1
|
Sabit H, Abouelnour S, Hassen BM, Magdy S, Yasser A, Wadan AHS, Abdel-Ghany S, Radwan F, Alqosaibi AI, Hafiz H, Awlya OFA, Arneth B. Anticancer Potential of Prebiotics: Targeting Estrogen Receptors and PI3K/AKT/mTOR in Breast Cancer. Biomedicines 2025; 13:990. [PMID: 40299687 PMCID: PMC12025111 DOI: 10.3390/biomedicines13040990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptors (ERs) play a critical role in breast cancer (BC) development and progression, with ERα being oncogenic and ERβ exhibiting tumor-suppressive properties. The interaction between ER signaling and other molecular pathways, such as PI3K/AKT/mTOR, influences tumor growth and endocrine resistance. Emerging research highlights the role of prebiotics in modulating gut microbiota, which may influence estrogen metabolism, immune function, and therapeutic responses in BC. This review explores the impact of prebiotics on estrogen receptor modulation, gut microbiota composition, immune regulation, and metabolic pathways in breast cancer. The potential of prebiotics as adjunctive therapies to enhance treatment efficacy and mitigate chemotherapy-related side effects is discussed. A comprehensive analysis of recent preclinical and clinical studies was conducted, examining the role of prebiotics in gut microbiota modulation, immune regulation, and metabolic reprogramming in breast cancer. The impact of short-chain fatty acids (SCFAs) derived from prebiotic fermentation on epigenetic regulation and endocrine resistance was also evaluated. Prebiotics were found to modulate the gut microbiota-estrogen axis, reduce inflammation, and influence immune responses. SCFAs demonstrated selective estrogen receptor downregulation and metabolic reprogramming, suppressing tumor growth. Synbiotic interventions mitigate chemotherapy-related side effects, improving the quality of life in breast cancer patients. Prebiotics offer a promising avenue for breast cancer prevention and therapy by modulating estrogen metabolism, immune function, and metabolic pathways. Future clinical trials are needed to validate their efficacy as adjunctive treatments in breast cancer management.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Sama Abouelnour
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Bassel M. Hassen
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Salma Magdy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Ahmed Yasser
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate 15888, Egypt;
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Faisal Radwan
- Center for Coastal Environmental Health and Biomolecular Research, NCCOS/NOS/NOAA, Charleston, SC 29412, USA
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hala Hafiz
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ohaad F. A. Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
2
|
Kisar Tunca S, Unal R. Adipocyte-derived fatty acid uptake induces obesity-related breast cancer progression: a review. Mol Biol Rep 2024; 52:39. [PMID: 39644365 DOI: 10.1007/s11033-024-10139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a metabolic disorder that occurs when excess energy taken into the body is stored as fat. It is known that this metabolic imbalance affects the development of other diseases such as cancer, cardiovascular diseases, insulin resistance, and diabetes. The main cellular component of adipose tissue is adipocytes, and the environmental interactions of adipocytes are important to study the mechanism of disorder formation. Breast tissue is rich in adipose tissue and obesity is known to be an important risk factor in the development of breast cancer. Altered adipogenesis and lipogenesis processes in adipocytes in breast tissue support tumor development through the transfer of fatty acids released from adipocytes. We believe that blending adipocyte biology with breast cancer development is important for investigating the mechanisms that regulate breast tumor malignant behavior and providing new targets for treatment. Fatty acids, which are an energy source for breast cancer cells, are discussed from molecular perspectives in this review.
Collapse
Affiliation(s)
- Selin Kisar Tunca
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
| | - Resat Unal
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey.
| |
Collapse
|
3
|
Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Network of Extracellular Traps in the Pathogenesis of Sterile Chronic Inflammatory Diseases: Role of Oxidative Stress and Potential Clinical Applications. Antioxid Redox Signal 2024; 41:396-427. [PMID: 37725535 DOI: 10.1089/ars.2023.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
4
|
Zhao X, Yan L, Yang Z, Zhang H, Kong L, Zhang N, He Y. A novel signature incorporating genes related to lipid metabolism and immune for prognostic and functional prediction of breast cancer. Aging (Albany NY) 2024; 16:8611-8629. [PMID: 38771140 PMCID: PMC11164511 DOI: 10.18632/aging.205828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Breast cancer prognosis and functioning have not been thoroughly examined in relation to immunological and lipid metabolism. However, there is a lack of prognostic and functional analyses of the relationship between lipid metabolism and immunity in breast cancer. METHODS DEGs in breast cancer were obtained from UCSC database, and lipid metabolism and immune-related genes were obtained from GSEA and Immune databases. A predictive signature was constructed using univariate Cox and LASSO regression on lipid metabolism and immune-related DEGs. The signature's prognostic significance was assessed using Kaplan-Meier, time-dependent ROC, and risk factor survival scores. Survival prognosis, therapeutic relevance, and functional enrichment were used to mine model gene biology. We selected IL18, which has never been reported in breast cancer before, in the signature to learn more about its function, potential to predict outcome, and immune system role. RT-PCR was performed to verify the true expression level of IL18. RESULTS A total of 136 DEGs associated with breast cancer responses to both immunity and lipid metabolism. Nine key genes (CALR, CCL5, CEPT, FTT3, CXCL13, FLT3, IL12B, IL18, and IL24, p < 1.6e-2) of breast cancer were identified, and a prognostic was successfully constructed with a good predictive ability. IL18 in the model also had good clinical prognostic guidance value and immune regulation and therapeutic potential. Furthermore, the expression of IL18 was higher than that in paracancerous tissue. CONCLUSIONS A unique predictive signature model could effectively predict the prognosis of breast cancer, which can not only achieve survival prediction, but also screen out key genes with important functional mechanisms to guide clinical drug experiments.
Collapse
Affiliation(s)
- Xiao Zhao
- Clinical Laboratory, People’s Hospital of Xinjin District, Chengdu 611430, China
| | - Lvjun Yan
- Tumor and Hematology Department, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Hui Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Lingshuang Kong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Na Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
5
|
Navarro-Ibarra MJ, Saucedo-Tamayo MDS, Alemán-Mateo H, Parra-Sánchez H, Othón-Ontiveros P, Hernández J, Caire-Juvera G. Association Between Interleukin 6 and C-Reactive Protein Serum Levels and Body Composition Compartments and Components in Breast Cancer Survivors. Biol Res Nurs 2024; 26:231-239. [PMID: 37844913 DOI: 10.1177/10998004231207022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Obesity is highly prevalent in breast cancer (BC) survivors. Adipose tissue promotes inflammation, affecting recurrence, morbidity, and quality of life. This study aimed to determine the relationship of body composition parameters with the levels of C-reactive protein (CRP) and interleukin 6 (IL-6) in female BC survivors. Additionally, we evaluated the association of log-transformed serum concentrations of CRP and IL-6 with the appendicular skeletal lean mass index (ASMI). The results showed that CRP was positively associated with body fat percentage (BFP; β adjusted = .08, 95% CI: .02-.14) in all participants, and with fat mass index (FMI; β = .24, 95% CI: .08-.40) only in premenopausal women. IL-6 was positively associated with FMI (β adjusted = .16, 95% CI: .03-.29), while ASMI decreased as CRP levels increased (β adjusted = -.30, 95% CI: -.53 to -.06). Interventions to improve body composition in BC survivors should also consider the role of inflammatory markers in changes in body composition to avoid sarcopenic obesity (SO) and the risk of BC recurrence.
Collapse
Affiliation(s)
- María Jossé Navarro-Ibarra
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
- Departamento de Nutrición, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | | | - Heliodoro Alemán-Mateo
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Héctor Parra-Sánchez
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | | | - Jesús Hernández
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Graciela Caire-Juvera
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| |
Collapse
|
6
|
Meneu A, Lavoué V, Guillermet S, Levêque J, Mathelin C, Brousse S. [How could physical activity decrease the risk of breast cancer development and recurrence?]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024; 52:158-164. [PMID: 38244776 DOI: 10.1016/j.gofs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVES Breast cancer is the most frequent and deadly cancer among women. In France, 50% of adults are currently overweight, mostly as a result of a sedentary lifestyle. Numerous studies have highlighted overweight, obesity and lack of physical activity as risk factors for the occurrence and prognosis of cancers, particularly breast cancer. The aim of this study was to understand the extent to which physical activity can improve this prognosis, and what the pathophysiology is. METHODS The Senology Commission of the Collège national des gynécologues et obstétriciens français (CNGOF) based its responses on an analysis of the international literature using a Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) methodology conducted on the PubMed database between 1994 and 2023. RESULTS A total of 70 articles were selected, demonstrating the role of regular physical activity in reducing the risk of breast cancer occurrence and recurrence. This role in controlling carcinogenesis is mediated by metabolic factors such as leptin, adiponectin and insulin, sex hormones and inflammation. The signaling pathways deregulated by these molecules are known carcinogenic pathways which could be used as therapeutic targets adapted to this population, without replacing the essential hygienic-dietary recommendations. CONCLUSION Physical activity has a protective effect on breast cancer risk and prognosis. We must therefore continue to raise awareness in the general population and promote physical activity as a means of primary, secondary, and tertiary prevention.
Collapse
Affiliation(s)
- Alisée Meneu
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France
| | - Vincent Lavoué
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France; Service de gynécologie-obstétrique, CHU de Rennes, Rennes, France
| | - Sophie Guillermet
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France
| | - Jean Levêque
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France; Service de gynécologie-obstétrique, CHU de Rennes, Rennes, France
| | - Carole Mathelin
- Service de chirurgie, ICANS, CHRU avenue Molière, avenue Albert-Calmette, 67200 Strasbourg, France
| | - Susie Brousse
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France; Inserm UMR_S 1242, Chemistry Oncogenesis Stress Signaling, université de Rennes, Rennes, France.
| |
Collapse
|
7
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
8
|
Muhamad NA, Maamor NH, Leman FN, Mohamad ZA, Bakon SK, Abdul Mutalip MH, Rosli IA, Aris T, Lai NM, Abu Hassan MR. The Global Prevalence of Nonalcoholic Fatty Liver Disease and its Association With Cancers: Systematic Review and Meta-Analysis. Interact J Med Res 2023; 12:e40653. [PMID: 37467012 PMCID: PMC10398554 DOI: 10.2196/40653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/22/2023] [Accepted: 04/19/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the common causes of chronic liver disease globally. Obesity, metabolic diseases, and exposure to some environmental agents contribute to NAFLD. NAFLD is commonly considered a precursor for some types of cancers. Since the leading causes of death in people with NAFLD are cardiovascular disease and extrahepatic cancers, it is important to understand the mechanisms of the progression of NAFLD to control its progression and identify its association with extrahepatic cancers. Thus, this review aims to estimate the global prevalence of NAFLD in association with the risk of extrahepatic cancers. OBJECTIVE We aimed to determine the prevalence of various cancers in NAFLD patients and the association between NAFLD and cancer. METHODS We searched PubMed, ProQuest, Scopus, and Web of Science from database inception to March 2022 to identify eligible studies reporting the prevalence of NAFLD and the risk of incident cancers among adult individuals (aged ≥18 years). Data from selected studies were extracted, and meta-analysis was performed using random effects models to obtain the pooled prevalence with the 95% CI. The quality of the evidence was assessed with the Newcastle-Ottawa Scale. RESULTS We identified 11 studies that met our inclusion criteria, involving 222,523 adults and 3 types of cancer: hepatocellular carcinoma (HCC), breast cancer, and other types of extrahepatic cancer. The overall pooled prevalence of NAFLD and cancer was 26% (95% CI 16%-35%), while 25% of people had NAFLD and HCC (95% CI 7%-42%). NAFLD and breast cancer had the highest prevalence out of the 3 forms of cancer at 30% (95% CI 14%-45%), while the pooled prevalence for NAFLD and other cancers was 21% (95% CI 12%-31%). CONCLUSIONS The review suggests that people with NAFLD may be at an increased risk of cancer that might not affect not only the liver but also other organs, such as the breast and bile duct. The findings serve as important evidence for policymakers to evaluate and recommend measures to reduce the prevalence of NAFLD through lifestyle and environmental preventive approaches. TRIAL REGISTRATION PROSPERO CRD42022321946; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=321946.
