1
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2025; 30:1089-1101. [PMID: 39333385 PMCID: PMC11835756 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Fröhner J, Waltmann M, Reiter A, Kräplin A, Smolka M. Relevance of Probabilistic Reversal Learning for Adolescent Drinking Trajectories. Addict Biol 2025; 30:e70026. [PMID: 40049217 PMCID: PMC11884864 DOI: 10.1111/adb.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
One of the many human capabilities acquired during adolescence is the adaptivity in changing environments. In this longitudinal study, we investigated this adaptivity, as measured by probabilistic reversal learning (PReL) tasks, in N = 143 adolescents at ages 14, 16 and 18. Computational modelling and functional magnetic resonance imaging were applied to identify the neurocognitive processes underlying reversal learning and its development. Previous studies have demonstrated a correlation between heavy alcohol use and impaired reversal learning. Our hypothesis was that PReL is negatively associated with current and future alcohol use and that alcohol use impairs PReL by altering neurocognitive processes. Behaviourally, PReL performance improved, which was associated with a lower probability of switching choices and was considered an adaptive process. Computationally, this was accounted for by higher learning rates, enhanced sensitivity to wins and reduced sensitivity to losses in older adolescents. Alcohol consumption increased but remained at a low level for most participants. More risky drinking was associated with less medial frontal activity elicited by reward prediction errors. These findings suggest that reversal learning may be more relevant for the maintenance or escalation of risky than for low-level drinking. Challenges and potential solutions for longitudinal studies such as reliability are discussed.
Collapse
Affiliation(s)
- Juliane H. Fröhner
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
| | - Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital WürzburgWürzburgGermany
- Department of NeurologyMax‐Planck‐Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Andrea M. F. Reiter
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital WürzburgWürzburgGermany
- Department of PsychologyJulius‐Maximilians‐University of WürzburgWürzburgGermany
| | - Anja Kräplin
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
- Department of PsychologyTechnische Universität DresdenDresdenGermany
| | - Michael N. Smolka
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
3
|
Çiğdem Z, Elmaoğlu E, Usgu S, Güler S. Adaptation and Validation of a Turkish Language Version of Braden QD Scale for Predicting Risk of Medical Device-Related Pressure Injuries in Pediatric Patients. J Wound Ostomy Continence Nurs 2025; 52:147-152. [PMID: 40136105 DOI: 10.1097/won.0000000000001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE This purpose of this study was to evaluate the validity and reliability of a Turkish language version of the Braden QD Scale for predicting medical device-related pressure injury (MDRPI) risk in pediatric patients. DESIGN Validity and reliability study. SUBJECTS AND SETTING The sample comprised 71 children in the pediatric intensive care units of a maternity and child hospital; Cengiz Gökçek Maternity and Children's Hospital locates in Gaziantep, Turkey. METHODS A Turkish language version of the Braden QD Scale was constructed, and its construct validity and content validity were measured. Several forms of reliability were measured, including internal consistency using Cronbach's alpha coefficient, along with intra-class and interobserver reliability. The sensitivity and specificity of the scale were tested by analyzing a receiver operating characteristics curve. Data were collected from May 1 to May 20, May 2022. RESULTS The Braden QD-T had lower (fair) content validity (Kendall's W 0.217, P = .001) and adequate construct validity (Kaiser-Meyer-Olkin [KMO], 0.619; P = .000). It demonstrated excellent internal consistency (Cronbach's alpha 0.878). The intra-class correlation coefficient varied from 0.979 and 1.000, indicating excellent intra-class reliability. The interobserver reliability coefficients varied from acceptable to excellent at 0.661 and 0.984. CONCLUSION The Turkish version of the Braden QD Scale for predicting risk of MDRPI in pediatric population was determined to be a valid and reliable risk assessment tool for predicting risk for MDRPI.
Collapse
Affiliation(s)
- Zerrin Çiğdem
- Zerrin Çiğdem, PhD, MSc, RN, Department of Nursing, Faculty of Health Science, Istanbul Topkapı University, Istanbul, Turkey
- Erhan Elmaoğlu, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
- Serkan Usgu, PhD, MSc, RN , Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Hasan Kalyoncu University, Gaziantep, Turkey
- Selver Güler, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
| | - Erhan Elmaoğlu
- Zerrin Çiğdem, PhD, MSc, RN, Department of Nursing, Faculty of Health Science, Istanbul Topkapı University, Istanbul, Turkey
- Erhan Elmaoğlu, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
- Serkan Usgu, PhD, MSc, RN , Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Hasan Kalyoncu University, Gaziantep, Turkey
- Selver Güler, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
| | - Serkan Usgu
- Zerrin Çiğdem, PhD, MSc, RN, Department of Nursing, Faculty of Health Science, Istanbul Topkapı University, Istanbul, Turkey
- Erhan Elmaoğlu, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
- Serkan Usgu, PhD, MSc, RN , Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Hasan Kalyoncu University, Gaziantep, Turkey
- Selver Güler, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
| | - Selver Güler
- Zerrin Çiğdem, PhD, MSc, RN, Department of Nursing, Faculty of Health Science, Istanbul Topkapı University, Istanbul, Turkey
- Erhan Elmaoğlu, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
- Serkan Usgu, PhD, MSc, RN , Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Hasan Kalyoncu University, Gaziantep, Turkey
- Selver Güler, PhD, MSc, RN , Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey
| |
Collapse
|
4
|
Westlund Schreiner M, Jacobsen AM, Farstead BW, Miller RH, Jacobs RH, Thomas LR, Bessette KL, Pazdera M, Crowell SE, Kaufman EA, Feldman DA, Roberts H, Welsh RC, Watkins ER, Langenecker SA. Rumination induction task in fMRI: Effects of rumination focused cognitive behavioral therapy and stability in youth. J Affect Disord 2025; 372:608-615. [PMID: 39701467 DOI: 10.1016/j.jad.2024.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Rumination is implicated in the onset and maintenance of major depressive disorder (MDD). Rumination-Focused Cognitive Behavioral Therapy (RF-CBT) effectively targets rumination and may change resting-state brain connectivity and change in activation during a rumination induction task (RIT) post-intervention predicts depressive symptoms two years later. We examined brain activation changes during an RIT in adolescents with remitted MDD following RF-CBT and evaluated RIT reliability (or stability) during treatment as usual (TAU). METHOD Fifty-five adolescents ages 14-17 completed an RIT at baseline, were randomized to 10-14 sessions of RF-CBT (n = 30) or treatment as usual (n = 25) and completed an RIT at post-treatment or equivalent time delay. The RIT includes recalling negative memories (Rumination Instruction), dwelling on their meaning/consequences (Rumination Prompt), and imagining unrelated scenes and objects (Distraction). We assessed activation change in the RF-CBT group using paired-samples t-tests. We assessed reliability (or stability) via intraclass correlation coefficients (ICCs) of five rumination-related ROIs for TAU and RF-CBT separately across task blocks. RESULTS Following treatment, participants receiving RF-CBT demonstrated increased activation of left precuneus during Rumination Instruction and of left angular and superior temporal gyri during Rumination Prompt blocks (p < .01). From baseline to post-treatment, across most ROIs and task blocks, the RF-CBT group demonstrated poor stability (M = 0.21, range = -0.19-0.69), while the TAU group demonstrated fair-to-excellent stability (M = 0.52, range = 0.27-0.86). CONCLUSION RF-CBT changes activation of rumination-related circuitry during state-induced rumination, offering exciting avenues for future interventions. The RIT has fair-to-excellent stability among individuals not explicitly treated for rumination, and as expected, RIT stability is disrupted by RF-CBT.
Collapse
Affiliation(s)
- Mindy Westlund Schreiner
- Behavioral Health, Nationwide Children's Hospital, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA.
| | - Anna M Jacobsen
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA; Department of Adult Psychiatry and Psychotherapy, University of Zurich, Zurich, CH, Switzerland; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Brian W Farstead
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA; Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Raina H Miller
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA; Morgridge College of Education, University of Denver, Denver, CO, USA
| | - Rachel H Jacobs
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah R Thomas
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Katie L Bessette
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Myah Pazdera
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Erin A Kaufman
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Daniel A Feldman
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | | | - Robert C Welsh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA; Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Scott A Langenecker
- Behavioral Health, Nationwide Children's Hospital, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Chen H, Fu S, Zhi X, Wang Y, Liu F, Li Y, Ren F, Zhang J, Ren L, Wang Y. Research Progress on Neural Processing of Hand and Forearm Tactile Sensation: A Review Based on fMRI Research. Neuropsychiatr Dis Treat 2025; 21:193-212. [PMID: 39906284 PMCID: PMC11792622 DOI: 10.2147/ndt.s488059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Tactile perception is one of the important ways through which humans interact with the external environment. Similar to the neural processing in visual and auditory systems, the neural processing of tactile information is a complex procedure that transforms this information into sensory signals. Neuroimaging techniques, such as functional Magnetic Resonance Imaging (fMRI), provide compelling evidence indicating that different types of tactile signals undergo independent or collective processing within multiple brain regions. This review focuses on fMRI studies employing both task-based (block design or event-related design) and resting-state paradigms. These studies use general linear models (GLM) to identify brain regions activated during touch processing, or employ functional connectivity(FC) analysis to examine interactions between brain regions, thereby exploring the neural mechanisms underlying the central nervous system's processing of various aspects of tactile sensation, including discriminative touch and affective touch. The discussion extends to exploring changes in tactile processing patterns observed in certain disease states. Recognizing the analogy between pain and touch processing patterns, we conclude by summarizing the interaction between touch and pain. Currently, fMRI-based studies have made significant progress in the field of tactile neural processing. These studies not only deepen our understanding of tactile perception but also provide new perspectives for future neuroscience studies.
Collapse
Affiliation(s)
- Hao Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Shifang Fu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Xiaoyu Zhi
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yu Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fanqi Liu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yuetong Li
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fengjiao Ren
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Junfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
- Rehabilitation Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Longsheng Ren
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Yanguo Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| |
Collapse
|
6
|
Elder J, Wilson L, Calanchini J. Estimating the Reliability and Stability of Cognitive Processes Contributing to Responses on the Implicit Association Test. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2024; 50:1451-1470. [PMID: 37204215 PMCID: PMC11367805 DOI: 10.1177/01461672231171256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Implicit measures were initially assumed to assess stable individual differences, but other perspectives posit that they reflect context-dependent processes. This pre-registered research investigates whether the processes contributing to responses on the race Implicit Association Test are temporally stable and reliably measured using multinomial processing tree modeling. We applied two models-the Quad model and the Process Dissociation Procedure-to six datasets (N = 2,036), each collected over two occasions, examined the within-measurement reliability and between-measurement stability of model parameters, and meta-analyzed the results. Parameters reflecting accuracy-oriented processes demonstrate adequate stability and reliability, which suggests these processes are relatively stable within individuals. Parameters reflecting evaluative associations demonstrate poor stability but modest reliability, which suggests that associations are either context-dependent or stable but noisily measured. These findings suggest that processes contributing to racial bias on implicit measures differ in temporal stability, which has practical implications for predicting behavior using the Implicit Association Test.
