1
|
Wang AYL, Aviña AE, Liu YY, Chang YC, Kao HK. Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases. Antioxidants (Basel) 2025; 14:183. [PMID: 40002370 PMCID: PMC11851694 DOI: 10.3390/antiox14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection. This review depicts Blimp-1 as an important regulator of antioxidant defenses and anti-inflammation and suggests that the protein could serve as a therapeutic target in chronic inflammatory and metabolic dysregulation conditions. The modulation of Blimp-1 in diseases such as diabetic coronary heart disease and atherosclerosis could alleviate oxidative stress, augment the protection of tissues, and improve disease outcomes. The therapeutic potential for the development of new treatments for these chronic conditions lies in the synergy between the regulation of Blimp-1 and antioxidant therapies, which are future directions that may be pursued. This review emphasizes Blimp-1's emerging importance as a novel regulator in the pathogenesis of inflammatory diseases, providing new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Yu Liu
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
3
|
Truong BT, Shull LC, Lencer E, Bend EG, Field M, Blue EE, Bamshad MJ, Skinner C, Everman D, Schwartz CE, Flanagan-Steet H, Artinger KB. PRDM1 DNA-binding zinc finger domain is required for normal limb development and is disrupted in split hand/foot malformation. Dis Model Mech 2023; 16:dmm049977. [PMID: 37083955 PMCID: PMC10151829 DOI: 10.1242/dmm.049977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra Lencer
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | - Eric G. Bend
- Greenwood Genetics Center, Greenwood, SC 29646, USA
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, AUS
| | - Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Nadeau S, Martins GA. Conserved and Unique Functions of Blimp1 in Immune Cells. Front Immunol 2022; 12:805260. [PMID: 35154079 PMCID: PMC8829541 DOI: 10.3389/fimmu.2021.805260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
B-lymphocyte-induced maturation protein-1 (Blimp1), is an evolutionarily conserved transcriptional regulator originally described as a repressor of gene transcription. Blimp1 crucially regulates embryonic development and terminal differentiation in numerous cell lineages, including immune cells. Initial investigations of Blimp1’s role in immunity established its non-redundant role in lymphocytic terminal effector differentiation and function. In B cells, Blimp1 drives plasmablast formation and antibody secretion, whereas in T cells, Blimp1 regulates functional differentiation, including cytokine gene expression. These studies established Blimp1 as an essential transcriptional regulator that promotes efficient and controlled adaptive immunity. Recent studies have also demonstrated important roles for Blimp1 in innate immune cells, specifically myeloid cells, and Blimp1 has been established as an intrinsic regulator of dendritic cell maturation and T cell priming. Emerging studies have determined both conserved and unique functions of Blimp1 in different immune cell subsets, including the unique direct activation of the igh gene transcription in B cells and a conserved antagonism with BCL6 in B cells, T cells, and myeloid cells. Moreover, polymorphisms associated with the gene encoding Blimp1 (PRDM1) have been linked to numerous chronic inflammatory conditions in humans. Blimp1 has been shown to regulate target gene expression by either competing with other transcription factors for binding to the target loci, and/or by recruiting various chromatin-modifying co-factors that promote suppressive chromatin structure, such as histone de-acetylases and methyl-transferases. Further, Blimp1 function has been shown to be essentially dose and context-dependent, which adds to Blimp1’s versatility as a regulator of gene expression. Here, we review Blimp1’s complex roles in immunity and highlight specific gaps in the understanding of the biology of this transcriptional regulator, with a major focus on aspects that could foster the description and understanding of novel pathways regulated by Blimp1 in the immune system.
Collapse
Affiliation(s)
- Samantha Nadeau
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| | - Gislâine A Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Medicine, Gastroenterology Division, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| |
Collapse
|
5
|
Ke X, Zhang R, Yao Q, Duan S, Hong W, Cao M, Zhou Q, Zhong X, Zhao H. Alternative splicing of medaka bcl6aa and its repression by Prdm1a and Prdm1b. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1229-1242. [PMID: 34218391 DOI: 10.1007/s10695-021-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bcl6 and Prdm1 (Blimp1) are a pair of transcriptional factors that repressing each other in mammals. Prdm1 represses the expression of bcl6 by binding a cis-element of the bcl6 gene in mammals. The homologs of Bcl6 and Prdm1 have been identified in teleost fish. However, whether these two factors regulate each other in the same way in fish like that in mammals is not clear. In this study, the regulation of bcl6aa by Prdm1 was investigated in medaka. The mRNA of bcl6aa has three variants (bcl6aaX1-X3) at the 5'-end by alternative splicing detected by RT-PCR. The three variants can be detected in adult tissues and developing embryos of medaka. Prdm1a and prdm1b are expressed in the tissues and embryos where and when bcl6aa is expressed. The expression of prdm1a was high while the expression of bcl6aa was low, and vice versa, detected in the spleen after stimulation with LPS or polyI:C. In vitro reporter assay indicated that bcl6aa could be directly repressed by both Prdm1a and Prdm1b in a dosage-dependent manner. After mutation of the key base, G, of all predicted binding sites in the core promoter region of bcl6aa, the repression by Prdm1a and/or Prdm1b disappeared. The binding site of Prdm1 in the bcl6aa gene is GAAAA(T/G). These results indicate that both Prdm1a and Prdm1b directly repress the expression of bcl6aa by binding their binding sites where the 5'-G is critical in medaka fish.
Collapse
Affiliation(s)
- Xiaomei Ke
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Runshuai Zhang
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shi Duan
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Wentao Hong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
6
|
Chen H, Gao F, Bao Y, Zheng J, Sun L, Tang W, Zou J, Shi Y. Blimp-1 inhibits Th9 cell differentiation and attenuates diabetic coronary heart disease. Int Immunopharmacol 2021; 95:107510. [PMID: 33706054 DOI: 10.1016/j.intimp.2021.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Diabetic coronary heart disease (DM-CHD) poses a major threat to the world. The newly described T cell subset-Th9 cells and related cytokine interleukin (IL)-9 play important roles in the pathogenesis of diabetes and atherosclerosis. B lymphocyte-induced maturation protein 1 (Blimp-1) has been indicated to negatively regulate Th9 development in allergic asthma, but its role in DM-CHD remains unclear. Hence, this study was designed to investigate the role of Blimp-1 in DM-CHD and to elucidate whether the mechanism was associated with regulation of Th9 cell differentiation. Our results showed that serum Blimp-1 mRNA level was decreased whereas proportion of Th9 cells (IL-9+ CD4+ T cells) and serum level of Th9-related IL-9 were increased in DM-CHD patients. Furthermore, serum Blimp-1 mRNA level was negatively correlated with IL-9 level in DM-CHD patients. Importantly, administration of lentiviruses expressing Blimp-1 (LV-Blimp-1) significantly inhibited Th9 cell differentiation and alleviated the severity of atherosclerotic lesions in the aorta and coronary artery, dyslipidemia, inflammation, vascular endothelial dysfunction, and oxidative stress in DM-CHD model rats. Collectively, Blimp-1 exerts a protective effect in DM-CHD rats and the mechanism might involve inhibition of Th9 cell differentiation.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fangyuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yi Bao
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiaoyang Zheng
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Liangliang Sun
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Tang
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Junjie Zou
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
7
|
Dilshat R, Vu HN, Steingrímsson E. Epigenetic regulation during melanocyte development and homeostasis. Exp Dermatol 2021; 30:1033-1050. [PMID: 34003523 DOI: 10.1111/exd.14391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Melanocytes originate in the neural crest as precursor cells which then migrate and proliferate to reach their destination where they differentiate into pigment-producing cells. Melanocytes not only determine the colour of hair, skin and eyes but also protect against the harmful effects of UV irradiation. The establishment of the melanocyte lineage is regulated by a defined set of transcription factors and signalling pathways that direct the specific gene expression programmes underpinning melanoblast specification, survival, migration, proliferation and differentiation. In addition, epigenetic modifiers and replacement histones play key roles in regulating gene expression and its timing during the different steps of this process. Here, we discuss the evidence for the role of epigenetic regulators in melanocyte development and function and how they interact with transcription factors and signalling pathways to establish and maintain this important cell lineage.
