1
|
Kong M, Li J, Tong N. The role of peripheral blood microRNAs in the pathogenesis and treatment response of age-related macular degeneration. Future Sci OA 2025; 11:2482499. [PMID: 40183456 PMCID: PMC11980467 DOI: 10.1080/20565623.2025.2482499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Age-related macular degeneration is a leading cause of vision loss in aging populations, driven by complex interactions between genetic, environmental, and molecular factors. MicroRNAs have emerged as crucial regulators of cellular processes such as oxidative stress, inflammation, and angiogenesis, all of which contribute to AMD pathogenesis. This narrative review aims to summarize the involvement of peripheral blood microRNAs in the pathogenesis of AMD, focusing on key pathways such as oxidative stress, inflammation, and angiogenesis. Additionally, it explores their potential as biomarkers for predicting treatment response, particularly to anti-VEGF therapies. The potential of miRNAs as noninvasive biomarkers for early diagnosis and personalized treatment strategies is also explored, highlighting future directions for research.
Collapse
Affiliation(s)
- Meng Kong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jingwen Li
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Nianting Tong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Liu Z, Ke S, Wan Y. miR-126: a bridge between cancer and exercise. Cancer Cell Int 2025; 25:145. [PMID: 40234897 PMCID: PMC11998190 DOI: 10.1186/s12935-025-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025] Open
Abstract
The microRNA miR-126 supports endothelial cells and blood vessel integrity. Recent research has shown that it also serves as a key link between exercise and cancer. This article delves into how exercise affects the expression of miR-126, impacting cardiovascular well-being and metabolic control. The article also examines the various contributions of miR-126 in cancer, acting as both a suppressor and an enhancer depending on the particular context. Regular aerobic exercises, including HIIT, consistently increase levels of miR-126, leading to enhanced angiogenesis, endothelial repair, and improved vascular function through mechanisms involving VEGF, HIF-1α, and EPC mobilization. Resistance training affects similar pathways, but does not cause a significant change in miR-126 levels.MiR-126 involves in cancer by suppressing tumor growth and controlling key pathways such as PI3K/Akt, ERK/MAPK, and EMT. Lower levels are associated with negative outcomes, later stages of the disease, and increased spread of different types of cancer like glioblastoma, CRC, ovarian, esophageal, gastric, and prostate cancer.The relationship between exercise and cancer suggests a possible therapeutic approach, where the regulation of miR-126 through exercise could help improve vascular function and slow tumor growth. Further studies should focus on understanding the specific molecular pathways through which miR-126 connects these areas, leading to potential interventions that utilize its regulatory network to promote cardiovascular well-being and enhance cancer treatment.
Collapse
Affiliation(s)
- Zhengqiong Liu
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China
| | - Shanbin Ke
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China
| | - Yuwen Wan
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China.
| |
Collapse
|
3
|
Shyam M, Sidharth S, Veronica A, Jagannathan L, Srirangan P, Radhakrishnan V, Sabina EP. Diabetic retinopathy: a comprehensive review of pathophysiology and emerging treatments. Mol Biol Rep 2025; 52:380. [PMID: 40205024 DOI: 10.1007/s11033-025-10490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Diabetic retinopathy constitutes a major complication associated with diabetes mellitus, resulting in visual impairment and blindness on a global scale. The pathophysiology of DR is characterized by intricate interactions among metabolic, hemodynamic, and inflammatory pathways, which include the activation of the polyol pathway, the accumulation of advanced glycation end products, the overactivation of protein kinase C, dysregulation of the renin-angiotensin-aldosterone system, and retinal neurodegeneration. This review investigates the classification, complex pathophysiology, and therapeutic modalities for DR, encompassing conventional interventions such as anti-VEGF agents, aldose reductase inhibitors, angiotensin receptor blockers, laser photocoagulation, and vitrectomy. Innovative treatments, including advanced anti-VEGF agents, neuroprotective strategies, gene and stem cell therapies, and advancements in drug delivery systems, exhibit considerable transformative potential. Furthermore, integrating artificial intelligence for early detection and modulation of inflammatory pathways signifies cutting-edge progress in the field. By integrating contemporary knowledge and prospective avenues, this review underscores the significance of comprehending the multifaceted nature of DR and the advancements in its therapeutic approaches. The objective is to bridge the gaps between research findings and clinical application, thereby providing a comprehensive resource to enhance outcomes and quality of life for individuals impacted by DR.
Collapse
Affiliation(s)
- Mukul Shyam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - S Sidharth
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Aleen Veronica
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Lakshmipriya Jagannathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Prathap Srirangan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
Zhou RT, Luo XJ, Zhang XXR, Wu JF, Ni YR. The potential of miR-29 in modulating tumor angiogenesis: a comprehensive review. Discov Oncol 2025; 16:474. [PMID: 40189720 PMCID: PMC11973036 DOI: 10.1007/s12672-025-02246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They are associated with various biological processes related to tumors. Among the numerous miRNAs, miR-29 has garnered attention for its role in regulating tumor angiogenesis. In numerous human tumors, miR-29 has been demonstrated to negatively correlate with the capacity for angiogenesis and the degree of malignancy, as well as with the expression levels of pro-angiogenic factors such as vascular endothelial growth factor vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and matrix metalloproteinase (MMP)-2. Multiple studies, utilizing techniques like dual-luciferase reporter assays, have confirmed that miR-29 directly targets the 3'-untranslated region (UTR) of mRNAs for VEGF, PDGF, and MMP-2. Extensive investigations involving tumor cell lines and animal models have shown that the overexpression of miR-29, achieved through miRNA transfection or the introduction of miRNA mimics, effectively inhibits angiogenesis by upregulating these pro-angiogenic factors. Conversely, downregulation of miR-29 using specific inhibitors promotes angiogenesis. While small molecule inhibitors and antibodies targeting VEGF constitute a primary strategy in anti-angiogenesis therapies, miR-29's ability to target multiple pro-angiogenic molecules positions it as a promising candidate for future therapeutic interventions, especially with ongoing advancements in nucleic acid drug design and delivery systems.
Collapse
Affiliation(s)
- Rui-Ting Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Gastroenterology, The First College of Clinical Medical Science and Yichang Central People's Hospital, China Three Gorges University, Yichang, 443003, China
- Division of Gastroenterology and Hepatology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Xiao-Xin-Ran Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| | - Yi-Ran Ni
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| |
Collapse
|
5
|
Sun Y, Liu J, Sun W, Zhang B, Shang Y, Zheng L, Zou W. Exosomal MicroRNA: an Effective Strategy for the Treatment of Intracerebral Hemorrhage. Mol Neurobiol 2025:10.1007/s12035-025-04886-6. [PMID: 40175714 DOI: 10.1007/s12035-025-04886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Intracerebral hemorrhage is a devastating type of stroke, and its pathological mechanism is very complex. Surgical treatment can effectively treat the primary injury caused by mechanical compression of hematoma after intracerebral hemorrhage. However, there is no effective treatment for the secondary injury caused by a series of pathological processes caused by extravasation of blood components, including inflammatory response, oxidative stress, and excitotoxicity. Therefore, there is an urgent need to develop a novel treatment regimen that can reverse the secondary damage of intracerebral hemorrhage. In recent years, as a powerful biomarker, the role of microRNAs (miRNAs) in diseases has been gradually disclosed. As nanocarriers, the miRNAs delivered by exosomes have become a new treatment method and are widely used in the treatment of various diseases. In this paper, the research progress on the mechanism of exosomal miRNAs in intracerebral hemorrhage and its value in prevention, diagnosis, and prognosis is summarized, hoping to provide some reference for the application of exosomal miRNAs in clinical treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Wentao Sun
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning City, 530000, Guangxi, China
| | - Baiwen Zhang
- The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yaxin Shang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
6
|
Luo Y, Ren Q, He J, Wu M. miR-126-3p Serves as a Biomarker for Hepatitis B Virus-Associated Chronic Acute Liver Failure and Regulates Inflammation by Regulating ERRFI1. J Biochem Mol Toxicol 2025; 39:e70252. [PMID: 40227026 DOI: 10.1002/jbt.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Hepatitis B virus-associated chronic acute liver failure (HBV-ACLF) is the leading cause of ACLF, affecting approximately 90% of patients with ACLF. The objective of this study was to investigate the clinical relevance of miR-126-3p on HBV-ACLF as well as the regulatory impact of ERRFI1 and miR-126-3p on the inflammatory response caused by ACLF via in vitro experimental methodologies. RT-qPCR was utilized to quantify the expression levels of miR-126-3p, ERRFI1, NLRP3, caspase 1, and IL-1β. The clinical function of miR-126-3p was assessed using ROC analysis or Kaplan-Meier curve. Cell proliferation was quantified via the CCK-8 assay, while the dual-luciferase reporter assay was employed to confirm the specific binding interaction between miR-126-3p and ERRFI1. In patients with HBV-ACLF, a significant downregulation of miR-126-3p expression was observed; The level of miR-126-3p served as a prognostic indicator for the progression of HBV-ACLF, with reduced expression being associated with an unfavorable clinical outcome. In addition, miR-126-3p was found to modulate LPS-induced cell proliferation, and inflammation in THLE-2 cells through the regulation of ERRFI1 expression. Therefore, miR-126-3p might serve as a biomarker for HBV-ACLF.