Collapse
Affiliation(s)
| | - Liz Wilson
- University of California, Riverside, USA
| | | |
Collapse
|
7
|
Kong Z, Chen J, Liu J, Zhou Y, Duan Y, Li H, Yang LZ. Test-retest reliability of the attention network test from the perspective of intrinsic network organization. Eur J Neurosci 2024; 60:4453-4468. [PMID: 38885697 DOI: 10.1111/ejn.16448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The attention network test (ANT), developed based on the triple-network taxonomy by Posner and colleagues, has been widely used to examine the efficacy of alerting, orienting and executive control in clinical and developmental neuroscience studies. Recent research suggests the imperfect reliability of the behavioural ANT and its variants. However, the classical ANT fMRI task's test-retest reliability has received little attention. Moreover, it remains ambiguous whether the attention-related intrinsic network components, especially the dorsal attention, ventral attention and frontoparietal network, manifest acceptable reliability. The present study approaches these issues by utilizing an openly available ANT fMRI dataset for participants with Parkinson's disease and healthy elderly. The reproducibility of group-level activations across sessions and participant groups and the test-retest reliability at the individual level were examined at the voxel, region and network levels. The intrinsic network was defined using the Yeo-Schaefer atlas. Our results reveal three critical facets: (1) the overlapping of the group-level contrast map between sessions and between participant groups was unsatisfactory; (2) the reliability of alerting, orienting and executive, defined as a contrast between conditions, was worse than estimates of specific conditions. (3) Dorsal attention, ventral attention, visual and somatomotor networks showed acceptable reliability for the congruent and incongruent conditions. Our results suggest that specific condition estimates might be used instead of the contrast map for individual or group-difference studies.
Collapse
Affiliation(s)
- Ziwei Kong
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jingkai Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jin Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yanfei Zhou
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yuping Duan
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Hai Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
8
|
Demidenko MI, Mumford JA, Poldrack RA. Impact of analytic decisions on test-retest reliability of individual and group estimates in functional magnetic resonance imaging: a multiverse analysis using the monetary incentive delay task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585755. [PMID: 38562804 PMCID: PMC10983911 DOI: 10.1101/2024.03.19.585755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Empirical studies reporting low test-retest reliability of individual blood oxygen-level dependent (BOLD) signal estimates in functional magnetic resonance imaging (fMRI) data have resurrected interest among cognitive neuroscientists in methods that may improve reliability in fMRI. Over the last decade, several individual studies have reported that modeling decisions, such as smoothing, motion correction and contrast selection, may improve estimates of test-retest reliability of BOLD signal estimates. However, it remains an empirical question whether certain analytic decisions consistently improve individual and group level reliability estimates in an fMRI task across multiple large, independent samples. This study used three independent samples (Ns: 60, 81, 119) that collected the same task (Monetary Incentive Delay task) across two runs and two sessions to evaluate the effects of analytic decisions on the individual (intraclass correlation coefficient [ICC(3,1)]) and group (Jaccard/Spearman rho) reliability estimates of BOLD activity of task fMRI data. The analytic decisions in this study vary across four categories: smoothing kernel (five options), motion correction (four options), task parameterizing (three options) and task contrasts (four options), totaling 240 different pipeline permutations. Across all 240 pipelines, the median ICC estimates are consistently low, with a maximum median ICC estimate of .43 - .55 across the three samples. The analytic decisions with the greatest impact on the median ICC and group similarity estimates are the Implicit Baseline contrast, Cue Model parameterization and a larger smoothing kernel. Using an Implicit Baseline in a contrast condition meaningfully increased group similarity and ICC estimates as compared to using the Neutral cue. This effect was largest for the Cue Model parameterization; however, improvements in reliability came at the cost of interpretability. This study illustrates that estimates of reliability in the MID task are consistently low and variable at small samples, and a higher test-retest reliability may not always improve interpretability of the estimated BOLD signal.
Collapse
|
9
|
Tansey R, Graff K, Rai S, Merrikh D, Godfrey KJ, Vanderwal T, Bray S. Development of human visual cortical function: A scoping review of task- and naturalistic-fMRI studies through the interactive specialization and maturational frameworks. Neurosci Biobehav Rev 2024; 162:105729. [PMID: 38763178 DOI: 10.1016/j.neubiorev.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
Collapse
Affiliation(s)
- Ryann Tansey
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shefali Rai
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daria Merrikh
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Paige KJ, Colder CR, Cope LM, Hardee JE, Heitzeg MM, Soules ME, Weigard AS. Clarifying the longitudinal factor structure, temporal stability, and construct validity of Go/No-Go task-related neural activation across adolescence and young adulthood. Dev Cogn Neurosci 2024; 67:101390. [PMID: 38759528 PMCID: PMC11127199 DOI: 10.1016/j.dcn.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
This study aimed to clarify the psychometric properties and development of Go/No-Go (GNG) task-related neural activation across critical periods of neurobiological maturation by examining its longitudinal stability, factor structure, developmental change, and associations with a computational index of task-general cognitive control. A longitudinal sample (N=289) of adolescents from the Michigan Longitudinal Study was assessed at four time-points (mean number of timepoints per participant=2.05; standard deviation=0.89) spanning early adolescence (ages 10-13) to young adulthood (22-25). Results suggested that regional neural activations from the "successful inhibition" (SI>GO) and "failed inhibition" (FI>GO; error-monitoring) contrasts are each described well by a single general factor. Neural activity across both contrasts showed developmental increases throughout adolescence that plateau in young adulthood. Neural activity metrics evidenced low temporal stability across this period of marked developmental change, and the SI>GO factor showed no relations with a behavioral index of cognitive control. The FI>GO factor displayed stronger criterion validity in the form of significant, positive associations with behaviorally measured cognitive control. Findings emphasize the utility of well-validated psychometric methods and longitudinal data for clarifying the measurement properties of functional neuroimaging metrics and improving measurement practices in developmental cognitive neuroscience.
Collapse
Affiliation(s)
- K J Paige
- Department of Psychology, The State University of New York at Buffalo, USA.
| | - C R Colder
- Department of Psychology, The State University of New York at Buffalo, USA
| | - L M Cope
- Department of Psychiatry, University of Michigan, USA
| | - J E Hardee
- Department of Psychiatry, University of Michigan, USA
| | - M M Heitzeg
- Department of Psychiatry, University of Michigan, USA
| | - M E Soules
- Department of Psychiatry, University of Michigan, USA
| | - A S Weigard
- Department of Psychiatry, University of Michigan, USA
| |
Collapse
|
11
|
Boccuni L, Roca-Ventura A, Buloz-Osorio E, Leno-Colorado D, Martín-Fernández J, Cabello-Toscano M, Perellón-Alfonso R, Pariente Zorrilla JC, Laredo C, Garrido C, Muñoz-Moreno E, Bargalló N, Villalba G, Martínez-Ricarte F, Trompetto C, Marinelli L, Sacchet MD, Bartrés-Faz D, Abellaneda-Pérez K, Pascual-Leone A, Tormos Muñoz JM. Exploring the neural basis of non-invasive prehabilitation in brain tumour patients: An fMRI-based case report of language network plasticity. Front Oncol 2024; 14:1390542. [PMID: 38826790 PMCID: PMC11140081 DOI: 10.3389/fonc.2024.1390542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Primary brain neoplasms are associated with elevated mortality and morbidity rates. Brain tumour surgery aims to achieve maximal tumour resection while minimizing damage to healthy brain tissue. Research on Neuromodulation Induced Cortical Prehabilitation (NICP) has highlighted the potential, before neurosurgery, of establishing new brain connections and transfer functional activity from one area of the brain to another. Nonetheless, the neural mechanisms underlying these processes, particularly in the context of space-occupying lesions, remain unclear. A patient with a left frontotemporoinsular tumour underwent a prehabilitation protocol providing 20 sessions of inhibitory non-invasive neuromodulation (rTMS and multichannel tDCS) over a language network coupled with intensive task training. Prehabilitation resulted in an increment of the distance between the tumour and the language network. Furthermore, enhanced functional connectivity within the language circuit was observed. The present innovative case-study exposed that inhibition of the functional network area surrounding the space-occupying lesion promotes a plastic change in the network's spatial organization, presumably through the establishment of novel functional pathways away from the lesion's site. While these outcomes are promising, prudence dictates the need for larger studies to confirm and generalize these findings.
Collapse
Affiliation(s)
- Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Conegliano, Scientific Institute IRCCS E. Medea, Treviso, Italy
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Edgar Buloz-Osorio
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - David Leno-Colorado
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jesús Martín-Fernández
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier, France
- Department of Neurosurgery, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Carlos Pariente Zorrilla
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Carlos Laredo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Cesar Garrido
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Nuria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gloria Villalba
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain
| | | | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Centre for Memory Health, Hebrew Senior Life, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Josep María Tormos Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
12
|
Guo B, Mao T, Tao R, Fu S, Deng Y, Liu Z, Wang M, Wang R, Zhao W, Chai Y, Jiang C, Rao H. Test-retest reliability and time-of-day variations of perfusion imaging at rest and during a vigilance task. Cereb Cortex 2024; 34:bhae212. [PMID: 38771245 DOI: 10.1093/cercor/bhae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.
Collapse
Affiliation(s)
- Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ruiwen Tao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Shanna Fu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Zhihui Liu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Mengmeng Wang
- Business School, NingboTech University, Ningbo 315199, China
| | - Ruosi Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Weiwei Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ya Chai
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
13
|
Desai S, Zundel CG, Evanski JM, Gowatch LC, Bhogal A, Ely S, Carpenter C, Shampine M, O'Mara E, Rabinak CA, Marusak HA. Genetic variation in endocannabinoid signaling: Anxiety, depression, and threat- and reward-related brain functioning during the transition into adolescence. Behav Brain Res 2024; 463:114925. [PMID: 38423255 PMCID: PMC10977105 DOI: 10.1016/j.bbr.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The endocannabinoid system modulates neural activity throughout the lifespan. In adults, neuroimaging studies link a common genetic variant in fatty acid amide hydrolase (FAAH C385A)-an enzyme that regulates endocannabinoid signaling-to reduced risk of anxiety and depression, and altered threat- and reward-related neural activity. However, limited research has investigated these associations during the transition into adolescence, a period of substantial neurodevelopment and increased psychopathology risk. METHODS This study included FAAH genotype and longitudinal neuroimaging and neurobehavioral data from 4811 youth (46% female; 9-11 years at Baseline, 11-13 years at Year 2) from the Adolescent Brain Cognitive DevelopmentSM Study. Linear mixed models examined the effects of FAAH and the FAAH x time interaction on anxiety and depressive symptoms, amygdala reactivity to threatening faces, and nucleus accumbens (NAcc) response to happy faces during the emotional n-back task. RESULTS A significant main effect of FAAH on depressive symptoms was observed, such that depressive symptoms were lower across both timepoints in those with the AA genotype compared to both AC and CC genotypes (p's<0.05). There were no significant FAAH x time interactions for anxiety, depression, or neural responses (p's>0.05). Additionally, there were no main effects of FAAH on anxiety or neural responses (p's>0.05). CONCLUSIONS Our findings add to emerging evidence linking the FAAH C385A variant to lower risk of psychopathology, and extend these findings to a developmental sample. In particular, we found lower depressive symptoms in FAAH AA genotypes compared to AC and CC genotypes. Future research is needed to characterize the role of the FAAH variant and the eCB system more broadly in neurodevelopment and psychiatric risk.
