SED properties for improving the efficiency of hole-scavenging in the light-driven N2 reduction reaction catalyzed by a CdS QD-MoFe protein hybrid.
Collapse
Affiliation(s)
- Andrew Clinger
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States of America
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States of America
| | - Lauren M Pellows
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Paul King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States of America
| | - Florence Mus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, United States of America
| | - John W Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, United States of America
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, United States of America; Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States of America.
| |
Collapse
|
38
|
Thammanatpong K, Surawatanawong P. Mechanisms of hydrogen evolution by six-coordinate cobalt complexes: a density functional study on the role of a redox-active pyridinyl-substituted diaminotriazine benzamidine ligand as a proton relay. Dalton Trans 2024; 53:6006-6019. [PMID: 38469898 DOI: 10.1039/d3dt03960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The hydrogen evolution reaction is an important process for energy storage. The six-coordinate cobalt complex [CoIII(L1-)(LH)]2+ (LH = N-(4-amino-6-(pyridin-2-yl)-1,3,5-triazin-2-yl)benzamidine) was found to catalyze photocatalytic hydrogen evolution. In this work, we performed density functional calculations to obtain the reduction potentials and the proton-transfer free energy of possible intermediates to determine the preferred pathways for proton reduction. The mechanism involves the metal-based reduction of Co(III) to Co(II) before the protonation at the amidinate N on the pyridinyl-substituted diaminotriazine benzamidinate ligand L1- to form [CoII(LH)(LH)]2+. Essentially, the subsequent electron transfer is not metal-based reduction, but rather ligand-based reduction to form [CoII(LH)(LH˙1-)]1+. Through a proton-coupled electron transfer process, the cobalt hydride [CoIIH(LH)(LH2˙)]1+ is formed as the key intermediate for hydrogen evolution. As the cobalt hydride complex is coordinatively saturated, a structural change is required when the hydride on Co is coupled with the proton on pyridine. Notably, the redox-active nature of the ligand results in the low acidity of the protonated pyridine moiety of LH2˙, which impedes its function as a proton relay. Our findings suggest that separating the proton relay fragment from the electron reservoir fragment of the redox-active ligand is preferred for fully utilizing both features in catalytic H2 evolution.
Collapse
Affiliation(s)
- Kittimeth Thammanatpong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Center of Sustainable Energy and Green Materials, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
39
|
Nikolaou V, Govind C, Balanikas E, Bharti J, Diring S, Vauthey E, Robert M, Odobel F. Antenna Effect in Noble Metal-Free Dye-Sensitized Photocatalytic Systems Enhances CO 2 -to-CO Conversion. Angew Chem Int Ed Engl 2024; 63:e202318299. [PMID: 38314922 DOI: 10.1002/anie.202318299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Dye-sensitized photocatalytic systems (DSPs) have been extensively investigated for solar-driven hydrogen (H2 ) evolution. However, their application in carbon dioxide (CO2 ) reduction remains limited. Furthermore, current solar-driven CO2 -to-CO DSPs typically employ rhenium complexes as catalysts. In this study, we have developed DSPs that incorporate noble metal-free components, specifically a zinc-porphyrin as photosensitizer (PS) and a cobalt-quaterpyridine as catalyst (CAT). Taking a significant stride forward, we have achieved an antenna effect for the first time in CO2 -to-CO DSPs by introducing a Bodipy as an additional chromophore to enhance light harvesting efficiency. The energy transfer from Bodipy to zinc porphyrin resulted in remarkable stability (turn over number (TON)=759 vs. CAT), and high CO evolution activity (42 mmol g-1 h-1 vs. CAT).