Collapse
Affiliation(s)
- Yiping Luo
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiuping Ren
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun He
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Menghang Wu
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Ferrara C, Battaglia R, Caponnetto A, Fazzio A, Stella M, Barbagallo C, Musso N, Lunelio F, Vento ME, Borzì P, Scollo P, Barbagallo D, Ragusa M, Pernagallo S, Di Pietro C. MicroRNAs in seminal plasma are able to discern infertile men at increased risk of developing testicular cancer. Mol Oncol 2025; 19:1188-1202. [PMID: 39680568 PMCID: PMC11977642 DOI: 10.1002/1878-0261.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Male infertility is a risk factor for the development of testicular germ cell tumors. In this study, we investigated microRNA profiles in seminal plasma to identify potential noninvasive biomarkers able to discriminate the men at highest risk of developing cancer among the infertile population. We compared the microRNA profiles of individuals affected by testicular germ cell tumors and healthy individuals with normal or impaired spermiograms using high-throughput technology and confirmed the results by single-assay digital PCR. We found that miR-221-3p and miR-222-3p were downregulated and miR-126-3p was upregulated in cancer patients compared to both infertile and fertile men. ROC curve analysis confirmed that miR-126 upregulation is able to identify cancer patients among the infertile male population. In addition, in-depth bioinformatics analysis based on weighted gene co-expression networks showed that the identified miRNAs regulate cellular pathways involved in cancer.
Collapse
Affiliation(s)
- Carmen Ferrara
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | - Rosalia Battaglia
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | - Angela Caponnetto
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | - Anna Fazzio
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | - Michele Stella
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | - Nicolò Musso
- Department of Medicine and SurgeryUniversity of Enna "Kore"EnnaItaly
| | | | | | | | - Paolo Scollo
- Obstetrics and Gynecology Division, Maternal and Child Department, Cannizzaro Hospital CataniaKore University of EnnaItaly
| | - Davide Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | - Marco Ragusa
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| | | | - Cinzia Di Pietro
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological SciencesUniversity of CataniaItaly
| |
Collapse
|
9
|
Gondal MN, Farooqi HMU. Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer. Noncoding RNA 2025; 11:24. [PMID: 40126348 PMCID: PMC11932299 DOI: 10.3390/ncrna11020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in colorectal cancer (CRC) development and progression. Recent developments in single-cell transcriptome profiling methods have revealed surprising levels of expression variability among seemingly homogeneous cells, suggesting the existence of many more cell types than previously estimated. This review synthesizes recent advances in ncRNA research in CRC, emphasizing single-cell bioinformatics approaches for their analysis. We explore computational methods and tools used for ncRNA identification, characterization, and functional prediction in CRC, with a focus on single-cell RNA sequencing (scRNA-seq) data. The review highlights key bioinformatics strategies, including sequence-based and structure-based approaches, machine learning applications, and multi-omics data integration. We discuss how these computational techniques can be applied to analyze differential expression, perform functional enrichment, and construct regulatory networks involving ncRNAs in CRC. Additionally, we examine the role of bioinformatics in leveraging ncRNAs as diagnostic and prognostic biomarkers for CRC. We also discuss recent scRNA-seq studies revealing ncRNA heterogeneity in CRC. This review aims to provide a comprehensive overview of the current state of single-cell bioinformatics in ncRNA CRC research and outline future directions in this rapidly evolving field, emphasizing the integration of computational approaches with experimental validation to advance our understanding of ncRNA biology in CRC.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hafiz Muhammad Umer Farooqi
- Laboratory of Energy Metabolism, Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, CA 92868, USA
| |
Collapse
|
10
|
Enteshari-Moghadam A, Fouladi N, Pordel S, Jeddi F, Asghariazar V, Eterafi M, Safarzadeh E. Evaluation of the miRNA-126 and VCAM-1 in scleroderma patients and its association with clinical characteristics. Am J Med Sci 2025; 369:339-345. [PMID: 39326739 DOI: 10.1016/j.amjms.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Systemic sclerosis (SSc) has the highest level of mortality and disability among all rheumatological diseases. Being heterogenous leads to no predictable method for clinical courses. The aim of this study was to evaluate the levels of miRNA-126 and soluble VCAM-1 protein markers in patients with SSc, and to examine the assossiation of their levels with the severity of clinical and paraclinical parameters in patients with SSc. METHOD In current study tweny six patients with SSc along with twenty-three SSc-free controls were recruited. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the VCAM-1 protein. MiRNA-126 amounts in serum were detected by quantitative real-time polymerase chain reaction (PCR). RESULT SSc patients' average age was 45.42 years and control group 49.85. The mean±SD for circulating miR-126 levels were significantly lower in SSc patients compared with healthy donors (p = 0.02), 0.48 ± 0.72 vs 1.11 ± 0.61 respectively. A significant difference was also observed in the serum level of miRNA-126 in SSc patients who suffer from pulmonary artery hypertension (P = 0.03) and pulmonary fibrosis (P = 0.04). In contrast, analysis of the serum VCAM-1 levels in the study groups uncovered a significant increase in SSc patients (5.92 ± 3.52 µg/ml) compared to control group (2.62 ± 1.2 µg/ml) (P value < 0.001). CONCLUSION Significant change in circulating levels of miR-126 and VCAM-1 in the SSc patients supporting its role in the pathogenesis of the disease. It could also proposed potential role as a predictor of pulmonary complications for miRNA-126.
Collapse
Affiliation(s)
- Afsaneh Enteshari-Moghadam
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasrin Fouladi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shohreh Pordel
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
11
|
Liu Z, Lu J, Sha W, Lei T. Comprehensive treatment of diabetic endothelial dysfunction based on pathophysiological mechanism. Front Med (Lausanne) 2025; 12:1509884. [PMID: 40093018 PMCID: PMC11906411 DOI: 10.3389/fmed.2025.1509884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Vascular endothelium is integral to the regulation of vascular homeostasis and maintenance of normal arterial function in healthy individuals. Endothelial dysfunction is a significant contributor to the advancement of atherosclerosis, which can precipitate cardiovascular complications. A notable correlation exists between diabetes and endothelial dysfunction, wherein chronic hyperglycemia and acute fluctuations in glucose levels exacerbate oxidative stress. This results in diminished nitric oxide synthesis and heightened production of endothelin-1, ultimately leading to endothelial impairment. In clinical settings, it is imperative to implement appropriate therapeutic strategies aimed at enhancing endothelial function to prevent and manage diabetes-associated vascular complications. Various antidiabetic agents, including insulin, GLP-1 receptor agonists, sulfonylureas, DPP-4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, thiazolidinediones (TZDs), and metformin, are effective in mitigating blood glucose variability and improving insulin sensitivity by lowering postprandial glucose levels. Additionally, traditional Chinese medicinal compounds, such as turmeric extract, resveratrol, matrine alkaloids, tanshinone, puerarin, tanshinol, paeonol, astragaloside, berberine, and quercetin, exhibit hypoglycemic properties and enhance vascular function through diverse mechanisms. Consequently, larger randomized controlled trials involving both pharmacological and herbal interventions are essential to elucidate their impact on endothelial dysfunction in patients with diabetes. This article aims to explore a comprehensive approach to the treatment of diabetic endothelial dysfunction based on an understanding of its pathophysiology.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Wilson TG, Baghel M, Kaur N, Datta I, Loveless I, Potla P, Mendez D, Hansen L, Baker K, Lynch TS, Moutzouros V, Davis J, Ali SA. Circulating miR-126-3p is a mechanistic biomarker for knee osteoarthritis. Nat Commun 2025; 16:2021. [PMID: 40016267 PMCID: PMC11868599 DOI: 10.1038/s41467-025-57308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Osteoarthritis is a major contributor to pain and disability worldwide, yet there are currently no validated soluble biomarkers or disease-modifying treatments. Given that microRNAs are promising mechanistic biomarkers that can be therapeutically targeted, in this study, we aimed to identify and prioritize reproducible circulating microRNAs associated with radiographic knee osteoarthritis. Across four independent cohorts, we find circulating miR-126-3p is elevated in knee osteoarthritis versus controls. Across six primary human knee osteoarthritis tissues, miR-126-3p is highest in subchondral bone, fat pad and synovium, and lowest in cartilage. Following both intravenous and intra-articular miR-126-3p mimic treatment in a surgical mouse model of knee osteoarthritis, we show reduced disease severity in males. In human knee osteoarthritis biospecimens, miR-126-3p mimic treatment reduces genes and markers associated with angiogenesis, as well as genes linked to osteogenesis, adipogenesis, and synovitis-processes secondary to angiogenesis. Our findings indicate that miR-126-3p is elevated in knee osteoarthritis and mitigates disease severity, supporting its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Wilson
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Madhu Baghel
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Navdeep Kaur
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Indrani Datta
- Center for Bioinformatics, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Ian Loveless
- Center for Bioinformatics, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Pratibha Potla
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Devin Mendez
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Logan Hansen
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Kevin Baker
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - T Sean Lynch
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | | | - Jason Davis
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Shabana Amanda Ali
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
13
|
Al-Rawaf HA, Gabr SA, Alghadir T, Alghadir F, Iqbal A, Alghadir AH. Correlation between circulating microRNAs and vascular biomarkers in type 2 diabetes based upon physical activity: a biochemical analytic study. BMC Endocr Disord 2025; 25:55. [PMID: 40016689 PMCID: PMC11866858 DOI: 10.1186/s12902-025-01855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND This research investigated how physical activity (PA) might impact the expression of several microRNAs, specifically miR-126, miR-146a, miR-34a, miR-124a, miR-155, and miR-221, in the blood of elderly individuals with type 2 diabetes (T2D). Additionally, the study examined the relationship between these microRNAs and markers of vascular endothelial dysfunction, including vascular endothelial growth factor (VEGF), apolipoprotein A-I (apoA-I), and apolipoprotein B (apoB), to assess their potential in the prevention, early detection, and treatment of diabetes. METHODS This correlational observational study involved 100 male participants, aged between 18 and 65 years, all of whom had been living with type 2 diabetes (T2D) for over six years. The participants were divided into three groups: inactive, moderate, and active, depending on their level of physical activity (PA). Real-time PCR and immunoassays were employed to measure the expression of selected miRNAs, as well as VEGF, apoA-I, apoB, and diabetic management indicators. PA levels were determined using ACTi graph GT1M accelerometer (model WAM 7164; Fort Walton Beach, FL) and energy expenditure was measured in the form of metabolic equivalent (MET) by indirect calorimetry method. RESULTS The expression levels of miR-146a, miR-34a, and miR-124a were significantly higher in patients with higher physical activity, while no such increase was observed for the other miRNAs in less active participants. Additionally, PA-active individuals showed a more pronounced decrease in fasting blood sugar (FBS), insulin resistance (IR), fasting insulin (FINS), HOMA-IR, HbA1c (%), and levels of VEGF, apoAI, apoB, and the apoB/apoA-I ratio. The alteration in miRNA expression was positively associated with physical activity, VEGF, apoAI, apoB, the apoB/apoA-I ratio, and diabetes-related metrics, while being inversely related to BMI. CONCLUSIONS In diabetic patients with higher physical activity levels, circulating miR-146a, miR-34a, and miR-124a showed elevated expression, accompanied by a notable decrease in vascular biomarkers, including apoAI, apoB, and the apoB/apoA-I ratio. The findings revealed a strong correlation between these vascular biomarkers and the physiological responses of miR-146a, miR-34a, and miR-124a, though larger studies are required to validate these results further. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Talal Alghadir
- College of Medicine, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Faisal Alghadir
- College of Medicine, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
14
|
Park HM, Kim CL, Kong D, Heo SH, Park HJ. Innovations in Vascular Repair from Mechanical Intervention to Regenerative Therapies. Tissue Eng Regen Med 2025:10.1007/s13770-024-00700-x. [PMID: 39921820 DOI: 10.1007/s13770-024-00700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Vascular diseases, including atherosclerosis and thrombosis, are leading causes of morbidity and mortality worldwide, often resulting in vessel stenosis that impairs blood flow and leads to severe clinical outcomes. Traditional mechanical interventions, such as balloon angioplasty and bare-metal stents, provided initial solutions but were limited by restenosis and thrombosis. The advent of drug-eluting stents improved short-term outcomes by inhibiting vascular smooth muscle cell proliferation, however, they faced challenges including delayed reendothelialization and late-stage thrombosis. METHODS This review highlights the progression from mechanical to biological interventions in treating vascular stenosis and underscores the need for integrated approaches that combine mechanical precision with regenerative therapies. RESULTS To address long-term complications, bioresorbable stents were developed to provide temporary scaffolding that gradually dissolves, yet they still encounter challenges with mechanical integrity and optimal degradation rates. Consequently, emerging therapies now focus on biological approaches, such as gene therapy, extracellular vesicle treatments, and cell therapies, that aim to promote vascular repair at the cellular level. These strategies offer the potential for true vascular regeneration by enhancing endothelialization, modulating immune responses, and stimulating angiogenesis. CONCLUSION Integrating mechanical precision with regenerative biological therapies offers a promising future for treating vascular stenosis. A comprehensive approach combining these modalities could achieve sustainable vascular health.