Collapse
Affiliation(s)
- Shreya Desai
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Clara G Zundel
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Julia M Evanski
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Leah C Gowatch
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Amanpreet Bhogal
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Samantha Ely
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Carmen Carpenter
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - MacKenna Shampine
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Emilie O'Mara
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Christine A Rabinak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacy Practice, Wayne State University, USA
| | - Hilary A Marusak
- Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA; Dept. of Pharmacology, Wayne State University School of Medicine, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, USA.
| |
Collapse
|
14
|
Rai S, Graff K, Tansey R, Bray S. How do tasks impact the reliability of fMRI functional connectivity? Hum Brain Mapp 2024; 45:e26535. [PMID: 38348730 PMCID: PMC10884875 DOI: 10.1002/hbm.26535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 02/24/2024] Open
Abstract
While there is growing interest in the use of functional magnetic resonance imaging-functional connectivity (fMRI-FC) for biomarker research, low measurement reliability of conventional acquisitions may limit applications. Factors known to impact FC reliability include scan length, head motion, signal properties, such as temporal signal-to-noise ratio (tSNR), and the acquisition state or task. As tasks impact signal in a region-wise fashion, they likely impact FC reliability differently across the brain, making task an important decision in study design. Here, we use the densely sampled Midnight Scan Club (MSC) dataset, comprising 5 h of rest and 6 h of task fMRI data in 10 healthy adults, to investigate regional effects of tasks on FC reliability. We further considered how BOLD signal properties contributing to tSNR, that is, temporal mean signal (tMean) and temporal standard deviation (tSD), vary across the brain, associate with FC reliability, and are modulated by tasks. We found that, relative to rest, tasks enhanced FC reliability and increased tSD for specific task-engaged regions. However, FC signal variability and reliability is broadly dampened during tasks outside task-engaged regions. From our analyses, we observed signal variability was the strongest driver of FC reliability. Overall, our findings suggest that the choice of task can have an important impact on reliability and should be considered in relation to maximizing reliability in networks of interest as part of study design.
Collapse
Affiliation(s)
- Shefali Rai
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Kirk Graff
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryann Tansey
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Signe Bray
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
15
|
Lenze E, Torous J, Arean P. Digital and precision clinical trials: innovations for testing mental health medications, devices, and psychosocial treatments. Neuropsychopharmacology 2024; 49:205-214. [PMID: 37550438 PMCID: PMC10700595 DOI: 10.1038/s41386-023-01664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Mental health treatment advances - including neuropsychiatric medications and devices, psychotherapies, and cognitive treatments - lag behind other fields of clinical medicine such as cardiovascular care. One reason for this gap is the traditional techniques used in mental health clinical trials, which slow the pace of progress, produce inequities in care, and undermine precision medicine goals. Newer techniques and methodologies, which we term digital and precision trials, offer solutions. These techniques consist of (1) decentralized (i.e., fully-remote) trials which improve the speed and quality of clinical trials and increase equity of access to research, (2) precision measurement which improves success rate and is essential for precision medicine, and (3) digital interventions, which offer increased reach of, and equity of access to, evidence-based treatments. These techniques and their rationales are described in detail, along with challenges and solutions for their utilization. We conclude with a vignette of a depression clinical trial using these techniques.
Collapse
Affiliation(s)
- Eric Lenze
- Departments of Psychiatry and Anesthesiology, Washington University School of Medicine, St Louis, MO, USA.
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia Arean
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Chen DY, Di X, Biswal B. Cerebrovascular reactivity increases across development in multiple networks as revealed by a breath-holding task: A longitudinal fMRI study. Hum Brain Mapp 2024; 45:e26515. [PMID: 38183372 PMCID: PMC10789211 DOI: 10.1002/hbm.26515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 01/08/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold (BH) task is commonly used to understand cerebrovascular reactivity (CVR) in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's BH data set from the Nathan Kline Institute (NKI) Rockland Sample (aged 6-18 years old at enrollment). A general linear model approach was applied to derive CVR from BH data. To model both the longitudinal and cross-sectional effects of age on BH response, we used mixed-effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased BH BOLD signals in multiple networks across age, in which linear and logarithmic mixed-effects models provided the best fit with the lowest Akaike information criterion scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes that occur with age.
Collapse
Affiliation(s)
- Donna Y. Chen
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
- Rutgers Biomedical and Health SciencesRutgers School of Graduate StudiesNewarkNew JerseyUSA
| | - Xin Di
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Bharat Biswal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
17
|
van der Meulen M, Dobbelaar S, van Drunen L, Heunis S, van IJzendoorn MH, Blankenstein NE, Crone EA. Transitioning from childhood into adolescence: A comprehensive longitudinal behavioral and neuroimaging study on prosocial behavior and social inclusion. Neuroimage 2023; 284:120445. [PMID: 37939890 DOI: 10.1016/j.neuroimage.2023.120445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023] Open
Abstract
Acting prosocially and feeling socially included are important factors for developing social relations. However, little is known about the development of neural trajectories of prosocial behavior and social inclusion in the transition from middle childhood to early adolescence. In this pre-registered study, we investigated the development of prosocial behavior, social inclusion, and their neural mechanisms in a three-wave longitudinal design (ages 7-13 years; NT1 = 512; NT2 = 456; NT3 = 336). We used the Prosocial Cyberball Game, a ball tossing game in which one player is excluded, to measure prosocial compensating behavior. Prosocial compensating behavior showed a linear developmental increase, similar to parent-reported prosocial behavior, whereas parent-reported empathy showed a quadratic trajectory with highest levels in late childhood. On a neural level we found a peak in ventral striatum activity during prosocial compensating behavior. Neural activity during social inclusion showed quadratic age effects in anterior cingulate cortex, insula, striatum, and precuneus, and a linear increase in temporo-parietal junction. Finally, changes in prosocial compensating behavior were negatively associated with changes in ventral striatum and mPFC activity during social inclusion, indicating an important co-occurrence between development in brain and social behavior. Together these findings shed a light on the mechanisms underlying social development from childhood into adolescence.
Collapse
Affiliation(s)
- Mara van der Meulen
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Simone Dobbelaar
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands.
| | - Lina van Drunen
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Stephan Heunis
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Marinus H van IJzendoorn
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Department of Psychiatry, Monash University, Melbourne, Australia; Research Department of Clinical, Education and Health Psychology, UCL, University of London, United Kingdom
| | - Neeltje E Blankenstein
- Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Eveline A Crone
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
18
|
Hu L, Katz ES, Stamoulis C. Modulatory effects of fMRI acquisition time of day, week and year on adolescent functional connectomes across spatial scales: Implications for inference. Neuroimage 2023; 284:120459. [PMID: 37977408 DOI: 10.1016/j.neuroimage.2023.120459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Metabolic, hormonal, autonomic and physiological rhythms may have a significant impact on cerebral hemodynamics and intrinsic brain synchronization measured with fMRI (the resting-state connectome). The impact of their characteristic time scales (hourly, circadian, seasonal), and consequently scan timing effects, on brain topology in inherently heterogeneous developing connectomes remains elusive. In a cohort of 4102 early adolescents with resting-state fMRI (median age = 120.0 months; 53.1 % females) from the Adolescent Brain Cognitive Development Study, this study investigated associations between scan time-of-day, time-of-week (school day vs weekend) and time-of-year (school year vs summer vacation) and topological properties of resting-state connectomes at multiple spatial scales. On average, participants were scanned around 2 pm, primarily during school days (60.9 %), and during the school year (74.6 %). Scan time-of-day was negatively correlated with multiple whole-brain, network-specific and regional topological properties (with the exception of a positive correlation with modularity), primarily of visual, dorsal attention, salience, frontoparietal control networks, and the basal ganglia. Being scanned during the weekend (vs a school day) was correlated with topological differences in the hippocampus and temporoparietal networks. Being scanned during the summer vacation (vs the school year) was consistently positively associated with multiple topological properties of bilateral visual, and to a lesser extent somatomotor, dorsal attention and temporoparietal networks. Time parameter interactions suggested that being scanned during the weekend and summer vacation enhanced the positive effects of being scanned in the morning. Time-of-day effects were overall small but spatially extensive, and time-of-week and time-of-year effects varied from small to large (Cohen's f ≤ 0.1, Cohen's d<0.82, p < 0.05). Together, these parameters were also positively correlated with temporal fMRI signal variability but only in the left hemisphere. Finally, confounding effects of scan time parameters on relationships between connectome properties and cognitive task performance were assessed using the ABCD neurocognitive battery. Although most relationships were unaffected by scan time parameters, their combined inclusion eliminated associations between properties of visual and somatomotor networks and performance in the Matrix Reasoning and Pattern Comparison Processing Speed tasks. Thus, scan time of day, week and year may impact measurements of adolescent brain's functional circuits, and should be accounted for in studies on their associations with cognitive performance, in order to reduce the probability of incorrect inference.
Collapse
Affiliation(s)
- Linfeng Hu
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Eliot S Katz
- Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Catherine Stamoulis
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Department of Pediatrics, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Schreiner MW, Miller RH, Jacobsen AM, Crowell SE, Kaufman EA, Farstead B, Feldman DA, Thomas L, Bessette KL, Welsh RC, Watkins ER, Langenecker SA. Rumination Induction Task in fMRI: Test-Retest Reliability in Youth and Potential Mechanisms of Change with Intervention. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296759. [PMID: 37873244 PMCID: PMC10592982 DOI: 10.1101/2023.10.09.23296759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Rumination is a transdiagnostic problem that is common in major depressive disorder (MDD). Rumination Focused Cognitive Behavioral Therapy (RF-CBT) explicitly targets the ruminative habit. This study examined changes in brain activation during a rumination induction task in adolescents with remitted MDD following RF-CBT. We also evaluated the reliability of the rumination task among adolescents who received treatment as usual (TAU). Method Fifty-five adolescents ages 14-17 completed a self-relevant rumination induction fMRI task and were then randomized to either RF-CBT (n = 30) or TAU (n = 25). Participants completed the task a second time either following 10-14 sessions of RF-CBT or the equivalent time delay for the TAU group. We assessed activation change in the RF-CBT group using paired-samples t-tests and reliability by calculating intraclass correlation coefficients (ICCs) of five rumination-related ROIs during each of three blocks for the TAU and RF-CBT groups separately (Rumination Instruction, Rumination Prompt, and Distraction). Results Following treatment, participants in the RF-CBT group demonstrated an increase in activation of the left precuneus during Rumination Instruction and the left angular and superior temporal gyri during Rumination Prompt ( p < .01). The TAU group demonstrated fair to excellent reliability ( M = .52, range = .27-.86) across most ROIs and task blocks. In contrast, the RF-CBT group demonstrated poor reliability across most ROIs and task blocks ( M = .21, range = -.19-.69). Conclusion RF-CBT appears to lead to rumination-related brain change. We demonstrated that the rumination induction task has fair to excellent reliability among individuals who do not receive an intervention that explicitly targets the ruminative habit, whereas reliability of this task is largely poor in the context of RF-CBT. This has meaningful implications in longitudinal and intervention studies, particularly when conceptualizing it as an important target for intervention. It also suggests one of many possible mechanisms for why fMRI test-retest reliability can be low that appears unrelated to the methodology itself.
