1
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
2
|
So S, Asakawa M, Sawa H. Distinct functions of three Wnt proteins control mirror-symmetric organogenesis in the C. elegans gonad. eLife 2024; 13:e103035. [PMID: 39485276 PMCID: PMC11620738 DOI: 10.7554/elife.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024] Open
Abstract
Organogenesis requires the proper production of diverse cell types and their positioning/migration. However, the coordination of these processes during development remains poorly understood. The gonad in C. elegans exhibits a mirror-symmetric structure guided by the migration of distal tip cells (DTCs), which result from asymmetric divisions of somatic gonadal precursors (SGPs; Z1 and Z4). We found that the polarity of Z1 and Z4, which possess mirror-symmetric orientation, is controlled by the redundant functions of the LIN-17/Frizzled receptor and three Wnt proteins (CWN-1, CWN-2, and EGL-20) with distinct functions. In lin-17 mutants, CWN-2 promotes normal polarity in both Z1 and Z4, while CWN-1 promotes reverse and normal polarity in Z1 and Z4, respectively. In contrast, EGL-20 inhibits the polarization of both Z1 and Z4. In lin-17 egl-20 cwn-2 triple mutants with a polarity reversal of Z1, DTCs from Z1 frequently miss-migrate to the posterior side. Our further analysis demonstrates that the mis-positioning of DTCs in the gonad due to the polarity reversal of Z1 leads to mis-migration. Similar mis-migration was also observed in cki-1(RNAi) animals producing ectopic DTCs. These results highlight the role of Wnt signaling in coordinating the production and migration of DTCs to establish a mirror-symmetric organ.
Collapse
Affiliation(s)
- Shuhei So
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
| | - Masayo Asakawa
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS)MishimaJapan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| |
Collapse
|
3
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
4
|
Peysson A, Zariohi N, Gendrel M, Chambert-Loir A, Frébault N, Cheynet E, Andrini O, Boulin T. Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles. Nat Commun 2024; 15:4935. [PMID: 38858388 PMCID: PMC11164867 DOI: 10.1038/s41467-024-49154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Alice Peysson
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noura Zariohi
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Marie Gendrel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Amandine Chambert-Loir
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noémie Frébault
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Elise Cheynet
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Olga Andrini
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Thomas Boulin
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France.
| |
Collapse
|
5
|
Recouvreux P, Pai P, Dunsing V, Torro R, Ludanyi M, Mélénec P, Boughzala M, Bertrand V, Lenne PF. Transfer of polarity information via diffusion of Wnt ligands in C. elegans embryos. Curr Biol 2024; 34:1853-1865.e6. [PMID: 38604167 DOI: 10.1016/j.cub.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/26/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Different signaling mechanisms concur to ensure robust tissue patterning and cell fate instruction during animal development. Most of these mechanisms rely on signaling proteins that are produced, transported, and detected. The spatiotemporal dynamics of signaling molecules are largely unknown, yet they determine signal activity's spatial range and time frame. Here, we use the Caenorhabditis elegans embryo to study how Wnt ligands, an evolutionarily conserved family of signaling proteins, dynamically organize to establish cell polarity in a developing tissue. We identify how Wnt ligands, produced in the posterior half of the embryos, spread extracellularly to transmit information to distant target cells in the anterior half. With quantitative live imaging and fluorescence correlation spectroscopy, we show that Wnt ligands diffuse through the embryo over a timescale shorter than the cell cycle, in the intercellular space, and outside the tissue below the eggshell. We extracted diffusion coefficients of Wnt ligands and their receptor Frizzled and characterized their co-localization. Integrating our different measurements and observations in a simple computational framework, we show how fast diffusion in the embryo can polarize individual cells through a time integration of the arrival of the ligands at the target cells. The polarity established at the tissue level by a posterior Wnt source can be transferred to the cellular level. Our results support a diffusion-based long-range Wnt signaling, which is consistent with the dynamics of developing processes.
Collapse
Affiliation(s)
- Pierre Recouvreux
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France.
| | - Pritha Pai
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Valentin Dunsing
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Rémy Torro
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Monika Ludanyi
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Pauline Mélénec
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Mariem Boughzala
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
6
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Alsaadi A, Artibani M, Hu Z, Wietek N, Morotti M, Gonzalez LS, Alazzam M, Jiang J, Abdul B, Soleymani Majd H, Blazer LL, Adams J, Silvestri F, Sidhu SS, Brugge JS, Ahmed AA. Single-cell transcriptomics identifies a WNT7A-FZD5 signaling axis that maintains fallopian tube stem cells in patient-derived organoids. Cell Rep 2023; 42:113354. [PMID: 37917586 DOI: 10.1016/j.celrep.2023.113354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/β-catenin signaling and engineer endogenous WNT/β-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/β-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.
Collapse
Affiliation(s)
- Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Moiad Alazzam
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Jason Jiang
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Beena Abdul
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Hooman Soleymani Majd
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Levi L Blazer
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jarret Adams
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Sachdev S Sidhu
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK.
| |
Collapse
|
8
|
Riva C, Hajduskova M, Gally C, Suman SK, Ahier A, Jarriault S. A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved plasticity factors. Cell Rep 2022; 40:111365. [PMID: 36130499 PMCID: PMC9513805 DOI: 10.1016/j.celrep.2022.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/09/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Transdifferentiation, or direct cell reprogramming, is the conversion of one fully differentiated cell type into another. Whether core mechanisms are shared between natural transdifferentiation events when occurring with or without cell division is unclear. We have previously characterized the Y-to-PDA natural transdifferentiation in Caenorhabditis elegans, which occurs without cell division and requires orthologs of vertebrate reprogramming factors. Here, we identify a rectal-to-GABAergic transdifferentiation and show that cell division is required but not sufficient for conversion. We find shared mechanisms, including erasure of the initial identity, which requires the conserved reprogramming factors SEM-4/SALL, SOX-2, CEH-6/OCT, and EGL-5/HOX. We also find three additional and parallel roles of the Wnt signaling pathway: selection of a specific daughter, removal of the initial identity, and imposition of the precise final subtype identity. Our results support a model in which levels and antagonistic activities of SOX-2 and Wnt signaling provide a timer for the acquisition of final identity.