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000, Nantes, France
| | - Chinju Govind
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva, Switzerland
| | - Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva, Switzerland
| | - Jaya Bharti
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS, F-75006, Paris, France
| | - Stéphane Diring
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000, Nantes, France
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva, Switzerland
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS, F-75006, Paris, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Fabrice Odobel
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000, Nantes, France
| |
Collapse
|
40
|
Axelsson M, Xia Z, Wang S, Cheng M, Tian H. Role of the Benzothiadiazole Unit in Organic Polymers on Photocatalytic Hydrogen Production. JACS AU 2024; 4:570-577. [PMID: 38425933 PMCID: PMC10900483 DOI: 10.1021/jacsau.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Organic polymers based on the donor-acceptor structure are a promising class of efficient photocatalysts for solar fuel production. Among these polymers, poly(9,9-dioctylfluorene-alt-1,2,3-benzothiadiazole) (PFBT) consisting of fluorene donor and benzothiadiazole acceptor units has shown good photocatalytic activity when it is prepared into polymer dots (Pdots) in water. In this work, we investigate the effect of the chemical environment on the activity of photocatalysis from PFBT Pdots for hydrogen production. This is carried out by comparing the samples with various concentrations of palladium under different pH conditions and with different sacrificial electron donors (SDs). Moreover, a model compound 1,2,3-benzothiadiazole di-9,9-dioctylfluorene (BTDF) is synthesized to investigate the mechanism for protonation of benzothiadiazole and its kinetics in the presence of an organic acid-salicylic acid by cyclic voltammetry. We experimentally show that benzothiadiazole in BTDF can rapidly react with protons with a fitted value of 0.1-5 × 1010 M-1 s-1 which should play a crucial role in the photocatalytic reaction with a polymer photocatalyst containing benzothiadiazole such as PFBT Pdots for hydrogen production in acidic conditions. This work gives insights into why organic polymers with benzothiadiazole work efficiently for photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Martin Axelsson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Ziyang Xia
- Institute
for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Sicong Wang
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Ming Cheng
- Institute
for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Haining Tian
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| |
Collapse
|
41
|
Droghetti F, Amati A, Pascale F, Crochet A, Pastore M, Ruggi A, Natali M. Catalytic CO 2 Reduction with Heptacoordinated Polypyridine Complexes: Switching the Selectivity via Metal Replacement. CHEMSUSCHEM 2024; 17:e202300737. [PMID: 37846888 DOI: 10.1002/cssc.202300737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The discovery of molecular catalysts for the CO2 reduction reaction (CO2 RR) in the presence of water, which are both effective and selective towards the generation of carbon-based products, is a critical task. Herein we report the catalytic activity towards the CO2 RR in acetonitrile/water mixtures by a cobalt complex and its iron analog both featuring the same redox-active ligand and an unusual seven-coordination environment. Bulk electrolysis experiments show that the cobalt complex mainly yields formate (52 % selectivity at an applied potential of -2.0 V vs Fc+ /Fc and 1 % H2 O) or H2 (up to 86 % selectivity at higher applied bias and water content), while the iron complex always delivers CO as the major product (selectivity >74 %). The different catalytic behavior is further confirmed under photochemical conditions with the [Ru(bpy)3 ]2+ sensitizer (bpy=2,2'-bipyridine) and N,N-diisopropylethylamine as electron donor, where the cobalt complex leads to preferential H2 formation (up to 89 % selectivity), while the iron analog quantitatively generates CO (up to 88 % selectivity). This is ascribed to a preference towards a metal-hydride vs. a metal-carboxyl pathway for the cobalt and the iron complex, respectively, and highlights how metal replacement may effectively impact on the reactivity of transition metal complexes towards solar fuel formation.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Agnese Amati
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Fabien Pascale
- Laboratoire de Physique et Chimie Théoretiques, University of Lorraine & CNRS, 54000, Nancy, France
| | - Aurélien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoretiques, University of Lorraine & CNRS, 54000, Nancy, France
| | - Albert Ruggi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
42
|
Losada IB, Persson P. Photoredox matching of earth-abundant photosensitizers with hydrogen evolving catalysts by first-principles predictions. J Chem Phys 2024; 160:074302. [PMID: 38375904 DOI: 10.1063/5.0174837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Photoredox properties of several earth-abundant light-harvesting transition metal complexes in combination with cobalt-based proton reduction catalysts have been investigated computationally to assess the fundamental viability of different photocatalytic systems of current experimental interest. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations using several GGA (BP86, BLYP), hybrid-GGA (B3LYP, B3LYP*), hybrid meta-GGA (M06, TPSSh), and range-separated hybrid (ωB97X, CAM-B3LYP) functionals were used to calculate relevant ground and excited state reduction potentials for photosensitizers, catalysts, and sacrificial electron donors. Linear energy correction factors for the DFT/TD-DFT results that provide the best agreement with available experimental reference results were determined in order to provide more accurate predictions. Among the selection of functionals, the B3LYP* and TPSSh sets of correction parameters were determined to give the best redox potentials and excited states energies, ΔEexc, with errors of ∼0.2 eV. Linear corrections for both reduction and oxidation processes significantly improve the predictions for all the redox pairs. In particular, for TPSSh and B3LYP*, the calculated errors decrease by more than 0.5 V against experimental values for catalyst reduction potentials, photosensitizer oxidation potentials, and electron donor oxidation potentials. Energy-corrected TPSSh results were finally used to predict the energetics of complete photocatalytic cycles for the light-driven activation of selected proton reduction cobalt catalysts. These predictions demonstrate the broader usefulness of the adopted approach to systematically predict full photocycle behavior for first-row transition metal photosensitizer-catalyst combinations more broadly.