Collapse
|
20
|
Bottenhorn KL, Cardenas-Iniguez C, Mills KL, Laird AR, Herting MM. Profiling intra- and inter-individual differences in brain development across early adolescence. Neuroimage 2023; 279:120287. [PMID: 37536527 PMCID: PMC10833064 DOI: 10.1016/j.neuroimage.2023.120287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
As we move toward population-level developmental neuroscience, understanding intra- and inter-individual variability in brain maturation and sources of neurodevelopmental heterogeneity becomes paramount. Large-scale, longitudinal neuroimaging studies have uncovered group-level neurodevelopmental trajectories, and while recent work has begun to untangle intra- and inter-individual differences, they remain largely unclear. Here, we aim to quantify both intra- and inter-individual variability across facets of neurodevelopment across early adolescence (ages 8.92 to 13.83 years) in the Adolescent Brain Cognitive Development (ABCD) Study and examine inter-individual variability as a function of age, sex, and puberty. Our results provide novel insight into differences in annualized percent change in macrostructure, microstructure, and functional brain development from ages 9-13 years old. These findings reveal moderate age-related intra-individual change, but age-related differences in inter-individual variability only in a few measures of cortical macro- and microstructure development. Greater inter-individual variability in brain development were seen in mid-pubertal individuals, except for a few aspects of white matter development that were more variable between prepubertal individuals in some tracts. Although both sexes contributed to inter-individual differences in macrostructure and functional development in a few regions of the brain, we found limited support for hypotheses regarding greater male-than-female variability. This work highlights pockets of individual variability across facets of early adolescent brain development, while also highlighting regional differences in heterogeneity to facilitate future investigations in quantifying and probing nuances in normative development, and deviations therefrom.
Collapse
Affiliation(s)
- Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA; Department of Psychology, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, 1227 University St, Eugene, OR 97403, USA
| | - Angela R Laird
- Department of Physics, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA.
| |
Collapse
|
21
|
Jiang C, He Y, Betzel RF, Wang YS, Xing XX, Zuo XN. Optimizing network neuroscience computation of individual differences in human spontaneous brain activity for test-retest reliability. Netw Neurosci 2023; 7:1080-1108. [PMID: 37781147 PMCID: PMC10473278 DOI: 10.1162/netn_a_00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/22/2023] [Indexed: 10/03/2023] Open
Abstract
A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).
Collapse
Affiliation(s)
- Chao Jiang
- School of Psychology, Capital Normal University, Beijing, China
| | - Ye He
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Yin-Shan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiu-Xia Xing
- Department of Applied Mathematics, College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- National Basic Science Data Center, Beijing, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Xing XX, Gao X, Jiang C. Individual Variability of Human Cortical Spontaneous Activity by 3T/7T fMRI. Neuroscience 2023; 528:117-128. [PMID: 37544577 DOI: 10.1016/j.neuroscience.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Mapping variability in cortical spontaneous activity (CSA) is an essential goal of understanding various sources of dark brain energy in human neuroscience. CSA was traditionally characterized using resting-state functional MRI (rfMRI) at 1.5T or 3T magnets while recently with 7T-rfMRI. However, the utility and interpretability of 7T-rfMRI must first be established for its variability. By leveraging rfMRI data from the Human Connectome Project (HCP), we derived CSA metrics with 3T-rfMRI and 7T-rfMRI for the same 84 healthy participants (52 females). The 7T-rfMRI produces different CSA metrics at multiple spatial-scales and their variability from the 3T-rfMRI. These differences were spatially dependent and varied according to specific cortical organization. For the amplitude metric, 7T-rfMRI enhanced its spatial contrasts in the anterior cortex but weakened it in the posterior cortex. An opposite pattern was observed for the connectivity metrics. The reliability changes of these metrics were scale dependent, indicating enhanced reliability for connectivity but weakened reliability for amplitude by 7T-rfMRI. These effects were primarily located in the high-order associate cortex, parsing the corresponding changes in individual differences with respect to 7T-rfMRI: (1) higher connectivity variability between participants and the lower connectivity variability within individual participants, and (2) lower amplitude variability between participants and higher amplitude variability within participants. Our work, for the first time, demonstrated the variability of the human CSA across space, rfMRI settings/platforms, and individuals. We discussed the statistical implications of our findings on CSA-based experimental designs and reproducible neuroscience as well as their translational value for personalized applications.
Collapse
Affiliation(s)
- Xiu-Xia Xing
- Department of Applied Mathematics, College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Xiao Gao
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Chao Jiang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Zhao B, Li T, Li Y, Fan Z, Xiong D, Wang X, Gao M, Smith SM, Zhu H. An atlas of trait associations with resting-state and task-evoked human brain functional organizations in the UK Biobank. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-23. [PMID: 38770197 PMCID: PMC11105703 DOI: 10.1162/imag_a_00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to identify brain regions linked to critical functions, such as language and vision, and to detect tumors, strokes, brain injuries, and diseases. It is now known that large sample sizes are necessary for fMRI studies to detect small effect sizes and produce reproducible results. Here we report a systematic association analysis of 647 traits with imaging features extracted from resting-state and task-evoked fMRI data of more than 40,000 UK Biobank participants. We used a parcellation-based approach to generate 64,620 functional connectivity measures to reveal fine-grained details about cerebral cortex functional organizations. The difference between functional organizations at rest and during task was examined, and we have prioritized important brain regions and networks associated with a variety of human traits and clinical outcomes. For example, depression was most strongly associated with decreased connectivity in the somatomotor network. We have made our results publicly available and developed a browser framework to facilitate the exploration of brain function-trait association results (http://fmriatlas.org/).
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- These authors contributed equally to this work
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mufeng Gao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen M. Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Pezzoli P, Parsons S, Kievit RA, Astle DE, Huys QJM, Steinbeis N, Viding E. Challenges and Solutions to the Measurement of Neurocognitive Mechanisms in Developmental Settings. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:815-821. [PMID: 37003410 DOI: 10.1016/j.bpsc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Identifying early neurocognitive mechanisms that confer risk for mental health problems is one important avenue as we seek to develop successful early interventions. Currently, however, we have limited understanding of the neurocognitive mechanisms involved in shaping mental health trajectories from childhood through young adulthood, and this constrains our ability to develop effective clinical interventions. In particular, there is an urgent need to develop more sensitive, reliable, and scalable measures of individual differences for use in developmental settings. In this review, we outline methodological shortcomings that explain why widely used task-based measures of neurocognition currently tell us little about mental health risk. We discuss specific challenges that arise when studying neurocognitive mechanisms in developmental settings, and we share suggestions for overcoming them. We also propose a novel experimental approach-which we refer to as "cognitive microscopy"-that involves adaptive design optimization, temporally sensitive task administration, and multilevel modeling. This approach addresses some of the methodological shortcomings outlined above and provides measures of stability, variability, and developmental change in neurocognitive mechanisms within a multivariate framework.
Collapse
Affiliation(s)
- Patrizia Pezzoli
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | - Sam Parsons
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rogier A Kievit
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Duncan E Astle
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Quentin J M Huys
- Applied Computational Psychiatry Laboratory, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Steinbeis
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| |
Collapse
|
25
|
Gadassi Polack R, Mollick JA, Keren H, Joormann J, Watts R. Neural responses to reward valence and magnitude from pre- to early adolescence. Neuroimage 2023; 275:120166. [PMID: 37178821 PMCID: PMC10311119 DOI: 10.1016/j.neuroimage.2023.120166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Neural activation during reward processing is thought to underlie critical behavioral changes that take place during the transition to adolescence (e.g., learning, risk-taking). Though literature on the neural basis of reward processing in adolescence is booming, important gaps remain. First, more information is needed regarding changes in functional neuroanatomy in early adolescence. Another gap is understanding whether sensitivity to different aspects of the incentive (e.g., magnitude and valence) changes during the transition into adolescence. We used fMRI from a large sample of preadolescent children to characterize neural responses to incentive valence vs. magnitude during anticipation and feedback, and their change over a period of two years. METHODS Data were taken from the Adolescent Cognitive and Brain DevelopmentSM (ABCD®) study release 3.0. Children completed the Monetary Incentive Delay task at baseline (ages 9-10) and year 2 follow-up (ages 11-12). Based on data from two sites (N = 491), we identified activation-based Regions of Interest (ROIs; e.g., striatum, prefrontal regions, etc.) that were sensitive to trial type (win $5, win $0.20, neutral, lose $0.20, lose $5) during anticipation and feedback phases. Then, in an independent subsample (N = 1470), we examined whether these ROIs were sensitive to valence and magnitude and whether that sensitivity changed over two years. RESULTS Our results show that most ROIs involved in reward processing (including the striatum, prefrontal cortex, and insula) are specialized, i.e., mainly sensitive to either incentive valence or magnitude, and this sensitivity was consistent over a 2-year period. The effect sizes of time and its interactions were significantly smaller (0.002≤η2≤0.02) than the effect size of trial type (0.06≤η2≤0.30). Interestingly, specialization was moderated by reward processing phase but was stable across development. Biological sex and pubertal status differences were few and inconsistent. Developmental changes were mostly evident during success feedback, where neural reactivity increased over time. CONCLUSIONS Our results suggest sub-specialization to valence vs. magnitude within many ROIs of the reward circuitry. Additionally, in line with theoretical models of adolescent development, our results suggest that the ability to benefit from success increases from pre- to early adolescence. These findings can inform educators and clinicians and facilitate empirical research of typical and atypical motivational behaviors during a critical time of development.
Collapse
Affiliation(s)
- Reuma Gadassi Polack
- Psychology Department, Yale University, United States; Psychiatry Department, Yale University, United States; School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Israel.
| | | | - Hanna Keren
- Faculty of Medicine, Bar-Ilan University, Israel
| | | | - Richard Watts
- Psychology Department, Yale University, United States
| |
Collapse
|
26
|
Chen DY, Di X, Biswal B. Cerebrovascular reactivity increases across development in multiple networks as revealed by a breath-holding task: a longitudinal fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522905. [PMID: 36712029 PMCID: PMC9881997 DOI: 10.1101/2023.01.05.522905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold task is commonly used to understand cerebrovascular reactivity in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's breath-hold dataset from the Nathan Kline Institute (NKI) Rockland Sample (ages 6 to 18 years old at enrollment). A general linear model (GLM) approach was applied to derive cerebrovascular reactivity from breath-hold data. To model both the longitudinal and cross-sectional effects of age on breath-hold response, we used mixed effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased breath-hold BOLD signal in multiple networks across age, in which linear and logarithmic mixed effects models provided the best fit with the lowest Akaike Information Criterion (AIC) scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes which occur with age.