Collapse
Affiliation(s)
- Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
8
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
9
|
Iwanaga R, Truong BT, Hsu JY, Lambert KA, Vyas R, Orlicky D, Shellman YG, Tan AC, Ceol C, Artinger KB. Loss of prdm1a accelerates melanoma onset and progression. Mol Carcinog 2020; 59:1052-1063. [PMID: 32562448 PMCID: PMC7864383 DOI: 10.1002/mc.23236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Melanoma is an aggressive, deadly skin cancer derived from melanocytes, a neural crest cell derivative. Melanoma cells mirror the developmental program of neural crest cells in that they exhibit the same gene expression patterns and utilize similar cellular mechanisms, including increased cell proliferation, epithelial-mesenchymal transition, and migration. Here we studied the role of neural crest regulator PRDM1 in melanoma onset and progression. In development, Prdm1a functions to promote neural crest progenitor fate, and in melanoma, we found that PRDM1 has reduced copy number and is recurrently deleted in both zebrafish and humans. When examining expression of neural crest and melanocyte development genes, we show that sox10 progenitor expression is high in prdm1a-/- mutants, while more differentiated melanocyte markers are reduced, suggesting that normally Prdm1a is required for differentiation. Data mining of human melanoma datasets indicates that high PRDM1 expression in human melanoma is correlated with better patient survival and decreased PRDM1 expression is common in metastatic tumors. When one copy of prdm1a is lost in the zebrafish melanoma model Tg(mitfa:BRAFV600E );p53-/- ;prdm1a+/- , melanoma onset occurs more quickly, and the tumors that form have a larger area with increased expression of sox10. These data demonstrate a novel role for PRDM1 as a tumor suppressor in melanoma.
Collapse
Affiliation(s)
- Ritsuko Iwanaga
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Brittany T. Truong
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Jessica Y. Hsu
- Pharmacology Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Karoline A. Lambert
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Rajesh Vyas
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Yiqun G. Shellman
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Aik-Choon Tan
- Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Craig Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Li P, Wang B, Cao D, Liu Y, Zhang Q, Wang X. Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:32-40. [PMID: 28669662 DOI: 10.1016/j.cbpb.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
Abstract
PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression.
Collapse
Affiliation(s)
- Peizhen Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Dandan Cao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China.
| |
Collapse
|
12
|
Liu C, Liu W, Fan L, Liu J, Li P, Zhang W, Gao J, Li Z, Zhang Q, Wang X. Sequences analyses and expression profiles in tissues and embryos of Japanese flounder (Paralichthys olivaceus) PRDM1. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:467-482. [PMID: 26508172 DOI: 10.1007/s10695-015-0152-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
PRDM1 (PRDI-BF1-RIZ1 homologous domain containing 1) appears to be a pleiotropic regulatory factor in various processes. It contains a PR (PRDI-BF1-RIZ1 homologous) domain protein and five zinc fingers. In the present study, a gene coding the homolog of prdm1 and the 5' regulatory region of prdm1 was identified from the Paralichthys olivaceus (denoted Po-prdm1). Results of real-time quantitative polymerase chain reaction amplification (RT-qPCR) and in situ hybridization (ISH) in embryos revealed that Po-prdm1 was highly expressed between the early gastrula and tail bud stages, with its expression peaking in the mid-gastrula stage, whereas the results of RT-qPCR and ISH in tissues demonstrated that Po-prdm1 transcripts were ubiquitously detected in all tissues, which indicates its pleiotropic function in multiple processes. ISH of gonadal tissues revealed that the transcripts were located in the nucleus and cytoplasm of the oocytes in the ovaries but only in the spermatogonia and not in the spermatocytes in the testes. The Po-prdm1 transcription factor binding sites and their conserved binding region among vertebrates were analyzed in this study. The combined results suggest that Po-PRDM1 has a conserved function in teleosts and mammals.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Wei Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Lin Fan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Peizhen Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Wei Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Jinning Gao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
13
|
Nakamura T, Extavour CG. The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket Gryllus bimaculatus. Development 2016; 143:255-63. [DOI: 10.1242/dev.127563] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.
Collapse
Affiliation(s)
- Taro Nakamura
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Abstract
Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.
Collapse
Affiliation(s)
- Wolf Reik
- The Babraham Institute, Babraham Research Campus, Cambridge CB2 3EG, United Kingdom Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
15
|
Zannino DA, Sagerström CG. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Neural Dev 2015; 10:24. [PMID: 26499851 PMCID: PMC4620005 DOI: 10.1186/s13064-015-0052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types—either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens—Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate—that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| |
Collapse
|
16
|
Spatiotemporal expression analysis of Prdm1 and Prdm1 binding partners in early chick embryo. Gene Expr Patterns 2015; 17:56-68. [DOI: 10.1016/j.gep.2014.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 01/17/2023]
|
17
|
Vincent SD, Mayeuf-Louchart A, Watanabe Y, Brzezinski JA, Miyagawa-Tomita S, Kelly RG, Buckingham M. Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo. Hum Mol Genet 2014; 23:5087-101. [PMID: 24821700 DOI: 10.1093/hmg/ddu232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Congenital heart defects affect at least 0.8% of newborn children and are a major cause of lethality prior to birth. Malformations of the arterial pole are particularly frequent. The myocardium at the base of the pulmonary trunk and aorta and the arterial tree associated with these great arteries are derived from splanchnic mesoderm of the second heart field (SHF), an important source of cardiac progenitor cells. These cells are controlled by a gene regulatory network that includes Fgf8, Fgf10 and Tbx1. Prdm1 encodes a transcriptional repressor that we show is also expressed in the SHF. In mouse embryos, mutation of Prdm1 affects branchial arch development and leads to persistent truncus arteriosus (PTA), indicative of neural crest dysfunction. Using conditional mutants, we show that this is not due to a direct function of Prdm1 in neural crest cells. Mutation of Prdm1 in the SHF does not result in PTA, but leads to arterial pole defects, characterized by mis-alignment or reduction of the aorta and pulmonary trunk, and abnormalities in the arterial tree, defects that are preceded by a reduction in outflow tract size and loss of caudal pharyngeal arch arteries. These defects are associated with a reduction in proliferation of progenitor cells in the SHF. We have investigated genetic interactions with Fgf8 and Tbx1, and show that on a Tbx1 heterozygote background, conditional Prdm1 mutants have more pronounced arterial pole defects, now including PTA. Our results identify PRDM1 as a potential modifier of phenotypic severity in TBX1 haploinsufficient DiGeorge syndrome patients.