Collapse
Affiliation(s)
- Claudia Riva
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Martina Hajduskova
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| | - Shashi Kumar Suman
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Arnaud Ahier
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Sophie Jarriault
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
9
|
Li X, Li J, Zhu D, Zhang N, Hao X, Zhang W, Zhang Q, Liu Y, Wu X, Tian Y. Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPR mt activation and lifespan extension in C. elegans. Cell Rep 2022; 39:110931. [PMID: 35675782 DOI: 10.1016/j.celrep.2022.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Coordination of inter-tissue stress signaling is essential for organismal fitness. Neuronal mitochondrial perturbations activate the mitochondrial unfolded-protein response (UPRmt) in the intestine via the mitokine Wnt signaling in Caenorhabditis elegans. Here, we found that the protein disulfide isomerase PDI-6 coordinates inter-tissue UPRmt signaling via regulating the Wnt ligand EGL-20. PDI-6 is expressed in the endoplasmic reticulum (ER) and interacts with EGL-20 through disulfide bonds that are essential for EGL-20 stability and secretion. pdi-6 deficiency results in misfolded EGL-20, which leads to its degradation via ER-associated protein degradation (ERAD) machinery. Expression of PDI-6 declines drastically with aging, and animals with pdi-6 deficiency have decreased lifespan. Overexpression of PDI-6 is sufficient to maintain Wnt/EGL-20 protein levels during aging, activating the UPRmt, and significantly extending lifespan in a Wnt- and UPRmt-dependent manner. Our study reveals that protein disulfide isomerase facilitates Wnt secretion to coordinate the inter-tissue UPRmt signaling and organismal aging.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ning Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xusheng Hao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wenfeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangli Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
10
|
Cell polarity control by Wnt morphogens. Dev Biol 2022; 487:34-41. [DOI: 10.1016/j.ydbio.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
|
11
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
12
|
Nishiya N, Yonezawa H. Domestication of chemicals attacking metazoan embryogenesis: identification of safe natural products modifying developmental signaling pathways in human. J Antibiot (Tokyo) 2021; 74:651-659. [PMID: 34381189 DOI: 10.1038/s41429-021-00461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Soil microorganisms are rich sources of bioactive natural products. Interspecies interactions are the cues of their production and refine biological activities. These interactions in natural environments include the interplay between microorganisms and Metazoans (animals), such as nematodes, insects, and ticks. Chemical intercellular communication modulators could exert ideal Metazoan-selective toxicity for defending microorganisms. Developmental signaling pathways, such as the Notch, TGF-beta, and Wnt pathways, are intercellular communication networks that contribute to the reproducible formation of complex higher-order Metazoan body structures. Natural modifiers of the developmental signaling pathway are attractive therapeutic seeds for carcinoma and sarcoma treatment. However, these fundamental signaling pathways also play indispensable physiological roles and their perturbation could lead to toxicity, such as defects in stem cell physiology and tissue regeneration processes. In this review, we introduce a screening system that selects developmental signaling inhibitors with wide therapeutic windows using zebrafish embryonic phenotypes and provide examples of microorganism-derived Wnt pathway inhibitors. Moreover, we discuss safety prospects of the developmental signaling inhibitors.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan.
| | - Honami Yonezawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| |
Collapse
|
13
|
Junyent S, Reeves JC, Szczerkowski JLA, Garcin CL, Trieu TJ, Wilson M, Lundie-Brown J, Habib SJ. Wnt- and glutamate-receptors orchestrate stem cell dynamics and asymmetric cell division. eLife 2021; 10:59791. [PMID: 34028355 PMCID: PMC8177892 DOI: 10.7554/elife.59791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
The Wnt-pathway is part of a signalling network that regulates many aspects of cell biology. Recently, we discovered crosstalk between AMPA/Kainate-type ionotropic glutamate receptors (iGluRs) and the Wnt-pathway during the initial Wnt3a-interaction at the cytonemes of mouse embryonic stem cells (ESCs). Here, we demonstrate that this crosstalk persists throughout the Wnt3a-response in ESCs. Both AMPA and Kainate receptors regulate early Wnt3a-recruitment, dynamics on the cell membrane, and orientation of the spindle towards a Wnt3a-source at mitosis. AMPA receptors specifically are required for segregating cell fate components during Wnt3a-mediated asymmetric cell division (ACD). Using Wnt-pathway component knockout lines, we determine that Wnt co-receptor Lrp6 has particular functionality over Lrp5 in cytoneme formation, and in facilitating ACD. Both Lrp5 and 6, alongside pathway effector β-catenin act in concert to mediate the positioning of the dynamic interaction with, and spindle orientation to, a localised Wnt3a-source. Wnt-iGluR crosstalk may prove pervasive throughout embryonic and adult stem cell signalling.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Joshua C Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - James LA Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Clare L Garcin
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Tung-Jui Trieu
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Matthew Wilson
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Jethro Lundie-Brown
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
14
|
Beta-Catenin Causes Adrenal Hyperplasia by Blocking Zonal Transdifferentiation. Cell Rep 2021; 31:107524. [PMID: 32320669 PMCID: PMC7281829 DOI: 10.1016/j.celrep.2020.107524] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Activating mutations in the canonical Wnt/β-catenin pathway are key drivers of hyperplasia, the gateway for tumor development. In a wide range of tissues, this occurs primarily through enhanced effects on cellular proliferation. Whether additional mechanisms contribute to β-catenin-driven hyperplasia remains unknown. The adrenal cortex is an ideal system in which to explore this question, as it undergoes hyperplasia following somatic β-catenin gain-of-function (βcat-GOF) mutations. Targeting βcat-GOF to zona Glomerulosa (zG) cells leads to a progressive hyperplastic expansion in the absence of increased proliferation. Instead, we find that hyperplasia results from a functional block in the ability of zG cells to transdifferentiate into zona Fasciculata (zF) cells. Mechanistically, zG cells demonstrate an upregulation of Pde2a, an inhibitor of zF-specific cAMP/PKA signaling. Hyperplasia is further exacerbated by trophic factor stimulation leading to organomegaly. Together, these data indicate that β-catenin drives adrenal hyperplasia through both proliferation-dependent and -independent mechanisms. Using the adrenal cortex as a model for slow-cycling tissues, Pignatti et al. show that activation of the canonical Wnt/β-catenin pathway leads to tissue hyperplasia by blocking cellular differentiation/cell-fate commitment, independent of its effects on cellular proliferation.