Collapse
Affiliation(s)
- Iria Bolaño Losada
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
43
|
Rickmeyer K, Huber M, Hess CR. Influence of a neighbouring Cu centre on electro- and photocatalytic CO 2 reduction by Fe-Mabiq. Chem Commun (Camb) 2024; 60:819-822. [PMID: 38113085 DOI: 10.1039/d3cc04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Electrocatalytic and photocatalytic CO2 reduction by a heterobimetallic Cu/Fe-Mabiq complex were examined and compared to the monometallic [Fe(Mabiq)]+. The neighbouring Cu-Xantphos unit leads to marked changes in the electrocatalytic mechanism and enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Kerstin Rickmeyer
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Garching 85748, Germany
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany.
| | - Matthias Huber
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Garching 85748, Germany
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany.
| | - Corinna R Hess
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Garching 85748, Germany
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany.
| |
Collapse
|
44
|
Droghetti F, Amati A, Ruggi A, Natali M. Bioinspired motifs in proton and CO 2 reduction with 3d-metal polypyridine complexes. Chem Commun (Camb) 2024; 60:658-673. [PMID: 38117176 DOI: 10.1039/d3cc05156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The synthesis of active and efficient catalysts for solar fuel generation is nowadays of high relevance for the scientific community, but at the same time poses great challenges. Critical requirements are mainly associated with the kinetic barriers due to the multi-proton and multi-electron nature of the hydrogen evolution reaction (HER) and the CO2 reduction reaction (CO2RR) as well as to selectivity issues. In this regard, natural enzymes can be a source of inspiration for the design of effective and selective catalysts to target such fundamental reactions. In this Feature Article we review some recent works on molecular catalysts for both the HER and the CO2RR performed in our labs and other research teams which mainly address (i) the role of redox non-innocent ligands, to lower the overpotential for catalysis and control the selectivity, and (ii) the role of internal relays, to assist formation of catalytic intermediates via intramolecular routes. The selected exemplars have been chosen to emphasize that, although the molecular structures and the synthetic motifs are different from those of the active sites of natural enzymes, many affinities in terms of catalytic mechanism and functionality are instead present, which account for the observed remarkable performances under operative conditions. The data discussed herein thus demonstrate the great potential and the privileged role of molecular catalysts towards the design and construction of hybrid photochemical systems for solar energy conversion into fuels.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Agnese Amati
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Albert Ruggi
- Department of Chemistry, University of Fribourg, Chemin de Musée 9, CH-1700 Fribourg, Switzerland.
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
45
|
Garbini M, Brunetti A, Pedrazzani R, Monari M, Marcaccio M, Bertuzzi G, Bandini M. Reductive cyclodimerization of chalcones: exploring the "self-adaptability" of galvanostatic electrosynthesis. Chem Commun (Camb) 2024; 60:404-407. [PMID: 38084060 DOI: 10.1039/d3cc04920e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The "self-adaptability" of galvanostatic electrolysis was shown to assist a multistage unprecedented chemo- and diastereoselective electrochemically promoted cyclodimerization of chalcones. The process, all involving the reductive events, delivered densely functionalized cyclopentanes featuring five contiguous stereocenters (25 examples, yields of up to 95%, dr values up to >20 : 1). Dedicated and combined experimental as well as electrochemical investigation revealed the key role of a dynamic kinetic resolution of the aldol intermediate for the reaction mechanism.
