1
|
Raudstein M, Peñaranda MMD, Kjærner-Semb E, Grove S, Morton HC, Edvardsen RB. Generation of IgM + B cell-deficient Atlantic salmon (Salmo salar) by CRISPR/Cas9-mediated IgM knockout. Sci Rep 2025; 15:3599. [PMID: 39875802 PMCID: PMC11775215 DOI: 10.1038/s41598-025-87658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Infectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon. In this study, we used CRISPR/Cas9 technology to knock out the two IgM genes in Atlantic salmon. High-throughput sequencing revealed an average mutagenesis efficiency of 97% across both loci, with a predominance of frameshift mutations (78%). Gene expression analyses demonstrated significantly reduced membrane-bound IgM mRNA levels in head kidney and spleen tissues. Flow cytometry revealed a 78% reduction in IgM+ B cells in peripheral blood, and Western blot analyses showed decreased IgM protein levels in serum. Notably, an upregulation of IgT mRNA was observed, suggesting a potential compensatory mechanism. This work presents the first application of CRISPR/Cas9 to disrupt an immune-related gene in the F0 generation of Atlantic salmon, and lays the foundation for generating a model completely lacking IgM+ B cells which can be used to study the role of B cells and antibodies. This study has implications for advancing immune research in teleosts and for developing strategies to improve salmon health and welfare in aquaculture.
Collapse
Affiliation(s)
| | | | | | - Søren Grove
- Institute of Marine Research, Bergen, Norway
| | | | | |
Collapse
|
2
|
Garcia BJ, Musayeva N, Reyes A, Martinez C, Serra Dos Santos Y, Salinas I. Ontogeny of the organized nasopharynx-associated lymphoid tissue in rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105298. [PMID: 39643071 DOI: 10.1016/j.dci.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Understanding the ontogeny of teleost mucosa-associated lymphoid tissues (MALT) is critical for determining the earliest timepoint for effective mucosal vaccination of young fish. Here, we describe the developmental sequence that leads to the formation of an organized MALT structure in rainbow trout, the organized nasopharynx-associated lymphoid tissue (O-NALT). Control rainbow trout were sampled between 340 and 1860 degree days (DD) and routine histology and immunofluorescence staining were used to determine cellular changes in immune cells in the nasal cavity as well as O-NALT formation. We identified that O-NALT is first seeded by CD8α+ T cells at 700 DD followed by IgM+ B cells and cd4-2b+ cells at 1000 DD. Histomorphologically, trout O-NALT is fully formed at 1400 DD. Whole body gene expression analyses uncovered waves of igmh, cd4-2b, and cd8a expression that recapitulate the cellular seeding sequence of O-NALT by specific lymphocyte subsets. Our results indicate that 1) O-NALT formation results from a specific sequence of lymphocyte subset colonization pioneered by CD8α+ T cells and 2) the presence of the full O-NALT structure at 1400 DD may mark this timepoint as the earliest developmental stage at which mucosal vaccines can induce long lasting, specific immune responses.
Collapse
Affiliation(s)
- Benjamin J Garcia
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Narmin Musayeva
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexis Reyes
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Chrysler Martinez
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Chief Manuelito Middle School, Gallup, NM, 87301, USA
| | - Yago Serra Dos Santos
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Aldersey JE, Lange MD, Beck BH, Abernathy JW. Single-nuclei transcriptome analysis of channel catfish spleen provides insight into the immunome of an aquaculture-relevant species. PLoS One 2024; 19:e0309397. [PMID: 39325796 PMCID: PMC11426453 DOI: 10.1371/journal.pone.0309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
The catfish industry is the largest sector of U.S. aquaculture production. Given its role in food production, the catfish immune response to industry-relevant pathogens has been extensively studied and has provided crucial information on innate and adaptive immune function during disease progression. To further examine the channel catfish immune system, we performed single-cell RNA sequencing on nuclei isolated from whole spleens, a major lymphoid organ in teleost fish. Libraries were prepared using the 10X Genomics Chromium X with the Next GEM Single Cell 3' reagents and sequenced on an Illumina sequencer. Each demultiplexed sample was aligned to the Coco_2.0 channel catfish reference assembly, filtered, and counted to generate feature-barcode matrices. From whole spleen samples, outputs were analyzed both individually and as an integrated dataset. The three splenic transcriptome libraries generated an average of 278,717,872 reads from a mean 8,157 cells. The integrated data included 19,613 cells, counts for 20,121 genes, with a median 665 genes/cell. Cluster analysis of all cells identified 17 clusters which were classified as erythroid, hematopoietic stem cells, B cells, T cells, myeloid cells, and endothelial cells. Subcluster analysis was carried out on the immune cell populations. Here, distinct subclusters such as immature B cells, mature B cells, plasma cells, γδ T cells, dendritic cells, and macrophages were further identified. Differential gene expression analyses allowed for the identification of the most highly expressed genes for each cluster and subcluster. This dataset is a rich cellular gene expression resource for investigation of the channel catfish and teleost splenic immunome.
Collapse
Affiliation(s)
- Johanna E. Aldersey
- Oak Ridge Institute for Science and Education, Agricultural Research Service Research Participation Program, Oak Ridge, TN, United States of America
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Miles D. Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Jason W. Abernathy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| |
Collapse
|
4
|
Han XQ, Cui ZW, Ma ZY, Wang J, Hu YZ, Li J, Ye JM, Tafalla C, Zhang YA, Zhang XJ. Phagocytic Plasma Cells in Teleost Fish Provide Insights into the Origin and Evolution of B Cells in Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:730-742. [PMID: 38984862 DOI: 10.4049/jimmunol.2400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Wei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-You Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Sainte Marie, MI
| | - Jian-Min Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Carolina Tafalla
- Animal Health Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
5
|
Etayo A, Bjørgen H, Hordvik I, Øvergård AC. Possible transport routes of IgM to the gut of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109583. [PMID: 38657879 DOI: 10.1016/j.fsi.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Fish rely on mucosal surfaces as their first defence barrier against pathogens. Maintaining mucosal homeostasis is therefore crucial for their overall well-being, and it is likely that secreted immunoglobulins (sIg) play a pivotal role in sustaining this balance. In mammals, the poly-Ig receptor (pIgR) is an essential component responsible for transporting polymeric Igs across mucosal epithelia. In teleost fish, a counterpart of pIgR has been identified and characterized, exhibiting structural differences and broader mRNA expression patterns compared to mammals. Despite supporting evidence for the binding of Igs to recombinant pIgR proteins, the absence of a joining chain (J-chain) in teleosts challenges the conventional understanding of Ig transport mechanisms. The transport of IgM to the intestine via the hepatobiliary route is observed in vertebrates and has been proposed in a few teleosts. Investigations on the stomachless fish, ballan wrasse, revealed a significant role of the hepatobiliary route and interesting possibilities for alternative IgM transport routes that might include pancreatic tissue. These findings highlight the importance of gaining a thorough understanding of the mechanisms behind Ig transport to the gut in various teleosts. This review aims to gather existing information on pIgR-mediated transport across epithelial cells and immunoglobulin transport pathways to the gut lumen in teleost fish. It provides comparative insights into the hepatobiliary transport of Igs to the gut, emphasizing the current understanding in teleost fish while exploring potential alternative pathways for Ig transport to the gut lumen. Despite significant progress in understanding various aspects, there is still much to uncover, especially concerning the diversity of mechanisms across different teleost species.
Collapse
Affiliation(s)
- Angela Etayo
- Institute of Marine Research, Bergen, Norway; Fish Health group, Department of Biological sciences, University of Bergen, Norway.
| | - Håvard Bjørgen
- Anatomy Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ivar Hordvik
- Fish Health group, Department of Biological sciences, University of Bergen, Norway
| | | |
Collapse
|
6
|
Ghasemieshkaftaki M, Cao T, Hossain A, Vasquez I, Santander J. Haemato-Immunological Response of Immunized Atlantic Salmon ( Salmo salar) to Moritella viscosa Challenge and Antigens. Vaccines (Basel) 2024; 12:70. [PMID: 38250883 PMCID: PMC10818610 DOI: 10.3390/vaccines12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Winter ulcer disease is a health issue in the Atlantic salmonid aquaculture industry, mainly caused by Moritella viscosa. Although vaccination is one of the effective ways to prevent bacterial outbreaks in the salmon farming industry, ulcer disease related to bacterial infections is being reported on Canada's Atlantic coast. Here, we studied the immune response of farmed immunized Atlantic salmon to bath and intraperitoneal (ip) M. viscosa challenges and evaluated the immunogenicity of M. viscosa cell components. IgM titers were determined after infection, post boost immunization, and post challenge with M. viscosa. IgM+ (B cell) in the spleen and blood cell populations were also identified and quantified by 3,3 dihexyloxacarbocyanine (DiOC6) and IgM-Texas red using confocal microscopy and flow cytometry. At 14 days post challenge, IgM was detected in the serum and spleen. There was a significant increase in circulating neutrophils 3 days after ip and bath challenges in the M. viscosa outer membrane vesicles (OMVs) boosted group compared to non-boosted. Lymphocytes increased in the blood at 7 and 14 days after the ip and bath challenges, respectively, in OMVs boosted group. Furthermore, a rise in IgM titers was detected in the OMVs boosted group. We determined that a commercial vaccine is effective against M. viscosa strain, and OMVs are the most immunogenic component of M. viscosa cells.