Collapse
|
15
|
Okuchi Y, Reeves J, Ng SS, Doro DH, Junyent S, Liu KJ, El Haj AJ, Habib SJ. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair. NATURE MATERIALS 2021; 20:108-118. [PMID: 32958876 DOI: 10.1038/s41563-020-0786-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The maintenance of human skeletal stem cells (hSSCs) and their progeny in bone defects is a major challenge. Here, we report on a transplantable bandage containing a three-dimensional Wnt-induced osteogenic tissue model (WIOTM). This bandage facilitates the long-term viability of hSSCs (8 weeks) and their progeny, and enables bone repair in an in vivo mouse model of critical-sized calvarial defects. The newly forming bone is structurally comparable to mature cortical bone and consists of human and murine cells. Furthermore, we show that the mechanism of WIOTM formation is governed by Wnt-mediated asymmetric cell division of hSSCs. Covalently immobilizing Wnts onto synthetic materials can polarize single dividing hSSCs, orient the spindle and simultaneously generate a Wnt-proximal hSSC and a differentiation-prone Wnt-distal cell. Our results provide insight into the regulation of human osteogenesis and represent a promising approach to deliver human osteogenic constructs that can survive in vivo and contribute to bone repair.
Collapse
Affiliation(s)
- Yoshihisa Okuchi
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Daniel H Doro
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Alicia J El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.
| |
Collapse
|
16
|
WNK regulates Wnt signalling and β-Catenin levels by interfering with the interaction between β-Catenin and GID. Commun Biol 2020; 3:666. [PMID: 33184430 PMCID: PMC7665214 DOI: 10.1038/s42003-020-01386-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
β-Catenin is an important component of the Wnt signalling pathway. As dysregulation or mutation of this pathway causes many diseases, including cancer, the β-Catenin level is carefully regulated by the destruction complex in the Wnt signalling pathway. However, the mechanisms underlying the regulation of β-Catenin ubiquitination and degradation remain unclear. Here, we find that WNK (With No Lysine [K]) kinase is a potential regulator of the Wnt signalling pathway. We show that WNK protects the interaction between β-Catenin and the Glucose-Induced degradation Deficient (GID) complex, which includes an E3 ubiquitin ligase targeting β-Catenin, and that WNK regulates the β-Catenin level. Furthermore, we show that WNK inhibitors induced β-Catenin degradation and that one of these inhibitors suppressed xenograft tumour development in mice. These results suggest that WNK is a previously unrecognized regulator of β-Catenin and a therapeutic target of cancer. Sato et al. find that WNK (With No Lysine [K]) acts as a positive regulator of the Wnt signaling pathway by attenuating the interaction between β-Catenin and the Glucose Induce degradation Deficient (GID) complex, and show that a WNK inhibitor also functions as a Wnt inhibitor, suppressing xenograft tumor development in mice. These findings suggest that WNK is a regulator of β-Catenin and a potential therapeutic target
Collapse
|
17
|
Fei YX, Zhu JP, Zhao B, Yin QY, Fang WR, Li YM. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull 2020; 164:269-288. [PMID: 32916221 DOI: 10.1016/j.brainresbull.2020.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
10-O-(N, N-dimethylaminoethyl) ginkgolide B methanesulfonate (XQ-1H), a novel analog of ginkgolide B, has been preliminarily recognized to show bioactivities against ischemia-induced injury. However, the underlying mechanism still remains to be fully elucidated. The aim of this study was to investigate the effect of XQ-1H against cerebral ischemia/reperfusion injury (CIRI) from the perspective of blood brain barrier (BBB) protection, and explore whether the underlying mechanism is associated with Wnt/GSK3β/β-catenin signaling pathway activation. The therapeutic effects of XQ-1H were evaluated in mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and in immortalized mouse cerebral endothelial cells (bEnd.3) challenged by oxygen and glucose deprivation/reoxygenation (OGD/R). Results showed that treatment with XQ-1H improved neurological behavior, reduced brain infarction volume, diminished edema, and attenuated the disruption of BBB in vivo. In vitro, XQ-1H increased cell viability and maintained the barrier function of bEnd.3 monolayer after OGD/R. Moreover, the protection of XQ-1H was accompanied with activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins. Notably, the protection of XQ-1H was abolished by Wnt/GSK3β/β-catenin inhibitor XAV939 or β-catenin siRNA, indicating XQ-1H exerted protection in a Wnt/GSK3β/β-catenin dependent profile. In summary, XQ-1H attenuated brain injury and maintained BBB integrity after CIRI, and the possible underlying mechanism may be related to the activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins.
Collapse
Affiliation(s)
- Yu-Xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian-Ping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qi-Yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
18
|
Barrière A, Bertrand V. Neuronal specification in C. elegans: combining lineage inheritance with intercellular signaling. J Neurogenet 2020; 34:273-281. [PMID: 32603241 DOI: 10.1080/01677063.2020.1781850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nervous system is composed of a high diversity of neuronal types. How this diversity is generated during development is a key question in neurobiology. Addressing this question is one of the reasons that led Sydney Brenner to develop the nematode C. elegans as a model organism. While there was initially a debate on whether the neuronal specification follows a 'European' model (determined by ancestry) or an 'American' model (determined by intercellular communication), several decades of research have established that the truth lies somewhere in between. Neurons are specified by the combination of transcription factors inherited from the ancestor cells and signaling between neighboring cells (especially Wnt and Notch signaling). This converges to the activation in newly generated postmitotic neurons of a specific set of terminal selector transcription factors that initiate and maintain the differentiation of the neuron. In this review, we also discuss the evolution of these specification mechanisms in other nematodes and beyond.