Collapse
Affiliation(s)
- Mauro Garbini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
| | - Andrea Brunetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Massimo Marcaccio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
46
|
Carr CR, Vrionides MA, Grills DC. Reactivity of radiolytically and photochemically generated tertiary amine radicals towards a CO2 reduction catalyst. J Chem Phys 2023; 159:244503. [PMID: 38146832 DOI: 10.1063/5.0180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023] Open
Abstract
Homogeneous solar fuels photocatalytic systems often require several additives in solution with the catalyst to operate, such as a photosensitizer (PS), Brønsted acid/base, and a sacrificial electron donor (SED). Tertiary amines, in particular triethylamine (TEA) and triethanolamine (TEOA), are ubiquitously deployed in photocatalysis applications as SEDs and are capable of reductively quenching the PS's excited state. Upon oxidation, TEA and TEOA form TEA•+ and TEOA•+ radical cations, respectively, which decay by proton transfer to generate redox non-innocent transient radicals, TEA• and TEOA•, respectively, with redox potentials that allow them to participate in an additional electron transfer step, thus resulting in net one-photon/two-electron donation. However, the properties of the TEA• and TEOA• radicals are not well understood, including their reducing powers and kinetics of electron transfer to catalysts. Herein, we have used both pulse radiolysis and laser flash photolysis to generate TEA• and TEOA• radicals in CH3CN, and combined with UV/Vis transient absorption and time-resolved mid-infrared spectroscopies, we have probed the kinetics of reduction of the well-established CO2 reduction photocatalyst, fac-ReCl(bpy)(CO)3 (bpy = 2,2'-bipyridine), by these radicals [kTEA• = (4.4 ± 0.3) × 109 M-1 s-1 and kTEOA• = (9.3 ± 0.6) × 107 M-1 s-1]. The ∼50× smaller rate constant for TEOA• indicates, that in contrast to a previous assumption, TEA• is a more potent reductant than TEOA• (by ∼0.2 V, as estimated using the Marcus cross relation). This knowledge will aid in the design of photocatalytic systems involving SEDs. We also show that TEA can be a useful radiolytic solvent radical scavenger for pulse radiolysis experiments in CH3CN, effectively converting unwanted oxidizing radicals into useful reducing equivalents in the form of TEA• radicals.
Collapse
Affiliation(s)
- Cody R Carr
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Michael A Vrionides
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| |
Collapse
|
47
|
Abbas A, Oswald E, Romer J, Lenzer A, Heiland M, Streb C, Kranz C, Pannwitz A. Initial Quenching Efficiency Determines Light-Driven H 2 Evolution of [Mo 3 S 13 ] 2- in Lipid Bilayers. Chemistry 2023; 29:e202302284. [PMID: 37699127 DOI: 10.1002/chem.202302284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/14/2023]
Abstract
Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.
Collapse
Affiliation(s)
- Amir Abbas
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Eva Oswald
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Romer
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anja Lenzer
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Magdalena Heiland
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
48
|
Oksanen V, Rautiainen S, Wirtanen T. Nickel-Electrocatalyzed Synthesis of Bifuran-Based Monomers. Chemistry 2023; 29:e202302572. [PMID: 37735957 DOI: 10.1002/chem.202302572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Bifuran motifs can be accessed with nickel-bipyridine electrocatalyzed homocouplings of bromine-substituted methyl furancarboxylates, which, in turn, can be prepared from hemicellulose-derived furfural. The described protocol uses sustainable carbon-based graphite electrodes in the simplest setup - an undivided cell with constant current electrolysis. The reported method avoids using a sacrificial anode by employing triethanolamine as an electron donor.