Collapse
Affiliation(s)
| | | | | | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (M.G.); (T.C.); (A.H.); (I.V.)
| |
Collapse
|
7
|
Ratvaj M, Maruščáková IC, Popelka P, Fečkaninová A, Koščová J, Chomová N, Mareš J, Malý O, Žitňan R, Faldyna M, Mudroňová D. Feeding-Regime-Dependent Intestinal Response of Rainbow Trout after Administration of a Novel Probiotic Feed. Animals (Basel) 2023; 13:1892. [PMID: 37370408 DOI: 10.3390/ani13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Intensive fish farming is associated with a high level of stress, causing immunosuppression. Immunomodulators of natural origin, such as probiotics or phytoadditives, represent a promising alternative for increasing the immune function of fish. In this study, we tested the autochthonous trout probiotic strain L. plantarum R2 in a newly developed, low-cost application form ensuring the rapid revitalization of bacteria. We tested continuous and cyclic feeding regimes with regard to their effect on the intestinal immune response and microbiota of rainbow trout. We found that during the continuous application of probiotic feed, the immune system adapts to the immunomodulator and there is no substantial stimulation of the intestinal immune response. During the cyclic treatment, after a 3-week break in probiotic feeding and the reintroduction of probiotics, there was a significant stimulation of the gene expression of molecules associated with both cellular and humoral immunity (CD8, TGF-β, IL8, TLR9), without affecting the gene expression for IL1 and TNF-α. We can conclude that, in aquaculture, this probiotic feed can be used with a continuous application, which does not cause excessive immunostimulation, or with a cyclic application, which provides the opportunity to stimulate the immunity of trout, for example, in periods of stress.
Collapse
Affiliation(s)
- Marek Ratvaj
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivana Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jan Mareš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Ondřej Malý
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Rudolf Žitňan
- Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Lužianky, Slovakia
| | - Martin Faldyna
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
8
|
Chen W, Hu J, Huang J, Liu Q, Wang Q, Zhang Y, Yang D. Characterization of T-cell receptors and immunoglobulin heavy chains loci and identification of T/B cell clusters in teleost. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108746. [PMID: 37054766 DOI: 10.1016/j.fsi.2023.108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Bacterial disease is one of the important factors leading to economic losses in the turbot (Scophthalmus maximus) cultivation industry. T lymphocytes are major components of cellular immunity, whereas B lymphocytes produce immunoglobulins (Ig) that are key elements of humoral immune responses against infection. However, the genomic organization of genes encoding T-cell receptors (TCR) and immunoglobulin heavy chains (IgHs) in turbot remains largely unknown. In this study, abundant full-length transcripts of TCRs and IgHs were sequenced by Isoform-sequencing (Iso-seq), and we investigated and annotated the V, D, J and C gene loci of TCRα, TCRβ, IgT, IgM and IgD in turbot. Furthermore, through single-cell RNA sequencing (scRNA-seq) of blood leukocytes, we confirmed that these identified TCRs and IgHs were highly expressed in T/B cell clusters, respectively. Meanwhile, we also identified the IgM+IgD+ B and IgT+ B cells with differential gene expression profiles and potential functions. Taken together, our results provide a comprehensive understanding of TCRs and IgHs loci in turbot, which will contribute to evolutionary and functional characterization of T and B lymphocytes in teleost.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Hu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianchang Huang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
9
|
Characterization and evaluation of an oral vaccine via nano-carrier for surface immunogenic protein (Sip) delivery against Streptococcus agalactiae infection. Int J Biol Macromol 2023; 235:123770. [PMID: 36822292 DOI: 10.1016/j.ijbiomac.2023.123770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Streptococcus agalactiae causes systemic disease in a variety of wild and farmed fish, resulting in high levels of morbidity and mortality, as well as serious economic losses to the Nile tilapia aquaculture industry. The development of economic and applicable oral vaccines is therefore urgently needed for the sustainable development of Nile tilapia aquaculture. In this study, mesoporous silica nanoparticles (MSNs) were fabricated using sol-gel synthesis technology, and the antigens of surface immunogenic protein (Sip) was loaded into MSNs to develop a nanovaccine MSNs-Sip@HP55. The results showed that the prepared nanovaccine exhibited pH-controlled release, which could survive in the simulated gastric environment (pH 1.5), and release antigens in the simulated intestinal environment at pH 7.4. The nanovaccine could induce innate and adaptive immune responses in Nile tilapia. When the challenge doses were 1.5 × 106, 1.18 × 106, and 0.88 × 106 CFU/mL, the relative protection rates in immunized Nile tilapia were 63.33 %, 64.23 %, and 76.31 %, respectively. Taken together, the nanovaccine exhibited a high antigen utilization rate and was easily administered orally via feeding, which could protect Nile tilapia against challenge with S. agalactiae in large-scale farms. Oral vaccine based on MSNs carriers is a potentially promising strategy for the development of fish vaccines.
Collapse
|
10
|
Tracing the origin of fish immunoglobulins. Mol Immunol 2023; 153:146-159. [PMID: 36502743 DOI: 10.1016/j.molimm.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
We have studied the origin of immunoglobulin genes in fish. There are two evolutionary lines of bony fish, Actinopterygii and Sarcopterygii. The former gave rise to most of the current fish and the latter to the animals that went to land. Non-teleost actinopterygians are significant evolutionary, sharing a common ancestor with sarcopterygians. There are three different immunoglob- ulin isotypes in ray-finned fish: IgM, IgD and IgT. We deduce that translocon formation in im- munoglobulins genes occurred already in non-teleost Actinopterygii. We establish a relationship between no teleosts and teleostean fish at the domain level of different immunoglobulins. We found two evolutionary lines of immunoglobulin. A line that starts from Immunoglobulin M and another from an ancestral Immunoglobulin W. The M line is stable, and the W line gives rise to the IgD of the fish. Immunoglobulin T emerges by recombination between both lines.
Collapse
|
11
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
12
|
Wu S, Meng K, Wu Z, Sun R, Han G, Qin D, He Y, Qin C, Deng P, Cao J, Ji W, Zhang L, Xu Z. Expression analysis of Igs and mucosal immune responses upon SVCV infection in common carp (Cyprinus carpio L.). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100048. [PMID: 36419606 PMCID: PMC9680059 DOI: 10.1016/j.fsirep.2021.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
The immunoglobulin (Ig) is a crucial component of adaptive immune system in vertebrates including teleost fish. Here complete cDNA sequence of IgD heavy chain gene from common carp (Cyprinus carpio) was cloned and analyzed. The full-length cDNA of IgD heavy chain gene contained an open reading frame (ORF) of 2460 bp encoding 813 amino acids. According to amino acids sequence, multiple alignment and phylogenetic analysis showed that carp Igs are closely related to those of Cyprinidae fish. Transcriptional expression of IgD as well as IgM, IgZ1 and IgZ2 showed similar expression patterns in different organs, this is, high expression level in systemic immune tissues (ie, head kidney, heart and spleen) and low expression in mucosal tissues (ie, gill, skin and gut). Following viral infection with spring viraemia of carp virus (SVCV), obvious pathological changes in skin, gill and gut mucosa and up-regulated expression of antiviral related genes in skin, gill, gut and spleen were observed, indicating that SVCV successfully infected common carp and activated the systemic and mucosal immune system. Interestingly, IgM showed a significant up-regulation only in systemic tissue (spleen), but not in mucosal tissues (gut, gills and skin), while increased expression of IgZ1 and IgZ2 was found in gut. In contrast, the expression of IgD increased significantly in spleen, gills and skin. These strongly suggest that fish Ig isotypes play different roles in mucosal and systemic immunity during viral infection. Common carp (Cyprinus carpio); Igs; Spring viraemia of carp virus (SVCV)
Collapse
|
13
|
Mu Q, Dong Z, Kong W, Wang X, Yu J, Ji W, Su J, Xu Z. Response of immunoglobulin M in gut mucosal immunity of common carp ( Cyprinus carpio) infected with Aeromonas hydrophila. Front Immunol 2022; 13:1037517. [PMID: 36466906 PMCID: PMC9713697 DOI: 10.3389/fimmu.2022.1037517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin (Ig) M is an important immune effector that protects organisms from a wide variety of pathogens. However, little is known about the immune response of gut mucosal IgM during bacterial invasion. Here, we generated polyclonal antibodies against common carp IgM and developed a model of carp infection with Aeromonas hydrophila via intraperitoneal injection. Our findings indicated that both innate and adaptive immune responses were effectively elicited after A. hydrophila infection. Upon bacterial infection, IgM+ B cells were strongly induced in the gut and head kidney, and bacteria-specific IgM responses were detected in high levels both in the gut mucus and serum. Moreover, our results suggested that IgM responses may vary in different infection strategies. Overall, our findings revealed that the infected common carp exhibited high resistance to this representative enteropathogenic bacterium upon reinfection, suggesting that IgM plays a key role in the defense mechanisms of the gut against bacterial invasion. Significantly, the second injection of A. hydrophila induces strong local mucosal immunity in the gut, which is essential for protection against intestinal pathogens, providing reasonable insights for vaccine preparation.