Collapse
Affiliation(s)
- Antoine Barrière
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
19
|
Kaur S, Mélénec P, Murgan S, Bordet G, Recouvreux P, Lenne PF, Bertrand V. Wnt ligands regulate the asymmetric divisions of neuronal progenitors in C. elegans embryos. Development 2020; 147:dev183186. [PMID: 32156756 PMCID: PMC10679509 DOI: 10.1242/dev.183186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Wnt/β-catenin signalling has been implicated in the terminal asymmetric divisions of neuronal progenitors in vertebrates and invertebrates. However, the role of Wnt ligands in this process remains poorly characterized. Here, we used the terminal divisions of the embryonic neuronal progenitors in C. elegans to characterize the role of Wnt ligands during this process, focusing on a lineage that produces the cholinergic interneuron AIY. We observed that, during interphase, the neuronal progenitor is elongated along the anteroposterior axis, then divides along its major axis, generating an anterior and a posterior daughter with different fates. Using time-controlled perturbations, we show that three Wnt ligands, which are transcribed at higher levels at the posterior of the embryo, regulate the orientation of the neuronal progenitor and its asymmetric division. We also identify a role for a Wnt receptor (MOM-5) and a cortical transducer APC (APR-1), which are, respectively, enriched at the posterior and anterior poles of the neuronal progenitor. Our study establishes a role for Wnt ligands in the regulation of the shape and terminal asymmetric divisions of neuronal progenitors, and identifies downstream components.
Collapse
Affiliation(s)
- Shilpa Kaur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pauline Mélénec
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Sabrina Murgan
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Guillaume Bordet
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pierre Recouvreux
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| |
Collapse
|
20
|
Hintze M, Koneru SL, Gilbert SPR, Katsanos D, Lambert J, Barkoulas M. A Cell Fate Switch in the Caenorhabditis elegans Seam Cell Lineage Occurs Through Modulation of the Wnt Asymmetry Pathway in Response to Temperature Increase. Genetics 2020; 214:927-939. [PMID: 31988193 PMCID: PMC7153939 DOI: 10.1534/genetics.119.302896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Populations often display consistent developmental phenotypes across individuals despite inevitable biological stochasticity. Nevertheless, developmental robustness has limits, and systems can fail upon change in the environment or the genetic background. We use here the seam cells, a population of epidermal stem cells in Caenorhabditis elegans, to study the influence of temperature change and genetic variation on cell fate. Seam cell development has mostly been studied so far in the laboratory reference strain (N2), grown at 20° temperature. We demonstrate that an increase in culture temperature to 25° introduces variability in the wild-type seam cell lineage, with a proportion of animals showing an increase in seam cell number. We map this increase to lineage-specific symmetrization events of normally asymmetric cell divisions at the fourth larval stage, leading to the retention of seam cell fate in both daughter cells. Using genetics and single-molecule imaging, we demonstrate that this symmetrization occurs via changes in the Wnt asymmetry pathway, leading to aberrant Wnt target activation in anterior cell daughters. We find that intrinsic differences in the Wnt asymmetry pathway already exist between seam cells at 20° and this may sensitize cells toward a cell fate switch at increased temperature. Finally, we demonstrate that wild isolates of C. elegans display variation in seam cell sensitivity to increased culture temperature, although their average seam cell number is comparable at 20°. Our results highlight how temperature can modulate cell fate decisions in an invertebrate model of stem cell patterning.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Sneha L Koneru
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | | | - Julien Lambert
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | |
Collapse
|
21
|
Cravo J, van den Heuvel S. Tissue polarity and PCP protein function: C. elegans as an emerging model. Curr Opin Cell Biol 2019; 62:159-167. [PMID: 31884395 DOI: 10.1016/j.ceb.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Polarity is the basis for the generation of cell diversity, as well as the organization, morphogenesis, and functioning of tissues. Studies in Caenorhabditis elegans have provided much insight into PAR-protein mediated polarity; however, the molecules and mechanisms critical for cell polarization within the plane of epithelia have been identified in other systems. Tissue polarity in C. elegans is organized by Wnt-signaling with some resemblance to the Wnt/planar cell polarity (PCP) pathway, but lacking core PCP protein functions. Nonetheless, recent studies revealed that conserved PCP proteins regulate directed cell migratory events in C. elegans, such as convergent extension movements and neurite formation and guidance. Here, we discuss the latest insights and use of C. elegans as a PCP model.
Collapse
Affiliation(s)
- Janine Cravo
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
22
|
Lu M, Mizumoto K. Gradient-independent Wnt signaling instructs asymmetric neurite pruning in C. elegans. eLife 2019; 8:e50583. [PMID: 31804181 PMCID: PMC6894928 DOI: 10.7554/elife.50583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
During development, the nervous system undergoes a refinement process by which neurons initially extend an excess number of neurites, the majority of which will be eliminated by the mechanism called neurite pruning. Some neurites undergo stereotyped and developmentally regulated pruning. However, the signaling cues that instruct stereotyped neurite pruning are yet to be fully elucidated. Here we show that Wnt morphogen instructs stereotyped neurite pruning for proper neurite projection patterning of the cholinergic motor neuron called PDB in C. elegans. In lin-44/wnt and lin-17/frizzled mutant animals, the PDB neurites often failed to prune and grew towards the lin-44-expressing cells. Surprisingly, membrane-tethered lin-44 is sufficient to induce proper neurite pruning in PDB, suggesting that neurite pruning does not require a Wnt gradient. LIN-17 and DSH-1/Dishevelled proteins were recruited to the pruning neurites in lin-44-dependent manners. Our results revealed the novel gradient-independent role of Wnt signaling in instructing neurite pruning.
Collapse
Affiliation(s)
- Menghao Lu
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
| | - Kota Mizumoto
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, University of British ColumbiaVancouverCanada
| |
Collapse
|
23
|
Dutta P, Odedra D, Pohl C. Planar Asymmetries in the C. elegans Embryo Emerge by Differential Retention of aPARs at Cell-Cell Contacts. Front Cell Dev Biol 2019; 7:209. [PMID: 31612135 PMCID: PMC6776615 DOI: 10.3389/fcell.2019.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Formation of the anteroposterior and dorsoventral body axis in Caenorhabditis elegans depends on cortical flows and advection of polarity determinants. The role of this patterning mechanism in tissue polarization after formation of cell-cell contacts is not fully understood. Here, we demonstrate that planar asymmetries are established during left-right symmetry breaking: Centripetal cortical flows asymmetrically and differentially advect anterior polarity determinants (aPARs) from contacts to the medial cortex, resulting in their unmixing from apical myosin. Contact localization and advection of PAR-6 requires balanced CDC-42 activation, while asymmetric retention and advection of PAR-3 can occur independently of PAR-6. Concurrent asymmetric retention of PAR-3, E-cadherin/HMR-1 and opposing retention of antagonistic CDC-42 and Wnt pathway components leads to planar asymmetries. The most obvious mark of planar asymmetry, retention of PAR-3 at a single cell-cell contact, is required for proper cytokinetic cell intercalation. Hence, our data uncover how planar polarity is established in a system without the canonical planar cell polarity pathway through planar asymmetric retention of aPARs.