Collapse
Affiliation(s)
- Nor Asiah Muhamad
- Sector for Evidence-based Healthcare, National Institutes of Health, Ministry of Health, Setia Alam, Malaysia
| | - Nur Hasnah Maamor
- Sector for Evidence-based Healthcare, National Institutes of Health, Ministry of Health, Setia Alam, Malaysia
| | - Fatin Norhasny Leman
- Sector for Evidence-based Healthcare, National Institutes of Health, Ministry of Health, Setia Alam, Malaysia
| | - Zuraifah Asrah Mohamad
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Malaysia
| | - Sophia Karen Bakon
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Malaysia
| | - Mohd Hatta Abdul Mutalip
- Institute for Public Health, National Institutes of Health, Ministry of Health, Shah Alam, Malaysia
| | - Izzah Athirah Rosli
- Sector for Evidence-based Healthcare, National Institutes of Health, Ministry of Health, Setia Alam, Malaysia
| | - Tahir Aris
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Malaysia
| | - Nai Ming Lai
- School of Medicine, Taylor's University, Subang Jaya, Selangor, Malaysia
| | | |
Collapse
|
9
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
10
|
Zipinotti Dos Santos D, de Souza JC, Pimenta TM, da Silva Martins B, Junior RSR, Butzene SMS, Tessarolo NG, Cilas PML, Silva IV, Rangel LBA. The impact of lipid metabolism on breast cancer: a review about its role in tumorigenesis and immune escape. Cell Commun Signal 2023; 21:161. [PMID: 37370164 PMCID: PMC10304265 DOI: 10.1186/s12964-023-01178-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the second most frequent type of cancer in the world and most common among women, configuring a major challenge to global health. BC is a complex and heterogeneous disease that can be subdivided into distinct tumor types based on the expression of molecular markers predicting patient outcomes and response to therapy. A growing number of studies have tried to expand the known markers by investigating the association of altered lipid metabolism with BC immune escape, progression, and metastasis. In this review, we describe the metabolic peculiarities of each BC subtype, understanding how this influences its aggressiveness and identifying whether these intrinsic vulnerabilities of each subtype can play a role in therapeutic management and may affect immune system cells in the tumor microenvironment. CONCLUSION The evidence suggests so far that when changes occur in lipid pathways, it can affect the availability of structural lipids for membrane synthesis, lipid synthesis, and degradation that contribute to energy homeostasis and cell signaling functions. These findings will guide the next steps on the path to understanding the mechanisms underlying how lipids alterations are related to disparities in chemotherapeutic response and immune escape in BC. Video Abstract.
Collapse
Affiliation(s)
- Diandra Zipinotti Dos Santos
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
| | - Josiany Carlos de Souza
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil
| | - Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Roberto Silva Ribeiro Junior
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Solenny Maria Silva Butzene
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Nayara Gusmão Tessarolo
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo, (São Paulo), Brazil
| | | | - Ian Victor Silva
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Leticia B A Rangel
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil.
- Biochemistry Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil.
| |
Collapse
|
11
|
Zhao X, Liu X, Wu X, Fu P, Zhang X, Zhou M, Hao Y, Xu B, Yan L, Xiao J, Li X, Lv L, Yang H, Liu Z, Yang C, Wang X, Liao J, Jiang X, Zhang B, Li J. Associations between changes of smartphone pedometer-assessed step counts and levels of obesity-related breast cancer biomarkers in non-cancer women: A population-based observational study. J Sports Sci 2023; 41:937-946. [PMID: 37598352 DOI: 10.1080/02640414.2023.2249754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
While a higher level of physical activity (PA) is inversely associated with a higher breast cancer (BC) risk, the health benefits of daily steps on obesity-related BC biomarkers remain unclear. We aimed to understand the associations of changes in step counts with levels of five obesity-related BC biomarkers during a two-year follow-up. In total, 144 non-cancer women (47.96 ± 5.72) were observed on both 2019 and 2021. A structured questionnaire, daily steps and fasting blood samples were collected before (t0, 2019) and after (t1, 2021). Levels of biomarkers (IGF-binding proteins 3, adiponectin, soluble leptin receptor, C-reactive protein, and resistin) were assayed by ELISA. Participants were divided into persistent low steps, decreasing steps, increasing steps, and persistent high steps. Associations of categories on proposed biomarkers were estimated using linear regression models, with persistent low steps as reference. Associations between time-varying step counts with biomarkers were quantified using mixed linear models. Compared with persistent low steps, increasing steps is associated with a reduction in C-reactive protein level (β=-0.74, 95%CI=-1.23--0.26, P-value = 2.98 × 10-3). An inverse association between time-varying step counts with C-reactive protein level was identified, consistent across different obesity types and baseline step level categories. No association with daily step counts was observed for other proteins.
Collapse
Affiliation(s)
- Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Liu
- Department of Maternal and Child Health, Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Department of Maternal and Child Health, Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Xiaofan Zhang
- Department of Scientific Research & Management, The Second People's Hospital of Guiyang, Guiyang, China
| | - Min Zhou
- Department of Maternal and Child Health, Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Yu Hao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Xu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lanping Yan
- Department of Maternal and Child Health, Chengdu Shuangliu District Maternal and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingyue Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Lv
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqiang Liao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Akingbesote ND, Owusu D, Liu R, Cartmel B, Ferrucci LM, Zupa M, Lustberg MB, Sanft T, Blenman KRM, Irwin ML, Perry RJ. A review of the impact of energy balance on triple-negative breast cancer. J Natl Cancer Inst Monogr 2023; 2023:104-124. [PMID: 37139977 DOI: 10.1093/jncimonographs/lgad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Cancer cells cannot proliferate without sufficient energy to generate biomass for rapid cell division, as well as to fuel their functions at baseline. For this reason, many recent observational and interventional studies have focused on increasing energy expenditure and/or reducing energy intake during and after cancer treatment. The impact of variance in diet composition and in exercise on cancer outcomes has been detailed extensively elsewhere and is not the primary focus of this review. Instead, in this translational, narrative review we examine studies of how energy balance impacts anticancer immune activation and outcomes in triple-negative breast cancer (TNBC). We discuss preclinical, clinical observational, and the few clinical interventional studies on energy balance in TNBC. We advocate for the implementation of clinical studies to examine how optimizing energy balance-through changes in diet and/or exercise-may optimize the response to immunotherapy in people with TNBC. It is our conviction that by taking a holistic approach that includes energy balance as a key factor to be considered during and after treatment, cancer care may be optimized, and the detrimental effects of cancer treatment and recovery on overall health may be minimized.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Dennis Owusu
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana
| | - Ryan Liu
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Cedar Park High School, Cedar Park, TX, USA
| | - Brenda Cartmel
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Leah M Ferrucci
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | | | - Maryam B Lustberg
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Tara Sanft
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Kim R M Blenman
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Melinda L Irwin
- Yale School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
13
|
Allison E, Edirimanne S, Matthews J, Fuller SJ. Breast Cancer Survival Outcomes and Tumor-Associated Macrophage Markers: A Systematic Review and Meta-Analysis. Oncol Ther 2023; 11:27-48. [PMID: 36484945 PMCID: PMC9935786 DOI: 10.1007/s40487-022-00214-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Tumor-associated macrophages (TAMs) in breast cancer are associated with a poor prognosis. Early studies of TAMs were largely limited to the pan-macrophage marker CD68, however, more recently, an increasing number of studies have used CD163, a marker expressed by alternatively activated M2 macrophages and TAM subsets. We hypothesized that CD163-positive (CD163+) TAMs would be a better predictor of survival outcomes in breast cancer compared to CD68+ TAMs. METHODS We performed a systematic literature search of trials (from 1900 to August 2020) reporting overall survival (OS) or progression-free survival (PFS), breast cancer-specific survival (BCSS), TAM phenotype, and density. Thirty-two studies with 8446 patients were included. Meta-analyses were carried out on hazard ratios (HRs) for survival outcomes of breast cancer patients with a high density of TAMs (CD68+ and/or CD163+) compared to a low density of TAMs. RESULTS A high density of TAMs (CD68+ and/or CD163+) was associated with decreased OS (HR 1.69, 95% CI 1.37-2.07) and reduced PFS (HR 1.64; 95% CI 1.35-1.99). Subgrouping by CD marker type showed a lower OS for high density of CD163+ TAMs (HR 2.24; 95% CI 1.71-2.92) compared to a high density of CD68+ TAMs (HR 1.5; 95% CI 1.12-2). A high density of TAMs (CD68+ and/or CD163+) in triple-negative breast cancer (TNBC) cases was associated with lower OS (HR 2.81, 95% CI 1.35-5.84). CONCLUSION Compared to CD68+ TAMs, a high density of CD163+ TAMs that express a similar phenotype to M2 macrophages are a better predictor of poor survival outcomes in breast cancer.