Collapse
Affiliation(s)
- Qingjiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiaqian Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Han Q, Mo Z, Lai X, Guo W, Hu Y, Chen H, He Z, Dan X, Li Y. Mucosal immunoglobulin response in Epinephelus coioides after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:436-446. [PMID: 35985626 DOI: 10.1016/j.fsi.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The teleost mucosal immune system consists mainly of the skin, gills and gut, which play crucial roles in local immune responses against invading organisms. Immunoglobulins are essential molecules in adaptive immunity that perform crucial biological functions. In our study, a mucosal immunity model was constructed in Epinephelus coioides groupers after Cryptocaryon irritans infection, according to previous experience. Total IgM and IgT in the groupers increased in the serum and mucus in the immune group, whereas only pathogen-specific IgM were detected existence. More critically, pathogen-specific IgM was detected in the head kidney, gill and skin supernatants, thus suggesting that the systematic immune and mucosal immune system secreted immunoglobulins. Furthermore, an early response in the skin was observed, on the basis of the detection of pathogen-specific IgM in the skin supernatant. In conclusion, this research characterized the grouper IgM and IgT in mucosal immune responses to pathogens in the gills and skin, thus providing a theoretical basis for future studies on vaccines against C. irritans.
Collapse
Affiliation(s)
- Qing Han
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhichang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Zhang W, Chen L, Feng H, Wang J, Zeng F, Xiao X, Jian J, Wang N, Pang H. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish ( Danio rerio) model. Front Vet Sci 2022; 9:938822. [PMID: 37265802 PMCID: PMC10230115 DOI: 10.3389/fvets.2022.938822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 06/03/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and β-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liangchuan Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Haiyun Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
16
|
Yin X, Li X, Mu L, Bai H, Yang Y, Chen N, Wu L, Fu S, Li J, Ying W, Ye J. Affinity-Driven Site-Specific High Mannose Modification Determines the Structural Polymerization and Function of Tetrameric IgM in a Primitive Vertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:593-605. [PMID: 35868636 DOI: 10.4049/jimmunol.2100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 10/17/2023]
Abstract
Teleost tetramer IgM is the predominant Ig in the immune system and plays essential roles in host defense against microbial infection. Due to variable disulfide polymerization of the monomeric subunits, tetrameric IgM possesses considerable structural diversity. Previous work indicated that the teleost IgM H chain was fully occupied with complex-type N-glycans. However, after challenge with trinitrophenyl (TNP) Ag, the complex N-glycans in the Asn-509 site of Oreochromis niloticus IgM H chain transformed into high mannose. This study, therefore, was conducted to examine the functional roles of the affinity-related high-mannose modification in tilapia IgM. The TNP-specific IgM Ab affinity maturation was revealed in tilapia over the response. A positive correlation between TNP-specific IgM affinity and its disulfide polymerization level of isomeric structure was demonstrated. Mass spectrometric analysis indicated that the relationship between IgM affinity and disulfide polymerization was associated with the Asn-509 site-specific high-mannose modification. Furthermore, the increase of high mannose content promoted the combination of IgM and mannose receptor (MR) on the surface of phagocytes. Moreover, the increased interaction of IgM and MR amplified the phagocytic ability of phagocytes to Streptococcus agalactiae. To our knowledge, this study demonstrates that site-specific high-mannose modification associates with IgM Ab affinity and its structural disulfide polymerization and amplifies the phagocytosis of phagocytes by the combination of IgM and MR. The present study provides evidence for understanding the association of IgM structure and function during the evolution of the immune system.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Xiaoyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Hao Bai
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Nuo Chen
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Shengli Fu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI; and
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Toxic Effects on Oxidative Stress, Neurotoxicity, Stress, and Immune Responses in Juvenile Olive Flounder, Paralichthys olivaceus, Exposed to Waterborne Hexavalent Chromium. BIOLOGY 2022; 11:biology11050766. [PMID: 35625494 PMCID: PMC9138328 DOI: 10.3390/biology11050766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Simple Summary Metals such as chromium can be exposed at high levels in the marine environment, and exposure to these heavy metals can have a direct effect on marine organisms. High levels of chromium exposure can have a direct impact on organisms in a coastal cage and terrestrial aquaculture. Hexavalent chromium exposure of more than 1.0 and 2.0 mg Cr6+/L induced physiological responses such as antioxidant, neurotransmitter, immune, and stress indicators in Paralichthys olivaceus. Therefore, this study will provide a reference indicator for stable aquaculture production through reference indicators for toxicity due to chromium exposure that may exist in the marine environment. Abstract Juvenile Paralichthys olivaceus were exposed to waterborne hexavalent chromium at various concentrations (0, 0.5, 1.0, and 2.0 mg/L) for 10 days. After chromium exposure, the activities of superoxide dismutase and glutathione S-transferase, which are oxidative stress indicators, were significantly increased; however, the glutathione level was significantly reduced. Acetylcholinesterase activity as a neurotoxicity marker was significantly inhibited upon chromium exposure. Other stress indicators, including plasma cortisol and heat shock protein 70, were significantly increased. The immune response markers (lysozyme and immunoglobulin M) were significantly decreased after chromium exposure. These results suggest that exposure to environmental toxicity in the form of waterborne chromium at concentrations higher than 1.0 mg/L causes significant alterations in antioxidant responses, neurotransmitters, stress, and immune responses in juvenile olive flounders. This study will provide a basis for an accurate assessment of the toxic effects of hexavalent chromium on aquatic organisms.
Collapse
|
18
|
Identification and Characterization of Differentially Expressed IgM Transcripts of Channel Catfish Vaccinated with Antigens of Virulent Aeromonas hydrophila. FISHES 2022. [DOI: 10.3390/fishes7010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Channel catfish (Ictalurus punctatus) is the top species produced in US aquaculture and motile Aeromonas septicemia, caused by virulent Aeromonas hydrophila (vAh), is one of the most severe diseases that afflict catfish farms. Previously, vaccination of fish with extracellular proteins (ECP) of vAh was shown to produce a robust antibody-mediated immune response against vAh infection. In this study, we analyzed IgM transcripts that were differentially expressed in the head kidney and liver of ECP-immunized and mock-immunized (control) fish with emphasis on a variable domain of heavy chain. Quantitative PCR analysis indicated that immunized fish produced significantly more IgM transcripts than control fish. Full-length IgM heavy chain cDNA was cloned, which encoded typical IgM peptide, including signal peptide, variable domain (VH), constant domain (CH), and carboxyl terminal peptide. Great sequence diversity was revealed in a VH segment, with the third complementarity diversity region (CDR3) being most variable. Using germline VH gene grouping method, variants (clones) of VH characterized in this study belonged to nine VH families. The most unique variants (approximately 49%) were found in the VH2 family. Vaccinated fish apparently had more unique variants than in the control fish. There were 62% and 79% of unique variants in the head kidney and liver of vaccinated fish, respectively, while 44% and 27% unique variants in the head kidney and liver of control fish, respectively. Among the unique variants in VH2 family, approximately 87% of them were found in vaccinated fish. Two-dimensional gel electrophoresis of semi-purified IgM protein confirmed that matured IgM protein was as variable as IgM transcripts identified in this study, with isoelectric points crossing from 6 to 10. Results of this study provided insight into the molecular and genetic basis of antibody diversity and enriched our knowledge of the complex interplay between antigens and antibodies in Ictalurid catfish.
Collapse
|
19
|
Tang H, Jiang X, Zhang J, Pei C, Zhao X, Li L, Kong X. Teleost CD4 + helper T cells: Molecular characteristics and functions and comparison with mammalian counterparts. Vet Immunol Immunopathol 2021; 240:110316. [PMID: 34474261 DOI: 10.1016/j.vetimm.2021.110316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
CD4+ helper T cells play key and diverse roles in inducing adaptive immune responses in vertebrates. The CD4 molecule, which is found on the surfaces of CD4+ helper T cells, can be used to distinguish subsets of helper T cells. Teleosts are the oldest living species with bona-fide CD4 coreceptors. Although some components of immune systems of teleosts and mammals appear to be similar, many physiological differences are represented between them. Previous studies have shown that two CD4 paralogs are present in teleosts, whereas only one is present in mammals. Therefore, in this review, the CD4 molecular structure, expression profiles, subpopulations, and biological functions of teleost CD4+ helper T cells were summarized and compared with those of their mammalian counterparts to understand the differences in CD4 molecules between teleosts and mammals. This review provides suggestions for further studies on the CD4 molecular function and regulatory mechanism of CD4+ helper T cells in teleost fish and will help establish therapeutic strategies to control fish diseases in the future.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
20
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Rosado D, Xavier R, Cable J, Severino R, Tarroso P, Pérez-Losada M. Longitudinal sampling of external mucosae in farmed European seabass reveals the impact of water temperature on bacterial dynamics. ISME COMMUNICATIONS 2021; 1:28. [PMID: 36739461 PMCID: PMC9723769 DOI: 10.1038/s43705-021-00019-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Fish microbiota are intrinsically linked to health and fitness, but they are highly variable and influenced by both biotic and abiotic factors. Water temperature particularly limits bacterial adhesion and growth, impacting microbial diversity and bacterial infections on the skin and gills. Aquaculture is heavily affected by infectious diseases, especially in warmer months, and industry practices often promote stress and microbial dysbiosis, leading to an increased abundance of potentially pathogenic bacteria. In this regard, fish mucosa health is extremely important because it provides a primary barrier against pathogens. We used 16 rRNA V4 metataxonomics to characterize the skin and gill microbiota of the European seabass, Dicentrarchus labrax, and the surrounding water over 12 months, assessing the impact of water temperature on microbial diversity and function. We show that the microbiota of external mucosae are highly dynamic with consistent longitudinal trends in taxon diversity. Several potentially pathogenic genera (Aliivibrio, Photobacterium, Pseudomonas, and Vibrio) were highly abundant, showing complex interactions with other bacterial genera, some of which with recognized probiotic activity, and were also significantly impacted by changes in temperature. The surrounding water temperature influenced fish microbial composition, structure and function over time (days and months). Additionally, dysbiosis was more frequent in warmer months and during transitions between cold/warm months. We also detected a strong seasonal effect in the fish microbiota, which is likely to result from the compound action of several unmeasured environmental factors (e.g., pH, nutrient availability) beyond temperature. Our results highlight the importance of performing longitudinal studies to assess the impact of environmental factors on fish microbiotas.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, Lagos, Portugal
| | - Pedro Tarroso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
22
|
Zhang XT, Yu YY, Xu HY, Huang ZY, Liu X, Cao JF, Meng KF, Wu ZB, Han GK, Zhan MT, Ding LG, Kong WG, Li N, Takizawa F, Sunyer JO, Xu Z. Prevailing Role of Mucosal Igs and B Cells in Teleost Skin Immune Responses to Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1088-1101. [PMID: 33495235 PMCID: PMC11152320 DOI: 10.4049/jimmunol.2001097] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
The skin of vertebrates is the outermost organ of the body and serves as the first line of defense against external aggressions. In contrast to mammalian skin, that of teleost fish lacks keratinization and has evolved to operate as a mucosal surface containing a skin-associated lymphoid tissue (SALT). Thus far, IgT representing the prevalent Ig in SALT have only been reported upon infection with a parasite. However, very little is known about the types of B cells and Igs responding to bacterial infection in the teleost skin mucosa, as well as the inductive or effector role of the SALT in such responses. To address these questions, in this study, we analyzed the immune response of trout skin upon infection with one of the most widespread fish skin bacterial pathogens, Flavobacterium columnare This pathogen induced strong skin innate immune and inflammatory responses at the initial phases of infection. More critically, we found that the skin mucus of fish having survived the infection contained significant IgT- but not IgM- or IgD-specific titers against the bacteria. Moreover, we demonstrate the local proliferation and production of IgT+ B cells and specific IgT titers, respectively, within the SALT upon bacterial infection. Thus, our findings represent the first demonstration that IgT is the main Ig isotype induced by the skin mucosa upon bacterial infection and that, because of the large surface of the skin, its SALT probably represents a prominent IgT-inductive site in fish.