Collapse
Affiliation(s)
| | | | - Christian Pohl
- Medical Faculty, Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| |
Collapse
|
24
|
Liu W, Chen G, Sun L, Zhang Y, Han J, Dai Y, He J, Shi S, Chen B. TUFT1 Promotes Triple Negative Breast Cancer Metastasis, Stemness, and Chemoresistance by Up-Regulating the Rac1/β-Catenin Pathway. Front Oncol 2019; 9:617. [PMID: 31338333 PMCID: PMC6629836 DOI: 10.3389/fonc.2019.00617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives: Triple negative breast cancer (TNBC) is a subtype of breast cancer with stronger invasion and metastasis, but its specific mechanism of action is still unclear. Tuft1 plays an important regulatory role in the survival of breast cancer cells; however, its role in regulating TNBC metastatic potential has not been well-characterized. Our aim was therefore to systematically study the mechanism of TUFT1 in the metastasis, stemness, and chemoresistance of TNBC and provide new predictors and targets for BC treatment. Methods: We used western blotting and IHC to measure TUFT1and Rac1-GTP expression levels in both human BC samples and cell lines. A combination of shRNA, migration/invasion assays, sphere formation assay, apoptosis assays, nude mouse xenograft tumor model, and GTP activity assays was used for further mechanistic studies. Results: We demonstrated that silencing TUFT1 in TNBC cells significantly inhibited cell metastasis and stemness in vitro. A nude mouse xenograft tumor model revealed that TUFT1 knockdown greatly decreased spontaneous lung metastasis of TNBC tumors. Mechanism studies showed that TUFT1 promoted tumor cell metastasis and stemness by up-regulating the Rac1/β-catenin pathway. Moreover, mechanistic studies indicated that the lack of TUFT1 expression in TNBC cells conferred more sensitive to chemotherapy and increased cell apoptosis via down-regulating the Rac1/β-catenin signaling pathway. Further, TUFT1 expression positively correlated with Rac1-GTP in TNBC samples, and co-expression of TUFT1 and Rac1-GTP predicted poor prognosis in TNBC patients who treated with chemotherapy. Conclusion: Our findings suggest that TUFT1/Rac1/β-catenin pathway may provide a potential target for more effective treatment of TNBC.
Collapse
Affiliation(s)
- Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Guanglei Chen
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Zhang
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
G Proteins and GPCRs in C. elegans Development: A Story of Mutual Infidelity. J Dev Biol 2018; 6:jdb6040028. [PMID: 30477278 PMCID: PMC6316442 DOI: 10.3390/jdb6040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.
Collapse
|
26
|
He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol 2018; 8:rsob.180116. [PMID: 30282660 PMCID: PMC6223216 DOI: 10.1098/rsob.180116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chien-Po Liao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chun-Liang Pan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| |
Collapse
|
27
|
Venkei ZG, Yamashita YM. Emerging mechanisms of asymmetric stem cell division. J Cell Biol 2018; 217:3785-3795. [PMID: 30232100 PMCID: PMC6219723 DOI: 10.1083/jcb.201807037] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023] Open
Abstract
Venkei and Yamashita summarize recent advances in our understanding of asymmetric stem cell division in tissue homeostasis. The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.
Collapse
Affiliation(s)
- Zsolt G Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, MI .,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
28
|
Abstract
The orientation of cell division is crucial in many developmental processes. In this issue of Developmental Cell, Sugioka and Bowerman (2018) report a myosin-dependent mechanism whereby physical contact between cells influences the division plane, with implications for understanding how cell division orientation is regulated in multicellular contexts.
Collapse
|
29
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Combinatorial Contact Cues Specify Cell Division Orientation by Directing Cortical Myosin Flows. Dev Cell 2018; 46:257-270.e5. [PMID: 30032990 PMCID: PMC7695482 DOI: 10.1016/j.devcel.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Cell division axes during development are specified in different orientations to establish multicellular assemblies, but the mechanisms that generate division axis diversity remain unclear. We show here that patterns of cell contact provide cues that diversify cell division orientation by modulating cortical non-muscle myosin flow. We reconstituted in vivo contact patterns using beads or isolated cells to show two findings. First, we identified three contact-dependent cues that pattern cell division orientation and myosin flow: physical contact, contact asymmetry, and a Wnt signal. Second, we experimentally demonstrated that myosin flow generates forces that trigger plasma membrane movements and propose that their anisotropy drives cell division orientation. Our data suggest that contact-dependent control of myosin specifies the division axes of Caenorhabditis elegans AB, ABa, EMS cells, and the mouse AB cell. The contact pattern-dependent generation of myosin flows, in concert with known microtubule/dynein pathways, may greatly expand division axis diversity during development.
Collapse
|
31
|
Chen C, Cummings R, Mordovanakis A, Hunt AJ, Mayer M, Sept D, Yamashita YM. Cytokine receptor-Eb1 interaction couples cell polarity and fate during asymmetric cell division. eLife 2018; 7:33685. [PMID: 29578412 PMCID: PMC5886756 DOI: 10.7554/elife.33685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/25/2018] [Indexed: 12/15/2022] Open
Abstract
Asymmetric stem cell division is a critical mechanism for balancing self-renewal and differentiation. Adult stem cells often orient their mitotic spindle to place one daughter inside the niche and the other outside of it to achieve asymmetric division. It remains unknown whether and how the niche may direct division orientation. Here we discover a novel and evolutionary conserved mechanism that couples cell polarity to cell fate. We show that the cytokine receptor homolog Dome, acting downstream of the niche-derived ligand Upd, directly binds to the microtubule-binding protein Eb1 to regulate spindle orientation in Drosophila male germline stem cells (GSCs). Dome’s role in spindle orientation is entirely separable from its known function in self-renewal mediated by the JAK-STAT pathway. We propose that integration of two functions (cell polarity and fate) in a single receptor is a key mechanism to ensure an asymmetric outcome following cell division.