Collapse
Affiliation(s)
- Hye-Min Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Chae-Lin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Dasom Kong
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Seon-Hee Heo
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hyun-Ji Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
- Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
15
|
Fan X, Yang G, Wang Y, Shi H, Nitschke K, Sattler K, Abumayyaleh M, Cyganek L, Nuhn P, Worst T, Liao B, Dobreva G, Duerschmied D, Zhou X, El-Battrawy I, Akin I. Exosomal mir-126-3p derived from endothelial cells induces ion channel dysfunction by targeting RGS3 signaling in cardiomyocytes: a novel mechanism in Takotsubo cardiomyopathy. Stem Cell Res Ther 2025; 16:36. [PMID: 39901299 PMCID: PMC11792229 DOI: 10.1186/s13287-025-04157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Takotsubo cardiomyopathy (TTC) is marked by an acute, transient, and reversible left ventricular systolic dysfunction triggered by stress, with endothelial dysfunction being one of its pathophysiological mechanisms. However, the precise molecular mechanism underlying the interaction between endothelial cells and cardiomyocytes during TTC remains unclear. This study reveals that exosomal miRNAs derived from endothelial cells exposed to catecholamine contribute to ion channel dysfunction in the setting of TTC. METHODS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with epinephrine (Epi) or exosomes (Exo) from Epi-treated human cardiac microvascular endothelial cells (HCMECs) or Exo derived from HCMECs transfected with miR-126-3p. The immunofluorescence staining, flow cytometry, qPCR, single-cell contraction, intracellular calcium transients, patch-clamp, dual luciferase reporter assay and western blot were performed for the study. RESULTS Modeling TTC with high doses of epinephrine (Epi) treatment in hiPSC-CMs shows suppression of depolarization velocity (Vmax), prolongation of action potential duration (APD), and induction of arrhythmic events. Exo derived from HCMECs treated with Epi (Epi-exo) mimicked or enhanced the effects of Epi. Epi exposure led to elevated levels of miR-126-3p in both HCMECs and their exosomes. Exo enriched with miR-126-3p demonstrated similar effects as Epi-exo, establishing the crucial role of miR-126-3p in the mechanism of Epi-exo. Dual luciferase reporter assay coupled with gene mutation techniques identified that miR-126-3p was found to target the regulator of G-protein signaling 3 (RGS3) gene. Western blot and qPCR analyses confirmed that miR-126-3p-mimic reduced RGS3 expression in both HCMECs and hiPSC-CMs, indicating miR-126-3p inhibits RGS3 signaling. Additionally, miR-126-3p levels were significantly higher in the serum of TTC patients compared to healthy controls and patients who had recovered from TTC. CONCLUSIONS Our study is the first to reveal that exosomal miR-126-3p, originating from endothelial cells, contributes to ion channel dysfunction by regulating RGS3 signaling in cardiomyocytes. These findings provide new perspectives on the pathogenesis of TTC and suggest potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany.
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany.
| | - Guoqiang Yang
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Haojie Shi
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katja Nitschke
- Department of Urology and Urosurgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katherine Sattler
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Mohammad Abumayyaleh
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Philipp Nuhn
- Department of Urology and Urosurgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Worst
- Department of Urology and Urosurgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany.
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany.
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
16
|
Fabian C, Mahajan S, Schmidt MHH. EGFL7: An emerging biomarker with great therapeutic potential. Pharmacol Ther 2025; 266:108764. [PMID: 39631508 DOI: 10.1016/j.pharmthera.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
EGFL7 is a factor involved in the regulation of various essential biological mechanisms. Endothelial cells and neurons secrete the EGFL7 protein into the extracellular matrix, where it interacts with other matrix proteins, thereby regulating several important signaling pathways. To date, extensive in vitro and in vivo studies have illuminated the central role of EGFL7 in governing major biological processes involving blood vessels and the central nervous system. Notably, EGFL7 has also emerged as a key factor in a spectrum of diseases including cancer, stroke, multiple sclerosis and preeclampsia. Its influence on various diseases and multiple regulatory pathways highlights EGFL7 as an emerging biomarker and therapeutic target. Thus, the multifaceted regulatory functions of EGFL7 will be discussed in the physiological context before delving into its involvement in the progression of different diseases. Finally, the review will provide an insight into the broad therapeutic potential of EGFL7 by describing its role as a powerful biomarker and discussing potential strategies to therapeutically target EGFL7 function in a plethora of human diseases.
Collapse
Affiliation(s)
- Carina Fabian
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sukrit Mahajan
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Wen X, Zhou J, Fang H, Li J, Wang R, Zeng D, Xie X, Deng Y, Ren L, Liu E. Allele-specific micro-RNA-mediated regulation of ADAM33 in childhood allergic asthma. Respirology 2025; 30:113-123. [PMID: 39478322 DOI: 10.1111/resp.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/09/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND AND OBJECTIVE A disintegrin and metalloprotease 33 (ADAM33) is associated with asthma susceptibility, and its genetic variations impact susceptibility and disease severity. However, the mechanisms remain unclear. This study aimed to investigate ADAM33 single nucleotide polymorphisms (SNPs) in childhood asthma susceptibility and explore their regulatory mechanisms. METHODS Eleven selected SNPs in ADAM33 were genotyped and identified the association with asthma susceptibility. In the validation cohort, we measured plasma sADAM33 levels and compared them with disease severity among children with different SNP genotypes. Computational predictions identified miRNAs targeting the SNP, and the impact of the SNP on miRNA regulation was confirmed using a dual luciferase reporter system. Finally, we validated the regulatory role of miRNAs on ADAM33 expression using an in vitro model with upregulated ADAM33 expression. RESULTS Only rs3918400 was associated with asthma susceptibility. In the validation cohort, children with allergic asthma exhibited higher plasma sADAM33 levels. Among asthmatic children, those with the rs3918400 CT/TT genotype had higher sADAM33 levels, poorer asthma control, more severe airway hyper-responsiveness, lower FEV1% and higher dust mite-specific IgE activity compared to those with the CC genotype. miR-3928-5p bound strongly to the rs3918400 C allele and effectively reduced ADAM33 protein expression in CC genotype cells. However, the binding affinity of miR-3928-5p to the T allele was weaker, resulting in diminished negative regulation of protein expression. CONCLUSION The rs3918400 SNP affects the negative regulation of ADAM33 by miR-3928-5p, potentially participating in a complex interplay of processes related to childhood asthma susceptibility.