Collapse
Affiliation(s)
- Xiao-Ting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao-Yue Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xia Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jia-Feng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zheng-Ben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Meng-Ting Zhan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Li-Guo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wei-Guang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Fumio Takizawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
| |
Collapse
|
23
|
Pontigo JP, Espinoza C, Hernandez M, Nourdin G, Oliver C, Avendaño-Herrera R, Figueroa J, Rauch C, Troncoso JM, Vargas-Chacoff L, Yáñez AJ. Protein-Based Vaccine Protect Against Piscirickettsia salmonis in Atlantic Salmon ( Salmo salar). Front Immunol 2021; 12:602689. [PMID: 33679740 PMCID: PMC7927424 DOI: 10.3389/fimmu.2021.602689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
An effective and economical vaccine against the Piscirickettsia salmonis pathogen is needed for sustainable salmon farming and to reduce disease-related economic losses. Consequently, the aquaculture industry urgently needs to investigate efficient prophylactic measures. Three protein-based vaccine prototypes against Piscirickettsia salmonis were prepared from a highly pathogenic Chilean isolate. Only one vaccine effectively protected Atlantic salmon (Salmo salar), in correlation with the induction of Piscirickettsia-specific IgM antibodies and a high induction of transcripts encoding pro-inflammatory cytokines (i.e., Il-1β and TNF-α). In addition, we studied the proteome fraction protein of P. salmonis strain Austral-005 using multidimensional protein identification technology. The analyzes identified 87 proteins of different subcellular origins, such as the cytoplasmic and membrane compartment, where many of them have virulence functions. The other two prototypes activated only the innate immune responses, but did not protect Salmo salar against P. salmonis. These results suggest that the knowledge of the formulation of vaccines based on P. salmonis proteins is useful as an effective therapy, this demonstrates the importance of the different research tools to improve the study of the different immune responses, resistance to diseases in the Atlantic salmon. We suggest that this vaccine can help prevent widespread infection by P. salmonis, in addition to being able to be used as a booster after a primary vaccine to maintain high levels of circulating protective antibodies, greatly helping to reduce the economic losses caused by the pathogen.
Collapse
Affiliation(s)
- Juan Pablo Pontigo
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterianaria, Universidad San Sebastián, Puerto Montt, Chile
| | - Carla Espinoza
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Hernandez
- Proteogenomics Laboratory, Molecular Epidemiology for Life of Science reseArch (MELISA) Institute, San Pedro de Paz, Chile
| | - Guillermo Nourdin
- Proteogenomics Laboratory, Molecular Epidemiology for Life of Science reseArch (MELISA) Institute, San Pedro de Paz, Chile
| | - Cristian Oliver
- Laboratorio de Biotecnología Acuática, Facultad de Ciencias Veterinarias. Universidad Austral de Chile, Valdivia, Chile
| | - Rubén Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile.,Laboratorio de Patología de Organismos Acuaticos y Biotecnologia Acuicola, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Cecilia Rauch
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.,Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro J Yáñez
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile.,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
24
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
25
|
Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules 2020; 25:molecules25225378. [PMID: 33213001 PMCID: PMC7698520 DOI: 10.3390/molecules25225378] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Administration of β-glucans through various routes, including immersion, dietary inclusion, or injection, have been found to stimulate various facets of immune responses, such as resistance to infections and resistance to environmental stress. β-Glucans used as an immunomodulatory food supplement have been found beneficial in eliciting immunity in commercial aquaculture. Despite extensive research involving more than 3000 published studies, knowledge of the receptors involved in recognition of β-glucans, their downstream signaling, and overall mechanisms of action is still lacking. The aim of this review is to summarize and discuss what is currently known about of the use of β-glucans in fish.
Collapse
|
26
|
Zhang C, Zhang PQ, Guo S, Chen G, Zhao Z, Wang GX, Zhu B. Application of Biomimetic Cell-Derived Nanoparticles with Mannose Modification as a Novel Vaccine Delivery Platform against Teleost Fish Viral Disease. ACS Biomater Sci Eng 2020; 6:6770-6777. [DOI: 10.1021/acsbiomaterials.0c01302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peng-Qi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sheng Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
27
|
Yasumoto K, Koiwai K, Hiraoka K, Hirono I, Kondo H. Characterization of natural antigen-specific antibodies from naïve sturgeon serum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103770. [PMID: 32634523 DOI: 10.1016/j.dci.2020.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, we isolated and characterized natural antibodies found in serum samples from Bester sturgeon (Huso huso × Acipenser ruthenus). Natural antibodies specifically detected hen egg lysozyme (HEL), keyhole limpet hemocyanin (KLH), and several species of pathogenic bacteria. Interestingly, we detected no antibodies with similar specificity in serum samples from rainbow trout (Oncorhynchus mykiss) or from Japanese flounder (Paralichthys olivaceus). Binding capacity of the sturgeon natural serum antibodies increased slightly at 7 months compared to 3 months after hatching. Antigen-specific antibodies against KLH, Aeromonas hydrophila and Streptococcus iniae were affinity-fractionated from naive sera of Bester sturgeon; specific detection of the corresponding antigens was observed. We conclude that Bester sturgeon are capable of generating unique natural antibodies including those that are pathogen-specific.
Collapse
Affiliation(s)
- Kyutaro Yasumoto
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Kiyoshi Hiraoka
- Fujikin Inc, 18 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| |
Collapse
|
28
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
29
|
Guslund NC, Solbakken MH, Brieuc MSO, Jentoft S, Jakobsen KS, Qiao SW. Single-Cell Transcriptome Profiling of Immune Cell Repertoire of the Atlantic Cod Which Naturally Lacks the Major Histocompatibility Class II System. Front Immunol 2020; 11:559555. [PMID: 33154745 PMCID: PMC7588623 DOI: 10.3389/fimmu.2020.559555] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Atlantic cod’s unusual immune system, entirely lacking the Major Histocompatibility class II pathway, has prompted intriguing questions about what mechanisms are used to combat bacterial infections and how immunological memory is generated. By single-cell RNA sequencing we here report an in-depth characterisation of cell types found in immune tissues, the spleen and peripheral blood leukocytes of Atlantic cod. Unbiased transcriptional clustering revealed eleven distinct immune cell signatures. Resolution at the single cell level enabled characterisation of the major cell subsets including the cytotoxic T cells, B cells, erythrocytes, thrombocytes, neutrophils, and macrophages. Additionally, to our knowledge we are the first to uncover cell subsets in Atlantic cod which may represent dendritic cells, natural killer-like cells, and a population of cytotoxic cells expressing GATA-3, a master transcription factor of T helper 2 cells. We further identify putative gene markers for each cluster and describe the relative proportions of each cell type in the spleen and peripheral blood leukocytes. Of the major haematopoietic cell populations, the lymphocytes make up 55 and 68% of the spleen and peripheral blood leukocytes respectively, while the myeloid cells make up 45 and 32%. By single-cell analysis, this study provides the most detailed molecular and cellular characterisation of the immune system of the Atlantic cod so far.