Collapse
Affiliation(s)
- Cuie Chen
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Ryan Cummings
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Aghapi Mordovanakis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Alan J Hunt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Michael Mayer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|
32
|
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics 2018; 208:1147-1164. [PMID: 29348144 PMCID: PMC5844328 DOI: 10.1534/genetics.117.300487] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J Dickinson
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
33
|
Ci Y, Li X, Chen M, Zhong J, North BJ, Inuzuka H, He X, Li Y, Guo J, Dai X. SCF β-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation. Protein Cell 2018; 9:879-889. [PMID: 29497989 PMCID: PMC6160385 DOI: 10.1007/s13238-018-0510-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling has emerged as a major regulator of tissue development by governing the self-renewal and maintenance of stem cells in most tissue types. As a key upstream regulator of the Wnt pathway, the transmembrane E3 ligase ZNRF3 has recently been established to play a role in negative regulation of Wnt signaling by targeting Frizzled (FZD) receptor for ubiquitination and degradation. However, the upstream regulation of ZNRF3, in particular the turnover of ZNRF3, is still unclear. Here we report that ZNRF3 is accumulated in the presence of proteasome inhibitor treatment independent of its E3-ubiquitin ligase activity. Furthermore, the Cullin 1-specific SCF complex containing β-TRCP has been identified to directly interact with and ubiquitinate ZNRF3 thereby regulating its protein stability. Similar with the degradation of β-catenin by β-TRCP, ZNRF3 is ubiquitinated by β-TRCP in both CKI-phosphorylation- and degron-dependent manners. Thus, our findings not only identify a novel substrate for β-TRCP oncogenic regulation, but also highlight the dual regulation of Wnt signaling by β-TRCP in a context-dependent manner where β-TRCP negatively regulates Wnt signaling by targeting β-catenin, and positively regulates Wnt signaling by targeting ZNRF3.
Collapse
Affiliation(s)
- Yanpeng Ci
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaoning Li
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Maorong Chen
- The FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiateng Zhong
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Xi He
- The FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
34
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
35
|
Driehuis E, Clevers H. WNT signalling events near the cell membrane and their pharmacological targeting for the treatment of cancer. Br J Pharmacol 2017; 174:4547-4563. [PMID: 28244067 PMCID: PMC5727251 DOI: 10.1111/bph.13758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
WNT signalling is an essential signalling pathway for all multicellular animals. Although first described more than 30 years ago, new components and regulators of the pathway are still being discovered. Considering its importance in both embryonic development and adult homeostasis, it is not surprising that this pathway is often deregulated in human diseases such as cancer. Recently, it became clear that in addition to cytoplasmic components such as β-catenin, other, membrane-bound or extracellular, components of the WNT pathway are also altered in cancer. This review gives an overview of the recent discoveries on WNT signalling events near the cell membrane. Furthermore, membrane-associated components of the WNT pathway, which are more accessible for therapeutic intervention, as well therapeutic approaches that already target those components will be discussed. In this way, we hope to stimulate the development of effective anti-cancer therapies that target this fascinating pathway. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Else Driehuis
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
| | - Hans Clevers
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
- Princess Maxime Center (PMC)UtrechtThe Netherlands
| |
Collapse
|
36
|
Regulation of Axon Guidance by the Wnt Receptor Ror/CAM-1 in the PVT Guidepost Cell in Caenorhabditis elegans. Genetics 2017; 207:1533-1545. [PMID: 28993416 DOI: 10.1534/genetics.117.300375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/27/2017] [Indexed: 01/24/2023] Open
Abstract
The Caenorhabditis elegans ventral nerve cord (VNC) consists of two asymmetric bundles of neurons and axons that are separated by the midline. How the axons are guided to stay on the correct sides of the midline remains poorly understood. Here we provide evidence that the conserved Wnt signaling pathway along with the Netrin and Robo pathways constitute a combinatorial code for midline guidance of PVP and PVQ axons that extend into the VNC. Combined loss of the Wnts CWN-1, CWN-2, and EGL-20 or loss of the Wnt receptor CAM-1 caused >70% of PVP and PVQ axons to inappropriately cross over from the left side to the right side. Loss of the Frizzled receptor LIN-17 or the planar cell polarity (PCP) protein VANG-1 also caused cross over defects that did not enhance those in the cam-1 mutant, indicating that the proteins function together in midline guidance. Strong cam-1 expression can be detected in the PVQs and the guidepost cell PVT that is located on the midline. However, only when cam-1 is expressed in PVT are the crossover defects of PVP and PVQ rescued, showing that CAM-1 functions nonautonomously in PVT to prevent axons from crossing the midline.
Collapse
|
37
|
Mills KM, Szczerkowski JLA, Habib SJ. Wnt ligand presentation and reception: from the stem cell niche to tissue engineering. Open Biol 2017; 7:rsob.170140. [PMID: 28814649 PMCID: PMC5577451 DOI: 10.1098/rsob.170140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in niches where spatially restricted signals maintain a delicate balance between stem cell self-renewal and differentiation. Wnt family proteins are particularly suited for this role as they are modified by lipids, which constrain and spatially regulate their signalling range. In recent years, Wnt/β-catenin signalling has been shown to be essential for the self-renewal of a variety of mammalian stem cells. In this review, we discuss Wnt-responsive stem cells in their niche, and mechanisms by which Wnt ligands are presented to responsive cells. We also highlight recent progress in molecular visualization that has allowed for the monitoring of Wnt signalling within the stem cell compartment and new approaches to recapitulate this niche signalling in vitro Indeed, new technologies that present Wnt in a localized manner and mimic the three-dimensional microenvironment of stem cells will advance our understanding of Wnt signalling in the stem cell niche. These advances will expand current horizons to exploit Wnt ligands in the rapidly evolving fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kate M Mills
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - James L A Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
38
|
Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017; 169:985-999. [PMID: 28575679 DOI: 10.1016/j.cell.2017.05.016] [Citation(s) in RCA: 3052] [Impact Index Per Article: 381.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
Abstract
The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/β-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.