Collapse
Affiliation(s)
- Eleanor Allison
- Sydney Medical School, Nepean Clinical School, The University of Sydney, Level 3, 62 Derby St, Kingswood, NSW, 2747, Australia
| | - Senarath Edirimanne
- Sydney Medical School, Nepean Clinical School, The University of Sydney, Level 3, 62 Derby St, Kingswood, NSW, 2747, Australia
| | - Jim Matthews
- Sydney Informatics Hub, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Stephen J Fuller
- Sydney Medical School, Nepean Clinical School, The University of Sydney, Level 3, 62 Derby St, Kingswood, NSW, 2747, Australia.
| |
Collapse
|
14
|
Chang CC, Hsu CC, Yu TH, Hung WC, Kuo SM, Chen CC, Wu CC, Chung FM, Lee YJ, Wei CT. Plasma levels and tissue expression of liver-type fatty acid-binding protein in patients with breast cancer. World J Surg Oncol 2023; 21:52. [PMID: 36800961 PMCID: PMC9938596 DOI: 10.1186/s12957-023-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Liver-type fatty acid-binding protein (L-FABP) is widely expressed in hepatocytes and plays a role in lipid metabolism. It has been demonstrated to be overexpressed in different types of cancer; however, few studies have investigated the association between L-FABP and breast cancer. The aim of this study was to assess the association between plasma concentrations of L-FABP in breast cancer patients and the expression of L-FABP in breast cancer tissue. METHOD A total of 196 patients with breast cancer and 57 age-matched control subjects were studied. Plasma L-FABP concentrations were measured using ELISA in both groups. The expression of L-FABP in breast cancer tissue was examined using immunohistochemistry. RESULT The patients had higher plasma L-FABP levels than the controls (7.6 ng/mL (interquartile range 5.2-12.1) vs. 6.3 ng/mL (interquartile range 5.3-8.5), p = 0.008). Multiple logistic regression analysis showed an independent association between L-FABP and breast cancer, even after adjusting for known biomarkers. Moreover, the rates of pathologic stage T2+T3+T4, clinical stage III, positive HER-2 receptor status, and negative estrogen receptor status were significantly higher in the patients with an L-FABP level greater than the median. Furthermore, the L-FABP level gradually increased with the increasing stage. In addition, L-FABP was detected in the cytoplasm, nuclear, or both cytoplasm and nuclear of all breast cancer tissue examined, not in the normal tissue. CONCLUSIONS Plasma L-FABP levels were significantly higher in the patients with breast cancer than in the controls. In addition, L-FABP was expressed in breast cancer tissue, which suggests that L-FABP may be involved in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Chi-Chang Chang
- grid.414686.90000 0004 1797 2180Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung, 82445 Taiwan ,grid.412019.f0000 0000 9476 5696School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chia-Chang Hsu
- grid.414686.90000 0004 1797 2180Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,Health Examination Center, E-Da Dachang Hospital, Kaohsiung, 80794 Taiwan ,grid.411447.30000 0004 0637 1806The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Teng-Hung Yu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Wei-Chin Hung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Shyh-Ming Kuo
- grid.411447.30000 0004 0637 1806Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chia-Chi Chen
- grid.414686.90000 0004 1797 2180Department of Pathology, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Cheng-Ching Wu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Fu-Mei Chung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan
| | | | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan. .,Division of General Surgery, Department of Surgery, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445, Taiwan. .,Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan. .,Department of Electrical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
15
|
Chiang YF, Huang KC, Chen HY, Huang TC, Ali M, Chang HY, Shieh TM, Shih YH, Wang KL, Huang YJ, Chung CP, Hsia SM. The Adipokine Visfatin Modulates Cancer Stem Cell Properties in Triple-Negative Breast Cancer. Biomedicines 2023; 11:biomedicines11020297. [PMID: 36830834 PMCID: PMC9953233 DOI: 10.3390/biomedicines11020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Obesity is a cancer progression risk factor; excessive adipocytes increase adipokine secretion. Visfatin, a novel adipokine highly expressed in cancer patients, is related to breast cancer risk. The modulation of nicotinamide adenine dinucleotide (NAD+) metabolism and the induction of a tumorigenic environment plays a vital role in cancer progression. Among cancer cell types, cancer stem-like cells (CSCs) with self-renewal and chemotherapy-resistance abilities could modulate tumor progression and cancer recurrence ability. In this study, we focused on visfatin's modulation effect on stemness-related properties using the high-malignancy breast cancer cell line MDA-MB-231 in in vitro and in vivo studies. Visfatin treatment significantly increased both the sphere number and sphere diameter and increased the protein expression of NANOG homeobox (NANOG), sex-determining region Y-box 2 (SOX2), and octamer-binding transcription factor 4 (OCT4), as well as SIRT1 protein levels. The serum angiogenesis marker VEGF and extracellular nicotinamide phosphoribosyl transferase (NAMPT, visfatin) were induced after visfatin treatment, increasing the stemness and angiogenesis environment, which were significantly reduced by the visfatin inhibitor FK866. Our results demonstrate that the visfatin-activated SIRT-SOX2 axis promotes triple-negative breast cancer stemness and enriches the tumorigenic microenvironment.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hsin-Yi Chang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114201, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan City 710301, Taiwan
| | - Cheng-Pei Chung
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6558)
| |
Collapse
|
16
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
17
|
Pereira IC, Mascarenhas IF, Capetini VC, Ferreira PMP, Rogero MM, Torres-Leal FL. Cellular reprogramming, chemoresistance, and dietary interventions in breast cancer. Crit Rev Oncol Hematol 2022; 179:103796. [PMID: 36049616 DOI: 10.1016/j.critrevonc.2022.103796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/16/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022] Open
Abstract
Breast cancer (BC) diagnosis has been associated with significant risk factors, including family history, late menopause, obesity, poor eating habits, and alcoholism. Despite the advances in the last decades regarding cancer treatment, some obstacles still hinder the effectiveness of therapy. For example, chemotherapy resistance is common in locally advanced or metastatic cancer, reducing treatment options and contributing to mortality. In this review, we provide an overview of BC metabolic changes, including the impact of restrictive diets associated with chemoresistance, the therapeutic potential of the diet on tumor progression, pathways related to metabolic health in oncology, and perspectives on the future in the area of oncological nutrition.
Collapse
Affiliation(s)
- Irislene Costa Pereira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Isabele Frazão Mascarenhas
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Sao Paulo, Brazil
| | - Francisco Leonardo Torres-Leal
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
18
|
Halada S, Casado-Medrano V, Baran JA, Lee J, Chinmay P, Bauer AJ, Franco AT. Hormonal Crosstalk Between Thyroid and Breast Cancer. Endocrinology 2022; 163:6588704. [PMID: 35587175 PMCID: PMC9653009 DOI: 10.1210/endocr/bqac075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/09/2022]
Abstract
Differentiated thyroid cancer and breast cancer account for a significant portion of endocrine-related malignancies and predominately affect women. As hormonally responsive tissues, the breast and thyroid share endocrine signaling. Breast cells are responsive to thyroid hormone signaling and are affected by altered thyroid hormone levels. Thyroid cells are responsive to sex hormones, particularly estrogen, and undergo protumorigenic processes upon estrogen stimulation. Thyroid and sex hormones also display significant transcriptional crosstalk that influences oncogenesis and treatment sensitivity. Obesity-related adipocyte alterations-adipocyte estrogen production, inflammation, feeding hormone dysregulation, and metabolic syndromes-promote hormonal alterations in breast and thyroid tissues. Environmental toxicants disrupt endocrine systems, including breast and thyroid homeostasis, and influence pathologic processes in both organs through hormone mimetic action. In this brief review, we discuss the hormonal connections between the breast and thyroid and perspectives on hormonal therapies for breast and thyroid cancer. Future research efforts should acknowledge and further explore the hormonal crosstalk of these tissues in an effort to further understand the prevalence of thyroid and breast cancer in women and to identify potential therapeutic options.
Collapse
Affiliation(s)
- Stephen Halada
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria Casado-Medrano
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia A Baran
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joshua Lee
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Poojita Chinmay
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aime T Franco
- Correspondence: Aime T. Franco, Ph.D., Pediatric Thyroid Center Translational Laboratory, The University of Pennsylvania and Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Flores-García LC, Ventura-Gallegos JL, Romero-Córdoba SL, Hernández-Juárez AJ, Naranjo-Meneses MA, García-García E, Méndez JP, Cabrera-Quintero AJ, Ramírez-Ruíz A, Pedraza-Sánchez S, Meraz-Cruz N, Vadillo-Ortega F, Zentella-Dehesa A. Sera from women with different metabolic and menopause states differentially regulate cell viability and Akt activation in a breast cancer in-vitro model. PLoS One 2022; 17:e0266073. [PMID: 35413055 PMCID: PMC9004774 DOI: 10.1371/journal.pone.0266073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/13/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is associated with an increased incidence and aggressiveness of breast cancer and is estimated to increment the development of this tumor by 50 to 86%. These associations are driven, in part, by changes in the serum molecules. Epidemiological studies have reported that Metformin reduces the incidence of obesity-associated cancer, probably by regulating the metabolic state. In this study, we evaluated in a breast cancer in-vitro model the activation of the IR-β/Akt/p70S6K pathway by exposure to human sera with different metabolic and hormonal characteristics. Furthermore, we evaluated the effect of brief Metformin treatment on sera of obese postmenopausal women and its impact on Akt and NF-κB activation. We demonstrated that MCF-7 cells represent a robust cellular model to differentiate Akt pathway activation influenced by the stimulation with sera from obese women, resulting in increased cell viability rates compared to cells stimulated with sera from normal-weight women. In particular, stimulation with sera from postmenopausal obese women showed an increase in the phosphorylation of IR-β and Akt proteins. These effects were reversed after exposure of MCF-7 cells to sera from postmenopausal obese women with insulin resistance with Metformin treatment. Whereas sera from women without insulin resistance affected NF-κB regulation. We further demonstrated that sera from post-Metformin obese women induced an increase in p38 phosphorylation, independent of insulin resistance. Our results suggest a possible mechanism in which obesity-mediated serum molecules could enhance the development of luminal A-breast cancer by increasing Akt activation. Further, we provided evidence that the phenomenon was reversed by Metformin treatment in a subgroup of women.
Collapse
Affiliation(s)
- Laura C. Flores-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - José L. Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Sandra L. Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| | - Alfredo J. Hernández-Juárez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - María A. Naranjo-Meneses
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Eduardo García-García
- Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alberto J. Cabrera-Quintero
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Antonio Ramírez-Ruíz
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, IIBO, UNAM, Mexico City, Mexico
| |
Collapse
|
20
|
The Complex Biology of the Obesity-Induced, Metastasis-Promoting Tumor Microenvironment in Breast Cancer. Int J Mol Sci 2022; 23:ijms23052480. [PMID: 35269622 PMCID: PMC8910079 DOI: 10.3390/ijms23052480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in women contributing to cancer-related death in the advanced world. Apart from the menopausal status, the trigger for developing breast cancer may vary widely from race to lifestyle factors. Epidemiological studies refer to obesity-associated metabolic changes as a critical risk factor behind the progression of breast cancer. The plethora of signals arising due to obesity-induced changes in adipocytes present in breast tumor microenvironment, significantly affect the behavior of adjacent breast cells. Adipocytes from white adipose tissue are currently recognized as an active endocrine organ secreting different bioactive compounds. However, due to excess energy intake and increased fat accumulation, there are morphological followed by secretory changes in adipocytes, which make the breast microenvironment proinflammatory. This proinflammatory milieu not only increases the risk of breast cancer development through hormone conversion, but it also plays a role in breast cancer progression through the activation of effector proteins responsible for the biological phenomenon of metastasis. The aim of this review is to present a comprehensive picture of the complex biology of obesity-induced changes in white adipocytes and demonstrate the relationship between obesity and breast cancer progression to metastasis.