Collapse
Affiliation(s)
- Stéphane D Vincent
- Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS URA 2578, Paris, France,
| | - Alicia Mayeuf-Louchart
- Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS URA 2578, Paris, France
| | - Yusuke Watanabe
- Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS URA 2578, Paris, France
| | - Joseph A Brzezinski
- Department of Structural Biology, University of Washington, Seattle, WA, USA
| | - Sachiko Miyagawa-Tomita
- Division of Cardiovascular Development and Differentiation, Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo, Japan and
| | - Robert G Kelly
- Aix-Marseille Université, Developmental Biology Institute of Marseille, CNRS UMR 7288, Campus de Luminy, Marseille, France
| | - Margaret Buckingham
- Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS URA 2578, Paris, France
| |
Collapse
|
18
|
Wan Z, Rui L, Li Z. Expression patterns of prdm1 during chicken embryonic and germline development. Cell Tissue Res 2014; 356:341-56. [PMID: 24691770 PMCID: PMC4015062 DOI: 10.1007/s00441-014-1804-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
Abstract
PRDM1 (PR domain containing 1) is a transcriptional repressor that has been identified in various species and is crucial for cell growth, differentiation and development. However, the expression pattern and role of PRDM1 in development has not been sufficiently established in birds. We therefore investigate the spatio-temporal expression of PRDM1 in various tissues, especially in the germline, during chicken development, providing the basis for functional study. Our results show that prdm1 mRNA was expressed in blastodermal cells (BCs) at stage X and in various tissues including the liver, skin, lung, kidney, eye, bursa of fabricius, spleen, proventriculus, gizzard, intestine, testis, ovary, tongue, feathers and thymus but was not or was only sparcely present in the heart, brain and skeletal muscle. The level of prdm1 mRNA was highest in the BCs among all tissues tested and significantly changed during development in many tissues, such as the blastoderm, bursa of fabricius, spleen, feathers and germline. Furthermore, the expression of the PRDM1 protein generally paralleled the mRNA results, except for in the gizzard. Immunohistochemistry also revealed that PRDM1 was localized in the smooth muscle. In addition, during germline development, PRDM1 was found to be continuously expressed in the presumptive primordial germ cells (PGCs) at stage X, the circulating PGCs in blood and the germ cells in the gonads from embryonic day 6 to adult in both males and females. The expression pattern of PRDM1 in chicken thus suggests that this protein plays an important role during chicken development, such as in BC differentiation, feather formation and germ cell specification.
Collapse
Affiliation(s)
- Zhiyi Wan
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing, 100193 People’s Republic of China
| | - Lei Rui
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing, 100193 People’s Republic of China
| | - Zandong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing, 100193 People’s Republic of China
| |
Collapse
|
19
|
Ikeda T, Matsuoka T, Satou Y. A time delay gene circuit is required for palp formation in the ascidian embryo. Development 2014; 140:4703-8. [PMID: 24255097 DOI: 10.1242/dev.100339] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ascidian larval brain and palps (a putative rudimentary placode) are specified by two transcription factor genes, ZicL and FoxC, respectively. FGF9/16/20 induces ZicL expression soon after the bi-potential ancestral cells divide into the brain and palp precursors at the early gastrula stage. FGF9/16/20 begins to be expressed at the 16-cell stage, and induces several target genes, including Otx, before the gastrula stage. Here, we show that ZicL expression in the brain lineage is transcriptionally repressed by Hes-a and two Blimp-1-like zinc finger proteins, BZ1 and BZ2, in the bi-potential ancestral cells. ZicL is precociously expressed in the bi-potential cells in embryos in which these repressors are knocked down. This precocious ZicL expression produces extra brain cells at the expense of palp cells. The expression of BZ1 and BZ2 is turned off by a negative auto-feedback loop. This auto-repression acts as a delay circuit that prevents ZicL from being expressed precociously before the brain and palp fates split, thereby making room within the neural plate for the palps to be specified. Addition of the BZ1/2 delay timer circuit to the gene regulatory network responsible for brain formation might represent a key event in the acquisition of the primitive palps/placodes in an ancestral animal.
Collapse
Affiliation(s)
- Tatsuro Ikeda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
20
|
Severa M, Islam SA, Waggoner SN, Jiang Z, Kim ND, Ryan G, Kurt-Jones E, Charo I, Caffrey DR, Boyartchuk VL, Luster AD, Fitzgerald KA. The transcriptional repressor BLIMP1 curbs host defenses by suppressing expression of the chemokine CCL8. THE JOURNAL OF IMMUNOLOGY 2014; 192:2291-304. [PMID: 24477914 DOI: 10.4049/jimmunol.1301799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcriptional repressor B lymphocyte-induced maturation protein 1 (BLIMP1) is a master regulator of B and T cell differentiation. To examine the role of BLIMP1 in innate immunity, we used a conditional knockout (CKO) of Blimp1 in myeloid cells and found that Blimp1 CKO mice were protected from lethal infection induced by Listeria monocytogenes. Transcriptome analysis of Blimp1 CKO macrophages identified the murine chemokine (C-C motif) ligand 8, CCL8, as a direct target of Blimp1-mediated transcriptional repression in these cells. BLIMP1-deficient macrophages expressed elevated levels of Ccl8, and consequently Blimp1 CKO mice had higher levels of circulating CCL8, resulting in increased neutrophils in the peripheral blood, promoting a more aggressive antibacterial response. Mice lacking the Ccl8 gene were more susceptible to L. monocytogenes infection than were wild-type mice. Although CCL8 failed to recruit neutrophils directly, it was chemotactic for γ/δ T cells, and CCL8-responsive γ/δ T cells were enriched for IL-17F. Finally, CCL8-mediated enhanced clearance of L. monocytogenes was dependent on γ/δ T cells. Collectively, these data reveal an important role for BLIMP1 in modulating host defenses by suppressing expression of the chemokine CCL8.