Collapse
Affiliation(s)
- Naomi Croft Guslund
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marine S O Brieuc
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front Immunol 2020; 11:567941. [PMID: 33123139 PMCID: PMC7566178 DOI: 10.3389/fimmu.2020.567941] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Collapse
Affiliation(s)
- Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Metagenomic Shotgun Analyses Reveal Complex Patterns of Intra- and Interspecific Variation in the Intestinal Microbiomes of Codfishes. Appl Environ Microbiol 2020; 86:AEM.02788-19. [PMID: 31953333 PMCID: PMC7054092 DOI: 10.1128/aem.02788-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The composition of the intestinal microbial community associated with teleost fish is influenced by a diversity of factors, ranging from internal factors (such as host-specific selection) to external factors (such as niche occupation). These factors are often difficult to separate, as differences in niche occupation (e.g., diet, temperature, or salinity) may correlate with distinct evolutionary trajectories. Here, we investigate four gadoid species with contrasting levels of evolutionary separation and niche occupation. Using metagenomic shotgun sequencing, we observed distinct microbiomes among two Atlantic cod (Gadus morhua) ecotypes (NEAC and NCC) with distinct behavior and habitats. In contrast, interspecific patterns of variation were more variable. For instance, we did not observe interspecific differentiation between the microbiomes of coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose lineages underwent evolutionary separation over 20 million years ago. The observed pattern of microbiome variation in these gadoid species is therefore most parsimoniously explained by differences in niche occupation. The relative importance of host-specific selection or environmental factors in determining the composition of the intestinal microbiome in wild vertebrates remains poorly understood. Here, we used metagenomic shotgun sequencing of individual specimens to compare the levels of intra- and interspecific variation of intestinal microbiome communities in two ecotypes (NEAC and NCC) of Atlantic cod (Gadus morhua) that have distinct behavior and habitats and three Gadidae species that occupy a range of ecological niches. Interestingly, we found significantly diverged microbiomes among the two Atlantic cod ecotypes. Interspecific patterns of variation are more variable, with significantly diverged communities for most species’ comparisons, apart from the comparison between coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose community compositions are not significantly diverged. The absence of consistent species-specific microbiomes suggests that external environmental factors, such as temperature, diet, or a combination thereof, comprise major drivers of the intestinal community composition of codfishes. IMPORTANCE The composition of the intestinal microbial community associated with teleost fish is influenced by a diversity of factors, ranging from internal factors (such as host-specific selection) to external factors (such as niche occupation). These factors are often difficult to separate, as differences in niche occupation (e.g., diet, temperature, or salinity) may correlate with distinct evolutionary trajectories. Here, we investigate four gadoid species with contrasting levels of evolutionary separation and niche occupation. Using metagenomic shotgun sequencing, we observed distinct microbiomes among two Atlantic cod (Gadus morhua) ecotypes (NEAC and NCC) with distinct behavior and habitats. In contrast, interspecific patterns of variation were more variable. For instance, we did not observe interspecific differentiation between the microbiomes of coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose lineages underwent evolutionary separation over 20 million years ago. The observed pattern of microbiome variation in these gadoid species is therefore most parsimoniously explained by differences in niche occupation.
Collapse
|
32
|
Rego K, Bengtén E, Wilson M, Hansen JD, Bromage ES. Characterization of immunoglobulin light chain utilization and variable family diversity in rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103566. [PMID: 31837380 DOI: 10.1016/j.dci.2019.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
This study characterizes immunoglobulin light chain (IgL) expression and variable family usage in rainbow trout. IgL transcripts were generated by 5' RACE from both immune and TNP-KLH immunized fish. Phylogenetic analysis revealed that the IgL variable regions clustered into seven different families: three kappa families (two newly described in this study), three sigma families, and a single lambda family. IgL1 and IgL3 transcripts expressing identical variable regions were identified and genomic analysis revealed that the two isotypes are co-localized on chromosomes 7, 15, 18, and 21 allowing for potential rearrangement between clusters. Fish were immunized with TNP-KLH (n = 5) and percent expression of IgL1, IgL2, IgL3, and IgL4 measured by qRT-PCR from immune tissues and magnetically sorted TNP-specific lymphocyte populations. In all samples IgL1 constituted 80-95% of the transcripts. The percentage of anti-TNP specific IgL1 transcripts was measured in naïve, unsorted, and TNP-specific cell populations of TNP-KLH fish (n = 3) and found to be significantly higher in the TNP positive cell population (21%) compared to the naïve population (1%; p = 0.02) suggesting that there is a selection of TNP specific IgL sequences.
Collapse
Affiliation(s)
- Katherine Rego
- Department of Biology University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - John D Hansen
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA; Interdisciplinary Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Erin S Bromage
- Department of Biology University of Massachusetts Dartmouth, North Dartmouth, MA, USA.
| |
Collapse
|
33
|
Xu W, Li H, Wu L, Jin J, Zhu X, Han D, Liu H, Yang Y, Xu X, Xie S. Dietary Scenedesmus ovalternus improves disease resistance of overwintering gibel carp (Carassius gibelio) by alleviating toll-like receptor signaling activation. FISH & SHELLFISH IMMUNOLOGY 2020; 97:351-358. [PMID: 31874297 DOI: 10.1016/j.fsi.2019.12.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to investigate the effect of dietary Scenedesmus ovalternus on the growth and disease resistance of gibel carp (Carassius gibelio) during overwintering. Gibel carp (initial body weight: 90.39 ± 0.33 g) were fed with diets containing 0% or 4% Scenedesmus ovalternus (DS0 and DS4) for 4 weeks during the early overwintering period, and then all fish were left unfed during the late overwintering period. A bacterial challenge test using Aeromonas hydrophila was subsequently conducted. The 4% Scenedesmus ovalternus diet had no effect on the growth of gibel carp (P > 0.05), but did improve the survival rate after the challenge (P ≤ 0.05). In the DS0 group, the bacterial challenge decreased the contents of complement 3 (C3), immunoglobulin M (IgM), interleukin 2 (IL2) and tumor necrosis factor α (TNFα) in fish (P < 0.05); in the DS4 group, the challenge increased total antioxidant capacity (T-AOC) and myeloperoxidase (MPO) activity but decreased IL2 and TNFα contents (P < 0.05). The activities of MPO and contents of C3, IgM and TNFα were higher in the DS4 group than that fed the DS0 diet after bacterial challenge (P < 0.05). Compared to pre challenge, the expression levels of toll like receptor 2 (TLR2), toll like receptor 3 (TLR3), toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), TIR-domain-containing adapter-inducing interferon β (TRIF), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα), transforming growth factor β (TGFβ), interleukin 1β (IL1β), tumor necrosis factor α1 (TNFα1) and interleukin 10 (IL10) in the head kidney of gibel carp were induced after challenge (P < 0.05). Gibel carp fed the DS4 diet showed lower expression of TGFβ in head kidney before the challenge and lower expression of TLR2, TLR3, TLR4, TIRAP, TRIF, IκBα, TNFα1, IL10 and TGFβ after the challenge than that fed the DS0 diet (P < 0.05). Overall, Scenedesmus ovalternus supplement enhanced the resistances of gibel carp against A. hydrophila after overwintering via the TLR signaling pathway.
Collapse
Affiliation(s)
- Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongyan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China.
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| |
Collapse
|
34
|
Magrone T, Russo MA, Jirillo E. Dietary Approaches to Attain Fish Health with Special Reference to their Immune System. Curr Pharm Des 2019; 24:4921-4931. [PMID: 30608037 DOI: 10.2174/1381612825666190104121544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
Fish despite their low collocation in the vertebrate phylum possess a complete immune system. In teleost fish both innate and adaptive immune responses have been described with melanomacrophage centers (MMCs) equivalent to mammalian germinal centers. Primary lymphoid organs are represented by the thymus and kidney, while spleen and mucosa-associated lymphoid tissues act as secondary lymphoid organs. Functions of either innate immune cells (e.g., macrophages and dendritic cells) or adaptive immune cells (T and B lymphocytes) will be described in detail, even including their products, such as cytokines and antibodies. In spite of a robust immune arsenal, fish are very much exposed to infectious agents (marine bacteria, parasites, fungi, and viruses) and, consequentially, mortality is very much enhanced especially in farmed fish. In fact, in aquaculture stressful events (overcrowding), microbial infections very frequently lead to a high rate of mortality. With the aim to reduce mortality of farmed fish through the reinforcement of their immune status the current trend is to administer natural products together with the conventional feed. Then, in the second part of the present review emphasis will be placed on a series of products, such as prebiotics, probiotics and synbiotics, β-glucans, vitamins, fatty acids and polyphenols all used to feed farmed fish. With special reference to polyphenols, results of our group using red grape extracts to feed farmed European sea bass will be illustrated. In particular, determination of cytokine production at intestinal and splenic levels, areas of MMCs and development of hepatopancreas will represent the main biomarkers considered. All together, our own data and those of current literature suggests that natural product administration to farmed fish for their beneficial effects may, in part, solve the problem of fish mortality in aquaculture, enhancing their immune responses.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
35
|
Fan Y, Zhang X, Zhou Y, Jiang N, Liu W, Zeng L. Molecular cloning of Gibel carp (Carassius auratus gibelio) complement component C3 and its expression profile after Cyprinid herpesvirus 2 infection. J Vet Med Sci 2019; 82:47-55. [PMID: 31723065 PMCID: PMC6983669 DOI: 10.1292/jvms.18-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The complement systems play an important role in innate and adaptive immunity. In this study, the complement C3 gene, designated CagC3, was cloned and sequenced from Gibel
carp (Carassius auratus gibelio). The expression pattern of CagC3 in different tissues of healthy Gibel carp and after challenge with Cyprinid herpesvirus 2
(CyHV-2) were evaluated using quantitative real-time PCR. The full-length CagC3 cDNA was 5131 bp with an ORF of 4950 bp, encoding a predicted protein of 1649 amino acids.