Collapse
Affiliation(s)
- Donna Y. Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, US
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| |
Collapse
|
27
|
Vaisvilaite L, Andersson M, Salami A, Specht K. Time of day dependent longitudinal changes in resting-state fMRI. Front Neurol 2023; 14:1166200. [PMID: 37475742 PMCID: PMC10354550 DOI: 10.3389/fneur.2023.1166200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Longitudinal studies have become more common in the past years due to their superiority over cross-sectional samples. In light of the ongoing replication crisis, the factors that may introduce variability in resting-state networks have been widely debated. This publication aimed to address the potential sources of variability, namely, time of day, sex, and age, in longitudinal studies within individual resting-state fMRI data. DCM was used to analyze the fMRI time series, extracting EC connectivity measures and parameters that define the BOLD signal. In addition, a two-way ANOVA was used to assess the change in EC and parameters that define the BOLD signal between data collection waves. The results indicate that time of day and gender have significant model evidence for the parameters that define the BOLD signal but not EC. From the ANOVA analysis, findings indicate that there was a significant change in the two nodes of the DMN and their connections with the fronto-parietal network. Overall, these findings suggest that in addition to age and gender, which are commonly accounted for in the fMRI data collection, studies should note the time of day, possibly treating it as a covariate in longitudinal samples.
Collapse
Affiliation(s)
- Liucija Vaisvilaite
- ReState Research Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical and Imaging Visualization Centre, Haukel and University Hospital, Bergen, Norway
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Ageing Research Center, Karolinska Institute, Stockholm, Sweden
| | - Karsten Specht
- ReState Research Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical and Imaging Visualization Centre, Haukel and University Hospital, Bergen, Norway
- Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
28
|
Wu Q, Lei H, Mao T, Deng Y, Zhang X, Jiang Y, Zhong X, Detre JA, Liu J, Rao H. Test-Retest Reliability of Resting Brain Small-World Network Properties across Different Data Processing and Modeling Strategies. Brain Sci 2023; 13:brainsci13050825. [PMID: 37239297 DOI: 10.3390/brainsci13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) with graph theoretical modeling has been increasingly applied for assessing whole brain network topological organization, yet its reproducibility remains controversial. In this study, we acquired three repeated resting-state fMRI scans from 16 healthy controls during a strictly controlled in-laboratory study and examined the test-retest reliability of seven global and three nodal brain network metrics using different data processing and modeling strategies. Among the global network metrics, the characteristic path length exhibited the highest reliability, whereas the network small-worldness performed the poorest. Nodal efficiency was the most reliable nodal metric, whereas betweenness centrality showed the lowest reliability. Weighted global network metrics provided better reliability than binary metrics, and reliability from the AAL90 atlas outweighed those from the Power264 parcellation. Although global signal regression had no consistent effects on the reliability of global network metrics, it slightly impaired the reliability of nodal metrics. These findings provide important implications for the future utility of graph theoretical modeling in brain network analyses.
Collapse
Affiliation(s)
- Qianying Wu
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui Lei
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- College of Education, Hunan Agricultural University, Changsha 410127, China
| | - Tianxin Mao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yao Deng
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaocui Zhang
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
- Medical Psychological Institute, Central South University, Changsha 410017, China
- National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Yali Jiang
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
| | - Xue Zhong
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianghong Liu
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hengyi Rao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Abd Rahman MH, Amirtharatnam P, Sharanjeet-Kaur S, Narayanasamy S, Mohd Rasdi HF, Catherine Bastion ML. Development of Knowledge, Attitude and Practice Questionnaire for age-related macular degeneration patients. Int J Ophthalmol 2023; 16:589-600. [PMID: 37077492 PMCID: PMC10089905 DOI: 10.18240/ijo.2023.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
AIM To develop and validate a questionnaire to evaluate knowledge, attitude and practice of patients diagnosed with age-related macular degeneration (AMD) who have undergone intravitreal injection treatment. METHODS This study was conducted among patients diagnosed with AMD in Kuala Lumpur. The generation of the instrument included four phases which included item and domains development, content, face validity and exploratory factor analysis. Content validity and modified Kappa was used for validation of knowledge domain. Exploratory factor analysis was used for validation of both attitude and practice domains. Face validity was conducted in 12 patients, content validity was ascertained in 120 patients and test-retest reliability was determined in 39 patients with AMD. RESULTS Content validity index (CVI) and modified kappa showed excellent values for most items in the knowledge domain with CVI for item (I-CVI) values between 0.78-1.0 and Kappa values of >0.74. The Kaiser-Meyer-Olkin (KMO) sampling adequacy showed acceptable scores of 0.70 and 0.75 for both attitude and practice domains respectively and Bartlett's Test of sphericity were significant (χ2 =0.00, P<0.001). Factor analysis resulted in five factors with thirty items for attitude domain and four factors with twenty items for practice domain. The Cronbach's alpha showed acceptable values for all items in knowledge, attitude and practice domain with values >0.70 and good test-retest reliability. The final version of the questionnaire consisted of 93 items from four sections consisting of demographic details, knowledge, attitude and practice. CONCLUSION The findings of this validation and reliability study show that the developed questionnaire has a satisfactory psychometric property for measuring KAP of patients diagnosed with AMD undergoing intravitreal injection treatment.
Collapse
Affiliation(s)
- Mohd Harimi Abd Rahman
- Optometry and Vision Science Programme, Center for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia
| | - Prashanti Amirtharatnam
- Optometry and Vision Science Programme, Center for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia
| | - Sharanjeet Sharanjeet-Kaur
- Optometry and Vision Science Programme, Center for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia
| | - Sumithira Narayanasamy
- Optometry and Vision Science Programme, Center for Community Health Studies (Reach), Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia
| | - Hanif Farhan Mohd Rasdi
- Occupational Therapy Programme, Center for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia
| | - Mae-Lynn Catherine Bastion
- Ophthalmology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
30
|
Rakesh D, Allen NB, Whittle S. Longitudinal changes in within-salience network functional connectivity mediate the relationship between childhood abuse and neglect, and mental health during adolescence. Psychol Med 2023; 53:1552-1564. [PMID: 34429171 DOI: 10.1017/s0033291721003135] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Understanding the neurobiological underpinnings of childhood maltreatment is vital given consistent links with poor mental health. Dimensional models of adversity purport that different types of adversity likely have distinct neurobiological consequences. Adolescence is a key developmental period, during which deviations from normative neurodevelopment may have particular relevance for mental health. However, longitudinal work examining links between different forms of maltreatment, neurodevelopment, and mental health is limited. METHODS In the present study, we explored associations between abuse, neglect, and longitudinal development of within-network functional connectivity of the salience (SN), default mode (DMN), and executive control network in 142 community residing adolescents. Resting-state fMRI data were acquired at age 16 (T1; M = 16.46 years, s.d. = 0.52, 66F) and 19 (T2; mean follow-up period: 2.35 years). Mental health data were also collected at T1 and T2. Childhood maltreatment history was assessed prior to T1. RESULTS Abuse and neglect were both found to be associated with increases in within-SN functional connectivity from age 16 to 19. Further, there were sex differences in the association between neglect and changes in within-DMN connectivity. Finally, increases in within-SN connectivity were found to mediate the association between abuse/neglect and lower problematic substance use and higher depressive symptoms at age 19. CONCLUSIONS Our findings suggest that childhood maltreatment is associated with altered neurodevelopmental trajectories, and that changes in salience processing may be linked with risk and resilience for the development of depression and substance use problems during adolescence, respectively. Further work is needed to understand the distinct neurodevelopmental and mental health outcomes of abuse and neglect.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Nicholas B Allen
- Department of Psychology, The University of Oregon, Eugene, OR, USA
| | - Sarah Whittle
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Purg N, Demšar J, Anticevic A, Repovš G. autohrf-an R package for generating data-informed event models for general linear modeling of task-based fMRI data. FRONTIERS IN NEUROIMAGING 2022; 1:983324. [PMID: 37555164 PMCID: PMC10406192 DOI: 10.3389/fnimg.2022.983324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/15/2022] [Indexed: 08/10/2023]
Abstract
The analysis of task-related fMRI data at the level of individual participants is commonly based on general linear modeling (GLM), which allows us to estimate the extent to which the BOLD signal can be explained by the task response predictors specified in the event model. The predictors are constructed by convolving the hypothesized time course of neural activity with an assumed hemodynamic response function (HRF). However, our assumptions about the components of brain activity, including their onset and duration, may be incorrect. Their timing may also differ across brain regions or from person to person, leading to inappropriate or suboptimal models, poor fit of the model to actual data, and invalid estimates of brain activity. Here, we present an approach that uses theoretically driven models of task response to define constraints on which the final model is computationally derived using actual fMRI data. Specifically, we developed autohrf-an R package that enables the evaluation and data-driven estimation of event models for GLM analysis. The highlight of the package is the automated parameter search that uses genetic algorithms to find the onset and duration of task predictors that result in the highest fitness of GLM based on the fMRI signal under predefined constraints. We evaluated the usefulness of the autohrf package on two original datasets of task-related fMRI activity, a slow event-related spatial working memory study and a mixed state-item study using the flanker task, and on a simulated slow event-related working memory data. Our results suggest that autohrf can be used to efficiently construct and evaluate better task-related brain activity models to gain a deeper understanding of BOLD task response and improve the validity of model estimates. Our study also highlights the sensitivity of fMRI analysis with GLM to precise event model specification and the need for model evaluation, especially in complex and overlapping event designs.
Collapse
Affiliation(s)
- Nina Purg
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Demšar
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale University School of Medicine, New Haven, CT, United States
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
32
|
Kaiser A, Holz NE, Banaschewski T, Baumeister S, Bokde ALW, Desrivières S, Flor H, Fröhner JH, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Artiges E, Millenet S, Orfanos DP, Poustka L, Schwarz E, Smolka MN, Walter H, Whelan R, Schumann G, Brandeis D, Nees F. A Developmental Perspective on Facets of Impulsivity and Brain Activity Correlates From Adolescence to Adulthood. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1103-1115. [PMID: 35182817 PMCID: PMC9636026 DOI: 10.1016/j.bpsc.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND On a theoretical level, impulsivity represents a multidimensional construct associated with acting without foresight, inefficient inhibitory response control, and alterations in reward processing. On an empirical level, relationships and changes in associations between different measures of impulsivity from adolescence into young adulthood and their relation to neural activity during inhibitory control and reward anticipation have not been fully understood. METHODS We used data from IMAGEN, a longitudinal multicenter, population-based cohort study in which 2034 healthy adolescents were investigated at age 14, and 1383 were reassessed as young adults at age 19. We measured the construct of trait impulsivity using self-report questionnaires and neurocognitive indices of decisional impulsivity. With functional magnetic resonance imaging, we assessed brain activity during inhibition error processing using the stop signal task and during reward anticipation in the monetary incentive delay task. Correlations were analyzed, and mixed-effect models were fitted to explore developmental and predictive effects. RESULTS All self-report and neurocognitive measures of impulsivity proved to be correlated during adolescence and young adulthood. Further, pre-supplementary motor area and inferior frontal gyrus activity during inhibition error processing was associated with trait impulsivity in adolescence, whereas in young adulthood, a trend-level association with reward anticipation activity in the ventral striatum was found. For adult delay discounting, a trend-level predictive effect of adolescent neural activity during inhibition error processing emerged. CONCLUSIONS Our findings help to inform theories of impulsivity about the development of its multidimensional nature and associated brain activity patterns and highlight the need for taking functional brain development into account when evaluating neuromarker candidates.