Collapse
Affiliation(s)
- Martina Severa
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hanotel J, Bessodes N, Thélie A, Hedderich M, Parain K, Van Driessche B, Brandão KDO, Kricha S, Jorgensen MC, Grapin-Botton A, Serup P, Van Lint C, Perron M, Pieler T, Henningfeld KA, Bellefroid EJ. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev Biol 2013; 386:340-57. [PMID: 24370451 DOI: 10.1016/j.ydbio.2013.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/19/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Abstract
The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.
Collapse
Affiliation(s)
- Julie Hanotel
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Nathalie Bessodes
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Aurore Thélie
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Marie Hedderich
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Karine Parain
- UPR CNRS 3294 Neurobiology and Development, Université Paris Sud, 91405 Orsay Cedex, France
| | - Benoit Van Driessche
- Laboratory of Molecular Virology, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, B-6041 Gosselies, Belgium
| | - Karina De Oliveira Brandão
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Sadia Kricha
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Mette C Jorgensen
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Palle Serup
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Carine Van Lint
- Laboratory of Molecular Virology, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, B-6041 Gosselies, Belgium
| | - Muriel Perron
- UPR CNRS 3294 Neurobiology and Development, Université Paris Sud, 91405 Orsay Cedex, France
| | - Tomas Pieler
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Kristine A Henningfeld
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Eric J Bellefroid
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium.
| |
Collapse
|
22
|
Identification and expression profiles of prdm1 in medaka Oryzias latipes. Mol Biol Rep 2013; 41:617-26. [PMID: 24343424 DOI: 10.1007/s11033-013-2899-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Mouse Prdm1, also known as Blimp1, plays important roles in maturation and survival of lymphoid cells, as well as in organogenesis of muscle, limb, sensor organs and primordial germ cells. The homologues of mouse prdm1 have been identified in a diverse of animals including zebrafish and fugu. Here, we report the identification and expression profiles of two homologues of prdm1, namely prdm1a and prdm1b in medaka, Oryzias latipes. The transcripts of prdm1a and prdm1b were detectable in all the tissues including immune organs such as gill, spleen, kidney, liver and intestine that we have checked on. The transcripts of prdm1a could be detected in the embryonic shield at mid-gastrula stage and later in the somite, eye, otic vesicle, branchial arches, fin, intestine and cloaca during embryogenesis using in situ hybridization. Moreover, the expression of prdm1a in the liver of both medaka and zebrafish could be up-regulated by the immune stimuli including lipopolysaccharide, polyI:C and the grass carp reovirus, similarly to the up-regulation of IL1B. These results indicate that Prdm1a may play important roles in embryogenesis and also in immune response in fish.
Collapse
|
23
|
Powell DR, Hernandez-Lagunas L, LaMonica K, Artinger KB. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification. Development 2013; 140:3445-55. [PMID: 23900542 DOI: 10.1242/dev.096164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
24
|
Ivashkin E, Adameyko I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo 2013; 4:12. [PMID: 23575111 PMCID: PMC3626940 DOI: 10.1186/2041-9139-4-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery.
Collapse
Affiliation(s)
- Evgeniy Ivashkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 1 A1, Stockholm 17177, Sweden.
| | | |
Collapse
|
25
|
PRDM1 is directly targeted by miR-30a-5p and modulates the Wnt/β-catenin pathway in a Dkk1-dependent manner during glioma growth. Cancer Lett 2013; 331:211-9. [PMID: 23348703 DOI: 10.1016/j.canlet.2013.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/30/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
Abstract
The transcriptional regulator PRDM1 controls cell-fate decisions and has been implicated in human tumorigenesis as a tumor suppressor. However, its pathological role in glioma remains elusive. In this study, we showed that PRDM1 protein levels were inversely correlated with the pathological grade of gliomas and were predictive of patient survival in a retrospective analysis. Restored expression of PRDM1 inhibited proliferation and suppressed invasion by glioma cells. Mechanistic investigation revealed that PRDM1 attenuated glioma malignancy by negatively modulating Wnt/β-catenin signaling and this modulation was dependent on the Wnt inhibitor Dkk1. Using bioinformatics and biological approaches, we found that PRDM1 was a direct target of miR-30a-5p, and PRDM1 dysfunction was attributable to miR-30a-5p-mediated repression. Our results provide evidence that PRDM1 deficiency contributes to the phenotype maintenance and pathogenesis of gliomas.
Collapse
|
26
|
Ding HL, Clouthier DE, Artinger KB. Redundant roles of PRDM family members in zebrafish craniofacial development. Dev Dyn 2012; 242:67-79. [PMID: 23109401 DOI: 10.1002/dvdy.23895] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. RESULTS Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. CONCLUSIONS Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish.
Collapse
Affiliation(s)
- Hai-Lei Ding
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | |
Collapse
|
27
|
Liu C, Ma W, Su W, Zhang J. Prdm14 acts upstream of islet2 transcription to regulate axon growth of primary motoneurons in zebrafish. Development 2012; 139:4591-600. [PMID: 23136389 DOI: 10.1242/dev.083055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise formation of three-dimensional motor circuits is essential for movement control. Within these circuits, motoneurons (MNs) are specified from spinal progenitors by dorsoventral signals and distinct transcriptional programs. Different MN subpopulations have stereotypic cell body positions and show specific spatial axon trajectories. Our knowledge of MN axon outgrowth remains incomplete. Here, we report a zebrafish gene-trap mutant, short lightning (slg), in which prdm14 expression is disrupted. slg mutant embryos show shortened axons in caudal primary (CaP) MNs resulting in defective embryonic movement. Both the CaP neuronal defects and behavior abnormality of the mutants can be phenocopied by injection of a prdm14 morpholino into wild-type embryos. By removing a copy of the inserted transposon from homozygous mutants, prdm14 expression and normal embryonic movement were restored, confirming that loss of prdm14 expression accounts for the observed defects. Mechanistically, Prdm14 protein binds to the promoter region of islet2, a known transcription factor required for CaP development. Notably, disruption of islet2 function caused similar CaP axon outgrowth defects as observed in slg mutant embryos. Furthermore, overexpression of islet2 in slg mutant embryos rescued the shortened CaP axon phenotypes. Together, these data reveal that prdm14 regulates CaP axon outgrowth through activation of islet2 expression.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
28
|
Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development 2012; 139:2267-82. [PMID: 22669819 DOI: 10.1242/dev.070110] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.