Collapse
Affiliation(s)
- Valtteri Oksanen
- Industrial Synthesis & Catalysis, VTT Technical Research Centre of Finland Ltd., Box 1000, FI-02044, Espoo, Finland
| | - Sari Rautiainen
- Industrial Synthesis & Catalysis, VTT Technical Research Centre of Finland Ltd., Box 1000, FI-02044, Espoo, Finland
| | - Tom Wirtanen
- Industrial Synthesis & Catalysis, VTT Technical Research Centre of Finland Ltd., Box 1000, FI-02044, Espoo, Finland
| |
Collapse
|
49
|
Xia Z, Liu B, Xiao Y, Hu W, Deng M, Lü C. Integrating Hybrid Perovskite Nanocrystals into Metal-Organic Framework as Efficient S-Scheme Heterojunction Photocatalyst for Synergistically Boosting Controlled Radical Photopolymerization under 980 nm NIR Light. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032100 DOI: 10.1021/acsami.3c13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
S-scheme heterojunction photocatalyst MAPbI3@PCN-222 with light absorption extending to the NIR region is constructed by embedding organic-inorganic hybrid perovskite (MAPbI3) into porphyrinic Zr-MOF (PCN-222). Both in situ X-ray photoelectron spectroscopy, ultraviolet photoelectron spectral characterization, and photocatalytic polymerization experiment prove the formation of S-scheme heterojunction. MAPbI3@PCN-222 with a low dosage (90 ppm) displays an impressive photocatalytic ability for 980 nm light-mediated photoinduced electron/energy-transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization in air. The well-defined controllable-molecular weight polymers including block copolymers and ultrahigh-molecular weight polymers can be achieved with narrow distributions (Mw/Mn < 1.20) via rapid photopolymerization. The industrial application potential of the photocatalyst also has been proved by scale-up synthesis of polymers with low polydispersity under NIR light-induced photopolymerization in a large-volume reaction system (200 mL) with high monomer conversion up to 99%. The penetration photopolymerization through the 5 mm polytetrafluoroethylene plate and excellent photocontrollable behavior illustrate the existence of long-term photogenerated electron transfer of heterojunction and abundant free radicals in photopolymerization. The photocatalyst still retains high catalytic activity after 10 cycles of photopolymerization in air. It is revealed for the first time that the special PET-RAFT polymerization pathway is initiated by the aldehyde-bearing α-aminoalkyl radical derived from the oxidization of triethanolamine (TEOA) by the heterojunction photocatalyst. This research offers a new insight into understanding the NIR-light-activated PET-RAFT polymerization mechanism in the presence of TEOA.
Collapse
Affiliation(s)
- Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Bei Liu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yang Xiao
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wanchao Hu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Mingxiao Deng
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
50
|
Hernández JS, Guevara D, Shamshurin M, Benassi E, Sokolov MN, Feliz M. Octahedral Tantalum Bromide Clusters as Catalysts for Light-Driven Hydrogen Evolution. Inorg Chem 2023; 62:19060-19069. [PMID: 37935006 PMCID: PMC10664069 DOI: 10.1021/acs.inorgchem.3c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The development of an efficient hydrogen generation strategy from aqueous protons using sunlight is a current challenge aimed at the production of low-cost, easily accessible, renewable molecular hydrogen. For achieving this goal, non-noble metal containing and highly active catalysts for the hydrogen evolution reaction (HER) are desirable. Octahedral tantalum halide clusters {Ta6(μ-X)12}2+ (X = halogen) represent an emerging class of such HER photocatalysts. In this work, the photocatalytic properties of octahedral aqua tantalum bromide clusters toward HER and in acid and homogeneous aqueous conditions were investigated. The [{Ta6Bri12}Bra2(H2O)a4]·4H2O (i = inner ligand; a = apical ligand) compound is revealed to be an efficient precatalyst in acid (HBr) conditions and with methanol as the sacrificial agent. A response surface methodology (RSM) study was applied for the optimization of the HER conditions, considering the concentrations of both additives (methanol and HBr) as independent variables. An optimal H2 production of 11 mmol·g-1 (TON = 25) was achieved, which displays exceptional catalytic properties compared to regular Ta-based materials. The aqua tantalum bromide clusters assist in the photocatalytic hydrogen generation in agreement with energy-conversion schemes, and plausible active catalytic species and a reaction mechanism were proposed from computational and experimental perspectives.
Collapse
Affiliation(s)
- Jhon Sebastián Hernández
- Instituto
de Tecnología Química, Universitat Politècnica
de València - Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avd. de los Naranjos s/n, Valencia 46022, Spain
| | - Daniela Guevara
- Instituto
de Tecnología Química, Universitat Politècnica
de València - Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avd. de los Naranjos s/n, Valencia 46022, Spain
| | - Maxim Shamshurin
- Nikolaev
Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - Enrico Benassi
- Novosibirsk
State University, 2 Pirogov Str., Novosibirsk 630090, Russian Federation
| | - Maxim N. Sokolov
- Nikolaev
Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - Marta Feliz
- Instituto
de Tecnología Química, Universitat Politècnica
de València - Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avd. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|