Collapse
Affiliation(s)
- Xiang Wen
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Juan Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Heping Fang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Juan Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Run Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Dan Zeng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Department of Allergy, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| |
Collapse
|
18
|
Jimenez-Trinidad FR, Calvo-Gomez S, Sabaté M, Brugaletta S, Campuzano V, Egea G, Dantas AP. Extracellular Vesicles as Mediators of Endothelial Dysfunction in Cardiovascular Diseases. Int J Mol Sci 2025; 26:1008. [PMID: 39940780 PMCID: PMC11816526 DOI: 10.3390/ijms26031008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
This comprehensive review aims to provide a thorough overview of the vital role that extracellular vesicles (EVs) play in endothelial dysfunction, particularly emphasizing how physiological factors-such as sex and aging-along with significant cardiovascular risk factors, influence this process. The review covers studies ranging from the first description of EVs in 1945 to contemporary insights into their biological roles in intercellular signaling and endothelial dysfunction. A comprehensive analysis of peer-reviewed articles and reviews indexed in the PubMed database was conducted to compile the information. Initially, Medical Subject Headings (MeSH) terms included keywords aimed at providing general knowledge about the role of EVs in the regulation of endothelial signaling, such as "extracellular vesicles", "endothelium", and "intercellular signaling". Subsequently, terms related to the pathophysiological implications of EV interactions with endothelial dysfunction and cardiovascular disease were added, including "cardiovascular disease", "sex", "aging", "atherosclerosis", "obesity", and "diabetes". Additionally, the potential applications of EVs in cardiovascular disease were explored using the MeSH terms "extracellular vesicles", "cardiovascular disease", "biomarker", and "therapeutic strategy". The results of this bibliographical review reveal that EVs have the capacity to induce various cellular responses within the cardiovascular system and play a significant role in the complex landscape of endothelial dysfunction and cardiovascular disease. The composition of the EV cargo is subject to modification by pathophysiological conditions such as sex, aging, and cardiovascular risk factors, which result in a complex regulatory influence on endothelial function and neighboring cells when released from a dysfunctional endothelium. Moreover, the data suggest that this field still requires further exploration, as EV biology is continuously evolving, presenting a dynamic and engaging area for research. A deeper understanding of the molecular cargo involved in EV-endothelium interactions could yield valuable biomarkers for monitoring cardiovascular disease progression and facilitate the development of innovative bioengineered therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Francisco Rafael Jimenez-Trinidad
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Sergi Calvo-Gomez
- Department of Biomedical Sciences, School of Medicine, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain;
| | - Manel Sabaté
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Salvatore Brugaletta
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Rare Diseases Biomedical Research Network Center (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center of Medical Genetics, University of Antwerpen, 2659 Edegem, Belgium
| | - Ana Paula Dantas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.R.J.-T.); (V.C.); (G.E.)
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, 08036 Barcelona, Spain; (M.S.); (S.B.)
- Division of Respiratory, Cardiovascular and Renal Pathobiology and Bioengineering, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
19
|
Gambacurta A, Tullio V, Savini I, Mauriello A, Catani MV, Gasperi V. Identification of the EBF1/ETS2/KLF2-miR-126-Gene Feed-Forward Loop in Breast Carcinogenesis and Stemness. Int J Mol Sci 2025; 26:328. [PMID: 39796183 PMCID: PMC11719960 DOI: 10.3390/ijms26010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression. These transcription factors were found to be downregulated in BC due to epigenetic silencing or a "poised but not transcribed" promoter state, impairing miR-126 expression. Gene Ontology analysis of differentially expressed miR-126 target genes in the Cancer Genome Atlas: Breast Invasive Carcinoma (TCGA-BRCA) cohort revealed their involvement in cancer-related pathways, primarily signal transduction, chromatin remodeling/transcription, and differentiation/development. Furthermore, we defined interconnections among transcription factors, miR-126, and target genes, identifying a potential feed-forward loop (FFL) crucial in maintaining cellular identity and preventing the acquisition of stemness properties associated with cancer progression. Our findings propose that the dysregulation of the EBF1/ETS2/KLF2/miR-126 axis disrupts this FFL, promoting oncogenic transformation and progression in BC. This study provides new insights into the molecular mechanisms of miR-126 downregulation in BC and highlights potential targets for therapeutic intervention. Further research is warranted to clarify the role of this FFL in BC, and to identify novel therapeutic strategies aimed at modulating this network as a whole, rather than targeting individual signals, for cancer management.
Collapse
Affiliation(s)
- Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (A.G.); (V.T.); (I.S.); (A.M.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), 00133 Rome, Italy
| | - Valentina Tullio
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (A.G.); (V.T.); (I.S.); (A.M.)
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (A.G.); (V.T.); (I.S.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (A.G.); (V.T.); (I.S.); (A.M.)
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (A.G.); (V.T.); (I.S.); (A.M.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (A.G.); (V.T.); (I.S.); (A.M.)
| |
Collapse
|
20
|
An J, Chen B, Zhang R, Tian D, Shi K, Zhang L, Zhang G, Wang J, Yang H. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury. Mol Neurobiol 2025; 62:1291-1315. [PMID: 39312070 DOI: 10.1007/s12035-024-04490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, with a high rate of disability and mortality. Due to the complicated pathological process of SCI, there is no effective clinical treatment strategy at present. Although mesenchymal stem cells (MSCs) are effective in the treatment of SCI, their application is limited by factors such as low survival rate, cell dedifferentiation, tumorigenesis, blood-brain barrier, and immune rejection. Fortunately, there is growing evidence that most of the biological and therapeutic effects of MSCs may be mediated by the release of paracrine factors, which are extracellular vesicles called exosomes. Exosomes are small endosomal vesicles with bilaminar membranes that have recently been recognized as key mediators for communication between cells and tissues through the transfer of proteins, lipids, nucleic acids, cytokines, and growth factors. Mesenchymal stem cell-derived exosomes (MSC-exos) play a critical role in SCI repair by promoting angiogenesis and axonal growth, regulating inflammation and immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be used to transport genetic material or drugs to target cells, and their relatively small size allows them to permeate the blood-brain barrier. Studies have demonstrated that some exosomal miRNAs derived from MSCs play a significant role in the treatment of SCI. In this review, we summarize recent research advances in MSC-exos and exosomal miRNAs in SCI therapy to better understand this emerging cell-free therapeutic strategy and discuss the advantages and challenges of MSC-exos in future clinical applications.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, 550081, Guizhou, China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Kuohao Shi
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Gaorong Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Jingchao Wang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
21
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2025; 76:5-16. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
22
|
Liu Z, Huang J, Hu M, Cui X, Leng L, Wang K, Wu J, He S, Deng W, Li P, Chen Y, Gao D, Yu H, Huang J. Acute high-intensity interval exercise is superior to moderate-intensity continuous exercise in enhancing endothelial function and its associated biomarkers in sedentary young individuals: the possible involvement of lactate. J Exerc Sci Fit 2025; 23:60-68. [PMID: 39844862 PMCID: PMC11750549 DOI: 10.1016/j.jesf.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025] Open
Abstract
Objectives Our study investigated the effects of acute high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on endothelial function and its associated biomarkers in sedentary young individuals. Methods Fifteen subjects (10M / 5F; 22 ± 2 years; BMI: 23.07 ± 4.12 kg/m2) participated in a crossover trial including three experimental conditions: HIIE, MICE, and a control session of rest (CON) in random order separated by a 7-day washout period. Endothelial function was assessed using flow-mediated dilation (FMD), mean shear rate (MSR), and circulating levels of blood lactate, VEGF, IGF-1, and irisin. Results Both HIIE and MICE significantly enhanced FMD% (both P < 0.001 and P < 0.01, respectively), lactate (both P < 0.001), VEGF (P < 0.001 and P < 0.01, respectively), IGF-1 (both P < 0.001), and irisin (P < 0.001 and P < 0.05, respectively), with a greater extent after HIIE compared to MICE in FMD% (P < 0.001), MSR (P < 0.05), lactate (P < 0.001), VEGF (P < 0.05), and IGF-1 (P < 0.05). Additionally, change (post-pre) in FMD% was positively correlated with changes in MSR, lactate, and VEGF in both HIIE and MICE conditions. Change in MSR was positively associated with changes in lactate and VEGF in both HIIE and MICE conditions. Furthermore, enhancement in lactate was correlated with enhancements in VEGF in both HIIE and MICE conditions. Conclusions Acute HIIE is a more effective method than MICE at improving endothelial function in sedentary young individuals and increases in lactate and its mediated VEGF release, attributed to increase in shear rate after exercise, are involved in regulatory mechanisms.
Collapse
Affiliation(s)
- Ziqing Liu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jinglin Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Xuyan Cui
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Lu Leng
- College of Foreign Languages, Jinan University, Guangzhou, Guangdong, China
| | - Kangle Wang
- Guangdong Polytechnic of Science and Technology, Zhuhai, Guangdong, China
| | - Jiarui Wu
- Panyu District Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, Guangdong, China
| | - Shan He
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Weiji Deng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yilin Chen
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Dongdong Gao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
23
|
McDonald B, Schmidt MHH. Structure, function, and recombinant production of EGFL7. Biol Chem 2024; 405:691-700. [PMID: 38805373 DOI: 10.1515/hsz-2023-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The secreted factor Epidermal growth factor-like protein 7 (EGFL7) is involved in angiogenesis, vasculogenesis, as well as neurogenesis. Importantly, EGFL7 is also implicated in various pathological conditions, including tumor angiogenesis in human cancers. Thus, understanding the mechanisms through which EGFL7 regulates and promotes blood vessel formation is of clear practical importance. One principle means by which EGFL7's function is investigated is via the expression and purification of the recombinant protein. This mini-review describes three methods used to produce recombinant EGFL7 protein. First, a brief overview of EGFL7's genetics, structure, and function is provided. This is followed by an examination of the advantages and disadvantages of three common expression systems used in the production of recombinant EGFL7; (i) Escherichia coli (E. coli), (ii) human embryonic kidney (HEK) 293 cells or other mammalian cells, and (iii) a baculovirus-based Sf9 insect cell expression system. Based on the available evidence, we conclude that the baculovirus-based Sf9 insect cell expression currently has the advantages of producing active recombinant EGFL7 in the native conformation with the presence of acceptable posttranslational modifications, while providing sufficient yield and stability for experimental purposes.