Collapse
Affiliation(s)
- Tobias Hohenauer
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
29
|
Park BY, Hong CS, Weaver JR, Rosocha EM, Saint-Jeannet JP. Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. Dev Biol 2011; 362:65-75. [PMID: 22173066 DOI: 10.1016/j.ydbio.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 11/27/2022]
Abstract
Lower vertebrates develop a unique set of primary sensory neurons located in the dorsal spinal cord. These cells, known as Rohon-Beard (RB) sensory neurons, innervate the skin and mediate the response to touch during larval stages. Here we report the expression and function of the transcription factor Xaml1/Runx1 during RB sensory neurons formation. In Xenopus embryos Runx1 is specifically expressed in RB progenitors at the end of gastrulation. Runx1 expression is positively regulated by Fgf and canonical Wnt signaling and negatively regulated by Notch signaling, the same set of factors that control the development of other neural plate border cell types, i.e. the neural crest and cranial placodes. Embryos lacking Runx1 function fail to differentiate RB sensory neurons and lose the mechanosensory response to touch. At early stages Runx1 knockdown results in a RB progenitor-specific loss of expression of Pak3, a p21-activated kinase that promotes cell cycle withdrawal, and of N-tub, a neuronal-specific tubulin. Interestingly, the pro-neural gene Ngnr1, an upstream regulator of Pak3 and N-tub, is either unaffected or expanded in these embryos, suggesting the existence of two distinct regulatory pathways controlling sensory neuron formation in Xenopus. Consistent with this possibility Ngnr1 is not sufficient to activate Runx1 expression in the ectoderm. We propose that Runx1 function is critically required for the generation of RB sensory neurons, an activity reminiscent of that of Runx1 in the development of the mammalian dorsal root ganglion nociceptive sensory neurons.
Collapse
Affiliation(s)
- Byung-Yong Park
- Department of Anatomy, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Nikitina N, Tong L, Bronner ME. Ancestral network module regulating prdm1 expression in the lamprey neural plate border. Dev Dyn 2011; 240:2265-71. [PMID: 21932309 DOI: 10.1002/dvdy.22720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2011] [Indexed: 01/25/2023] Open
Abstract
prdm1 is an important transcriptional regulator that plays diverse roles during development of a wide variety of vertebrate and invertebrate species. prdm1 is required for neural crest specification in zebrafish, but not in mouse embryos. The role of this gene in neural crest formation in other species has not been examined, and its regulation during embryonic development is poorly understood. Here, we investigate the expression pattern, function, and the upstream regulatory inputs into prdm1 during lamprey neural crest development. prdm1 is strongly expressed in the lamprey neural plate border, suggesting a conserved ancestral role of this gene in the neural crest formation. We found that lamprey neural plate border expression of prdm1 is activated by Ap-2 and Msx, but is independent of Pax3/7 and Zic.
Collapse
Affiliation(s)
- Natalya Nikitina
- Division of Biology, California Institute of Technology, Pasadena, California; School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
31
|
Fujii T, Tsunesumi SI, Yamaguchi K, Watanabe S, Furukawa Y. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 2011; 6:e23491. [PMID: 21887258 PMCID: PMC3160858 DOI: 10.1371/journal.pone.0023491] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/19/2011] [Indexed: 01/17/2023] Open
Abstract
Modifications of histone tails are involved in the regulation of a wide range of biological processes including cell cycle, cell survival, cell division, and cell differentiation. Among the modifications, histone methylation plays a critical role in cardiac and skeletal muscle differentiation. In our earlier studies, we found that SMYD3 has methyltransferase activity to histone H3 lysine 4, and that its up-regulation is involved in the tumorigenesis of human colon, liver, and breast. To clarify the role of Smyd3 in development, we have studied its expression patterns in zebrafish embryos and the effect of its suppression on development using Smyd3-specific antisense morpholino-oligonucleotides. We here show that transcripts of smyd3 were expressed in zebrafish embryos at all developmental stages examined and that knockdown of smyd3 in embryos resulted in pericardial edema and defects in the trunk structure. In addition, these phenotypes were associated with abnormal expression of three heart-chamber markers including cmlc2, amhc and vmhc, and abnormal expression of myogenic regulatory factors including myod and myog. These data suggest that Smyd3 plays an important role in the development of heart and skeletal muscle.
Collapse
Affiliation(s)
- Tomoaki Fujii
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Shin-ichiro Tsunesumi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Japan
- * E-mail:
| |
Collapse
|
32
|
Hernandez-Lagunas L, Powell D, Law J, Grant K, Artinger KB. prdm1a and olig4 act downstream of Notch signaling to regulate cell fate at the neural plate border. Dev Biol 2011; 356:496-505. [PMID: 21689645 PMCID: PMC3144709 DOI: 10.1016/j.ydbio.2011.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 01/23/2023]
Abstract
The zinc finger domain transcription factor prdm1a plays an integral role in the development of the neural plate border cell fates, including neural crest cells and Rohon-Beard (RB) sensory neurons. However, the mechanisms underlying prdm1a function in cell fate specification is unknown. Here, we test more directly how prdm1a functions in this cell fate decision. Rather than affecting cell death or proliferation at the neural plate border, prdm1a acts explicitly on cell fate specification by counteracting olig4 expression in the neighboring interneuron domain. olig4 expression is expanded in prdm1a mutants and olig4 knockdown can rescue the reduced or abrogated neural crest and RB neuron phenotype in prdm1a mutants, suggesting a permissive role for prdm1a in neural plate border-derived cell fates. In addition, prdm1a expression is upregulated in the absence of Notch function, and inhibiting Notch signaling fails to rescue prdm1a mutants. This suggests that prdm1a functions downstream of Notch in the regulation of cell fate at the neural plate border and that Notch regulates the total number of progenitor cells at the neural plate border.
Collapse
Affiliation(s)
- Laura Hernandez-Lagunas
- Department of Craniofacial Biology, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
| | - Davalyn Powell
- Department of Craniofacial Biology, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
- Cell Biology Stem Cells and Development Graduate Program, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
| | - Jera Law
- Department of Craniofacial Biology, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
| | - Kelly Grant
- Department of Craniofacial Biology, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Kuzin A, Kundu M, Brody T, Odenwald WF. Functional analysis of conserved sequences within a temporally restricted neural precursor cell enhancer. Mech Dev 2011; 128:165-77. [PMID: 21315151 PMCID: PMC3095431 DOI: 10.1016/j.mod.2011.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/18/2022]
Abstract
Many of the key regulators of Drosophila CNS neural identity are expressed in defined temporal orders during neuroblast (NB) lineage development. To begin to understand the structural and functional complexity of enhancers that regulate ordered NB gene expression programs, we have undertaken the mutational analysis of the temporally restricted nerfin-1 NB enhancer. Our previous studies have localized the enhancer to a region just proximal to the nerfin-1 transcription start site. Analysis of this enhancer, using the phylogenetic footprint program EvoPrinter, reveals the presence of multiple sequence blocks that are conserved among drosophilids. cis-Decoder alignments of these conserved sequence blocks (CSBs) has identified shorter elements that are conserved in other Drosophila NB enhancers. Mutagenesis of the enhancer reveals that although each CSB is required for wild-type expression, neither position nor orientation of the CSBs within the enhancer is crucial for enhancer function; removal of less-conserved or non-conserved sequences flanking CSB clusters also does not significantly alter enhancer activity. While all three conserved E-box transcription factor (TF) binding sites (CAGCTG) are required for full function, adding an additional site at different locations within non-conserved sequences interferes with enhancer activity. Of particular note, none of the mutations resulted in ectopic reporter expression outside of the early NB expression window, suggesting that the temporally restricted pattern is defined by transcriptional activators and not by direct DNA binding repressors. Our work also points to an unexpectedly large number of TFs required for optimal enhancer function - mutant TF analysis has identified at least four that are required for full enhancer regulation.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| | - Mukta Kundu
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| | - Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH Bethesda, Maryland, USA
| |
Collapse
|
34
|
Majesky MW, Dong XR, Regan JN, Hoglund VJ. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 2011; 108:365-77. [PMID: 21293008 PMCID: PMC3382110 DOI: 10.1161/circresaha.110.223800] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/27/2010] [Indexed: 01/17/2023]
Abstract
Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.