Collapse
Affiliation(s)
- Anna Kaiser
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technical University Dresden, Dresden, Germany
| | - Antoine Grigis
- NeuroSpin, Commissariat à l'énergie atomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Department of Psychology, University of Vermont, Burlington, Vermont
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France; Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, L'Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France; Psychiatry Department 91G16, Orsay Hospital, Orsay, France
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technical University Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Population Neuroscience Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom; Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, Swiss Federal Institute of Technology and University of Zürich, Zürich, Switzerland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
33
|
Vetter NC, Fröhner JH, Hoffmann K, Backhausen LL, Smolka MN. Adolescent to young adult longitudinal development across 8 years for matching emotional stimuli during functional magnetic resonance imaging. Dev Cogn Neurosci 2022; 57:101131. [PMID: 35907311 PMCID: PMC9352466 DOI: 10.1016/j.dcn.2022.101131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
We investigated development from adolescence to young adulthood of neural bottom-up and top-down processes using a functional magnetic resonance imaging task on emotional attention. We followed 249 participants from age 14-22 in up to four waves resulting in 687 total scans of a matching task in which participants decided whether two pictures were the same including distracting emotional or neutral scenes. We applied generalized additive mixed models and a reliability approach for longitudinal analysis. Reaction times and error rates decreased longitudinally. For top-down processing, we found a longitudinal increase for the bilateral inferior frontal gyrus (IFG) for negative stimuli and in the left IFG also for positive and neutral stimuli. For bottom-up activation in the bilateral amygdala, we found a relative stability for negative and neutral stimuli. For positive stimuli, there was an increase starting in the twenties. Results show ongoing behavioral and top-down prefrontal development relatively independent from emotional valence. Amygdala bottom-up activation remained stable except for positive stimuli. Current findings add to the sparse literature on longitudinal top-down and bottom-up development into young adulthood and emphasize the role of reliability. These findings might help to characterize healthy in contrast to dysfunctional development of emotional attention.
Collapse
Affiliation(s)
- Nora C Vetter
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany; Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany.
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
| | - Klara Hoffmann
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | - Lea L Backhausen
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany; Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
| |
Collapse
|
34
|
Klingelhöfer-Jens M, Ehlers MR, Kuhn M, Keyaniyan V, Lonsdorf TB. Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear. eLife 2022; 11:e78717. [PMID: 36098500 PMCID: PMC9691022 DOI: 10.7554/elife.78717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Here, we follow the call to target measurement reliability as a key prerequisite for individual-level predictions in translational neuroscience by investigating (1) longitudinal reliability at the individual and (2) group level, (3) internal consistency and (4) response predictability across experimental phases. One hundred and twenty individuals performed a fear conditioning paradigm twice 6 months apart. Analyses of skin conductance responses, fear ratings and blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) with different data transformations and included numbers of trials were conducted. While longitudinal reliability was rather limited at the individual level, it was comparatively higher for acquisition but not extinction at the group level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher responding in subsequent experimental phases at a weak to moderate level depending on data specifications. In sum, the results suggest that while individual-level predictions are meaningful for (very) short time frames, they also call for more attention to measurement properties in the field.
Collapse
Affiliation(s)
- Maren Klingelhöfer-Jens
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Mana R Ehlers
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Manuel Kuhn
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychiatry, Harvard Medical School, and Center for Depression, Anxiety and Stress Research, McLean HospitalBelmontUnited States
| | - Vincent Keyaniyan
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| |
Collapse
|
35
|
Bloom PA, VanTieghem M, Gabard‐Durnam L, Gee DG, Flannery J, Caldera C, Goff B, Telzer EH, Humphreys KL, Fareri DS, Shapiro M, Algharazi S, Bolger N, Aly M, Tottenham N. Age-related change in task-evoked amygdala-prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4-22 years. Hum Brain Mapp 2022; 43:3221-3244. [PMID: 35393752 PMCID: PMC9188973 DOI: 10.1002/hbm.25847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
The amygdala and its connections with medial prefrontal cortex (mPFC) play central roles in the development of emotional processes. While several studies have suggested that this circuitry exhibits functional changes across the first two decades of life, findings have been mixed - perhaps resulting from differences in analytic choices across studies. Here we used multiverse analyses to examine the robustness of task-based amygdala-mPFC function findings to analytic choices within the context of an accelerated longitudinal design (4-22 years-old; N = 98; 183 scans; 1-3 scans/participant). Participants recruited from the greater Los Angeles area completed an event-related emotional face (fear, neutral) task. Parallel analyses varying in preprocessing and modeling choices found that age-related change estimates for amygdala reactivity were more robust than task-evoked amygdala-mPFC functional connectivity to varied analytical choices. Specification curves indicated evidence for age-related decreases in amygdala reactivity to faces, though within-participant changes in amygdala reactivity could not be differentiated from between-participant differences. In contrast, amygdala-mPFC functional connectivity results varied across methods much more, and evidence for age-related change in amygdala-mPFC connectivity was not consistent. Generalized psychophysiological interaction (gPPI) measurements of connectivity were especially sensitive to whether a deconvolution step was applied. Our findings demonstrate the importance of assessing the robustness of findings to analysis choices, although the age-related changes in our current work cannot be overinterpreted given low test-retest reliability. Together, these findings highlight both the challenges in estimating developmental change in longitudinal cohorts and the value of multiverse approaches in developmental neuroimaging for assessing robustness of results.
Collapse
Affiliation(s)
| | | | | | - Dylan G. Gee
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | | | - Christina Caldera
- Department of PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Bonnie Goff
- Department of PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Eva H. Telzer
- University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | | | - Sameah Algharazi
- Department of PsychologyCity College of New YorkNew YorkNew YorkUSA
| | - Niall Bolger
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| | - Mariam Aly
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| | - Nim Tottenham
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
36
|
Anter AM, Elnashar HS, Zhang Z. QMVO-SCDL: A new regression model for fMRI pain decoding using quantum-behaved sparse dictionary learning. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Kennedy JT, Harms MP, Korucuoglu O, Astafiev SV, Barch DM, Thompson WK, Bjork JM, Anokhin AP. Reliability and stability challenges in ABCD task fMRI data. Neuroimage 2022; 252:119046. [PMID: 35245674 PMCID: PMC9017319 DOI: 10.1016/j.neuroimage.2022.119046] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
Trait stability of measures is an essential requirement for individual differences research. Functional MRI has been increasingly used in studies that rely on the assumption of trait stability, such as attempts to relate task related brain activation to individual differences in behavior and psychopathology. However, recent research using adult samples has questioned the trait stability of task-fMRI measures, as assessed by test-retest correlations. To date, little is known about trait stability of task fMRI in children. Here, we examined within-session reliability and long-term stability of individual differences in task-fMRI measures using fMRI measures of brain activation provided by the adolescent brain cognitive development (ABCD) Study Release v4.0 as an individual's average regional activity, using its tasks focused on reward processing, response inhibition, and working memory. We also evaluated the effects of factors potentially affecting reliability and stability. Reliability and stability (quantified as the ratio of non-scanner related stable variance to all variances) was poor in virtually all brain regions, with an average value of 0.088 and 0.072 for short term (within-session) reliability and long-term (between-session) stability, respectively, in regions of interest (ROIs) historically-recruited by the tasks. Only one reliability or stability value in ROIs exceeded the 'poor' cut-off of 0.4, and in fact rarely exceeded 0.2 (only 4.9%). Motion had a pronounced effect on estimated reliability/stability, with the lowest motion quartile of participants having a mean reliability/stability 2.5 times higher (albeit still 'poor') than the highest motion quartile. Poor reliability and stability of task-fMRI, particularly in children, diminishes potential utility of fMRI data due to a drastic reduction of effect sizes and, consequently, statistical power for the detection of brain-behavior associations. This essential issue urgently needs to be addressed through optimization of task design, scanning parameters, data acquisition protocols, preprocessing pipelines, and data denoising methods.
Collapse
Affiliation(s)
- James T Kennedy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Ozlem Korucuoglu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Serguei V Astafiev
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Wesley K Thompson
- Division of Biostatistics and Department of Radiology, Population Neuroscience and Genetics Lab, University of California, San Diego, United States
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, United States
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
38
|
Schuster V, Jansen A. 'That Time of the Month' - Investigating the Influence of the Menstrual Cycle and Oral Contraceptives on the Brain Using Magnetic Resonance Imaging. Exp Clin Endocrinol Diabetes 2022; 130:303-312. [PMID: 35605601 DOI: 10.1055/a-1816-8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The stereotypic and oversimplified relationship between female sex hormones and undesirable behavior dates to the earliest days of human society, as already the ancient Greek word for the uterus, "hystera" indicated an aversive connection. Remaining and evolving throughout the centuries, transcending across cultures and various aspects of everyday life, its perception was only recently reframed. Contemporarily, the complex interaction of hormonal phases (i. e., the menstrual cycle), hormonal medication (i. e., oral contraceptives), women's psychological well-being, and behavior is the subject of multifaceted and more reflected discussions. A driving force of this ongoing paradigm shift was the introduction of this highly interesting and important topic into the realm of scientific research. This refers to neuroscientific research as it enables a multimodal approach combining aspects of physiology, medicine, and psychology. Here a growing body of literature points towards significant alterations of both brain function, such as lateralization of cognitive functions, and structure, such as gray matter concentrations, due to fluctuations and changes in hormonal levels. This especially concerns female sex hormones. However, the more research is conducted within this field, the less reliable these observations and derived insights appear. This may be due to two particular factors: measurement inconsistencies and diverse hormonal phases accompanied by interindividual differences. The first factor refers to the prominent unreliability of one of the primarily utilized neuroscientific research instruments: functional magnetic resonance imaging (fMRI). This unreliability is seemingly present in paradigms and analyses, and their interplay, and is additionally affected by the second factor. In more detail, hormonal phases and levels further influence neuroscientific results obtained through fMRI as outcomes vary drastically across different cycle phases and medication. This resulting vast uncertainty thus tremendously hinders the further advancement of our understanding of how female sex hormones might alter brain structure and function and, ultimately, behavior.This review summarizes parts of the current state of research and outlines the essential requirements to further investigate and understand the female brain's underlying physiological and anatomical features.