The deduced amino acid sequence showed that CagC3 has conserved domains and residues known to be critical for C3 function. Phylogenetic analysis demonstrated that CagC3 clustered with
homologs from common carp and grass carp (Ctenopharyngodon idella). CagC3 is expressed in all examined tissues of healthy Gibel carp, with the highest
expression in liver. In vivo, after CyHV-2 challenge, CagC3 transcription was significantly upregulated in liver, spleen and kidney with the peaks at 24 hr,
2 d, and 2 d, respectively. In vitro, CagC3 expression in the Gibel carp brain cell line showed the same pattern as that in vivo after
stimulation with CyHV-2 or poly(I:C). However, CagC3 expression was downregulated at 24 hr after induction with lipopolysaccharide (LPS), and then reached the peak at 2 d.
These results suggest that CagC3 is involved in the innate immune response of Gibel carp to viral infection.
Collapse
Affiliation(s)
- Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xueping Zhang
- Beijing Wisdomab Biotechnology Company Limited, Beijing 100176, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| |
Collapse
|
36
|
Wu L, Yang Y, Kong L, Bian X, Guo Z, Fu S, Liang F, Li B, Ye J. Comparative transcriptome analysis of the transcriptional heterogeneity in different IgM + cell subsets from peripheral blood of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 93:612-622. [PMID: 31408730 DOI: 10.1016/j.fsi.2019.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In teleost fish, IgM+ B cells play important roles in innate and adaptive immunity. Different IgM+ B cells are detected in teleost, named IgMlo and IgMhi B cell subsets, according to the distinct expression levels of membrane IgM (mIgM). However, the study on the heterogeneity in IgM+ B cell subsets remains poorly understood. In this study, the comparative transcriptomic profiles of IgM-, IgMlo and IgMhi from peripheral blood of Nile tilapia (Oreochromis niloticus) were carried out by using RNA-sequencing technique. A total of 6045 and 5470 differentially expressed genes (DEGs) were detected in IgMlo and IgMhi cells, respectively, as compared with IgM- lymphocytes, whereas 3835 genes were differentially expressed when IgMlo compared to IgMhi cells. Analysis of the KEGG database indicated that the DEGs were enriched in immune system categories and signaling transduction and interaction in IgM- vs IgMhi, IgM- vs IgMlo and IgMlo vs IgMhi. Comparatively, in IgMlo vs IgMhi, GO enrichment analysis indicated that the DEGs enriched in nucleic acid binding transcription factor activity. Analysis of crucial transcription factors for B cell differentiation indicated that IgMlo and IgMhi cell clusters belonged to the different B cell subsets. The data generated in this study may provide insights into understanding the heterogeneity of IgM+ cells in teleost, and suggest that IgM+ B cells play a crucial role in innate immunity.
Collapse
Affiliation(s)
- Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
37
|
Zhou Y, Jiang N, Fan Y, Zhou Y, Xu C, Liu W, Zeng L. Identification, expression profiles and antiviral activities of a type I IFN from gibel carp Carassius auratus gibelio. FISH & SHELLFISH IMMUNOLOGY 2019; 91:78-86. [PMID: 31039439 DOI: 10.1016/j.fsi.2019.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Type I interferons, as a class of multipotent cytokines, play a key role in host antiviral immune responses. In this study, a type I IFN coding gene of gibel carp, Carassius auratus gibelio, CagIFNa was cloned and sequenced. The full-length cDNA sequence of CagIFNa consists of 724 nucleotides that encode a predicted protein of 183 amino acids. CagIFNa has two highly conserved cysteine residues in the deduced protein, which is mostly conserved in the fish group I type I IFNs. CagIFNa was identified as a member of the IFNa subgroup of group I type I IFNs by phylogenetic analysis. CagIFNa transcripts were detected in all investigated tissues with higher levels in the liver, intestine, spleen and head kidney of gibel carp. Following injection with Cyprinid herpesvirus 2 (CyHV-2), CagIFNa gene expression was significantly inhibited in the spleen but delayed and then increased in head kidneys. Similarly, while CagIFNa expression was rapidly induced in gibel carp brain (GiCB) cells by poly I:C stimulation and its high induction level was delayed following CyHV-2 infection. CagIFNa overexpression in GiCB cells drastically reduced virus CPE and titer. Furthermore, several genes associated with type I IFN signaling pathway including IRF3, IRF7, IRF9, STAT1, Mx1 and PKR were induced in GiCB cells overexpressing CagIFNa upon CyHV-2 infection. These results show that CagIFNa plays a role in antiviral immune system in gibel carp.
Collapse
Affiliation(s)
- Yongze Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, PR China.
| |
Collapse
|
38
|
Stosik MP, Tokarz-Deptuła B, Deptuła W. Melanomacrophages and melanomacrophage centres in Osteichthyes. Cent Eur J Immunol 2019; 44:201-205. [PMID: 31530990 PMCID: PMC6745537 DOI: 10.5114/ceji.2019.87072] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/13/2018] [Indexed: 11/22/2022] Open
Abstract
Melanomacrophages (MMs) are phagocytizing cells with high amounts of pigments including melanin which can be found in a number of cold-blooded species. In Osteichthyes, these cells cluster to form so-called melanomacrophage centres (MMCs), which are predominantly present in the stroma of hematopoietic and lymphoid tissues, that is, in the kidney and spleen. The functionality of MMs and MMCs results from their involvement and role in the defence reactions, related to both the innate and the adaptive immune mechanisms, and in processes unrelated to defence functions as well. There is evidence that MMCs are structurally and functionally similar to mammals' germinal centres (GCs). It appears that mature IgM+ B cells in Osteichthyes can be the equivalent of mIgM+ centrocytes in mammals, whereas MMs can be, in terms of the function, the equivalent of follicular dendritic cells (FDCs), and MMCs can be, in terms of clustered specific cells, the equivalent of GCs. This paper presents selected facts about the structural and functional similarity between GCs and MMCs and about the involvement and role of MMCs and MMs in the immune response. The facts help get a proper picture of the location of MMs and MMCs within the structure of the fish immune system, also in the context of their evolutionary relationship with GCs and of the possibility of pointing out the evolutionary closeness between MMCs in Osteichthyes and GCs in mammals.
Collapse
Affiliation(s)
- Michał P. Stosik
- Department of Microbiology and Genetics, Faculty of Biological Sciences, University of Zielona Gora, Poland
| | | | - Wiesław Deptuła
- Centre for Veterinary Sciences, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
39
|
Yao YY, Chen DD, Cui ZW, Zhang XY, Zhou YY, Guo X, Li AH, Zhang YA. Oral vaccination of tilapia against Streptococcus agalactiae using Bacillus subtilis spores expressing Sip. FISH & SHELLFISH IMMUNOLOGY 2019; 86:999-1008. [PMID: 30590166 DOI: 10.1016/j.fsi.2018.12.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Streptococcus agalactiae infections are becoming an increasing problem in aquaculture because of significant morbidity and mortality, which restricts the healthy development of tilapia aquaculture. To seek safe and effective prevention measures, a Bacillus subtilis GC5 surface displayed vaccine was prepared and applied orally in tilapia. The study first showed that recombinant spores can engraft in the tilapia intestine. Then, the effect of protection and the immune responses were evaluated. The results of ELISA showed that Sip-specific antibody in the sera of GC5-Sip-immunized fish can be detected after the first oral administration when compared to the phosphate buffer saline (PBS) control group, and the levels of specific IgM gradually strengthened with boosting, so does the specific antibody against bacteria, proving that humoral immunity was induced. Quantitative real-time PCR (qRT-PCR) results showed that the immune-related gene expression of the gut and spleen exhibited a different rising trend in the GC5-Sip group, revealing that innate immune response and local as well as systemic cellular immunity were induced. The outcome of fish immunized with GC5-Sip spores provided a relative percent survival (RPS) of 41.7% against S. agalactiae and GC5 group had an RPS of 24.2%, indicating that GC5-Sip was safe and effective in protecting tilapia against bacterial infection. Our study demonstrated that the oral administration of B. subtilis spores expressing Sip could cause an effective immune response and offer good resistance to bacterial infection. Our work may lead to the development of new ideas for immunoprophylaxis against S. agalactiae infection.
Collapse
Affiliation(s)
- Yuan-Yuan Yao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Wei Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xia Guo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ai-Hua Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China.