Collapse
|
21
|
Pham DV, Park PH. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res 2022; 41:9. [PMID: 34986886 PMCID: PMC8729140 DOI: 10.1186/s13046-021-02223-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Adiponectin, the most abundant adipokine derived from adipose tissue, exhibits a potent suppressive effect on the growth of breast cancer cells; however, the underlying molecular mechanisms for this effect are not completely understood. Fatty acid metabolic reprogramming has recently been recognized as a crucial driver of cancer progression. Adiponectin demonstrates a wide range of metabolic activities for the modulation of lipid metabolism under physiological conditions. However, the biological actions of adiponectin in cancer-specific lipid metabolism and its role in the regulation of cancer cell growth remain elusive. Methods The effects of adiponectin on fatty acid metabolism were evaluated by measuring the cellular neutral lipid pool, free fatty acid level, and fatty acid oxidation (FAO). Colocalization between fluorescent-labeled lipid droplets and LC3/lysosomes was employed to detect lipophagy activation. Cell viability and apoptosis were examined by MTS assay, caspase-3/7 activity measurement, TUNEL assay, and Annexin V binding assay. Gene expression was determined by real time-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The transcriptional activity of SREBP-1 was examined by a specific dsDNA binding assay. The modulatory roles of SIRT-1 and adiponectin-activated mediators were confirmed by gene silencing and/or using their pharmacological inhibitors. Observations from in vitro assays were further validated in an MDA-MB-231 orthotopic breast tumor model. Results Globular adiponectin (gAcrp) prominently decreased the cellular lipid pool in different breast cancer cells. The cellular lipid deficiency promoted apoptosis by causing disruption of lipid rafts and blocking raft-associated signal transduction. Mechanistically, dysregulated cellular lipid homeostasis by adiponectin was induced by two concerted actions: 1) suppression of fatty acid synthesis (FAS) through downregulation of SREBP-1 and FAS-related enzymes, and 2) stimulation of lipophagy-mediated lipolysis and FAO. Notably, SIRT-1 induction critically contributed to the adiponectin-induced metabolic alterations. Finally, fatty acid metabolic remodeling by adiponectin and the key role of SIRT-1 were confirmed in nude mice bearing breast tumor xenografts. Conclusion This study elucidates the multifaceted role of adiponectin in tumor fatty acid metabolic reprogramming and provides evidence for the connection between its metabolic actions and suppression of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02223-y.
Collapse
Affiliation(s)
- Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea. .,Research Institute of cell culture, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
22
|
Maharjan CK, Mo J, Wang L, Kim MC, Wang S, Borcherding N, Vikas P, Zhang W. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers (Basel) 2021; 14:cancers14010206. [PMID: 35008370 PMCID: PMC8744660 DOI: 10.3390/cancers14010206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Sameul Wang
- Canyonoak Consulting LLC, San Diego, CA 92127, USA;
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Praveen Vikas
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
- Mechanism of Oncogenesis Program, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence: to: ; Tel.: +1-352-273-6748
| |
Collapse
|
23
|
Rajarajan D, Natesh J, Penta D, Meeran SM. Dietary Piperine Suppresses Obesity-Associated Breast Cancer Growth and Metastasis by Regulating the miR-181c-3p/ PPARα Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15562-15574. [PMID: 34905918 DOI: 10.1021/acs.jafc.1c05670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adipocyte-derived leptin activates multiple oncogenic signaling, leading to breast cancer cell progression and metastasis. Hence, finding effective strategies to inhibit the oncogenic effects of leptin would provide a novel approach for disrupting obesity-associated breast cancer. In the current study, we explored the role of piperine, a major plant alkaloid from Piper nigrum (black pepper), against leptin-induced breast cancer. Piperine treatment significantly inhibited leptin-induced breast cancer cell proliferation, colony formation, migration, and invasion. We found that piperine downregulated the expression of PPARα, a predicted target of miR-181c-3p. Mechanistically, piperine potentiates miR-181c-3p-mediated anticancer potential in leptin-induced breast cancer cells. Interestingly, the knockdown of PPARα reduced the proliferative potential of leptin-induced breast cancer cells. Further, oral administration of piperine inhibited breast tumor growth in diet-induced obese mice, accompanied by the upregulation of miR-181c-3p and downregulation of PPARα expression. Together, piperine represents a potential candidate for further development as an anticancer agent for treating obesity-associated breast cancer.
Collapse
Affiliation(s)
- Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Leng W, Pu D, Jiang J, Lei X, Wu Q, Chen B. Effect of Metformin on Breast Density in Overweight/Obese Premenopausal Women. Diabetes Metab Syndr Obes 2021; 14:4423-4432. [PMID: 34764661 PMCID: PMC8572728 DOI: 10.2147/dmso.s330625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study investigated the effects of metformin on breast density in overweight/obese premenopausal women. METHODS Overweight/obese premenopausal women (n=120) were randomly assigned to the metformin or placebo group, and all women received lifestyle interventions. The outcomes included weight, BMI, FPG, FIN, glucose, HOMA-IR, LDL-C, HDL-C, TG, TC, SBP, DBP, FSH, E, AD, and the BIRADS grade, and the incidence of breast cancer was assessed by pathological biopsy and BIRADS grade greater than 4. RESULTS In total, 120 overweight/obese women completed the 1-year trial. Seven patients had a BIRADS grade greater than 4, including 5 patients who were biopsy positive, in the control group, and 2 patients had a BIRADS grade greater than 4, including 1 patient who was biopsy positive, in the metformin group. Compared with those in the control group, the body weight, BMI, FIN, FPG, HOMA-IR, TC, BIRADS grade and positive pathological biopsy rate in the metformin group were significantly decreased (P<0.05), while AD was significantly increased (P<0.05). The correlation analysis indicated that the BIRADS grade was significantly correlated with weight, BMI, FPG, FIN, HOMA-IR, SBP, AD and the positive pathological biopsy rate, and the positive pathological biopsy rate was significantly correlated with weight, BMI, HOMA-IR, SBP, AD and BIRADS grade. The logistic regression analysis revealed that the BIRADS grade was significantly correlated with the positive pathological biopsy rate and AD and that the positive pathological biopsy rate was significantly correlated with the BIRADS grade. CONCLUSION As adjunctive therapy, the combination of lifestyle changes and metformin was found to be a safe strategy for improving related metabolic markers and increasing adiponectin. The BIRADS grade was significantly correlated with the positive pathological biopsy rate and AD, and the positive pathological biopsy rate was significantly correlated with the BIRADS grade.
Collapse
Affiliation(s)
- Weiling Leng
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Danlan Pu
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Juan Jiang
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xiaotian Lei
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Qinan Wu
- Endocrinology Department, Chongqing Medical University Affiliated Dazu Hospital, Dazu District People’s Hospital, Chongqing, People’s Republic of China
| | - Bing Chen
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| |
Collapse
|
25
|
'Energy-Dense, High-SFA and Low-Fiber' Dietary Pattern Lowered Adiponectin but Not Leptin Concentration of Breast Cancer Survivors. Nutrients 2021; 13:nu13103339. [PMID: 34684340 PMCID: PMC8540181 DOI: 10.3390/nu13103339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/01/2023] Open
Abstract
Dietary pattern (DP) and its relationship with disease biomarkers have received recognition in nutritional epidemiology investigations. However, DP relationships with adipokines (i.e., adiponectin and leptin) among breast cancer survivors remain unclear. Therefore, we assessed relationships between DP and high-molecular weight (HMW) adiponectin and leptin concentration among breast cancer survivors. This cross-sectional study involved 128 breast cancer survivors who attended the oncology outpatient clinic at two main government hospitals in the East Coast of Peninsular Malaysia. The serum concentration of HMW adiponectin and leptin were measured using enzyme-linked immunosorbent assay (ELISA) kits. A reduced rank regression method was used to analyze DP. Relationships between DP with HMW adiponectin and leptin were examined using regression models. The findings show that with every 1-unit increase in the ‘energy-dense, high-SFA, low-fiber’ DP z-score, there was a reduction by 0.41 μg/mL in HMW adiponectin which was independent of age, BMI, education level, occupation status, cancer stage, and duration since diagnosis. A similar relationship with leptin concentration was not observed. In conclusion, the ‘energy-dense, high-saturated fat and low-fiber’ DP, which is characterized by high intake levels of sugar-sweetened drinks and fat-based spreads but low intake of fruits and vegetables, is an unhealthy dietary pattern and unfavorable for HMW adiponectin concentration, but not for leptin. These findings could serve as a basis in developing specific preventive strategies that are tailored to the growing population of breast cancer survivors.
Collapse
|
26
|
Sambyal V, Guleria K, Kapahi R, Manjari M, Sudan M, Uppal MS, Singh NR. Association of VEGF haplotypes with breast cancer risk in North-West Indians. BMC Med Genomics 2021; 14:209. [PMID: 34429108 PMCID: PMC8386001 DOI: 10.1186/s12920-021-01060-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Angiogenesis is a complex and coordinated process regulated by different growth factors and is one of the hallmark features of cancer. VEGF is one of the most important endothelial cell mitogen and has a critical role in normal physiological and tumor angiogenesis. The objective of this study was to investigate the potential association of haplotypes of six VEGF polymorphisms with breast cancer risk in North-West Indians. METHODS Samples of 250 breast cancer patients and 250 age and sex matched controls were genotyped for VEGF -2578C/A, -2549I/D, -460T/C, +405C/G, -7C/T and +936C/T polymorphisms. Haplotypes were generated to determine the better contribution of VEGF polymorphisms to breast cancer risk. RESULTS Haplotypes CDTCCC (OR = 0.56, 95%CI, 0.38-0.81; p = 0.003) and CDTGCC (OR = 0.63, 95%CI, 0.44-0.92; p = 0.018) of VEGF -2578C/A, -2549I/D, -460T/C, +405C/G, -7C/T and +936C/T polymorphisms were significantly associated with decreased risk of breast cancer. CDTCCC haplotype was also significantly associated with reduced risk of breast cancer in pre and post menopausal as well as both obese and non obese patients. Haplotype CDTGCC was marginally associated (p = 0.07) with reduced risk of breast cancer in non-obese patients as compared with non-obese controls where as haplotype AICGTC was marginally associated (p = 0.09) with reduced risk of breast cancer in obese patients when compared with non-obese patients. The CDTGCC haplotype was significantly associated with increased risk of breast cancer in premenopausal obese patients (OR = 1.98, 95%CI, 1.10-3.56; p = 0.02). CONCLUSIONS Our data indicated that CDTCCC and CDTGCC haplotypes of VEGF -2578C/A, -2549I/D, -460T/C, +405C/G, -7C/T and +936C/T polymorphisms were significantly associated with breast cancer risk in North-West Indians. Further studies on multiethnic groups with larger sample size are required to confirm our results.