Collapse
Affiliation(s)
- Mark W Majesky
- Seattle Children's Research Institute, University of Washington, 1900 Ninth Ave, M/S C9S-5, Seattle, WA 98101, USA.
| | | | | | | |
Collapse
|
35
|
Ohtani M, Miyadai T. Functional analysis of fish BCL-6 and Blimp-1 in vitro: transcriptional repressors for B-cell terminal differentiation in fugu (Takifugu rubripes). Mol Immunol 2011; 48:818-25. [PMID: 21216469 DOI: 10.1016/j.molimm.2010.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 10/24/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
The transcriptional repressors BCL-6 and Blimp-1 are key regulators of B-cell terminal differentiation in mammals. We have previously identified the BCL-6 gene and Blimp-1 gene in fugu (Takifugu rubripes). In the present report, we conducted a functional analysis of fugu BCL-6 and Blimp-1 by using a one-hybrid reporter assay with Gal4 fusion proteins and Gal4DBD luciferase reporter gene. Results from the reporter assays in mammalian cell lines (HeLa, HEK-293, CV-1 and NIH3T3) and the fish cell line EPC show that Gal4-BCL6 and Gal4-Blimp1 strongly repress the transcription of the luciferase gene in all cell lines. Furthermore, deletion analyses show that the N-terminal region of BCL-6 has transcriptional repression activity; the BTB/POZ domain is an especially potent repression domain. In contrast to BCL-6, although the N-acidic domain and PR domain are insufficient for repression, most functional motifs of Blimp-1 are associated with transcriptional repression. These results suggest that BCL-6 and Blimp-1 are functional transcriptional repressors in fugu and that they regulate B-cell terminal differentiation in fugu.
Collapse
Affiliation(s)
- Maki Ohtani
- Laboratory of Marine Biotechnology, Faculty of Marine Bioscience, Fukui Prefectural University, 1-1 Gakuen-Chou, Obama, Fukui 917-0003, Japan
| | | |
Collapse
|
36
|
Olesnicky E, Hernandez-Lagunas L, Artinger KB. prdm1a Regulates sox10 and islet1 in the development of neural crest and Rohon-Beard sensory neurons. Genesis 2010; 48:656-66. [PMID: 20836130 PMCID: PMC3119337 DOI: 10.1002/dvg.20673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/09/2023]
Abstract
The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and RB neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis.
Collapse
Affiliation(s)
| | | | - Kristin Bruk Artinger
- Department of Craniofacial Biology University of Colorado Denver School of Dental Medicine, Aurora, CO 80045, USA
| |
Collapse
|
37
|
Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development. J Neurosci 2010; 30:6515-26. [PMID: 20463215 DOI: 10.1523/jneurosci.0771-10.2010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The zinc finger transcription factor Blimp1 plays fundamentally important roles in many cell lineages and in the early development of several cell types, including B and T lymphocytes and germ cells. Although Blimp1 expression in developing retinal photoreceptor cells has been reported, its function remains unclear. We identified Blimp1 as a downstream factor of Otx2, which plays an essential role in photoreceptor cell fate determination. To investigate Blimp1 function in the mouse retina, we ablated Blimp1 in the developing retina by conditional gene targeting. In the Blimp1 conditional knockout (CKO) retina, the number of photoreceptor cells was markedly reduced in the differentiated retina. We found that the numbers of both bipolar-like cells and proliferating retinal cells increased noticeably, with ectopic localizations in the postnatal developing retina. In contrast, a reduction of the number of photoreceptor precursors was observed during development. Forced expression of Blimp1 by in vivo electroporation suppressed bipolar cell genesis in the developing retina. Multiple genes involved in bipolar development, including Chx10, were upregulated in the Blimp1 CKO retina. Furthermore, we showed that Blimp1 can bind to the Chx10 enhancer and repress Chx10 enhancer activity. These results suggest that Blimp1 plays a crucial role in photoreceptor development by repressing genes involved in bipolar cell fate specification and retinal cell proliferation in differentiating photoreceptor precursors.
Collapse
|
38
|
Birkholz DA, Olesnicky Killian EC, George KM, Artinger KB. Prdm1a is necessary for posterior pharyngeal arch development in zebrafish. Dev Dyn 2010; 238:2575-87. [PMID: 19777590 DOI: 10.1002/dvdy.22090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple tissue interactions and signaling within the pharyngeal arches are required for development of the craniofacial skeleton. Here, we focus on the role of the transcription factor prdm1a in the differentiation of the posterior skeleton. prdm1a is expressed in the presumptive pharyngeal arch region and later in an endodermal pouch, the otic vesicle, and pharyngeal teeth. prdm1a mutants display a reduction in pharyngeal arch markers, a loss of posterior ceratobranchial cartilages, and a reduction in most neural crest-derived dermal bones. This is likely caused by a decrease in the number of proliferating cells but not an increase in cell death. Finally, a reduction in two key developmental signaling pathways, Fgf and retinoic acid, alters prdm1a expression, suggesting that prdm1a expression is mediated by these signaling pathways to pattern the posterior craniofacial skeleton. Together, these results indicate an essential role for prdm1a in the development of the zebrafish craniofacial skeleton.