Collapse
|
39
|
Lowndes M, Junyent S, Habib SJ. Constructing cellular niche properties by localized presentation of Wnt proteins on synthetic surfaces. Nat Protoc 2017; 12:1498-1512. [PMID: 28686585 DOI: 10.1038/nprot.2017.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wnt signaling is crucial during embryonic development and for the maintenance of adult tissues. Depending on the tissue type, the Wnt pathway can promote stem cell self-renewal and/or direct lineage commitment. Wnt proteins are subject to lipid modification, often restricting them to act in a localized manner on responsive cells. Most methods for inducing Wnt signaling in stem cell cultures do not control the spatial presentation of the protein. To recreate the local presentation of Wnt proteins often seen in vivo, we previously developed a method to immobilize the protein onto synthetic surfaces. Here we describe a detailed protocol based on covalent binding of nucleophilic groups on Wnt proteins to activated carboxylic acid (COOH) or glutaraldehyde (COH) groups functionalized on synthetic surfaces. As an example, we describe how this method can be used to covalently immobilize Wnt3a proteins on microbeads or a glass surface. This procedure requires ∼3 h and allows for the hydrophobic protein to be stored in the absence of detergent. The immobilization efficiency of active Wnt proteins can be assessed using different T-cell factor (TCF) reporter assays as a readout for Wnt/β-catenin-dependent transcription. Immobilization efficiency can be measured 12-18 h after seeding the cells and takes 2-4 h. The covalent immobilization of Wnt proteins can also be used for single-cell analysis using Wnt-coated microbeads (12-18 h of live imaging) and to create a Wnt platform on a glass surface for stem cell maintenance and cell population analysis (3 d). The simple chemistry used for Wnt immobilization allows for adaptation to new materials and other developmental signals. Therefore, this method can also be incorporated into tissue engineering platforms in which depletion of the stem cell pool restricts the complexity and maturity of the tissue developed.
Collapse
Affiliation(s)
- Molly Lowndes
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
40
|
Loh KM, van Amerongen R, Nusse R. Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. Dev Cell 2017; 38:643-55. [PMID: 27676437 DOI: 10.1016/j.devcel.2016.08.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
Abstract
There were multiple prerequisites to the evolution of multicellular animal life, including the generation of multiple cell fates ("cellular diversity") and their patterned spatial arrangement ("spatial form"). Wnt proteins operate as primordial symmetry-breaking signals. By virtue of their short-range nature and their capacity to activate both lineage-specifying and cell-polarizing intracellular signaling cascades, Wnts can polarize cells at their site of contact, orienting the axis of cell division while simultaneously programming daughter cells to adopt diverging fates in a spatially stereotyped way. By coupling cell fate to position, symmetry-breaking Wnt signals were pivotal in constructing the metazoan body by generating cellular diversity and spatial form.
Collapse
Affiliation(s)
- Kyle M Loh
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Renée van Amerongen
- Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Lam AK, Phillips BT. Wnt Signaling Polarizes C. elegans Asymmetric Cell Divisions During Development. Results Probl Cell Differ 2017; 61:83-114. [PMID: 28409301 PMCID: PMC6057142 DOI: 10.1007/978-3-319-53150-2_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric cell division is a common mode of cell differentiation during the invariant lineage of the nematode, C. elegans. Beginning at the four-cell stage, and continuing throughout embryogenesis and larval development, mother cells are polarized by Wnt ligands, causing an asymmetric inheritance of key members of a Wnt/β-catenin signal transduction pathway termed the Wnt/β-catenin asymmetry pathway. The resulting daughter cells are distinct at birth with one daughter cell activating Wnt target gene expression via β-catenin activation of TCF, while the other daughter displays transcriptional repression of these target genes. Here, we seek to review the body of evidence underlying a unified model for Wnt-driven asymmetric cell division in C. elegans, identify global themes that occur during asymmetric cell division, as well as highlight tissue-specific variations. We also discuss outstanding questions that remain unanswered regarding this intriguing mode of asymmetric cell division.
Collapse
Affiliation(s)
- Arielle Koonyee Lam
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
42
|
A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination. Results Probl Cell Differ 2017; 61:323-350. [PMID: 28409312 DOI: 10.1007/978-3-319-53150-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway is an ancient and highly conserved signalling pathway that plays fundamental roles in the regulation of embryonic development and adult homeostasis. This pathway has been implicated in numerous cellular processes, including cell proliferation, differentiation, migration, morphological changes and apoptosis. In this chapter, we aim to illustrate with specific examples the involvement of Wnt/β-catenin signalling in cell fate determination. We discuss the roles of the Wnt/β-catenin pathway in specifying cell fate throughout evolution, how its function in patterning during development is often reactivated during regeneration and how perturbation of this pathway has negative consequences for the control of cell fate.The origin of all life was a single cell that had the capacity to respond to cues from the environment. With evolution, multicellular organisms emerged, and as a result, subsets of cells arose to form tissues able to respond to specific instructive signals and perform specialised functions. This complexity and specialisation required two types of messages to direct cell fate: intra- and intercellular. A fundamental question in developmental biology is to understand the underlying mechanisms of cell fate choice. Amongst the numerous external cues involved in the generation of cellular diversity, a prominent pathway is the Wnt signalling pathway in all its forms.
Collapse
|
43
|
Lowndes M, Rotherham M, Price JC, El Haj AJ, Habib SJ. Immobilized WNT Proteins Act as a Stem Cell Niche for Tissue Engineering. Stem Cell Reports 2016; 7:126-37. [PMID: 27411105 PMCID: PMC4944585 DOI: 10.1016/j.stemcr.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
The timing, location, and level of WNT signaling are highly regulated during embryonic development and for the maintenance of adult tissues. Consequently the ability to provide a defined and directed source of WNT proteins is crucial to fully understand its role in tissue development and to mimic its activity in vitro. Here we describe a one-step immobilization technique to covalently bind WNT3A proteins as a basal surface with easy storage and long-lasting activity. We show that this platform is able to maintain adult and embryonic stem cells while also being adaptable for 3D systems. Therefore, this platform could be used for recapitulating specific stem cell niches with the goal of improving tissue engineering.