Collapse
Affiliation(s)
- Vasudha Sambyal
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kamlesh Guleria
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Ruhi Kapahi
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mridu Manjari
- Department of Pathology, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India
| | - Meena Sudan
- Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India
| | - Manjit Singh Uppal
- Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India
| | - Neeti Rajan Singh
- Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India
| |
Collapse
|
27
|
García-Estévez L, Calvo I, Pérez S, Gallegos I, Díaz E, Sampayo-Cordero M, Oltra SS, Moreno-Bueno G. Predictive Role of Leptin Receptor (Ob-R) Overexpression in Patients with Early Breast Cancer Receiving Neoadjuvant Systemic Treatment. Cancers (Basel) 2021; 13:cancers13133269. [PMID: 34210055 PMCID: PMC8268260 DOI: 10.3390/cancers13133269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The primary aim of this retrospective study was to investigate the correlation between the immunohistochemical expression of Ob-R (leptin receptor) with pCR (pathological complete response) in early breast cancer patients receiving neoadjuvant systemic treatment (NST). A total of 100 women with breast cancer receiving NST (2017-2020) followed by surgical resection were retrospectively obtained. Demographic parameters and clinicopathological factors (e.g., treatment modalities, immunohistochemistry (IHC), and cancer subtype) were obtained from the patient's clinical records. In the analyzed breast cancer cohort, high expression of Ob-R was found in 52% of tumors and there was a significantly higher incidence in the HER2+ and TNBC subgroups. Overall, a significantly greater percentage of patients with Ob-R positive tumors achieved pCR compared with Ob-R negative patients (57.7% vs. 27.1%; p = 0.002). This result was observed in most breast cancer subtypes. In patients with HER2+ breast cancer, there was no difference in Ob-R expression in relation to the HR status. Ob-R cell positivity was significantly higher in younger breast cancer patients (p = 0.008), those who were premenopausal (p = 0.011), and in those with a BMI > 25 kg/m2 (p = 0.019). A significantly greater percentage of early breast cancer patients with Ob-R positive tumors achieved pCR compared with Ob-R negative patients. Furthermore, breast cancer patients with positive Ob-R expression were significantly younger than those with negative Ob-R expression. This association was not explained by differences in BMI between young and old patients.
Collapse
Affiliation(s)
- Laura García-Estévez
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (I.C.); (S.P.); (I.G.); (E.D.); (S.S.O.); (G.M.-B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| | - Isabel Calvo
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (I.C.); (S.P.); (I.G.); (E.D.); (S.S.O.); (G.M.-B.)
| | - Silvia Pérez
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (I.C.); (S.P.); (I.G.); (E.D.); (S.S.O.); (G.M.-B.)
| | - Isabel Gallegos
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (I.C.); (S.P.); (I.G.); (E.D.); (S.S.O.); (G.M.-B.)
| | - Eva Díaz
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (I.C.); (S.P.); (I.G.); (E.D.); (S.S.O.); (G.M.-B.)
| | - Miguel Sampayo-Cordero
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain;
- Optimapharm, Biostatistics Department, Parc Bit Edifici Disset A2, 07121 Palma de Mallorca, Spain
| | - Sara S Oltra
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (I.C.); (S.P.); (I.G.); (E.D.); (S.S.O.); (G.M.-B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Biochemistry Department, Instituto de Investigaciones Biomédoicas ‘Alberto Sols’ (CSIC-UAM), Universidad Autónoma de Madrid (UAM), IdiPaz, 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (I.C.); (S.P.); (I.G.); (E.D.); (S.S.O.); (G.M.-B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Biochemistry Department, Instituto de Investigaciones Biomédoicas ‘Alberto Sols’ (CSIC-UAM), Universidad Autónoma de Madrid (UAM), IdiPaz, 28029 Madrid, Spain
| |
Collapse
|
28
|
Dong S, Wang Z, Shen K, Chen X. Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis. Front Oncol 2021; 11:629666. [PMID: 33842335 PMCID: PMC8027241 DOI: 10.3389/fonc.2021.629666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is a type of multifactorial metabolic disease with the presence of at least three factors: obesity, diabetes mellitus, low high-density lipoprotein, hypertriglyceridemia, and hypertension. Recent studies have shown that metabolic syndrome and its related components exert a significant impact on the initiation, progression, treatment response, and prognosis of breast cancer. Metabolic abnormalities not only increase the disease risk and aggravate tumor progression but also lead to unfavorable treatment responses and more treatment side effects. Moreover, biochemical reactions caused by the imbalance of these metabolic components affect both the host general state and organ-specific tumor microenvironment, resulting in increased rates of recurrence and mortality. Therefore, this review discusses the recent advances in the association of metabolic syndrome and breast cancer, providing potential novel therapeutic targets and intervention strategies to improve breast cancer outcome.
Collapse
Affiliation(s)
| | | | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Soltani S, Abdollahi S, Aune D, Jayedi A. Body mass index and cancer risk in patients with type 2 diabetes: a dose-response meta-analysis of cohort studies. Sci Rep 2021; 11:2479. [PMID: 33510262 PMCID: PMC7844243 DOI: 10.1038/s41598-021-81671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Although obesity has been associated with an increased cancer risk in the general population, the association in patients with type 2 diabetes (T2D) remains controversial. We conducted a dose-response meta-analysis of cohort studies of body mass index (BMI) and the risk of total and site-specific cancers in patients with T2D. A systematic literature search was conducted in PubMed, Scopus, and Medline until September 2020 for cohort studies on the association between BMI and cancer risk in patients with T2D. Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated using random effects models. Ten prospective and three retrospective cohort studies (3,345,031 participants and 37,412 cases) were included in the meta-analysis. Each 5-unit increase in BMI (kg/m2) was associated with a 6% higher risk of total cancer (RR: 1.06, 95% CI 1.01, 1.10; I2 = 55.4%, n = 6), and with a 12% increased risk in the analysis of breast cancer (RR: 1.12, 95% CI 1.05, 1.20; I2 = 0%, n = 3). The pooled RRs showed no association with prostate cancer (RR: 1.02, 95% CI 0.92, 1.13; I2 = 64.6%, n = 4), pancreatic cancer (RR: 0.97, 95% CI 0.84, 1.11; I2 = 71%, n = 3), and colorectal cancer (RR: 1.05, 95% CI 0.98, 1.13; I2 = 65.9%, n = 2). There was no indication of nonlinearity for total cancer (Pnon-linearity = 0.99), however, there was evidence of a nonlinear association between BMI and breast cancer (Pnon-linearity = 0.004) with steeper increases in risk from a BMI around 35 and above respectively. Higher BMI was associated with a higher risk of total, and breast cancer but not with risk of other cancers, in patients with T2D, however, further studies are needed before firm conclusions can be drawn.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ahmad Jayedi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
30
|
Grandhaye J, Hmadeh S, Plotton I, Levasseur F, Estienne A, LeGuevel R, Levern Y, Ramé C, Jeanpierre E, Guerif F, Dupont J, Froment P. The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells. Mol Cell Endocrinol 2021; 520:111080. [PMID: 33189865 DOI: 10.1016/j.mce.2020.111080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
During obesity, excess body weight is not only associated with an increased risk of type 2-diabetes, but also several other pathological processes, such as infertility. Adipose tissue is the largest endocrine organ of the body that produces adipokines, including adiponectin. Adiponectin has been reported to control fertility through the hypothalamic-pituitary-gonadal axis, and folliculogenesis in the ovaries. In this study, we focused on a recent adiponectin-like synthetic agonist called AdipoRon, and its action in human luteinized granulosa cells. We demonstrated that AdipoRon activated the adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor alpha (PPAR) signalling pathways in human luteinized granulosa cells. A 25 μM AdipoRon stimulation reduced granulosa cell proliferation by inducing cell cycle arrest in G1, associated with PTEN and p53 pathway activation. In addition, AdipoRon perturbed cell metabolism by decreasing mitochondrial activity and ATP production. In human luteinized granulosa cells, AdipoRon increased phosphodiesterase activity, leading to a drop in cyclic adenosine monophosphate (cAMP) production, aromatase expression and oestrogens secretion. In conclusion, AdipoRon impacted folliculogenesis by altering human luteinized granulosa cell function, via steroid production and cell proliferation. This agonist may have applications for improving ovarian function in metabolic disorders or granulosa cancers.
Collapse
Affiliation(s)
- Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Sandy Hmadeh
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Ingrid Plotton
- Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, Bron, France
| | - Floriane Levasseur
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Rémy LeGuevel
- Plate-forme ImPACcell, Université de Rennes 1, France
| | - Yves Levern
- INRA UMR Infectiologie et Santé Publique, Service de Cytométrie, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Eric Jeanpierre
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | | | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France.
| |
Collapse
|
31
|
Izuegbuna OO, Olawumi HO, Olatoke SA, Durotoye I. An Evaluation of Inflammatory and Nutritional Status of Breast Cancer Outpatients in a Tertiary Hospital in Nigeria. Nutr Cancer 2021; 74:90-99. [PMID: 33410361 DOI: 10.1080/01635581.2020.1870703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM To assess the relationship between nutritional status and inflammatory markers of breast cancer patients, and to identify predictors of malnutrition in these patients. METHODS This is a cross-sectional study of 45 patients with breast cancer assessed between January and June 2018. Nutritional status was evaluated by objective and subjective methods. The inflammatory markers and inflammation-based scores evaluated were C-reactive protein (CRP), albumin, erythrocyte sedimentation rate (ESR), Glasgow Prognostic Score (GPS), CRP/albumin ratio, and Albumin/CRP ratio. RESULTS A total of 45 patients were evaluated. Majority of the patients have high levels of both CRP and ESR (73.3% and 86.7% respectively). More than 70% of the patients were well nourished. There was no significant association between CRP (P = 0.067), ESR (P = 0.094) and SGA (Subjective Global Assessment) categories. Albumin (P < 0.001), Albumin/CRP ratio (P = 0.002), CRP/albumin ratio (P = < 0.001), and GPS (P < 0.001) were significantly associated with SGA categories. On multivariate analysis, albumin (P < 0.001), Albumin/CRP ratio (P = 0.004), CRP/albumin ratio (P = 0.009), GPS (P = 0.01), and ECOG (P = 0.009) were the only markers independently related to malnutrition. CONCLUSION The inflammation-based scores were significantly associated with malnutrition and can be used as biochemical nutritional assessment tools in cancer patients.