Collapse
Affiliation(s)
- Brennan McDonald
- 9169 Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Mirko H H Schmidt
- 9169 Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
24
|
Milan KL, Gayatri V, Kriya K, Sanjushree N, Vishwanathan Palanivel S, Anuradha M, Ramkumar KM. MiR-142-5p mediated Nrf2 dysregulation in gestational diabetes mellitus and its impact on placental angiogenesis. Placenta 2024; 158:192-199. [PMID: 39488088 DOI: 10.1016/j.placenta.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) presents significant risks during pregnancy, including adverse perinatal outcomes and placental dysfunction. Impaired angiogenesis, involving crucial factors like Vascular Endothelial Growth Factor (VEGF), contributes to these complications. The Nrf2/Keap1 pathway, crucial for vascular redox homeostasis, has been linked to GDM-associated angiogenesis dysregulation. METHODS This study aimed to investigate the molecular mechanisms underlying placental Nrf2 regulation, focusing on angiomiRs, key regulators of angiogenesis in GDM. Computational analysis identified miR-142-5p targeting Nrf2 mRNA. Expression levels of miR-142-5p were assessed in GDM placenta and correlated with Nrf2 expression. Experimental validation utilized human trophoblastic cell lines (BeWo) exposed to hyperglycemic conditions, assessing the effects of anti-miR-142 transfection on Nrf2 expression and angiogenic marker levels. RESULTS miR-142-5p expression was significantly downregulated in GDM placenta, correlating positively with Nrf2 expression. In BeWo cells exposed to hyperglycemia, anti-miR-142 transfection notably increased Nrf2 expression alongside angiogenic marker levels, confirming the computational predictions. DISCUSSION Our findings highlight the pivotal role of miRNAs in GDM-associated impaired angiogenesis by modulating Nrf2 expression. Understanding these molecular mechanisms provides insights into potential therapeutic targets for improving pregnancy outcomes in GDM cases.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - V Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kumaran Kriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Sanjushree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Sri Vishwanathan Palanivel
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - M Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur, 603203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
25
|
Khan K, Khan A, Rahman ZU, Khan F, Latief N, Fazal N. Genetic Polymorphism in miRNA Genes and Their Association with susceptibility of Coronary Heart Disease: An Updated Review. Pathol Res Pract 2024; 264:155675. [PMID: 39488988 DOI: 10.1016/j.prp.2024.155675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Coronary heart disease (CHD) remains a major public health concern worldwide, with a complex interplay of genetic, environmental and lifestyle factors contributing to its pathogenesis. The potential significance of microRNAs (miRNAs) in the onset and progression of CHD has attracted increasing attention in recent years. Small non-coding RNA molecules called miRNAs control gene expression at the post-transcriptional level. Dysregulation of miRNAs has been linked to a variety of biological processes, including cell division, proliferation, apoptosis, and inflammation. Numerous research studies have looked into the relationship between genetic variants in miRNA genes and CHD susceptibility. This review highlights the recent research work carried out to identify the relationship of miRNA genes polymorphism with the progression and susceptibility of CHD. Such studies could pave the way for the development of personalized strategies for CHD prevention and treatment based on an individual's genetic profile.
Collapse
Affiliation(s)
- Khalid Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Aakif Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Zia Ur Rahman
- University Institute of Medical Laboratory Technology, the University of Lahore, Pakistan
| | - Faisal Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Noreen Latief
- National Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - Numan Fazal
- University Institute of Medical Laboratory Technology, the University of Lahore, Pakistan.
| |
Collapse
|
26
|
Brisebois MF, Gordon RA, Zumbro EL, Sokoloski ML, Duplanty AA, Juma S, Rigby BR. Acute Effects of Serial and Integrated Concurrent Exercise on Circulating microRNAs -126 and -222 in Sedentary Adults. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2024; 17:1444-1460. [PMID: 39807384 PMCID: PMC11728573 DOI: 10.70252/xfjk8005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The purpose of this study was to compare changes in circulating microRNAs -126 (c-miR-126) and -222 (c-miR-222) following acute serial concurrent exercise (SCE) and integrated concurrent exercise (ICE) sessions among young, sedentary adults. Ten males and 9 females completed the study procedures. For SCE, participants performed resistance exercise (RE) followed by aerobic exercise (AE), without mixing the two. For ICE, participants performed a brief bout of AE before each set of RE. Blood was collected before, immediately after (IP), and 1 h (1HR) after each exercise session. Expression of c-miR-126 significantly increased from baseline at IP (1.6-fold SCE, 2.1-fold ICE; p = .037) and 1HR (1.8-fold SCE, 1.7-fold ICE; p = .034) following both sessions, with no difference between the two sessions. Expression of c-miR-222 significantly increased from baseline at IP (1.7-fold SCE, 1.9-fold ICE; p = .024) and 1HR (2.0-fold SCE, 1.6-fold ICE; p = .038) following both sessions, with no difference between the two sessions. There were no differences in peak heart rate or average heart rate between the two workout sessions. Both SCE and ICE patterns appear equally effective at acutely increasing c-miR-126 and -222.
Collapse
Affiliation(s)
- Matthew F Brisebois
- Department of Human Performance and Health, University of South Carolina Upstate, Spartanburg, SC, USA
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Ryan A Gordon
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
- Department of Kinesiology, Missouri State University, Springfield, MO, USA
| | - Emily L Zumbro
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, the University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Exercise Medicine, The University of Alabama Birmingham, Birmingham, AL, USA
| | - Matthew L Sokoloski
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Anthony A Duplanty
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Brandon R Rigby
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
- Institute for Women's Health, Texas Woman's University, Denton, TX, USA
| |
Collapse
|
27
|
Fu J, Lu ZT, Wu G, Yang ZC, Wu X, Wang D, Nie ZM, Sheng Q. Gastrodia elata specific miRNA attenuates neuroinflammation via modulating NF-κB signaling pathway. Int J Neurosci 2024; 134:1652-1662. [PMID: 37965801 DOI: 10.1080/00207454.2023.2280835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
AIMS Based on our previous research on the specific miRNAs identified from Gastrodia elata, we selected Gas-miR2-3p to investigate its effects on neuroinflammation via in vitro and in vivo experiments. RESULTS RT-qPCR analysis indicated that G. elata specific Gas-miR2-3p was detected in all murine tissues post-oral administration, suggesting their potential as orally bioavailable miRNA. The analysis of RT-qPCR, Western blotting and ELISA assays consistently demonstrate that the expression of inflammatory factors as TNF-α, IL-6, IL-1β was decreased and the expression levels of p-p65 and p-IκBα were downregulated after the action of Gas-miR2-3p in both cell and animal experiments. CONCLUSION Gas-miR2-3p can attenuate neuroinflammation by regulating the inflammation factors and suppressing the activation of the NF-κB signaling pathway. Our findings indicate that G. elata miRNAs, as novel active components, perform a modulatory role in the NF-κB signaling pathway associated with neuroinflammation in a cross-species way.
Collapse
Affiliation(s)
- Jianyuan Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhong-Teng Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guang Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhe-Cheng Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoqi Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuo-Ming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
28
|
Zhang Y, Yang Q, Cheng H, Zhang Y, Xie Y, Zhang Q. Extracellular vesicles derived from endothelial progenitor cells modified by Houshiheisan promote angiogenesis and attenuate cerebral ischemic injury via miR-126/PIK3R2. Sci Rep 2024; 14:28166. [PMID: 39548169 PMCID: PMC11568282 DOI: 10.1038/s41598-024-78717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Angiogenesis following cerebral ischemia is crucial for restoring blood supply to the ischemic region. Extracellular vesicles (EVs) derived from endothelial progenitor cells (EPCs) offer potential therapeutic benefits in the treatment of cerebral ischemia. Houshiheisan (HSHS) has been shown to improve clinical outcomes in ischemic stroke patients, reduce cerebral ischemic damage in rats, and protect endothelial cells. However, the potential effects of HSHS-modified EPC-derived EVs (EVsHSHS) for cerebral ischemia remain unexplored. This study investigated the impact of EVsHSHS on angiogenesis using rats with permanent middle cerebral artery occlusion (pMCAO) and brain microvascular endothelial cells (BMECs) subjected to oxygen-glucose deprivation (OGD). Results demonstrated that EVsHSHS promoted the proliferation, migration, and tube formation of BMECs in vitro. In vivo, high doses of EVsHSHS exhibited better performance than equivalent doses of unmodified EPC-derived EVs in reducing cerebral infarction volume, improving cortical blood perfusion, decreasing neurological deficit scores, and increasing cortical microvessel density at day 7 post-modeling. The pro-angiogenic effects of EVsHSHS following cerebral ischemia were associated with the regulation of miR-126 and the PIK3R2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yawen Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuyue Yang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hongfa Cheng
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yahui Xie
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuxia Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Metwally NG, Tauler MDPM, Torabi H, Allweier J, Mohamed S, Bessemoulin M, Bouws P, Alshikh F, Wu Y, Temori M, Schell T, Rakotonirinalalao M, Honecker B, Höhn K, Jacobs T, Heine H, Bruchhaus I. Distinct brain and lung endothelial miRNA/mRNA profiles after exposure to Plasmodium falciparum-infected red blood cells. iScience 2024; 27:111265. [PMID: 39569379 PMCID: PMC11576406 DOI: 10.1016/j.isci.2024.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
MicroRNAs (miRNAs) control 60% of genes expressed in the human body, but their role in malaria pathogenesis is incompletely understood. Here, we demonstrate cell type-specific alterations to the miRNA profiles during the early response to malaria infection in brain and lung endothelial cells (ECs). In brain ECs, incubation with Plasmodium falciparum-infected red blood cells in the ring stage (iRBCs) most significantly affected endocytosis-related miRNAs and mRNAs. Contrastingly, in lung ECs, iRBCs altered electron transport chain-related miRNAs and mRNAs. We present a dataset of inherent differences between microRNA profiles in brain and lung ECs and their extracellular vesicles (EVs). We demonstrated that shear stress affected multiple pathways in brain ECs, which were controlled by numerous human miRNAs. Together, these findings indicate that host miRNAs respond to parasite exposure, accompanied by stimulation of downstream signaling pathways within the ECs. Therefore, we consider miRNAs the initial spark for early host-parasite interaction events.