Collapse
Affiliation(s)
- Molly Lowndes
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Michael Rotherham
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Joshua C Price
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK; Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Alicia J El Haj
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK.
| |
Collapse
|
44
|
Zacharias AL, Murray JI. Combinatorial decoding of the invariant C. elegans embryonic lineage in space and time. Genesis 2016; 54:182-97. [PMID: 26915329 PMCID: PMC4840027 DOI: 10.1002/dvg.22928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Understanding how a single cell, the zygote, can divide and differentiate to produce the diverse animal cell types is a central goal of developmental biology research. The model organism Caenorhabditis elegans provides a system that enables a truly comprehensive understanding of this process across all cells. Its invariant cell lineage makes it possible to identify all of the cells in each individual and compare them across organisms. Recently developed methods automate the process of cell identification, allowing high-throughput gene expression characterization and phenotyping at single cell resolution. In this Review, we summarize the sequences of events that pattern the lineage including establishment of founder cell identity, the signaling pathways that diversify embryonic fate, and the regulators involved in patterning within these founder lineages before cells adopt their terminal fates. We focus on insights that have emerged from automated approaches to lineage tracking, including insights into mechanisms of robustness, context-specific regulation of gene expression, and temporal coordination of differentiation. We suggest a model by which lineage history produces a combinatorial code of transcription factors that act, often redundantly, to ensure terminal fate.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
45
|
Bertrand V. β-catenin-driven binary cell fate decisions in animal development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:377-88. [PMID: 26952169 PMCID: PMC5069452 DOI: 10.1002/wdev.228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/06/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023]
Abstract
The Wnt/β‐catenin pathway plays key roles during animal development. In several species, β‐catenin is used in a reiterative manner to regulate cell fate diversification between daughter cells following division. This binary cell fate specification mechanism has been observed in animals that belong to very diverse phyla: the nematode Caenorhabditis elegans, the annelid Platynereis, and the ascidian Ciona. It may also play a role in the regulation of several stem cell lineages in vertebrates. While the molecular mechanism behind this binary cell fate switch is not fully understood, it appears that both secreted Wnt ligands and asymmetric cortical factors contribute to the generation of the difference in nuclear β‐catenin levels between daughter cells. β‐Catenin then cooperates with lineage specific transcription factors to induce the expression of novel sets of transcription factors at each round of divisions, thereby diversifying cell fate. WIREs Dev Biol 2016, 5:377–388. doi: 10.1002/wdev.228 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Vincent Bertrand
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|
46
|
Takatori N, Oonuma K, Nishida H, Saiga H. Polarization of PI3K Activity Initiated by Ooplasmic Segregation Guides Nuclear Migration in the Mesendoderm. Dev Cell 2016; 35:333-43. [PMID: 26555053 DOI: 10.1016/j.devcel.2015.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 11/29/2022]
Abstract
Asymmetric localization of RNA is a widely observed mechanism of cell polarization. Using embryos of the ascidian, Halocynthia roretzi, we previously showed that mesoderm and endoderm fates are separated by localization of mRNA encoding a transcription factor, Not, to the future mesoderm-side cytoplasm of the mesendoderm cell through asymmetric positioning of the nucleus. Here, we investigated the mechanism that defines the direction of the nuclear migration. We show that localization of PtdIns(3,4,5)P3 to the future mesoderm region determines the direction of nuclear migration. Localization of PtdIns(3,4,5)P3 was dependent on the localization of PI3Kα to the future mesoderm region. PI3Kα was first localized at the 1-cell stage by the ooplasmic movement. Activity of localized PI3Kα at the 4-cell stage was required for the localization of PI3Kα up to the nuclear migration. Our results provide the scaffold for understanding the chain of causality leading to the separation of germ layer fates.
Collapse
Affiliation(s)
- Naohito Takatori
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan; Department of Biological Sciences, Graduate school of Science, Osaka University 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Kouhei Oonuma
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate school of Science, Osaka University 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
47
|
Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 2016; 530:340-3. [DOI: 10.1038/nature16937] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
|
48
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
49
|
Zacharias AL, Walton T, Preston E, Murray JI. Quantitative Differences in Nuclear β-catenin and TCF Pattern Embryonic Cells in C. elegans. PLoS Genet 2015; 11:e1005585. [PMID: 26488501 PMCID: PMC4619327 DOI: 10.1371/journal.pgen.1005585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
The Wnt signaling pathway plays a conserved role during animal development in transcriptional regulation of distinct targets in different developmental contexts but it remains unclear whether quantitative differences in the nuclear localization of effector proteins TCF and β-catenin contribute to context-specific regulation. We investigated this question in Caenorhabditis elegans embryos by quantifying nuclear localization of fluorescently tagged SYS-1/β-catenin and POP-1/TCF and expression of Wnt ligands at cellular resolution by time-lapse microscopy and automated lineage tracing. We identified reproducible, quantitative differences that generate a subset of Wnt-signaled cells with a significantly higher nuclear concentration of the TCF/β-catenin activating complex. Specifically, β-catenin and TCF are preferentially enriched in nuclei of daughter cells whose parents also had high nuclear levels of that protein, a pattern that could influence developmental gene expression. Consistent with this, we found that expression of synthetic reporters of POP-1-dependent activation is biased towards cells that had high nuclear SYS-1 in consecutive divisions. We identified new genes whose embryonic expression patterns depend on pop-1. Most of these require POP-1 for either transcriptional activation or repression, and targets requiring POP-1 for activation are more likely to be expressed in the cells with high nuclear SYS-1 in consecutive divisions than those requiring POP-1 for repression. Taken together, these results indicate that SYS-1 and POP-1 levels are influenced by the parent cell’s SYS-1/POP-1 levels and this may provide an additional mechanism by which POP-1 regulates distinct targets in different developmental contexts. The Wnt signaling pathway is active during the development of all multi-cellular animals and also improperly re-activated in many cancers. Here, we use time-lapse microscopy to quantify the nuclear localization of several proteins in response to Wnt signaling throughout early embryonic development in the nematode worm, C. elegans. We find that cells that received a Wnt signal in the previous division respond more strongly to a Wnt signal in the next division, in part by localizing more of the regulator β-catenin to the nucleus. This causes the relative enrichment of Wnt pathway proteins in the nuclei of repeatedly signaled cells, which we show likely impacts the activation of Wnt target genes. This represents a novel mechanism for the regulation of Wnt pathway targets in development and disease.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Travis Walton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|