Collapse
Affiliation(s)
- Denise A Birkholz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Center for Structural and Functional Neuroscience, Missoula, Montana, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL, Wherry EJ. A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity 2009; 31:309-20. [PMID: 19664943 PMCID: PMC2747257 DOI: 10.1016/j.immuni.2009.06.019] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/15/2009] [Accepted: 06/29/2009] [Indexed: 01/01/2023]
Abstract
T cell exhaustion is common during chronic infections and can prevent optimal immunity. Although recent studies have demonstrated the importance of inhibitory receptors and other pathways in T cell exhaustion, the underlying transcriptional mechanisms are unknown. Here, we define a role for the transcription factor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Blimp-1 repressed key aspects of normal memory CD8(+) T cell differentiation and promoted high expression of inhibitory receptors during chronic infection. These cardinal features of CD8(+) T cell exhaustion were corrected by conditionally deleting Blimp-1. Although high expression of Blimp-1 fostered aspects of CD8(+) T cell exhaustion, haploinsufficiency indicated that moderate Blimp-1 expression sustained some effector function during chronic viral infection. Thus, we identify Blimp-1 as a transcriptional regulator of CD8(+) T cell exhaustion during chronic viral infection and propose that Blimp-1 acts as a transcriptional rheostat balancing effector function and T cell exhaustion.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Apoptosis Regulatory Proteins/immunology
- Apoptosis Regulatory Proteins/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Differentiation/immunology
- Chronic Disease
- Cytotoxicity, Immunologic/immunology
- GPI-Linked Proteins
- Granzymes/immunology
- Granzymes/metabolism
- Immunologic Memory/immunology
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/virology
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Positive Regulatory Domain I-Binding Factor 1
- Programmed Cell Death 1 Receptor
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signaling Lymphocytic Activation Molecule Family
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Virus Diseases/genetics
- Virus Diseases/immunology
- Lymphocyte Activation Gene 3 Protein
Collapse
Affiliation(s)
- Haina Shin
- Immunology Program and Wistar Vaccine Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Shawn D. Blackburn
- Immunology Program and Wistar Vaccine Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Andrew M. Intlekofer
- Abramson Family Cancer Research Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Charlly Kao
- Immunology Program and Wistar Vaccine Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Jill M. Angelosanto
- Immunology Program and Wistar Vaccine Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Steven L. Reiner
- Abramson Family Cancer Research Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - E. John Wherry
- Immunology Program and Wistar Vaccine Center, The Wistar Institute, Philadelphia, PA 19104 USA
| |
Collapse
|
41
|
Bikoff EK, Morgan MA, Robertson EJ. An expanding job description for Blimp-1/PRDM1. Curr Opin Genet Dev 2009; 19:379-85. [PMID: 19592232 DOI: 10.1016/j.gde.2009.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 12/13/2022]
Abstract
The master transcriptional regulator Blimp-1/PRDM1 contains an N-terminal PR/SET domain and five C2H2 zinc fingers located near its C-terminus that mediate DNA binding, nuclear import and recruitment of histone modifying enzymes. These activities account for its ability to control cell-fate decisions in the embryo and govern tissue homeostasis in multiple cell types in the adult organism. New experiments demonstrate an increasing degree of complexity associated with Blimp-1/PRDM1 target site selection and its associations with epigenetic modifiers. Our current understanding of how this single unique species within the family of structurally similar PRDM proteins regulates gene expression patterns and governs developmental programmes in different cell lineages is discussed.
Collapse
Affiliation(s)
- Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
42
|
Nornes S, Newman M, Wells S, Verdile G, Martins RN, Lardelli M. Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos. Exp Cell Res 2009; 315:2791-801. [PMID: 19563801 DOI: 10.1016/j.yexcr.2009.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 06/22/2009] [Accepted: 06/22/2009] [Indexed: 02/05/2023]
Abstract
Presenilin1 (PSEN1) and presenilin2 (PSEN2) are involved in the processing of type-1 transmembrane proteins including the amyloid precursor protein (APP), Notch and several others. PSEN1 has been shown to be crucial for proteolytic cleavage of Notch in developing animal embryos. Mouse embryos lacking Psen1 function show disturbed neurogenesis and somite formation, resembling Notch pathway mutants. However, loss of Psen2 activity reveals only a minor phenotype. Zebrafish embryos are a valuable tool for analysis of the molecular genetic control of cell differentiation since endogenous gene expression can be modulated in subtle and complex ways to give a phenotypic readout. Using injection of morpholino antisense oligonucleotides to inhibit protein translation in zebrafish embryos, we show that reduced Psen2 activity decreases the number of melanocytes in the trunk but not in the cranial area at 2 days post fertilisation (dpf). Reduced Psen2 activity apparently reduces Notch signalling resulting in perturbed spinal neurogenin1 (neurog1) expression, neurogenesis and trunk and tail neural crest development. Similar effects are seen for reduced Psen1 activity. These results suggest that Psen2 plays a more prominent role in Notch signalling and embryo development in zebrafish than in mammals. Intriguingly, decreased Psen2 activity increases the number of Dorsal Longitudinal Ascending (DoLA) interneurons in the spinal cord while decreased Psen1 activity has no effect. However, the effect on DoLAs of reduced Psen2 can be ameliorated by Psen1 loss. The effects of changes in Psen2 activity on DoLA interneurons and other cells in zebrafish embryos provide bioassays for more detailed dissection of Psen2 function.
Collapse
Affiliation(s)
- Svanhild Nornes
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, SA 5005, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Hammond KL, Baxendale S, McCauley DW, Ingham PW, Whitfield TT. Expression ofpatched, prdm1andengrailedin the lamprey somite reveals conserved responses to Hedgehog signaling. Evol Dev 2009; 11:27-40. [DOI: 10.1111/j.1525-142x.2008.00300.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 2008; 3:e3859. [PMID: 19050759 PMCID: PMC2585159 DOI: 10.1371/journal.pone.0003859] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Establishment and maintenance of a functional central nervous system (CNS) requires a highly orchestrated process of neural progenitor cell proliferation, cell cycle exit, and differentiation. An evolutionary conserved program consisting of Notch signalling mediated by basic Helix-Loop-Helix (bHLH) transcription factor activity is necessary for both the maintenance of neural progenitor cell character and the progression of neurogenesis; however, additional players in mammalian CNS neural specification remain largely unknown. In Drosophila we recently characterized Hamlet, a transcription factor that mediates Notch signalling and neural cell fate. METHODOLOGY/PRINCIPAL FINDINGS Hamlet is a member of the Prdm (PRDI-BF1 and RIZ homology domain containing) proto-oncogene transcription factor family, and in this study we report that multiple genes in the Prdm family (Prdm6, 8, 12, 13 and 16) are expressed in the developing mouse CNS in a spatially and temporally restricted manner. In developing spinal cord Prdm8, 12 and 13 are expressed in precise neuronal progenitor zones suggesting that they may specify discrete neuronal subtypes. In developing telencephalon Prdm12 and 16 are expressed in the ventricular zone in a lateral to medial graded manner, and Prdm8 is expressed in a complementary domain in postmitotic neurons. In postnatal brain Prdm8 additionally shows restricted expression in cortical layers 2/3 and 4, the hippocampus, and the amygdala. To further elucidate roles of Prdm8 and 16 in the developing telencephalon we analyzed the relationship between these factors and the bHLH Hes (Hairy and enhancer of split homolog) effectors of Notch signalling. In Hes null telencephalon neural differentiation is enhanced, Prdm8 expression is upregulated, and Prdm16 expression is downregulated; conversely in utero electroporation of Hes1 into the developing telencephalon upregulates Prdm16 expression. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that Prdm genes are regulated by the Notch-Hes pathway and represent strong candidates to control neural class specification and the sequential progression of mammalian CNS neurogenesis.