Collapse
Affiliation(s)
| | - Maria Del Pilar Martinez Tauler
- Research Group Host-Parasite Interaction, Hamburg, Germany
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center (Airway Research Center North (ARCN), German Centre for Lung Research (DZL), Borstel, Germany
| | - Hanifeh Torabi
- Research Group Host-Parasite Interaction, Hamburg, Germany
| | | | - Sara Mohamed
- Research Group Host-Parasite Interaction, Hamburg, Germany
| | - Maryeva Bessemoulin
- Research Group Host-Parasite Interaction, Hamburg, Germany
- University of Strasbourg, Strasbourg, France
| | - Philip Bouws
- Research Group Host-Parasite Interaction, Hamburg, Germany
| | - Fatima Alshikh
- Research Group Host-Parasite Interaction, Hamburg, Germany
| | - Yifan Wu
- Research Group Host-Parasite Interaction, Hamburg, Germany
| | - Milad Temori
- Research Group Host-Parasite Interaction, Hamburg, Germany
| | - Tabea Schell
- Research Group Host-Parasite Interaction, Hamburg, Germany
| | | | - Barbara Honecker
- Research Group Host-Parasite Interaction, Hamburg, Germany
- Research Group Molecular Infection Immunology, Hamburg, Germany
| | | | - Thomas Jacobs
- Research Group Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center (Airway Research Center North (ARCN), German Centre for Lung Research (DZL), Borstel, Germany
| | - Iris Bruchhaus
- Research Group Host-Parasite Interaction, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
30
|
Rastegar-Moghaddam SH, Bigham M, Lombardi G, Mohammadipour A, Malvandi AM. MicroRNA-24 therapeutic potentials in infarction, stroke, and diabetic complications. Mol Biol Rep 2024; 51:1137. [PMID: 39520600 DOI: 10.1007/s11033-024-10089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The prevalence of cardiovascular events, stroke, and diabetes worldwide underscores the urgent need for effective and minimally invasive treatments. With nearly 20 million annual casualties attributed to cardiovascular diseases and an estimated 463 million people living with diabetes in 2022. Identifying promising therapeutic candidates is paramount. MicroRNAs, short nucleic acids involved in regulating gene expression, emerge as potential game-changers. Among these, microRNA-24 (miR-24), a hypoxia-sensitive player in endothelial vessels, has protective roles against diverse vascular complications. Following heart infarction and stroke, elevating miR-24 expression proves beneficial by mitigating oxidative stress, inflammation, and apoptosis while enhancing cell survival. It reduces cardiac fibrosis in heart disease, regulates aberrant angiogenesis in cerebral hemorrhagic strokes, and enhances the functionality of cardiomyocytes and brain neurons. In diabetic conditions, augmenting miR-24 expression mitigates complications. Further, being miR-24 also expressed by the skeletal muscle (i.e., myo-miR) in response to exercise, this miRNA may participate in the complex molecular network that systemically spreads the beneficial effects of physical exercise. This review provides a comprehensive vision of the molecular mechanisms underpinning the miR-24 protective effects, offering new insights into its therapeutic potential and proposing a novel avenue for medical intervention.
Collapse
Affiliation(s)
| | - Maryam Bigham
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milan, Italy.
| |
Collapse
|
31
|
Zhang LJ, Hu YX, Huang RZ, Xu YY, Dong SH, Guo FH, Guo JJ, Qiu JJ, Cao ZY, Wei LJ, Mao JH, Lyu A, Liu JL, Zhao XX, Guo ZF, Jing Q. Intraplatelet miRNA-126 regulates thrombosis and its reduction contributes to platelet inhibition. Cardiovasc Res 2024; 120:1622-1635. [PMID: 38900927 DOI: 10.1093/cvr/cvae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/17/2023] [Accepted: 01/08/2024] [Indexed: 06/22/2024] Open
Abstract
AIMS MicroRNA-126 (miR-126), one of the most abundant microRNAs in platelets, is involved in the regulation of platelet activity and the circulating miR-126 is reduced during antiplatelet therapy. However, whether intraplatelet miR-126 plays a role in thrombosis and platelet inhibition remains unclear. METHODS AND RESULTS Here, using tissue-specific knockout mice, we reported that the deficiency of miR-126 in platelets and vascular endothelial cells significantly prevented thrombosis and prolonged bleeding time. Using chimeric mice, we identified that the lack of intraplatelet miR-126 significantly prevented thrombosis. Ex vivo experiments further demonstrated that miR-126-deficient platelets displayed impaired platelet aggregation, spreading, and secretory functions. Next, miR-126 was confirmed to target phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) in platelet, which encodes a negative regulator of the phosphoinositide 3-kinase/protein kinase B pathway, enhancing platelet activation through activating the integrin αIIbβ3-mediated outside-in signalling. After undergoing myocardial infarction (MI), chimeric mice lacking intraplatelet miR-126 displayed reduced microvascular obstruction and prevented MI expansion in vivo. In contrast, overexpression of miR-126 by the administration of miR-126 agonist (agomiR-126) in wild-type mice aggravated microvascular obstruction and promoted MI expansion, which can be almost abolished by aspirin administration. In patients with cardiovascular diseases, antiplatelet therapies, either aspirin alone or combined with clopidogrel, decreased the level of intraplatelet miR-126. The reduction of intraplatelet miR-126 level was associated with the decrease in platelet activity. CONCLUSION Our murine and human data reveal that (i) intraplatelet miR-126 contributes to platelet activity and promotes thrombus formation, and (ii) the reduction of intraplatelet miR-126 contributes to platelet inhibition during antiplatelet therapy.
Collapse
Affiliation(s)
- Lu-Jun Zhang
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Yang-Xi Hu
- Department of Cardiology, Shanghai Changzheng Hospital, Shanghai, China
| | - Rong-Zhong Huang
- Department of Geriatrics, Second Hospital Affiliated to Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yan-Yan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Hua Dong
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Fang-Hao Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jun-Jun Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jing-Jing Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zi-Yun Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Li-Jiang Wei
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Hao Mao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ankang Lyu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Ling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Zhi-Fu Guo
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
32
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
33
|
Nazir A, Uwishema O, Shariff S, Franco WXG, El Masri N, Ayele ND, Munyangaju I, Alzain FE, Wojtara M. A Thorough Navigation of miRNA's Blueprint in Crafting Cardiovascular Fate. Health Sci Rep 2024; 7:e70136. [PMID: 39502130 PMCID: PMC11535861 DOI: 10.1002/hsr2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Cardiovascular diseases contribute significantly to global morbidity and mortality. MicroRNAs are crucial in the development and progression of these diseases by regulating gene expression in various cells and tissues. Their roles in conditions like atherosclerosis, heart failure, myocardial infarction, and arrhythmias have been widely researched. Materials and Methods The present study provides an overview of existing evidence regarding miRNAs' role in cardiovascular disease pathogenesis. Furthermore, the study examines current state-of-the-art technologies used in the study of miRNAs in cardiovascular disease. As a final point, we examine how miRNAs may serve as disease biomarkers, therapeutic targets, and prognostic indicators. Results In cardiology, microRNAs, small noncoding RNA molecules, are crucial to the posttranscriptional regulation of genes. Their role in regulating cardiac cell differentiation and maturation is critical during the development of the heart. They maintain the cardiac function of an adult heart by contributing to its electrical and contractile activity. By binding to messenger RNA molecules, they inhibit protein translation or degrade mRNA. Several cardiovascular diseases are associated with dysregulation of miRNAs, including arrhythmias, hypertension, atherosclerosis, and heart failure. miRNAs can be used as biomarkers to diagnose and predict diseases as well as therapeutic targets. A variety of state-of-the-art technologies have aided researchers in discovering, profiling, and analyzing miRNAs, including microarray analysis, next-generation sequencing, and others. Conclusion Developing new diagnostics and therapeutic approaches is becoming more feasible as researchers refine their understanding of miRNA function. Ultimately, this will reduce the burden of cardiovascular disease around the world.
Collapse
Affiliation(s)
- Abubakar Nazir
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityPakistan
| | - Olivier Uwishema
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
| | - Sanobar Shariff
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineYerevan State Medical UniversityYerevanArmenia
| | - William Xochitun Gopar Franco
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of GuadalajaraGuadalajaraMexico
| | - Noha El Masri
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityLebanon
| | - Nitsuh Dejene Ayele
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of Internal Medicine, Faculty of MedicineWolkite UniversityWolkiteEthiopia
| | - Isabelle Munyangaju
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Barcelona Institute for Global Health—Hospital ClínicUniversitat de Barcelona
| | - Fatima Esam Alzain
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineCollege of Medicine and General Surgery—Sudan University of Science and Technology
| | - Magda Wojtara
- Department of MedicineOli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
34
|
Nishimura Y, Hanada S. Origins and Molecular Mechanisms Underlying Renal Vascular Development. KIDNEY360 2024; 5:1718-1726. [PMID: 39115947 DOI: 10.34067/kid.0000000000000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Kidneys play a crucial role in maintaining homeostasis within the body, and this function is intricately linked to the vascular structures within them. For vascular cells in the kidney to mature and function effectively, a well-coordinated spatial alignment between the nephrons and complex network of blood vessels is essential. This arrangement ensures efficient blood filtration and regulation of the electrolyte balance, blood pressure, and fluid levels. Additionally, the kidneys are vital in regulating the acid-base balance and producing hormones involved in erythropoiesis and blood pressure control. This article focuses on the vascular development of the kidneys, summarizing the current understanding of the origin and formation of the renal vasculature, and the key molecules involved. A comprehensive review of existing studies has been conducted to elucidate the cellular and molecular mechanisms governing renal vascular development. Specific molecules play a critical role in the development of renal vasculature, contributing to the spatial alignment between nephrons and blood vessels. By elucidating the cellular and molecular mechanisms involved in renal vascular development, this study aims to advance renal regenerative medicine and offer potential avenues for therapeutic interventions in kidney disease.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, Takasaki, Japan
| | | |
Collapse
|
35
|
Hegde M, Singh AK, Kannan S, Kolkundkar U, Seetharam RN. Therapeutic Applications of Engineered Mesenchymal Stromal Cells for Enhanced Angiogenesis in Cardiac and Cerebral Ischemia. Stem Cell Rev Rep 2024; 20:2138-2154. [PMID: 39305405 PMCID: PMC11554727 DOI: 10.1007/s12015-024-10787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 11/12/2024]
Abstract
Ischemic diseases are characterized by obstruction of blood flow to the respective organs, of which ischemia of the heart and brain are the most prominent manifestations with shared pathophysiological mechanisms and risk factors. While most revascularization therapies aim to restore blood flow, this can be challenging due to the limited therapeutic window available for treatment approaches. For a very long time, mesenchymal stromal cells have been used to treat cerebral and cardiac ischemia. However, their application is restricted either by inefficient mode of delivery or the low cell survival rates following implantation into the ischemic microenvironment. Nonetheless, several studies are currently focusing on using of mesenchymal stromal cells engineered to overexpress therapeutic genes as a cell-based gene therapy to restore angiogenesis. This review delves into the utilization of MSCs for angiogenesis and the applications of engineered MSCs for the treatment of cardiac and cerebral ischemia. Moreover, the safety issues related to the genetic modification of MSCs have also been discussed.