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; State Key Laboratory of Aquaculture Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
40
|
Yu YY, Kong W, Yin YX, Dong F, Huang ZY, Yin GM, Dong S, Salinas I, Zhang YA, Xu Z. Mucosal immunoglobulins protect the olfactory organ of teleost fish against parasitic infection. PLoS Pathog 2018; 14:e1007251. [PMID: 30395648 PMCID: PMC6237424 DOI: 10.1371/journal.ppat.1007251] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/15/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023] Open
Abstract
The olfactory organ of vertebrates receives chemical cues present in the air or water and, at the same time, they are exposed to invading pathogens. Nasal-associated lymphoid tissue (NALT), which serves as a mucosal inductive site for humoral immune responses against antigen stimulation in mammals, is present also in teleosts. IgT in teleosts is responsible for similar functions to those carried out by IgA in mammals. Moreover, teleost NALT is known to contain B-cells and teleost nasal mucus contains immunoglobulins (Igs). Yet, whether nasal B cells and Igs respond to infection remains unknown. We hypothesized that water-borne parasites can invade the nasal cavity of fish and elicit local specific immune responses. To address this hypothesis, we developed a model of bath infection with the Ichthyophthirius multifiliis (Ich) parasite in rainbow trout, Oncorhynchus mykiss, an ancient bony fish, and investigated the nasal adaptive immune response against this parasite. Critically, we found that Ich parasites in water could reach the nasal cavity and successfully invade the nasal mucosa. Moreover, strong parasite-specific IgT responses were detected in the nasal mucus, and the accumulation of IgT+ B-cells was noted in the nasal epidermis after Ich infection. Strikingly, local IgT+ B-cell proliferation and parasite-specific IgT generation were found in the trout olfactory organ, providing new evidence that nasal-specific immune responses were induced locally by a parasitic challenge. Overall, our findings suggest that nasal mucosal adaptive immune responses are similar to those reported in other fish mucosal sites and that an antibody system with a dedicated mucosal Ig performs evolutionary conserved functions across vertebrate mucosal surfaces. The olfactory organ is a vitally important chemosensory organ in vertebrates but it is also continuously stimulated by pathogenic microorganisms in the external environment. In mammals and birds, nasopharynx-associated lymphoid tissue (NALT) is considered one of the first lines of immune defense against inhaled antigens and in bony fish, protecting against water-borne infections. However, although B-cells and immunoglobulins (Igs) have been found in teleost NALT, the defensive mechanisms of parasite-specific immune responses after pathogen challenge in the olfactory organ of teleost fish remain poorly understood. Considering that the NALT of all vertebrates has been subjected to similar evolutionary forces, we hypothesize that mucosal Igs play a critical role in the defense of olfactory systems against parasites. To confirm this hypothesis, we show the local proliferation of IgT+ B-cells and production of pathogen-specific IgT within the nasal mucosa upon parasite infection, indicating that parasite-specific IgT is the main Ig isotype specialized for nasal-adaptive immune responses. From an evolutionary perspective, our findings contribute to expanding our view of nasal immune systems and determining the fate of the host–pathogen interaction.
Collapse
Affiliation(s)
- Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ya-Xing Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guang-Mei Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Yong-An Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
41
|
Effects of Sex Steroids on Fish Leukocytes. BIOLOGY 2018; 7:biology7010009. [PMID: 29315244 PMCID: PMC5872035 DOI: 10.3390/biology7010009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish.
Collapse
|
42
|
Li Z, Liu X, Cheng J, He Y, Wang X, Wang Z, Qi J, Yu H, Zhang Q. Transcriptome profiling provides gene resources for understanding gill immune responses in Japanese flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2018; 72:593-603. [PMID: 29175442 DOI: 10.1016/j.fsi.2017.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Marine organisms are commonly under threats from various pathogens. Edwardsiella tarda is one of the fish pathogens that seriously infect cultured and wild fish species. Bacteremia caused by E. tarda can be a fatal disease in humans. Fish gill is a mucosa-associated lymphoid tissue that directly contacted with sea water. Generating gill transcriptomic resources that challenged by E. tarda is crucial for understanding the molecular mechanisms underlying gill immune responses. In this study, we performed transcriptome profiling of gene expression in Japanese flounder gills (Paralichthys olivaceus) challenged by E. tarda with different stress duration. An average of 40 million clean reads per library were obtained, of which approximately 83.2% were successfully mapped to the reference genome. 456 and 1037 differential expressed genes (DEGs) were identified at 8 h and 48 h post-injection, respectively. Gene annotation analysis and protein-protein interaction networks were conducted to obtain the key interaction relationships of immune-related DEGs during pathogens infection. 24 hub genes with multiple protein-protein interaction relationships or involved in multiple KEGG signaling pathways were discovered and validated by qRT-PCR. These hub genes mainly participated in Leukocyte transendothelial migration signaling pathway, B cell receptor signaling pathway, Wnt signaling pathway and Apoptosis signaling pathway. This study represents the first gill transcriptomic analysis based on protein-protein interaction networks in fish and provides valuable gene resources for understanding the fish gill immunity, which can pave the way to understand the molecular mechanisms of immune responses with E. tarda infection.
Collapse
Affiliation(s)
- Zan Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
43
|
Li Z, Liu X, Liu J, Zhang K, Yu H, He Y, Wang X, Qi J, Wang Z, Zhang Q. Transcriptome profiling based on protein-protein interaction networks provides a core set of genes for understanding blood immune response mechanisms against Edwardsiella tarda infection in Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:100-113. [PMID: 28923591 DOI: 10.1016/j.dci.2017.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Marine organisms are commonly under threat from various pathogens. Edwardsiella tarda is one of the fish pathogens that can infect both cultured and wild fish species. E. tarda can also infect other vertebrates, including amphibians, reptiles, and mammals. Bacteremia caused by E. tarda can be a fatal disease in humans. Blood acts as a pipeline for the fish immune system. Generating blood transcriptomic resources from fish challenged by E. tarda is crucial for understanding molecular mechanisms underlying blood immune response process. In this study, we performed transcriptome-wide gene expression profiling of Japanese flounder (Paralichthys olivaceus) challenged by 8 and 48 h E. tarda stress. An average of 37 million clean reads per library was obtained, and approximately 85.6% of these reads were successfully mapped to the reference genome. In addition, 808 and 1265 differential expression genes (DEGs) were found at 8 and 48 h post-injection, respectively. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to search immune-related DEGs. A protein-protein interaction network was constructed to obtain the interaction relationship of immune genes during pathogens stress. Based on KEGG and protein association networks analysis, 30 hub genes were discovered and validated by quantitative RT-PCR. This study represents the first transcriptome analysis based on protein-protein interaction networks in fish and provides us with valuable gene resources for the research of fish blood immunity, which can significantly assist us to further understand the molecular mechanisms of humans and other vertebrates against E. tarda.
Collapse
Affiliation(s)
- Zan Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China.
| |
Collapse
|
44
|
Fan Y, Zhou Y, Zeng L, Jiang N, Liu W, Zhao J, Zhong Q. Identification, structural characterization, and expression analysis of toll-like receptors 2 and 3 from gibel carp (Carassius auratus gibelio). FISH & SHELLFISH IMMUNOLOGY 2018; 72:629-638. [PMID: 29183810 DOI: 10.1016/j.fsi.2017.11.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptors (TLRs) are important components of innate immunity. TLRs recognize pathogen-associated molecular patterns (PAMPs) and initiate downstream signaling pathways in response. In present study, we report the identification of two TLRs from gibel carp (Carassius auratus gibelio), TLR2 and TLR3 (designated CagTLR2 and CagTLR3, respectively). We report on the genomic structures and mRNA expression patterns of CagTLR2 and CagTLR3. Five exons and four introns were identified from the genomic DNA sequence of CagTLR3 (4749 bp in total length); this genomic organization is similar to that of TLR3 in zebrafish and human. However, only one intron was identified from the CagTLR2 genomic locus (3166 bp in total length); this unique genomic organization of CagTLR2 is different from that of TLR2 in fish and humans. The cDNAs of CagTLR2 and CagTLR3 encoded 791 and 904 amino acid residues, respectively. CagTLR2 and CagTLR3 contained two distinct structural/functional motifs of the TLR family: a leucine-rich repeat (LRR) domain in the extracellular portion and a toll/interleukin-1 receptor (TIR) domain in the intracellular portion. The positions of critical amino acid residues involed in PAMP recognition and signaling pathway transduction in mammalian TLRs were conserved in CagTLR2 and CagTLR3. Phylogenetic analysis revealed a closer clustering of CagTLR2 and CagTLR3 with TLRs from freshwater fish than with marine fish species. In healthy gibel carp, transcripts of these genes were detected in all examined tissues, and high expression levels of CagTLR2 and CagTLR3 were observed in liver and brain, respectively. Following injection with CyHV-2, expression levels of CagTLR2 and CagTLR3 were significantly upregulated in the spleens of gibel carp after three days, and CagTLR3 transcript levels were rapidly increased in head kidney after 12 h. These results suggest that CagTLR2 and CagTLR3 are functionally involved in the induction of antiviral immune response.
Collapse
Affiliation(s)
- Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Jianqing Zhao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwang Zhong
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
45
|
Salinas I, Magadán S. Omics in fish mucosal immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:99-108. [PMID: 28235585 DOI: 10.1016/j.dci.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/22/2023]
Abstract
The mucosal immune system of fish is a complex network of immune cells and molecules that are constantly surveilling the environment and protecting the host from infection. A number of "omics" tools are now available and utilized to understand the complexity of mucosal immune systems in non-traditional animal models. This review summarizes recent advances in the implementation of "omics" tools pertaining to the four mucosa-associated lymphoid tissues in teleosts. Genomics, transcriptomics, proteomics, and "omics" in microbiome research require interdisciplinary collaboration and careful experimental design. The data-rich datasets generated are proving really useful at discovering new innate immune players in fish mucosal secretions, identifying novel markers of specific mucosal immune responses, unraveling the diversity of the B and T cell repertoires and characterizing the diversity of the microbial communities present in teleost mucosal surfaces. Bioinformatics, data analysis and storage platforms should be developed to facilitate rapid processing of large datasets, especially when mammalian tools such as bioinformatics analysis software are not available in fishes.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Susana Magadán
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA; Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra 36310, Spain.
| |
Collapse
|
46
|
Skogland Enerstvedt K, Sydnes MO, Pampanin DM. Study of the plasma proteome of Atlantic cod (Gadus morhua): Effect of exposure to two PAHs and their corresponding diols. CHEMOSPHERE 2017; 183:294-304. [PMID: 28551206 DOI: 10.1016/j.chemosphere.2017.05.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Occurrence of polycyclic aromatic hydrocarbon (PAH) contamination in the marine environment represents a risk to marine life and humans. In this study, plasma samples from Atlantic cod (Gadus morhua) were analysed by shotgun mass spectrometry to investigate the plasma proteome in response to exposure to single PAHs (naphthalene or chrysene) and their corresponding metabolites (dihydrodiols). In total, 369 proteins were identified and ranked according to their relative abundance. The levels of 12 proteins were found significantly altered in PAH exposed fish and are proposed as new biomarker candidates. Eleven proteins were upregulated, primarily immunoglobulin components, and one protein was downregulated (antifreeze protein type IV.) The uniformity of the upregulated proteins suggests a triggered immune response in the exposed fish. Overall, the results provide valuable knowledge for future studies of the Atlantic cod plasma proteome and generate grounds for establishing new plasma protein biomarkers for environmental monitoring of PAH related exposure.