Collapse
Affiliation(s)
- Ogochukwu O Izuegbuna
- Department of Haematology and Blood Transfusion, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Hannah O Olawumi
- Department of Haematology and Blood Transfusion, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Samuel A Olatoke
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Idayat Durotoye
- Department of Haematology and Blood Transfusion, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| |
Collapse
|
32
|
Veracruz N, Hameed B, Saab S, Wong RJ. The Association Between Nonalcoholic Fatty Liver Disease and Risk of Cardiovascular Disease, Stroke, and Extrahepatic Cancers. J Clin Exp Hepatol 2021; 11:45-81. [PMID: 33679048 PMCID: PMC7897860 DOI: 10.1016/j.jceh.2020.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND & AIMS Although primarily a disease with liver-specific complications, nonalcoholic fatty liver disease (NAFLD) is a systemic disease with extrahepatic complications. We aim to evaluate the association between NAFLD and cardiovascular disease (CVD), stroke and cerebrovascular disease, and extrahepatic cancers. METHODS We searched MEDLINE, EMBASE, and Cochrane Systematic Review Database from January 1, 2000 to July 1, 2019 to identify peer-reviewed English language literature using predefined keywords for NAFLD, CVD, stroke and cerebrovascular disease, and extrahepatic cancers among adults. Two reviewers independently selected studies for inclusion. Measures of association between NAFLD and CVD, stroke and cerebrovascular disease, and extrahepatic cancers were extracted. Quality assessed using Newcastle-Ottawa scale and Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS Thirty studies were included evaluating CVD, 16 studies evaluating stroke or cerebrovascular disease, and 13 studies evaluating extrahepatic cancers. On pooled meta-analysis assessment, NAFLD was associated with increased risk of CVD (risk ratio [RR]: 1.78; 95% confidence interval [CI]: 1.52-2.08) and stroke or cerebrovascular disease (RR: 2.08, 95% CI: 1.72-2.51). Significant heterogeneity in assessing extrahepatic cancers prevented applying meta-analysis methods, but NAFLD seemed to be associated with increased risk of breast and colorectal cancers. Overall level of quality of studies were very low by GRADE. CONCLUSIONS NAFLD is associated with increased risks of CVD and stroke or cerebrovascular disease among adults. There appears to be increased risk of breast and colorectal cancers. Given low quality of evidence, it is premature to make any strong conclusions to modify CVD, stroke, or cancer screening policies in patients with NAFLD.
Collapse
Affiliation(s)
- Nicolette Veracruz
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Bilal Hameed
- Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, CA, USA
| | - Sammy Saab
- Division of Gastroenterology and Hepatology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Robert J. Wong
- Division of Gastroenterology and Hepatology, Alameda Health System, Highland Hospital, Oakland, CA, USA
- Address for correspondence:
| |
Collapse
|
33
|
Luo Y, Li HB, Zhang Y, Wu YX, Shen D, Che YQ. Combination of Endogenous Estradiol and Adipokine Leptin in Breast Cancer Risk and Prognosis Assessment in Postmenopausal Chinese Women. Front Endocrinol (Lausanne) 2021; 12:766463. [PMID: 34970222 PMCID: PMC8712642 DOI: 10.3389/fendo.2021.766463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Our study aims to clarify the role of estradiol and leptin in breast cancer risk and prognostic assessment in postmenopausal Chinese women. DESIGN The serum circulating estradiol and leptin level was detected by ELISA. Then the correlation between estradiol, leptin level, and clinical characteristics was analyzed using Fisher's exact test. Next, the Kaplan-Meier model was used to analyze the association between estradiol, leptin, and prognosis of postmenopausal breast cancer patients in our cohort and the TCGA dataset. SETTING The study was conducted at the National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College. PATIENTS A total of 182 postmenopausal breast cancer patients and 111 healthy subjects from January 2010 to August 2010 were included in the analysis. Another 702 cases with breast cancer were retrieved from The Cancer Genome Atlas (TCGA) database for subsequent analysis. MAIN OUTCOME MEASURE Serum circulating estradiol and leptin level. RESULTS The level of estradiol was significantly higher (P<0.001) but the level of leptin had no significant difference (P = 0.764) in postmenopausal breast cancer patients compared with healthy subjects. The level of estradiol and leptin was not significantly different between estrogen receptor (ER) positive and ER-negative groups (P>0.05). Estradiol was significantly correlated with tumor T stage (P = 0.002) and leptin was significantly associated with perineural invasion (P = 0.014). In addition, the disease-free survival of patients with a high level of estradiol was significantly shorter (P = 0.025) but leptin tended to be a protective factor for overall survival in TCGA analysis (P = 0.038). CONCLUSION Circulating estradiol and leptin played important roles in the risk of postmenopausal breast cancer even in low-estrogen nations with an independent expression of ER status. High circulating estradiol was a poor prognostic factor and leptin may be a protection signal in Chinese postmenopausal patients with breast cancer.
Collapse
Affiliation(s)
- Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han-Bing Li
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Xin Wu
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Shen
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Qun Che
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yi-Qun Che,
| |
Collapse
|
34
|
Xu X, Liu M, Yang Y, Wei C, Zhang X, Song H, Wang Y, Duan X. VSP‑17 suppresses the migration and invasion of triple‑negative breast cancer cells through inhibition of the EMT process via the PPARγ/AMPK signaling pathway. Oncol Rep 2020; 45:975-986. [PMID: 33650675 PMCID: PMC7859999 DOI: 10.3892/or.2020.7916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023] Open
Abstract
VSP-17, a novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, has been previously demonstrated to suppress the metastasis of triple-negative breast cancer (TNBC) by upregulating the expression levels of E-cadherin, which is a key marker of epithelial-mesenchymal transition (EMT). However, the mechanism of action of VSP-17, in particular whether it may be associated with the EMT process, remains unknown. The present study investigated the ability of VSP-17 to inhibit the invasiveness and migratory ability of TNBC cell lines (MDA-MB-231 and MDA-MB-453) performed in in vitro experiments. including cell migration assay, cell invasion assay, cell transfection, RT-qPCR, western blot (WB) analysis and immunofluorescence. The present study aimed to ascertain whether and how the PPARγ/AMP-activated protein kinase (AMPK) signaling pathway serves a role in the inhibitory effects of VSP-17 on cell migration and invasion. The results revealed that both treatment with compound C (an AMPK inhibitor) and transfection with small interfering RNA (si)AMPK notably diminished the inhibitory effect of VSP-17 treatment on the migration and invasion of MDA-MB-231 and MDA-MB-453 cells, indicating that VSP-17 may, at least partly, exert its effects via AMPK. Furthermore, both compound C and siAMPK markedly diminished the VSP-17-induced downregulation of vimentin expression levels and upregulation of E-cadherin expression levels, further indicating that the VSP-17-induced inhibition of the EMT process may be dependent on AMPK. The combination of GW9662 (a PPARγ antagonist) or siPPARγ diminished the inhibitory effect of VSP-17 treatment on the migration and invasion of the TNBC cells, indicating that PPARγ may serve an important role in the VSP-17-induced inhibition of the migration and invasion of TNBC cells. In addition, both GW9662 and siPPARγ significantly reversed the VSP-17-induced downregulation of vimentin expression levels and upregulation of E-cadherin expression levels, implying that the VSP-17-induced inhibition of the EMT process may be dependent on PPARγ. VSP-17 treatment also upregulated the expression levels of p-AMPK, which could be reversed by either GW9662 or siPPARγ, indicating that the VSP-17-induced activation of the AMPK signaling pathway was PPARγ-dependent. In conclusion, the findings of the present study indicated that VSP-17 treatment may inhibit the migration and invasion of TNBC cells by suppressing the EMT process via the PPARγ/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiaotian Xu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Meng Liu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yingying Yang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Chengqiong Wei
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiyang Zhang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Hengzhi Song
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yuhui Wang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiaoqun Duan
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
35
|
Dalimi-Asl S, Babaahmadi-Rezaei H, Mohammadzadeh G. Combination of Silibinin and Curcumin Reduced Leptin Receptor Expression in MCF-7 Human Breast Cancer Cell Line. IRANIAN JOURNAL OF MEDICAL SCIENCES 2020; 45:477-484. [PMID: 33281265 PMCID: PMC7707627 DOI: 10.30476/ijms.2019.81934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Leptin and leptin receptor (Ob-R) are associated with worse prognosis, distant metastasis, and poor survival of breast cancer.
We investigated the cytotoxic effect of silibinin and curcumin, individually and combined, on Ob-R expression in MCF-7 cells. Methods: This study was performed from October 2017 to April 2018 at the Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur
University of Medical Sciences, Ahvaz, Iran. The cytotoxic effect of silibinin and curcumin, individually and combined, and their corresponding
half-maximal inhibitory concentration (IC50) values were determined using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay.
The cells were treated with different concentrations of silibinin (50-400 μM), curcumin (10-35 μM), and their combinations for 24 and 48 hours.
The expression of Ob-R was measured using the Western blot analysis by treating the cells with different concentrations of curcumin (10-25 μM),
silibinin (50-250 μM), and their respective combinations. The difference in mean cell viability between the groups was calculated using one-way ANOVA followed by Tukey’s post hoc test. Results: Silibinin and curcumin exerted time- and dose-dependent cytotoxic effect on MCF-7 cells. After treatment with silibinin, the IC50 values
were about 250 and 50 μM at 24 and 48 hours, respectively. In terms of treatment with curcumin, the IC50 values were about 25 and 15 μM at
24 and 48 hours, respectively. Following treatment with silibinin, the Western blot analysis showed that Ob-R expression significantly
decreased at 150 μM (P=0.031) and 200 μM (P=0.023) concentrations. Curcumin did not significantly decrease the Ob-R expression, however,
the expression significantly decreased (P=0.004) when it was combined with silibinin. Conclusion: The combination of silibinin and curcumin significantly reduced Ob-R expression in MCF-7 cells compared with their individual effects.
Collapse
Affiliation(s)
- Somaye Dalimi-Asl
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorban Mohammadzadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Obesity-related protein biomarkers for predicting breast cancer risk: an overview of systematic reviews. Breast Cancer 2020; 28:25-39. [PMID: 33237347 DOI: 10.1007/s12282-020-01182-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Based on the biological mechanisms underlying the obesity-breast cancer connections, potential protein biomarkers involved in breast cancer development have been identified, which may be helpful for the estimation of breast cancer risk. This study aimed to carry out a comprehensive overview of systematic reviews on circulating levels of obesity-related protein biomarkers for female breast cancer risk to provide a solid reference for potential breast cancer predictors. METHODS Comprehensive literature searches were conducted in MEDLINE, EMBASE and Cochrane Database of Systematic Reviews up to Dec 2019. The AMSTAR tool was used for the methodological quality assessment of the included systematic reviews. Evidence was reported narratively. RESULTS A total of 28 relevant systematic reviews which were mostly of moderate quality were included in the overview. Protein biomarkers relating to adipokines, insulin/insulin-like growth factor-1 (IGF-1) axis, inflammatory cytokines and sex hormones were investigated. Higher levels of circulating IGF-1, IGF-binding protein-3, leptin and resistin were found to be associated with an increased risk of premenopausal breast cancer; lower levels of circulating adiponectin and higher levels of circulating c-reactive protein, leptin, and resistin were found to be associated with an increased risk of postmenopausal breast cancer. CONCLUSIONS We found sufficient evidence on the positive associations between certain obesity-related protein biomarkers with pre- and/or postmenopausal breast cancer risk. These biomarkers could be used jointly as predictors, so as to build a comprehensive risk predictive score for female breast cancer. PROSPERO REGISTRATION NUMBER CRD42020175328.