Collapse
Affiliation(s)
- Verena Schuster
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Andreas Jansen
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, University of Marburg, Germany.,Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Germany
| |
Collapse
|
39
|
Rapuano KM, Conley MI, Juliano AC, Conan GM, Maza MT, Woodman K, Martinez SA, Earl E, Perrone A, Feczko E, Fair DA, Watts R, Casey BJ, Rosenberg MD. An open-access accelerated adult equivalent of the ABCD Study neuroimaging dataset (a-ABCD). Neuroimage 2022; 255:119215. [PMID: 35436615 DOI: 10.1016/j.neuroimage.2022.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
As public access to longitudinal developmental datasets like the Adolescent Brain Cognitive Development StudySM (ABCD Study®) increases, so too does the need for resources to benchmark time-dependent effects. Scan-to-scan changes observed with repeated imaging may reflect development but may also reflect practice effects, day-to-day variability in psychological states, and/or measurement noise. Resources that allow disentangling these time-dependent effects will be useful in quantifying actual developmental change. We present an accelerated adult equivalent of the ABCD Study dataset (a-ABCD) using an identical imaging protocol to acquire magnetic resonance imaging (MRI) structural, diffusion-weighted, resting-state and task-based data from eight adults scanned five times over five weeks. We report on the task-based imaging data (n = 7). In-scanner stop-signal (SST), monetary incentive delay (MID), and emotional n-back (EN-back) task behavioral performance did not change across sessions. Post-scan recognition memory for emotional n-back stimuli, however, did improve as participants became more familiar with the stimuli. Functional MRI analyses revealed that patterns of task-based activation reflecting inhibitory control in the SST, reward success in the MID task, and working memory in the EN-back task were more similar within individuals across repeated scan sessions than between individuals. Within-subject, activity was more consistent across sessions during the EN-back task than in the SST and MID task, demonstrating differences in fMRI data reliability as a function of task. The a-ABCD dataset provides a unique testbed for characterizing the reliability of brain function, structure, and behavior across imaging modalities in adulthood and benchmarking neurodevelopmental change observed in the open-access ABCD Study.
Collapse
Affiliation(s)
| | | | | | - Gregory M Conan
- Masonic Institute for the Developing Brain, University of Minnesota Medical School
| | - Maria T Maza
- Department of Psychology, Yale University; Department of Psychology, University of North Carolina, Chapel Hill
| | - Kylie Woodman
- Department of Psychology, Yale University; Department of Communication, University of California, Santa Barbara
| | - Steven A Martinez
- Department of Psychology, Yale University; Department of Psychology, Temple University
| | - Eric Earl
- Department of Psychiatry, Oregon Health and Science University
| | - Anders Perrone
- Department of Psychiatry, Oregon Health and Science University; Masonic Institute for the Developing Brain, University of Minnesota Medical School
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School; Department of Pediatrics, University of Minnesota Medical School
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School
| | | | - B J Casey
- Department of Psychology, Yale University.
| | - Monica D Rosenberg
- Department of Psychology, Yale University; Department of Psychology, University of Chicago, United States.
| |
Collapse
|
40
|
Han X, Ashar YK, Kragel P, Petre B, Schelkun V, Atlas LY, Chang LJ, Jepma M, Koban L, Losin EAR, Roy M, Woo CW, Wager TD. Effect sizes and test-retest reliability of the fMRI-based neurologic pain signature. Neuroimage 2022; 247:118844. [PMID: 34942367 PMCID: PMC8792330 DOI: 10.1016/j.neuroimage.2021.118844] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/28/2023] Open
Abstract
Identifying biomarkers that predict mental states with large effect sizes and high test-retest reliability is a growing priority for fMRI research. We examined a well-established multivariate brain measure that tracks pain induced by nociceptive input, the Neurologic Pain Signature (NPS). In N = 295 participants across eight studies, NPS responses showed a very large effect size in predicting within-person single-trial pain reports (d = 1.45) and medium effect size in predicting individual differences in pain reports (d = 0.49). The NPS showed excellent short-term (within-day) test-retest reliability (ICC = 0.84, with average 69.5 trials/person). Reliability scaled with the number of trials within-person, with ≥60 trials required for excellent test-retest reliability. Reliability was tested in two additional studies across 5-day (N = 29, ICC = 0.74, 30 trials/person) and 1-month (N = 40, ICC = 0.46, 5 trials/person) test-retest intervals. The combination of strong within-person correlations and only modest between-person correlations between the NPS and pain reports indicate that the two measures have different sources of between-person variance. The NPS is not a surrogate for individual differences in pain reports but can serve as a reliable measure of pain-related physiology and mechanistic target for interventions.
Collapse
Affiliation(s)
- Xiaochun Han
- Faculty of Psychology, Beijing Normal University, Beijing, China; Dartmouth College, Hanover, NH, United States
| | - Yoni K Ashar
- Weill Cornell Medical College, New York, NY, United States
| | | | | | | | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | | | | | | | | | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Gyeonggi-do, South Korea
| | - Tor D Wager
- Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
41
|
Cofresí RU, Piasecki TM, Hajcak G, Bartholow BD. Internal consistency and test-retest reliability of the P3 event-related potential (ERP) elicited by alcoholic and non-alcoholic beverage pictures. Psychophysiology 2022; 59:e13967. [PMID: 34783024 PMCID: PMC8724465 DOI: 10.1111/psyp.13967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
Addiction researchers are interested in the ability of neural signals, like the P3 component of the ERP, to index individual differences in liability factors like motivational reactivity to alcohol/drug cues. The reliability of these measures directly impacts their ability to index individual differences, yet little attention has been paid to their psychometric properties. The present study fills this gap by examining within-session internal consistency reliability (ICR) and between-session test-retest reliability (TRR) of the P3 amplitude elicited by images of alcoholic beverages (Alcohol Cue P3) and non-alcoholic drinks (NADrink Cue P3) as well as the difference between them, which isolates alcohol cue-specific reactivity in the P3 (ACR-P3). Analyses drew on data from a large sample of alcohol-experienced emerging adults (session 1 N = 211, 55% female, aged 18-20 yr; session 2 N = 98, 66% female, aged 19-21 yr). Evaluated against domain-general thresholds, ICR was excellent (M ± SD; r= 0.902 ± 0.030) and TRR was fair (r = 0.706 ± 0.020) for Alcohol Cue P3 and NADrink Cue P3, whereas for ACR-P3, ICR and TRR were poor (r = 0.370 ± 0.071; r = 0.201 ± 0.042). These findings indicate that individual differences in the P3 elicited by cues for ingested liquid rewards are highly reliable and substantially stable over 8-10 months. Individual differences in alcohol cue-specific P3 reactivity were less reliable and less stable. The conditions under which alcohol/drug cue-specific reactivity in neural signals is adequately reliable and stable remain to be discovered.
Collapse
Affiliation(s)
| | | | - Greg Hajcak
- Departments of Psychology and Biomedical Sciences, Florida State University
| | | |
Collapse
|
42
|
Cosme D, Flournoy JC, Livingston JL, Lieberman MD, Dapretto M, Pfeifer JH. Testing the adolescent social reorientation model during self and other evaluation using hierarchical growth curve modeling with parcellated fMRI data. Dev Cogn Neurosci 2022; 54:101089. [PMID: 35245811 PMCID: PMC8891708 DOI: 10.1016/j.dcn.2022.101089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 12/26/2022] Open
Abstract
Adolescence is characterized as a period when relationships and experiences shift toward peers. The social reorientation model of adolescence posits this shift is driven by neurobiological changes that increase the salience of social information related to peer integration and acceptance. Although influential, this model has rarely been subjected to tests that could falsify it, or studied in longitudinal samples assessing within-person development. We focused on two phenomena that are highly salient and dynamic during adolescence—social status and self-perception—and examined longitudinal changes in neural responses during a self/other evaluation task. We expected status-related social information to uniquely increase across adolescence in social brain regions. Despite using hierarchical growth curve modeling with parcellated whole-brain data to increase power to detect developmental effects, we didn’t find evidence in support of this hypothesis. Social brain regions showed increased responsivity across adolescence, but this trajectory was not unique to status-related information. Additionally, brain regions associated with self-focused cognition showed heightened responses during self-evaluation in the transition to mid-adolescence, especially for status-related information. These results qualify existing models of adolescent social reorientation and highlight the multifaceted changes in self and social development that could be leveraged in novel ways to support adolescent health and well-being.
Collapse
|
43
|
Harju-Seppänen J, Irizar H, Bramon E, Blakemore SJ, Mason L, Bell V. Reward Processing in Children With Psychotic-Like Experiences. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab054. [PMID: 35036918 PMCID: PMC8756103 DOI: 10.1093/schizbullopen/sgab054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alterations to striatal reward pathways have been identified in individuals with psychosis. They are hypothesized to be a key mechanism that generate psychotic symptoms through the production of aberrant attribution of motivational salience and are proposed to result from accumulated childhood adversity and genetic risk, making the striatal system hyper-responsive to stress. However, few studies have examined whether children with psychotic-like experiences (PLEs) also exhibit these alterations, limiting our understanding of how differences in reward processing relate to hallucinations and delusional ideation in childhood. Consequently, we examined whether PLEs and PLE-related distress were associated with reward-related activation in the nucleus accumbens (NAcc). The sample consisted of children (N = 6718) from the Adolescent Brain Cognitive Development (ABCD) study aged 9-10 years who had participated in the Monetary Incentive Delay (MID) task in functional MRI. We used robust mixed-effects linear regression models to investigate the relationship between PLEs and NAcc activation during the reward anticipation and reward outcome stages of the MID task. Analyses were adjusted for gender, household income, ethnicity, depressive symptoms, movement in the scanner, pubertal development, scanner ID, subject and family ID. There was no reliable association between PLEs and alterations to anticipation- or outcome-related striatal reward processing. We discuss the implications for developmental models of psychosis and suggest a developmental delay model of how PLEs may arise at this stage of development.
Collapse
Affiliation(s)
- Jasmine Harju-Seppänen
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Haritz Irizar
- Division of Psychiatry, University College London, London, UK
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
| | | | - Liam Mason
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Trust Centre for Human Neuroimaging, University College London, London, UK
| | - Vaughan Bell
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
44
|
Tang L, Yu Q, Homayouni R, Canada KL, Yin Q, Damoiseaux JS, Ofen N. Reliability of subsequent memory effects in children and adults: The good, the bad, and the hopeful. Dev Cogn Neurosci 2021; 52:101037. [PMID: 34837876 PMCID: PMC8626831 DOI: 10.1016/j.dcn.2021.101037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022] Open
Abstract
Functional MRI (fMRI) is a key tool for investigating neural underpinnings of cognitive development. Yet, in recent years, the reliability of fMRI effects has come into question and with it, the feasibility of using task-based fMRI to identify developmental changes related to cognition. Here, we investigated the reliability of task-based fMRI activations with a widely used subsequent memory paradigm using two developmental samples: a cross-sectional sample (n = 85, age 8-25 years) and a test-retest sample (n = 24, one-month follow up, age 8-20 years). In the large cross-sectional sample, we found good to excellent group-level reliability when assessing activation patterns related to the encoding task and subsequent memory effects. In the test-retest sample, while group-level reliability was excellent, the consistency of activation patterns within individuals was low, particularly for subsequent memory effects. We observed consistent activation patterns in frontal, parietal, and occipital cortices, but comparatively lower test-retest reliability in subcortical regions and the hippocampus. Together, these findings highlight the limitations of interpreting task-based fMRI effects and the importance of incorporating reliability analyses in developmental studies. Leveraging larger and densely collected longitudinal data may help contribute to increased reproducibility and the accumulation of knowledge in developmental sciences.