Collapse
Affiliation(s)
- Karianne Skogland Enerstvedt
- International Research Institute of Stavanger (IRIS) - Environmental Department, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway
| | - Magne O Sydnes
- Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway
| | - Daniela M Pampanin
- International Research Institute of Stavanger (IRIS) - Environmental Department, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway.
| |
Collapse
|
47
|
Tandberg J, Oliver C, Lagos L, Gaarder M, Yáñez AJ, Ropstad E, Winther-Larsen HC. Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2017; 67:189-198. [PMID: 28600194 DOI: 10.1016/j.fsi.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Infections caused by the facultative intracellular bacterial pathogen Piscirickettsia salmonis remains an unsolved problem for the aquaculture as no efficient treatments have been developed. As a result, substantial amounts of antibiotic have been used to limit salmonid rickettsial septicemia (SRS) disease outbreaks. The antibiotic usage has not reduced the occurrence, but lead to an increase in resistant strains, underlining the need for new treatment strategies. P. salmonis produce membrane vesicles (MVs); small spherical structures know to contain a variety of bacterial components, including proteins, lipopolysaccharides (LPS), DNA and RNA. MVs mimics' in many aspects their mother cell, and has been reported as alternative vaccine candidates. Here, MVs from P. salmonis was isolated and evaluated as a vaccine candidate against SRS in an adult zebrafish infection model. When zebrafish was immunized with MVs they were protected from subsequent challenge with a lethal dose of P. salmonis. Histological analysis showed a reduced bacterial load upon challenge in the MV immunized group, and the mRNA expression levels of several immune related genes altered, including mpeg1.1, tnfα, il1b, il10 and il6. The MVs induced the secretion of IgM upon immunization, indicating an immunogenic effect of the vesicles. Taken together, the data demonstrate a vaccine potential of MVs against P. salmonis.
Collapse
Affiliation(s)
- Julia Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Cristian Oliver
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Department of Biological Science, Faculty of Biological Science, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Leidy Lagos
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mona Gaarder
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Alejandro J Yáñez
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Austral-OMICS, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Hanne C Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
48
|
Liu X, Li Z, Wu W, Liu Y, Liu J, He Y, Wang X, Wang Z, Qi J, Yu H, Zhang Q. Sequencing-based network analysis provides a core set of gene resource for understanding kidney immune response against Edwardsiella tarda infection in Japanese flounder. FISH & SHELLFISH IMMUNOLOGY 2017; 67:643-654. [PMID: 28651821 DOI: 10.1016/j.fsi.2017.06.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Marine organisms are under a frequent threat from various pathogens. Edwardsiella tarda is one of the major fish pathogens infecting both cultured and wild fish species. It can also infect a variety of other vertebrates, including amphibians, reptiles, and mammals, and bacteremia caused by E. tarda can be fatal in humans. The kidney is the largest lymphoid organ in fish, and generating kidney transcriptomic information under different stresses is crucial for understanding molecular mechanisms underlying the immune responses in the kidneys. In this study, we performed transcriptome-wide gene expression profiling of the Japanese flounder (Paralichthys olivaceus) challenged by 8 and 48 h of E. tarda infection. An average of 40 million clean reads per library was obtained, and approximately 81.6% of these reads were successfully mapped to the reference genome. In addition, 1319 and 4439 differentially expressed genes (DEGs) were found at 8 and 48 h post-injection, respectively. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to search immune-related DEGs. A protein-protein interaction network was constructed to ascertain the relationship between interacting immune genes during pathogen-induced stress. Based on the KEGG and protein association networks analysis, 24 hub genes were discovered and validated by qRT-PCR. To our knowledge, this study is the first to represent the kidney transcriptome analysis based on protein-protein interaction networks in fish. Our results provide valuable gene resources for further research on kidney immune response in fish, which can significantly improve our understanding of the molecular mechanisms underlying the immune response to E. tarda in humans and other vertebrates.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Wenzhao Wu
- Department of Information Management, Peking University, Beijing 100871, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
49
|
Steinel NC, Bolnick DI. Melanomacrophage Centers As a Histological Indicator of Immune Function in Fish and Other Poikilotherms. Front Immunol 2017; 8:827. [PMID: 28769932 PMCID: PMC5512340 DOI: 10.3389/fimmu.2017.00827] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Melanomacrophage centers (MMCs) are aggregates of highly pigmented phagocytes found primarily in the head kidney and spleen, and occasionally the liver of many vertebrates. Preliminary histological analyses suggested that MMCs are structurally similar to the mammalian germinal center (GC), leading to the hypothesis that the MMC plays a role in the humoral adaptive immune response. For this reason, MMCs are frequently described in the literature as “primitive GCs” or the “evolutionary precursors” to the mammalian GC. However, we argue that this designation may be premature, having been pieced together from mainly descriptive studies in numerous distinct species. This review provides a comprehensive overview of the MMC literature, including a phylogenetic analysis of MMC distribution across vertebrate species. Here, we discuss the current understanding of the MMCs function in immunity and lingering questions. We suggest additional experiments needed to confirm that MMCs serve a GC-like role in fish immunity. Finally, we address the utility of the MMC as a broadly applicable histological indicator of the fish (as well as amphibian and reptilian) immune response in both laboratory and wild populations of both model and non-model vertebrates. We highlight the factors (sex, pollution exposure, stress, stocking density, etc.) that should be considered when using MMCs to study immunity in non-model vertebrates in wild populations.
Collapse
Affiliation(s)
- Natalie C Steinel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Medical Education, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Daniel I Bolnick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
50
|
Feng J, Lin P, Guo S, Jia Y, Wang Y, Zadlock F, Zhang Z. Identification and characterization of a novel conserved 46 kD maltoporin of Aeromonas hydrophila as a versatile vaccine candidate in European eel (Anguilla anguilla). FISH & SHELLFISH IMMUNOLOGY 2017; 64:93-103. [PMID: 28279793 DOI: 10.1016/j.fsi.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
European eel (Anguilla anguilla) is a crucial economic fish that has been plagued by Aeromonas hydrophila infections for many years. Vaccines that are cross-protective against multiple serotypes could provide an effective control against A. hydrophila-mediated diseases. The outer membrane proteins (OMPs) are highly immunogenic and capable of eliciting protective immune responses. This study reports the identification of a novel 46 kD maltoporin that is a conserved protective antigen for different serotypes of A. hydrophila. First, this study purified OMPs from the strains of A. hydrophila B10, B11, B12, B15, B19, and B20. Western blot analysis revealed that the 46 kD maltoporin of B11 could be strongly reacted with all the specific European eel antisera against the above OMPs from different serotypes A. hydrophila. Cloning and sequencing of the maltoporin revealed that it contains an open reading frame (ORF) of 1281 nucleotides encoding 426 amino acids. Further sequence alignment analysis using the NCBI Conserved Domain Database (CDD) along with performing three-dimensional structure analysis showed that this protein belongs to maltoporin family. Three different study groups of European eels were intraperitoneal injected with one of the following conditions: phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila (FKC group) or with the recombinant maltoporin (OMP group) to analyze the immunogenicity of the recombinant maltoporin purified by nickel chelate affinity chromatography. On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody, and lysozyme activities of experimental eels were detected. On 28d post-vaccination, eels from the three groups were challenged by intraperitoneal injection with five different live strains of A. hydrophila (B10, B11, B15, B19, and B20). The results showed that the proliferation of whole blood cells in the OMP group was significantly enhanced on 14d and the serum antibody titers of vaccinated European eels in FKC and OMP group were significantly increased on 28d and 42d. Lysozyme activities in serum were significantly up-regulated in FKC and OMP groups on 21d. The relative percent survival (RPS) of OMP group challenged by A. hydrophila B10, B11, and B20 was 75%, 62.5%, and 88%. This was higher than the corresponding RPS of FKC group with 50%, 37.5%, and 66%, respectively. The RPS was up to 100% in both OMP and FKC group when challenged by A. hydrophila B15 and B19. These results indicate that the 46 kD maltoporin is an effective potent vaccine candidate against different serotypes of A. hydrophila.
Collapse
Affiliation(s)
- Jianjun Feng
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China.
| | - Peng Lin
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Yuanyuan Jia
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, China
| | - Frank Zadlock
- Department of Biological Science, Seton Hall University, South Orange, NJ, USA
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|