Collapse
|
37
|
Mohammadi M. Role of Obesity in the Tumorigenesis of Gastric Cancer. Int J Prev Med 2020; 11:148. [PMID: 33209218 PMCID: PMC7643578 DOI: 10.4103/ijpvm.ijpvm_153_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer as a common cancer is a multi-factorial disease that is dependent on parallel effects of environment and genetics. Endogenous and host factors, including gender and several genetic backgrounds are known risk factors also many environmental factors, including smoking, diet, infection and increasing body weight and body mass index (BMI) are associated with the gastric cancer. Epidemiological data have consistently demonstrated a positive relation between obesity and gastric cancer, whereas mechanistic studies have sought to uncover obesity related carcinogenic pathways. Biological mechanisms and the relationship between obesity and cancer are complex and not well understood. Different effective factors include obesity-related hormones and adipokines, growth factors, modulation of energy balance and calorie restriction, inflammatory processes and multiple signaling pathways that affect cancer cell promotion and progression. In this review, we will discuss the recent advances in the understanding of the association of obesity changes in the gastric cancer.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Cho HH, Park M, Park H, Ko ES, Hwang NY, Im YH, Ko K, Sim SH. The Tumor-Fat Interface Volume of Breast Cancer on Pretreatment MRI Is Associated with a Pathologic Response to Neoadjuvant Chemotherapy. BIOLOGY 2020; 9:391. [PMID: 33182628 PMCID: PMC7697338 DOI: 10.3390/biology9110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022]
Abstract
Adipocytes are active sources of numerous adipokines that work in both a paracrine and endocrine manner. It is not known that the direct contact between tumor and neighboring fat measured by pretreatment breast magnetic resonance imaging (MRI) affects treatment outcomes to neoadjuvant chemotherapy (NAC) in breast cancer patients. A biomarker quantifying the tumor-fat interface volume from pretreatment MRI was proposed and used to predict pathologic complete response (pCR) in breast cancer patients treated with NAC. The tumor-fat interface volume was computed with data-driven clustering using multiphasic MRI. Our approach was developed and validated in two cohorts consisting of 1140 patients. A high tumor-fat interface volume was significantly associated with a non-pCR in both the development and validation cohorts (p = 0.030 and p = 0.037, respectively). Quantitative measurement of the tumor-fat interface volume based on pretreatment MRI may be useful for precision medicine and subsequently influence the treatment strategy of patients.
Collapse
Affiliation(s)
- Hwan-ho Cho
- Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea;
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Minsu Park
- Department of Statistics, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea;
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Eun Sook Ko
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Na Young Hwang
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea;
| | - Young-Hyuck Im
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
| | - Kyounglan Ko
- Department of Radiology & Cancer Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Sung Hoon Sim
- Division of Hematology/Oncology, Department of Medicine, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
39
|
Aggarwal V, Miranda O, Johnston PA, Sant S. Three dimensional engineered models to study hypoxia biology in breast cancer. Cancer Lett 2020; 490:124-142. [PMID: 32569616 PMCID: PMC7442747 DOI: 10.1016/j.canlet.2020.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Breast cancer is the second leading cause of mortality among women worldwide. Despite the available therapeutic regimes, variable treatment response is reported among different breast cancer subtypes. Recently, the effects of the tumor microenvironment on tumor progression as well as treatment responses have been widely recognized. Hypoxia and hypoxia inducible factors in the tumor microenvironment have long been known as major players in tumor progression and survival. However, the majority of our understanding of hypoxia biology has been derived from two dimensional (2D) models. Although many hypoxia-targeted therapies have elicited promising results in vitro and in vivo, these results have not been successfully translated into clinical trials. These limitations of 2D models underscore the need to develop and integrate three dimensional (3D) models that recapitulate the complex tumor-stroma interactions in vivo. This review summarizes role of hypoxia in various hallmarks of cancer progression. We then compare traditional 2D experimental systems with novel 3D tissue-engineered models giving accounts of different bioengineering platforms available to develop 3D models and how these 3D models are being exploited to understand the role of hypoxia in breast cancer progression.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Oshin Miranda
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
40
|
Liu L, Wu Y, Zhang C, Zhou C, Li Y, Zeng Y, Zhang C, Li R, Luo D, Wang L, Zhang L, Tu S, Deng H, Luo S, Chen YG, Xiong X, Yan X. Cancer-associated adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. J Mol Cell Biol 2020; 12:723-737. [PMID: 32242230 PMCID: PMC7749739 DOI: 10.1093/jmcb/mjaa016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Adipocyte is the most predominant cell type in the tumor microenvironment of breast cancer and plays a pivotal role in cancer progression, yet the underlying mechanisms and functional mediators remain elusive. We isolated primary preadipocytes from mammary fat pads of human breast cancer patients and generated mature adipocytes and cancer-associated adipocytes (CAAs) in vitro. The CAAs exhibited significantly different gene expression profiles as assessed by transcriptome sequencing. One of the highly expressed genes in CAAs is granulocyte colony-stimulating factor (G-CSF). Treatment with recombinant human G-CSF protein or stable expression of human G-CSF in triple-negative breast cancer (TNBC) cell lines enhanced epithelial-mesenchymal transition, migration, and invasion of cancer cells, by activating Stat3. Accordantly, targeting G-CSF/Stat3 signaling with G-CSF-neutralizing antibody, a chemical inhibitor, or siRNAs for Stat3 could all abrogate CAA- or G-CSF-induced migration and invasion of breast cancer cells. The pro-invasive genes MMP2 and MMP9 were identified as target genes of G-CSF in TNBC cells. Furthermore, in human breast cancer tissues, elevated G-CSF expression in adipocytes is well correlated with activated Stat3 signal in cancer cells. Together, our results suggest a novel strategy to intervene with invasive breast cancers by targeting CAA-derived G-CSF.
Collapse
Affiliation(s)
- Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yudong Wu
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yining Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yi Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Rong Li
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330003, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
- Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Medical College, Nanchang 330006, China
| |
Collapse
|
41
|
The Role of Adipokines and Bone Marrow Adipocytes in Breast Cancer Bone Metastasis. Int J Mol Sci 2020; 21:ijms21144967. [PMID: 32674405 PMCID: PMC7404398 DOI: 10.3390/ijms21144967] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The morbidity and mortality of breast cancer is mostly due to a distant metastasis, especially to the bone. Many factors may be responsible for bone metastasis in breast cancer, but interactions between tumor cells and other surrounding types of cells, and cytokines secreted by both, are expected to play the most important role. Bone marrow adipocyte (BMA) is one of the cell types comprising the bone, and adipokine is one of the cytokines secreted by both breast cancer cells and BMAs. These BMAs and adipokines are known to be responsible for cancer progression, and this review is focused on how BMAs and adipokines work in the process of breast cancer bone metastasis. Their potential as suppressive targets for bone metastasis is also explored in this review.
Collapse
|
42
|
Implications of the Adiponectin System in Non-Small Cell Lung Cancer Patients: A Case-Control Study. Biomolecules 2020; 10:biom10060926. [PMID: 32570854 PMCID: PMC7356727 DOI: 10.3390/biom10060926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Alterations of adipose tissue occurring in obesity have been recognized as a major risk factor for several cancers. The relationship between adipose tissue and lung cancer, which is the main cancer-related cause of death worldwide, still requires investigation. Perturbations in the adipokine system are likely to interfere with inter-organ crosstalk in lung cancer, which may influence the lung tumor microenvironment. Adiponectin (Acrp30) expression is deregulated in several cancer types. Acrp30 circulates as oligomers with a Low (LMW), Medium (MMW), and High Molecular Weight (HMW), with the latter mediating the main biological effects. Acrp30 acts through AdipoR1 and AdipoR2 receptors. T-cadherin has been described as a non-signaling receptor. This study's aim was to investigate the regulation of serum Acrp30 and its receptors in sample tissue from non-small cell lung cancer (NSCLC) patients. We recruited 72 NSCLC patients and 60 healthy controls, whom we evaluated in terms of their Acpr30 levels and oligomeric profile. In addition, the expression of AdipoRs in tissues from lung cancer specimens was also measured and compared to coupled healthy lung samples. Our findings show a significant reduction of total Acrp30 levels in NSCLC patients compared to normal subjects, with a specific down-regulation of HMW oligomers. Acrp30 expression was lower in lung adenocarcinoma than other subtypes, regardless of other factors. A significantly higher expression of AdipoR1 was observed, while no differences in R2 and a lower expression of T-cadherin were found in lung cancer specimens compared to normal healthy lung tissues. Involvement of the Acrp30 system in lung cancer may provide new insight into the interaction between adipose tissue and lung and sheds light on its potential ability to influence the lung tumor microenvironment.
Collapse
|
43
|
Prognostic Significance of the Tumor-Stromal Ratio in Invasive Breast Cancer and a Proposal of a New Ts-TNM Staging System. JOURNAL OF ONCOLOGY 2020; 2020:9050631. [PMID: 32377197 PMCID: PMC7191412 DOI: 10.1155/2020/9050631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Background Previous studies have demonstrated that the tumor-stromal ratio (TSR) was an independent prognostic factor in several types of carcinomas. This study aimed at exploring the prognostic significance of the TSR in invasive breast cancer using immunohistochemistry (IHC)-stained tissue microarrays (TMAs) and integrating the TSR into the traditional tumor-node-metastasis (TNM) staging system. Methods The prepared 7 TMAs containing 240 patients with 480 invasive BC specimens were stained with cytokeratin (CK) by the IHC staining method. The ratio of tumor cells and stromal cells was visually assessed. TSR > 1 and TSR ≤ 1 were categorized as the high TSR (low stroma) and low TSR (high stroma) groups, respectively, and the prognostic value of the TSR at 5-year disease-free survival (5-DFS) was analyzed. A new Ts-TNM (tumor stroma-tumor-node-metastasis) staging system was established and assessed. Results IHC staining of CK could specifically label tumor cells with clear contrast, making it easy to manually assess TSR. High TSR (low stroma) and low TSR (high stroma) were observed in 52.5% (n = 126) and 47.5 (n = 114) of the cases, according to the division of value 1. A Kaplan-Meier analysis showed that patients in the low TSR group had a worse 5-DFS compared with patients in the high TSR group (P=0.022). Multivariable analysis indicated that the T stage (P=0.014), N status (P < 0.001), histological grade (P < 0.001), estrogen receptor status (P=0.015), and TSR (P=0.011) were independent prognostic factors of invasive BC patients. The new Ts-TNM staging system combining TSR, tumor staging, lymph node status, and metastasis staging was established. The receiver operating characteristic (ROC) curve analysis demonstrated that the ability of the Ts-TNM staging system to predict recurrence was not lower than that of the TNM staging system. Conclusions This study confirms that the TSR is a prognostic indicator for invasive breast cancer. The Ts-TNM staging system containing stromal and tumor information may optimize risk stratification for invasive breast cancer.