Collapse
|
45
|
John SA, Garrett-Sinha LA. Blimp1: a conserved transcriptional repressor critical for differentiation of many tissues. Exp Cell Res 2008; 315:1077-84. [PMID: 19073176 DOI: 10.1016/j.yexcr.2008.11.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/21/2008] [Accepted: 11/23/2008] [Indexed: 02/03/2023]
Abstract
B lymphocyte induced maturation protein 1 (Blimp1) is a zinc finger transcriptional repressor whose function as a master regulator of terminal differentiation of B cells into plasma cells has long been studied and is well established. Recent studies have identified novel roles for Blimp1 including homeostasis of effector T cells, specification of primordial germ cells in mouse, specification of muscle fiber type in zebrafish and as a tumor suppressor gene in germinal center derived B cells. Blimp1 associates with a multitude of chromatin modifying enzymes inducing epigenetic changes at specific targets to regulate these diverse cell fates. In this review, we focus on the novel and emerging roles of Blimp1 in multiple tissues, on mechanisms of transcriptional repression by Blimp1 and on the activity of Blimp1 as a tumor suppressor.
Collapse
Affiliation(s)
- Shinu A John
- Department of Biochemistry, Center for Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | |
Collapse
|
46
|
Liew HP, Choksi SP, Wong KN, Roy S. Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1. Dev Biol 2008; 324:226-35. [DOI: 10.1016/j.ydbio.2008.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/01/2008] [Accepted: 09/07/2008] [Indexed: 12/21/2022]
|
47
|
Arenas-Mena C. The transcription factorsHeBlimpandHeT-brainof an indirectly developing polychaete suggest ancestral endodermal, gastrulation, and sensory cell-type specification roles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:567-76. [DOI: 10.1002/jez.b.21225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Ohinata Y, Sano M, Shigeta M, Yamanaka K, Saitou M. A comprehensive, non-invasive visualization of primordial germ cell development in mice by the Prdm1-mVenus and Dppa3-ECFP double transgenic reporter. Reproduction 2008; 136:503-14. [DOI: 10.1530/rep-08-0053] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to monitor the development of a given cell lineage in a non-invasive manner by fluorescent markers bothin vivoandin vitroprovides a great advantage for the analysis of the lineage of interest. To date, a number of transgenic or knock-in mouse strains, in which developing germ cells are marked with fluorescent reporters, have been generated. We here describe a novel double transgenic reporter mouse strain that expresses membrane-targeted Venus (mVenus), a brighter variant of yellow fluorescent protein (YFP), under the control ofPrdm1(Blimp1) regulatory elements and enhanced cyan fluorescent protein (ECFP) under the control ofDppa3(Stella/Pgc7). The double transgenic strain unambiguously markedPrdm1expression in the lineage-restricted precursors of primordial germ cells (PGCs) in the proximal epiblast at embryonic day (E) 6.25 and specifically illuminatedPrdm1- andDppa3-positive migrating PGCs after E8.5. The double transgenic reporter also precisely recapitulated dynamic embryonic expression ofPrdm1outside the germ cell lineage. Moreover, we derived ES cells that bore both transgenes. These cells made a robust contribution both to the germ and somatic cell lineages in chimeras with accuratePrdm1-mVenus andDppa3-ECFP expression. The transgenic strain and the ES cells will serve as valuable experimental materials not only for analyzing the origin and properties of the germ cell lineagein vivo, but also for establishing a culture system to efficiently induce proper germ cells with temporally coordinatedPrdm1andDppa3expressionin vitro.
Collapse
|
49
|
Menelaou E, Husbands EE, Pollet RG, Coutts CA, Ali DW, Svoboda KR. Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish. Eur J Neurosci 2008; 28:1080-96. [PMID: 18823502 PMCID: PMC2741004 DOI: 10.1111/j.1460-9568.2008.06418.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/17/2008] [Accepted: 07/21/2008] [Indexed: 11/30/2022]
Abstract
Zebrafish embryos exhibit spontaneous contractions of the musculature as early as 18-19 h post fertilization (hpf) when removed from their protective chorion. These movements are likely initiated by early embryonic central nervous system activity. We have made the observation that narrowminded mutant embryos (hereafter, nrd(-/-)) lack normal embryonic motor output upon dechorionation. However, these mutants can swim and respond to tactile stimulation by larval stages of development. nrd(-/-) embryos exhibit defects in neural crest development, slow muscle development and also lack spinal mechanosensory neurons known as Rohon-Beard (RB) neurons. At early developmental stages (i.e. 21-22 hpf) and while still in their chorions, nrd siblings (nrd(+/?)) exhibited contractions of the musculature at a rate similar to wild-type embryos. Anatomical analysis indicated that RB neurons were present in the motile embryos, but absent in the non-motile embryos, indicating that the non-motile embryos were nrd(-/-) embryos. Further anatomical analysis of nrd(-/-) embryos revealed errors in motoneuron axonal pathfinding that persisted into the larval stage of development. These errors were reversed when nrd(-/-) embryos were raised in high [K(+)] beginning at 21 hpf, indicating that the abnormal axonal phenotypes may be related to a lack of depolarizing activity early in development. When activity was blocked with tricaine in wild-type embryos, motoneuron phenotypes were similar to the motoneuron phenotypes in nrd(-/-) embryos. These results implicate early embryonic activity in conjunction with other factors as necessary for normal motoneuron development.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
50
|
Martins GA, Cimmino L, Liao J, Magnusdottir E, Calame K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. ACTA ACUST UNITED AC 2008; 205:1959-65. [PMID: 18725523 PMCID: PMC2526191 DOI: 10.1084/jem.20080526] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mice with a T cell–specific deletion of Prdm1, encoding Blimp-1, have aberrant T cell homeostasis and develop fatal colitis. In this study, we show that one critical activity of Blimp-1 in T cells is to repress IL-2, and that it does so by direct repression of Il2 transcription, and also by repression of Fos transcription. Using these mechanisms Blimp-1 participates in an autoregulatory loop by which IL-2 induces Prdm1 expression and thus represses its own expression after T cell activation, ensuring that the immune response is appropriately controlled. This activity of Blimp-1 is important for cytokine deprivation–induced T cell death and for attenuating T cell proliferation in antigen-specific responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Gislâine A Martins
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|