Collapse
Affiliation(s)
- Lingfei Tang
- Institute of Gerontology, Wayne State University, Detroit, MI, United States; Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI, United States; Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI, United States; Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Kelsey L Canada
- Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Qin Yin
- Institute of Gerontology, Wayne State University, Detroit, MI, United States; Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Jessica S Damoiseaux
- Institute of Gerontology, Wayne State University, Detroit, MI, United States; Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI, United States; Department of Psychology, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
45
|
Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC, Curtiss SW, Oostenveld R, Larson-Prior LJ, Schoffelen JM, Hodge MR, Cler EA, Marcus DM, Barch DM, Yacoub E, Smith SM, Ugurbil K, Van Essen DC. The Human Connectome Project: A retrospective. Neuroimage 2021; 244:118543. [PMID: 34508893 PMCID: PMC9387634 DOI: 10.1016/j.neuroimage.2021.118543] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
The Human Connectome Project (HCP) was launched in 2010 as an ambitious effort to accelerate advances in human neuroimaging, particularly for measures of brain connectivity; apply these advances to study a large number of healthy young adults; and freely share the data and tools with the scientific community. NIH awarded grants to two consortia; this retrospective focuses on the "WU-Minn-Ox" HCP consortium centered at Washington University, the University of Minnesota, and University of Oxford. In just over 6 years, the WU-Minn-Ox consortium succeeded in its core objectives by: 1) improving MR scanner hardware, pulse sequence design, and image reconstruction methods, 2) acquiring and analyzing multimodal MRI and MEG data of unprecedented quality together with behavioral measures from more than 1100 HCP participants, and 3) freely sharing the data (via the ConnectomeDB database) and associated analysis and visualization tools. To date, more than 27 Petabytes of data have been shared, and 1538 papers acknowledging HCP data use have been published. The "HCP-style" neuroimaging paradigm has emerged as a set of best-practice strategies for optimizing data acquisition and analysis. This article reviews the history of the HCP, including comments on key events and decisions associated with major project components. We discuss several scientific advances using HCP data, including improved cortical parcellations, analyses of connectivity based on functional and diffusion MRI, and analyses of brain-behavior relationships. We also touch upon our efforts to develop and share a variety of associated data processing and analysis tools along with detailed documentation, tutorials, and an educational course to train the next generation of neuroimagers. We conclude with a look forward at opportunities and challenges facing the human neuroimaging field from the perspective of the HCP consortium.
Collapse
Affiliation(s)
| | | | - Michael P Harms
- Washington University School of Medicine, St. Louis, MO, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre & NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, School of Medicine, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | | | | | | | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | | | - Jan-Mathijs Schoffelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Michael R Hodge
- Washington University School of Medicine, St. Louis, MO, USA
| | - Eileen A Cler
- Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel M Marcus
- Washington University School of Medicine, St. Louis, MO, USA
| | - Deanna M Barch
- Washington University School of Medicine, St. Louis, MO, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
46
|
Miranda L, Paul R, Pütz B, Koutsouleris N, Müller-Myhsok B. Systematic Review of Functional MRI Applications for Psychiatric Disease Subtyping. Front Psychiatry 2021; 12:665536. [PMID: 34744805 PMCID: PMC8569315 DOI: 10.3389/fpsyt.2021.665536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Psychiatric disorders have been historically classified using symptom information alone. Recently, there has been a dramatic increase in research interest not only in identifying the mechanisms underlying defined pathologies but also in redefining their etiology. This is particularly relevant for the field of personalized medicine, which searches for data-driven approaches to improve diagnosis, prognosis, and treatment selection for individual patients. Methods: This review aims to provide a high-level overview of the rapidly growing field of functional magnetic resonance imaging (fMRI) from the perspective of unsupervised machine learning applications for disease subtyping. Following the PRISMA guidelines for protocol reproducibility, we searched the PubMed database for articles describing functional MRI applications used to obtain, interpret, or validate psychiatric disease subtypes. We also employed the active learning framework ASReview to prioritize publications in a machine learning-guided way. Results: From the 20 studies that met the inclusion criteria, five used functional MRI data to interpret symptom-derived disease clusters, four used it to interpret clusters derived from biomarker data other than fMRI itself, and 11 applied clustering techniques involving fMRI directly. Major depression disorder and schizophrenia were the two most frequently studied pathologies (35% and 30% of the retrieved studies, respectively), followed by ADHD (15%), psychosis as a whole (10%), autism disorder (5%), and the consequences of early exposure to violence (5%). Conclusions: The increased interest in personalized medicine and data-driven disease subtyping also extends to psychiatric disorders. However, to date, this subfield is at an incipient exploratory stage, and all retrieved studies were mostly proofs of principle where further validation and increased sample sizes are craved for. Whereas results for all explored diseases are inconsistent, we believe this reflects the need for concerted, multisite data collection efforts with a strong focus on measuring the generalizability of results. Finally, whereas functional MRI is the best way of measuring brain function available to date, its low signal-to-noise ratio and elevated monetary cost make it a poor clinical alternative. Even with technology progressing and costs decreasing, this might incentivize the search for more accessible, clinically ready functional proxies in the future.
Collapse
Affiliation(s)
- Lucas Miranda
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Riya Paul
- Department of Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Benno Pütz
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Bertram Müller-Myhsok
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Health Data Science, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
47
|
Friedman NP, Banich MT, Keller MC. Twin studies to GWAS: there and back again. Trends Cogn Sci 2021; 25:855-869. [PMID: 34312064 PMCID: PMC8446317 DOI: 10.1016/j.tics.2021.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
The field of human behavioral genetics has come full circle. It began by using twin/family studies to estimate the relative importance of genetic and environmental influences. As large-scale genotyping became cost-effective, genome-wide association studies (GWASs) yielded insights about the nature of genetic influences and new methods that use GWAS data to estimate heritability and genetic correlations invigorated the field. Yet these newer GWAS methods have not replaced twin/family studies. In this review, we discuss the strengths and weaknesses of the two approaches with respect to characterizing genetic and environmental influences, measurement of behavioral phenotypes, and evaluation of causal models, with a particular focus on cognitive neuroscience. This discussion highlights how twin/family studies and GWAS complement and mutually reinforce one another.
Collapse
Affiliation(s)
- Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew C Keller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
48
|
Lerner Y, Scherf KS, Katkov M, Hasson U, Behrmann M. Changes in Cortical Coherence Supporting Complex Visual and Social Processing in Adolescence. J Cogn Neurosci 2021; 33:2215-2230. [PMID: 34272958 PMCID: PMC9941042 DOI: 10.1162/jocn_a_01756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite our differences, there is much about the natural visual world that most observers perceive in common. Across adults, approximately 30% of the brain is activated in a consistent fashion while viewing naturalistic input. At what stage of development is this consistency of neural profile across individuals present? Here, we focused specifically on whether this mature profile is present in adolescence, a key developmental period that bridges childhood and adulthood, and in which new cognitive and social challenges are at play. We acquired fMRI data evoked by a movie shown twice to younger (9-14 years old) and older adolescents (15-19 years old) and to adults, and conducted three key analyses. First, we characterized the consistency of the neural response within individuals (across separate runs of the movie), then within individuals of the same age group, and, last, between age groups. The neural consistency within individuals was similar across age groups with reliable activation in largely overlapping but slightly different cortical regions. In contrast, somewhat differing regions exhibited higher within-age correlations in both groups of adolescents than in the adults. Last, across the whole cortex, we identified regions evincing different patterns of maturation across age. Together, these findings provide a fine-grained characterization of functional neural development in adolescence and uncover signatures of widespread change in cortical coherence that supports the emerging mature stereotypical responses to naturalistic stimuli. These results also offer a more nuanced account of development that obeys neither a rigid linear progression nor a large qualitative change over time.
Collapse
Affiliation(s)
- Yulia Lerner
- Tel Aviv Sourasky Medical Center,Tel Aviv University
| | | | | | | | | |
Collapse
|
49
|
Morandini HAE, Rao P, Hood SD, Zepf FD, Silk TJ, Griffiths KR. Age-related resting-state functional connectivity of the Vigilant Attention network in children and adolescents. Brain Cogn 2021; 154:105791. [PMID: 34509772 DOI: 10.1016/j.bandc.2021.105791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
The development of Vigilant Attention (VA), the ability to focus and maintain our attention to repetitive and cognitively unchallenging tasks over time, has been investigated for more than a decade. The development of this critical executive function across the lifespan has been characterised by a rapid improvement in VA performance throughout childhood and adolescence, a steady improvement in adulthood and a slow decline in older adulthood. However, the development of the neural correlates of VA in children and adolescents remains poorly understood. Using a cross-sectional design, the present study used a meta-analytically defined VA network in children and adolescents to explore the developmental trend of the resting-state functional connectivity (rsFC) within the VA network across two independent cohorts. The results showed a linear and non-linear decrease of rsFC between the left and right VA brain regions across age. However, the results could not be reproduced in the replication cohort, potentially due to a smaller sample size. Based on previous findings from behavioural studies, the present findings suggest that changes in rsFC may underlie a developmental shift in cognitive strategies in neurotypical children and adolescents.
Collapse
Affiliation(s)
- Hugo A E Morandini
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia.
| | - Pradeep Rao
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Telethon Kids Institute, Perth, Western Australia, Australia; Child and Adolescent Mental Health Service, Child and Adolescent Health Service, Perth, Australia
| | - Sean D Hood
- Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia
| | - Florian D Zepf
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Telethon Kids Institute, Perth, Western Australia, Australia; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Timothy J Silk
- School of Psychology, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Kristi R Griffiths
- The Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
50
|
Song X, García-Saldivar P, Kindred N, Wang Y, Merchant H, Meguerditchian A, Yang Y, Stein EA, Bradberry CW, Ben Hamed S, Jedema HP, Poirier C. Strengths and challenges of longitudinal non-human primate neuroimaging. Neuroimage 2021; 236:118009. [PMID: 33794361 PMCID: PMC8270888 DOI: 10.1016/j.neuroimage.2021.118009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.
Collapse
Affiliation(s)
- Xiaowei Song
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Pamela García-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Nathan Kindred
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, United Kingdom
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Charles W Bradberry
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Hank P Jedema
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA.
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom.
| |
Collapse
|