Collapse
|
44
|
Jian W, Wei CM, Guan JH, Mo CH, Xu YT, Zheng WB, Li L, Gui C. Association between serum HER2/ErbB2 levels and coronary artery disease: a case-control study. J Transl Med 2020; 18:124. [PMID: 32160892 PMCID: PMC7066824 DOI: 10.1186/s12967-020-02292-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Research has associated human epidermal growth factor receptor (HER2) with glucose and lipid metabolism. However, the association between circulating HER2 levels and coronary artery disease (CAD) remains to be elucidated. Methods We performed a case–control study with 435 participants (237 CAD patients and 198 controls) who underwent diagnostic coronary angiography from September 2018 to October 2019. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for CAD were calculated with multiple logistic regression models after adjustment for confounders. Results Overall, increased serum HER2 levels were independently associated with the presence of CAD (OR per 1-standard deviation (SD) increase: 1.438, 95% CI 1.13–1.83; P = 0.003) and the number of stenotic vessels (OR per 1-SD increase: 1.399, 95% CI 1.15–1.71; P = 0.001). In the subgroup analysis, a significant interaction of HER2 with body mass index (BMI) on the presence of CAD was observed (adjusted interaction P = 0.046). Increased serum HER2 levels were strongly associated with the presence of CAD in participants with BMI ≥ 25 kg/m2 (OR per 1-SD increase: 2.143, 95% CI 1.37–3.35; P = 0.001), whereas no significant association was found in participants with BMI < 25 kg/m2 (OR per 1-SD increase: 1.225, 95% CI 0.90–1.67; P = 0.201). Conclusion Elevated HER2 level is associated with an increased risk of CAD, particularly in people with obesity. This finding yields new insight into the pathological mechanisms underlying CAD, and warrants further research regarding HER2 as a preventive and therapeutic target of CAD.
Collapse
Affiliation(s)
- Wen Jian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Mei Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Jia-Hui Guan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Chang-Hua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yu-Tao Xu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Wen-Bo Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
45
|
Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr 2020; 60:3770-3792. [PMID: 31899947 DOI: 10.1080/10408398.2019.1708262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an abnormal or excessive accumulation of fat that leads to different health problems, such as cancer, where the adipocytes promote the proliferation, migration, and invasion of cancer cells, especially in the breast, where the epithelial cells are immersed in a fatty environment, and the interactions between these two types of cells involve, not only adipokines but also local pro-inflammatory mechanisms and hypoxic processes generating anti-apoptotic signals, which are a common result in leptin signaling. The expression of the Vascular Endothelial Growth Factor (VEGF) and cyclin D1, results in the decrease in phosphorylation of AMPK, increasing the activity of the aromatase enzyme; alternatively, the adiponectin activates AMPK to reduce inflammation. Nevertheless, alterations of the JAK/STAT pathways contribute to mammary carcinogenesis, while the PI3K/AKT/mTOR pathway controls most of the cancer's characteristics such as the cell cycle, survival, differentiation, proliferation, motility, metabolism, and genetic stability. Therefore, the purpose of the present review is, through the accumulated scientific evidence, to find the concordance between the signaling pathways involved among obesity and breast cancer, which can be modulated by using flavonoids.
Collapse
Affiliation(s)
- Oswaldo Pablo Martínez-Rodríguez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - María Del Rocío Thompson-Bonilla
- Laboratorio de Medicina Genómica, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado ISSSTE, Ciudad de México, México
| | - María Eugenia Jaramillo-Flores
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
46
|
Abstract
Patients with a current diagnosis of breast cancer are enjoying dramatic cure rates and survivorship secondary to an increase in awareness, earlier detection, and more effective therapies. Although strategies such as Breast Cancer Awareness Month in October focus on early detection, lifestyle changes are seldom discussed other than dietary concerns and physical activity. Lifestyle modifications centered on diet and exercise have been demonstrated to affect overall disease-free survival in breast cancer. Since the early 2000s, the role of the human gut microbiota and its relation to breast cancer has become a major area of interest in the scientific and medical community. We live and survive owing to the symbiotic relationship with the microorganisms within us: the human microbiota. Scientific advances have identified a subset of the gut microbiota: the estrobolome, those bacteria that have the genetic capability to metabolize estrogen, which plays a key role in most breast cancers. Recent research provides evidence that the gut microbiome plays a substantial role in estrogen regulation. Gut microbiota diversity appears to be an essential component of overall health, including breast health. Future research attention should include a more extensive focus on the role of the human gut microbiota in breast cancer.
Collapse
Affiliation(s)
- Balazs I Bodai
- The Breast Cancer Survivorship Institute, Kaiser Permanente, Sacramento, CA
| | - Therese E Nakata
- The Breast Cancer Survivorship Institute, Kaiser Permanente, Sacramento, CA
| |
Collapse
|
47
|
Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:413-433. [PMID: 31637624 DOI: 10.1007/s13679-019-00364-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into the relationship between obesity and BC as well as on the role of novel adipokines in BC development. RECENT FINDINGS Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC. Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin, and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally decreased in BC and considered protective against breast carcinogenesis. Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and follow-up. Finally, novel more effective and safer adipokine-centered therapeutic strategies could pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Nikolaos Spyrou
- 251 Airforce General Hospital, 3 Kanellopoulou, 11525, Athens, Greece
| | - Jona Kadillari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Sotiria Psallida
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
48
|
Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, Pinter M, Babykutty S, Chin SM, Vardam TD, Huang Y, Rahbari NN, Roberge S, Wang D, Gomes-Santos IL, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Tolaney SM, Krop IE, Duda DG, Boucher Y, Fukumura D, Jain RK. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 2019. [PMID: 29540614 DOI: 10.1126/scitranslmed.aag0945] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors.
Collapse
Affiliation(s)
- Joao Incio
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,I3S, Institute for Innovation and Research in Health, Metabolism, Nutrition, and Endocrinology Group, Biochemistry Department, Faculty of Medicine, Porto University, Porto 4200-135, Portugal.,Department of Internal Medicine, Hospital S. João, Porto 4200-319, Portugal
| | - Jennifer A Ligibel
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T McManus
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Priya Suboj
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Botany and Biotechnology, St. Xavier's College, Thumba, Trivandrum, Kerala 695586, India
| | - Keehoon Jung
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kosuke Kawaguchi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Pinter
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna 1090, Austria
| | - Suboj Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Zoology, Mar Ivanios College, Nalanchira, Trivandrum, Kerala 695015, India
| | - Shan M Chin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Trupti D Vardam
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yuhui Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nuh N Rahbari
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dannie Wang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Igor L Gomes-Santos
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Heart Institute (Instituto do Coração-Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo), University of Sao Paulo Medical School, Sao Paulo 05403-900, Brazil
| | - Stefan B Puchner
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher L Schlett
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Udo Hoffmman
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Marek Ancukiewicz
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sara M Tolaney
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ian E Krop
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yves Boucher
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
49
|
Pasha HF, Mohamed RH, Toam MM, Yehia AM. Genetic and epigenetic modifications of adiponectin gene: Potential association with breast cancer risk. J Gene Med 2019; 21:e3120. [PMID: 31415715 DOI: 10.1002/jgm.3120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/22/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adipokines produced by adipose tissue are directly linked to obesity and may contribute to the pathogenesis of cancer. We hypothesized that genetic and epigenetic modifications in the adiponectin (ADIPOQ) gene and their impact on serum ADIPOQ levels may participate in increasing breast cancer (BC) risk. The present study aimed to investigate ADIPOQ +45 T/G gene polymorphism, methylation status at CpG sites -74 nucleotides (nt) and -283 nt of the ADIPOQ gene, and ADIPOQ serum levels in BC obese women. METHODS Serum ADIPOQ was measured by an enzyme-linked immunosorbent assay. ADIPOQ +45 T/G gene polymorphism and ADIPOQ promoter methylation status were determined using a polymerase chain reaction (PCR) and a methylation-specific PCR, respectively, in 120 obese women with BC and 120 age-matched controls. RESULTS ADIPOQ +45 GG genotype carriers had a significant increased risk of developing BC (odds ratio = 6.2, 95% confidence interval = 1.3-29.6, p = 0.02). ADIPOQ gene methylation at site -74 nt resulted in a 1.7-fold increased BC risk. Methylation at site -283 nt resulted in a 1.9-fold increased BC risk. Moreover serum levels of ADIPOQ were significantly decreased in BC patients and down-regulated in the presence of methylation in both examined sites. By contrast, no association between ADIPOQ gene polymorphism and serum ADIPOQ level was detected. Using both methylated sites in one panel detected cancer breast with 76.67% sensitivity and 62.18% accuracy. CONCLUSIONS ADIPOQ +45 T/G polymorphism and ADIPOQ promoter methylation were found to be associated with BC risk in obese Egyptian women.
Collapse
Affiliation(s)
- Heba F Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Randa H Mohamed
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa M Toam
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed M Yehia
- General surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
50
|
Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Breast Cancer: Role of Leptin. Front Oncol 2019; 9:596. [PMID: 31380268 PMCID: PMC6657346 DOI: 10.3389/fonc.2019.00596] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Obesity-related breast cancer is an important threat that affects especially post-menopausal women. The link between obesity and breast cancer seems to be relying on the microenvironment generated at adipose tissue level, which includes inflammatory cytokines. In addition, its association with systemic endocrine changes, including hyperinsulinemia, increased estrogens levels, and hyperleptinemia may be key factors for tumor development. These factors may promote tumor initiation, tumor primary growth, tissue invasion, and metastatic progression. Although the relationship between obesity and breast cancer is already established, the different pathophysiological mechanisms involved are not clear. Obesity-related insulin resistance is a well-known risk factor for breast cancer development in post-menopausal women. However, the role of inflammation and other adipokines, especially leptin, is less studied. Leptin, like insulin, appears to be a growth factor for breast cancer cells. There exists a link between leptin and metabolism of estrogens and between leptin and other factors in a more complex network. As a result, obesity-associated hyperleptinemia has been suggested as an important mediator in the pathophysiology of breast cancer. On the other hand, recent data on the paradoxical effect of obesity on cancer immunotherapy efficacy has brought some controversy, since the proinflammatory effect of leptin may help the effect of immune checkpoint inhibitors. Therefore, a better knowledge of the molecular mechanisms that mediate leptin action may be helpful to understand the underlying processes which link obesity to breast cancer in post-menopausal women, as well as the possible role of leptin in the response to immunotherapy in obese patients.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| |
Collapse
|