Collapse
Affiliation(s)
- Madhavi Hegde
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Suresh Kannan
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
36
|
Liang W, Huang B, Shi Q, Yang X, Zhang H, Chen W. Circulating MicroRNAs as potential biomarkers for cerebral collateral circulation in symptomatic carotid stenosis. Front Physiol 2024; 15:1403598. [PMID: 39552721 PMCID: PMC11563797 DOI: 10.3389/fphys.2024.1403598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cerebral collateral circulation (CCC) considerably improves the prognosis of patients with symptomatic carotid stenosis (SCS). This study evaluated the diagnostic value of plasma microRNAs (miRNAs) in determining CCC status in patients with SCS. Methods This single-center observational study enrolled patients with ≥50% carotid artery stenosis diagnosed using Doppler ultrasound. CCC was assessed using cerebrovascular digital subtraction angiography (DSA). Quantitative reverse transcription-polymerase chain reaction was used to determine the expression levels of plasma miRNAs. A multivariate logistic regression model and receiver operating characteristic (ROC) curve were used to analyze the diagnostic value of plasma miRNA expression in determining CCC status. Results A total of 43 patients were enrolled (28 with CCC and 15 without CCC). The plasma expression levels of miR-126-3p, miR-132-3p, and miR-210-3p were significantly higher and those of miR-16-3p and miR-92-3p were significantly lower in patients with CCC. After adjusting for age, gender, drinking history, comorbidities and degree of SCS, miR-92a-3p, miR-126-3p, miR-132-3p, and miR-210-3p were found to be significantly associated with CCC establishment (p < 0.05). ROC curve analysis indicated a high diagnostic value of these miRNAs in determining CCC status [area under the curve (AUC): 0.918-0.965], with miR-126-3p exhibiting the highest predictive performance (AUC: 0.965). Subgroup analysis revealed that patients with CCC who had 50%-70% stenosis showed significantly higher expression level of miR-126-3p, whereas those with CCC who had 70%-99% stenosis showed significantly higher expression levels of miR-126-3p, miR-132-3p, and miR-210-3p as well as significantly lower expression levels of miR-15a-3p, miR-16-3p, and miR-92a-3p. Conclusion The results indicate that these six plasma miRNAs have promising diagnostic value in determining CCC status in varying degrees of SCS. These miRNAs can serve as biomarkers for CCC status following SCS, with miR-126-3p showing the strongest positive correlation.
Collapse
Affiliation(s)
- Wenwen Liang
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Bingcang Huang
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Qin Shi
- Department of General Practice, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xuelian Yang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hanwen Zhang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Wei Chen
- Department of Radiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
37
|
Han C, Zhai C, Li A, Ma Y, Hallajzadeh J. Exercise mediates myocardial infarction via non-coding RNAs. Front Cardiovasc Med 2024; 11:1432468. [PMID: 39553846 PMCID: PMC11563808 DOI: 10.3389/fcvm.2024.1432468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/29/2024] [Indexed: 11/19/2024] Open
Abstract
Myocardial infarction (MI), a widespread cardiovascular issue, mainly occurs due to blood clot formation in the coronary arteries, which reduces blood flow to the heart muscle and leads to cell death. Incorporating exercise into a lifestyle can significantly benefit recovery and reduce the risk of future cardiac events for MI patients. Non-coding RNAs (ncRNAs) play various roles in the effects of exercise on myocardial infarction (MI). ncRNAs regulate gene expression, influence cardiac remodeling, angiogenesis, inflammation, oxidative stress, apoptosis, cardioprotection, and cardiac electrophysiology. The expression of specific ncRNAs is altered by exercise, leading to beneficial changes in heart structure, function, and recovery after MI. These ncRNAs modulate molecular pathways that contribute to improved cardiac health, including reducing inflammation, enhancing angiogenesis, promoting cell survival, and mitigating oxidative stress. Furthermore, they are involved in regulating changes in cardiac remodeling, such as hypertrophy and fibrosis, and can influence the electrical properties of the heart, thereby decreasing the risk of arrhythmias. Knowledge on MI has entered a new phase, with investigations of ncRNAs in physical exercise yielding invaluable insights into the impact of this therapeutic modality. This review compiled research on ncRNAs in MI, with an emphasis on their applicability to physical activity.
Collapse
Affiliation(s)
| | - Cuili Zhai
- College of Chinese Martial Arts, Beijing Sport University, Beijing, China
| | - Ailing Li
- City University of Malyasia, Kuala Lumpur, Malaysia
| | - Yongzhi Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
38
|
Terré M, Arís A, Garcia-Fruitós E, Fàbregas F, Bach A. Micro RNA profiles in colostrum exosomes obtained from primiparous or multiparous dairy cows. Front Vet Sci 2024; 11:1463342. [PMID: 39545260 PMCID: PMC11561390 DOI: 10.3389/fvets.2024.1463342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Colostrum is rich in membranous vesicles of endocytic origin named exosomes, with proteins, lipids, RNA, and/or DNA cargos which can play different roles in physiological processes. Like other colostrum bioactive compounds, exosomes could be also influenced by individual characteristics. The objective of the study was to characterize miRNA cargo of colostrum exosomes from primiparous and multiparous cows in different farms. Twenty-seven colostrum samples of clinically healthy Holstein cows (11 primiparous and 16 multiparous) from 3 different farms were obtained and frozen. After thawing, exosomes were isolated following an ultracentrifugation protocol, and characterized morphologically. Particle size distribution and western immunoblotting were also analyzMaed. After RNA extraction, miRNAs were sequenced and analyzed to assess potential differences in profiles between primiparous and multiparous cows from different farms. Fourteen miRNA were upregulated and 11 miRNAs downregulated in primiparous compared with multiparous cows. Most of the miRNA differences between primiparous and multiparous cows regulate the gene expression of factors involved in mammary gland development and differentiation, and lipogenesis. In addition, miRNAs from one of the farms showed 8 miRNAs downregulated and 12 upregulated compared with the other 2 farms, independently of parity. Differences in miRNA between farms were mainly associated with immune and inflammatory-related genes. In conclusion, miRNA cargos of bovine colostrum exosomes differ in primiparous and multiparous cows, and some on-farm practices might also determine the content and activity of miRNA in colostrum exosomes.
Collapse
Affiliation(s)
- Marta Terré
- Department of Ruminant Production, IRTA, Caldes de Montbui, Spain
| | - Anna Arís
- Department of Ruminant Production, IRTA, Caldes de Montbui, Spain
| | | | | | - Alex Bach
- Department of Animal and Veterinary Sciences, University of Lleida, Lleida, Spain
- ICREA, Institut de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
39
|
Tariq Z, Abusnana S, Mussa BM, Zakaria H. New insights on genetic background of major diabetic vascular complications. Diabetol Metab Syndr 2024; 16:243. [PMID: 39375805 PMCID: PMC11457557 DOI: 10.1186/s13098-024-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND By 2045, it is expected that 693 million individuals worldwide will have diabetes and with greater risk of morbidity, mortality, loss of vision, renal failure, and a decreased quality of life due to the devastating effects of macro- and microvascular complications. As such, clinical variables and glycemic control alone cannot predict the onset of vascular problems. An increasing body of research points to the importance of genetic predisposition in the onset of both diabetes and diabetic vascular complications. OBJECTIVES Purpose of this article is to review these approaches and narrow down genetic findings for Diabetic Mellitus and its consequences, highlighting the gaps in the literature necessary to further genomic discovery. MATERIAL AND METHODS In the past, studies looking for genetic risk factors for diabetes complications relied on methods such as candidate gene studies, which were rife with false positives, and underpowered genome-wide association studies, which were constrained by small sample sizes. RESULTS The number of genetic findings for diabetes and diabetic complications has over doubled due to the discovery of novel genomics data, including bioinformatics and the aggregation of global cohort studies. Using genetic analysis to determine whether diabetes individuals are at the most risk for developing diabetic vascular complications (DVC) might lead to the development of more accurate early diagnostic biomarkers and the customization of care plans. CONCLUSIONS A newer method that uses extensive evaluation of single nucleotide polymorphisms (SNP) in big datasets is Genome-Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Zuira Tariq
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Bashair M Mussa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Zakaria
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
40
|
Convento MB, de Oliveira AS, Boim MA, Borges FT. Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles as Natural Nanocarriers in the Treatment of Nephrotoxic Injury In Vitro. Cells 2024; 13:1658. [PMID: 39404421 PMCID: PMC11475496 DOI: 10.3390/cells13191658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-EVs) are valuable in nanomedicine as natural nanocarriers, carrying information molecules from their parent cells and fusing with targeted cells. miRNA-126, specific to endothelial cells and derived from these vesicles, supports vascular integrity and angiogenesis and has protective effects in kidney diseases. OBJECTIVE This study investigates the delivery of miRNA-126 and anti-miRNA-126 via UC-EVs as natural nanocarriers for treating nephrotoxic injury in vitro. METHOD The umbilical cord-derived mesenchymal stem cell and UC-EVs were characterized according to specific guidelines. Rat kidney proximal tubular epithelial cells (tubular cells) were exposed to nephrotoxic injury through of gentamicin and simultaneously treated with UC-EVs carrying miRNA-126 or anti-miRNA-126. Specific molecules that manage cell cycle progression, proliferation cell assays, and newly synthesized DNA and DNA damage markers were evaluated. RESULTS We observed significant increases in the expression of cell cycle markers, including PCNA, p53, and p21, indicating a positive cell cycle regulation with newly synthesized DNA via BrDU. The treatments reduced the expression of DNA damage marker, such as H2Ax, suggesting a lower rate of cellular damage. CONCLUSIONS The UC-EVs, acting as natural nanocarriers of miRNA-126 and anti-miRNA-126, offer nephroprotective effects in vitro. Additionally, other components in UC-EVs, such as proteins, lipids, and various RNAs, might also contribute to these effects.
Collapse
Affiliation(s)
- Márcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
| | - Andreia Silva de Oliveira
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
| | - Mirian Aparecida Boim
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| |
Collapse
|
41
|
Sawant H, Sun B, Mcgrady E, Bihl JC. Role of miRNAs in neurovascular injury and repair. J Cereb Blood Flow Metab 2024; 44:1693-1708. [PMID: 38726895 PMCID: PMC11494855 DOI: 10.1177/0271678x241254772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 10/18/2024]
Abstract
MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bowen Sun
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Erin Mcgrady
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Ji Chen Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
42
|
Li Y, Luo W, Meng C, Shi K, Gu R, Cui S. Exosomes as promising bioactive materials in the treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:335. [PMID: 39334506 PMCID: PMC11438208 DOI: 10.1186/s13287-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different research fields, including SCI. In this study, we summarize therapeutic advances related to the application of Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from diverse cell types, including neurogenesis, angiogenesis, blood-spinal cord barrier preservation, anti-apoptosis, and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the development of efficient clinical strategies for SCI.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Chuikai Meng
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Kaiyuan Shi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| |
Collapse
|
43
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
44
|
Popescu AI, Rață AL, Vlad D, Vlad C, Popescu R, Onofrei RR, Morelli M, Pantea S, Barac S. miRNA in the Diagnosis and Treatment of Critical Limb Ischemia. Biomedicines 2024; 12:2026. [PMID: 39335540 PMCID: PMC11428243 DOI: 10.3390/biomedicines12092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic threatening limb ischemia of the inferior limbs (CLTI) is the final stage of peripheral arterial disease (PAD) and is one of the most feared atherosclerotic manifestations because if left untreated, in time, it can lead to amputation. Although there are currently numerous treatment techniques, both open and endovascular, it is a pathology that has no underlying treatment. Therefore, current studies are very much focused on new therapeutic possibilities that can be applied in the early stages of the atherosclerotic process. In numerous studies in the literature, miRNAs have been identified as important markers of atherosclerosis. The present study aims to identify the expression of three miRNAs-miR-199a, miR-20a, and miR-30c-in patients with chronic limb-threatening ischemia in the pre- and post-revascularization periods. The aim of the study is to identify whether these three markers play a role in critical ischemia and whether they have the potential for future use in new treatments of this pathology.
Collapse
Affiliation(s)
- Alexandra Ioana Popescu
- Pharmacology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andreea Luciana Rață
- Surgical Emergencies Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daliborca Vlad
- Pharmacology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristian Vlad
- Pharmacology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Cell and Molecular Biology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ramona Roxana Onofrei
- Department of Rehabilitation, Physical Medicine and Rheumatology, Research Center for Assessment of Human Motion, Functionality and Disability, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marialuisa Morelli
- Vascular Surgery Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Pantea
- Surgical Emergencies Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sorin Barac
- Vascular Surgery Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
45
|
Jiang S, Hu L, Zhou H, Wu J, Zhou J, Yu X, Chen G. Novel Therapeutic Mechanisms and Strategies for Intracerebral Hemorrhage: Focusing on Exosomes. Int J Nanomedicine 2024; 19:8987-9007. [PMID: 39246427 PMCID: PMC11378801 DOI: 10.2147/ijn.s473611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a primary, non-traumatic cerebral event associated with substantial mortality and disability. Despite advancements in understanding its etiology and refining diagnostic techniques, a validated treatment to significantly improve ICH prognosis remains elusive. Exosomes, a subtype of extracellular vesicles, encapsulate bioactive components, predominantly microRNAs (miRNAs), facilitating and regulating intercellular communication. Currently, exosomes have garnered considerable interests in clinical transformation for their nanostructure, minimal immunogenicity, low toxicity, inherent stability, and the ability to traverse the blood-brain barrier. A wealth of studies has demonstrated that exosomes can improve the prognosis of ICH through anti-apoptosis, neurogenesis, angiogenesis, anti-inflammation, immunomodulation, and autophagy, primarily via the transportation or overexpression of selected miRNAs. More importantly, exosomes can be easily customized with specific miRNAs or bioactive compounds to establish delivery systems, broadening their potential applications. This review focuses on the therapeutic potential of exosomes in ICH, reviewing the mechanisms of molecular biology mediated by certain miRNAs, discussing the benefits, challenges, and future prospects in ICH treatment. We hope comprehensive understanding of exosomes based on miRNAs will provide new insights into the treatment of ICH and guide the translation of exosome's research from laboratory to clinical practice.
Collapse
Affiliation(s)
- Shandong Jiang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Jiayin Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Xian Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310016, People's Republic of China
| |
Collapse
|
46
|
Ramzan F, Rong J, Roberts CT, O'Sullivan JM, Perry JK, Taylor R, McCowan L, Vickers MH. Maternal Plasma miRNAs as Early Biomarkers of Moderate-to-Late-Preterm Birth. Int J Mol Sci 2024; 25:9536. [PMID: 39273483 PMCID: PMC11394737 DOI: 10.3390/ijms25179536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Globally, preterm birth (PTB) is a primary cause of mortality and morbidity in infants, with PTB rates increasing worldwide over the last two decades. Biomarkers for accurate early prediction of PTB before the clinical event do not currently exist. Given their roles in the development and progression of many disease states, there has been increasing interest in the utility of microRNAs (miRNAs) as early biomarkers for pregnancy-related disorders, including PTB. The present study was designed to examine potential differences in miRNA abundances in maternal plasma from mothers with infants born following a moderate to late (28-36 weeks' gestation, n = 54) spontaneous PTB (SPTB) compared to mothers with matched term infants (n = 54). Maternal plasma collected at 15 weeks' gestation were utilised from the Auckland and Adelaide cohorts from the Screening for Pregnancy Endpoints (SCOPE) study. miRNAs in plasma were quantified using the NanoString nCounter expression panel (800 miRNAs). The top four most abundant miRNAs were significantly decreased in the plasma of mothers in the SPTB group with results consistent across both cohorts and pathway analysis was undertaken to examine the biological processes linked to the dysregulated miRNAs. The top candidate miRNAs (miRs-451a, -223-3p, let-7a-5p, and -126-3p) were linked to gene pathways associated with inflammation, apoptosis, and mitochondrial biogenesis. Moreover, miRNAs were consistently less abundant in the plasma of mothers of preterm infants across both sites, suggesting potential global dysregulation in miRNA biogenesis. This was supported by a significant downregulation in expression of key genes that are involved in miRNA biogenesis (DROSHA, DICER, and AGO2) across both sites in the SPTB group. In summary, the present study has identified miRNAs in maternal plasma that may provide predictive utility as early biomarkers for the risk of later SPTB. Importantly, these observations were conserved across two independent cohorts. Further, our data provide evidence for a persistent decrease in miRNA abundance in mothers who later experienced an SPTB, which is likely to have widespread consequences for gene regulation and epigenetic processes.
Collapse
Affiliation(s)
- Farha Ramzan
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Claire T Roberts
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5001, Australia
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Rennae Taylor
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland 1142, New Zealand
| | - Lesley McCowan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland 1142, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
47
|
Wang Y, Li Q, Zhou S, Tan P. Contents of exosomes derived from adipose tissue and their regulation on inflammation, tumors, and diabetes. Front Endocrinol (Lausanne) 2024; 15:1374715. [PMID: 39220365 PMCID: PMC11361949 DOI: 10.3389/fendo.2024.1374715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Adipose tissue (AT) serves as an energy-capacitive organ and performs functions involving paracrine- and endocrine-mediated regulation via extracellular vesicles (EVs) secretion. Exosomes, a subtype of EVs, contain various bioactive molecules with regulatory effects, such as nucleic acids, proteins, and lipids. AT-derived exosomes (AT-exos) include exosomes derived from various cells in AT, including adipocytes, adipose-derived stem cells (ADSCs), macrophages, and endothelial cells. This review aimed to comprehensively evaluate the impacts of different AT-exos on the regulation of physiological and pathological processes. The contents and functions of adipocyte-derived exosomes and ADSC-derived exosomes are compared simultaneously, highlighting their similarities and differences. The contents of AT-exos have been shown to exert complex regulatory effects on local inflammation, tumor dynamics, and insulin resistance. Significantly, differences in the cargoes of AT-exos have been observed among diabetes patients, obese individuals, and healthy individuals. These differences could be used to predict the development of diabetes mellitus and as therapeutic targets for improving insulin sensitivity and glucose tolerance. However, further research is needed to elucidate the underlying mechanisms and potential applications of AT-exos.
Collapse
Affiliation(s)
- Yanwen Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangbai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pohching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Cazzato G, Sgarro N, Casatta N, Lupo C, Ingravallo G, Ribatti D. Epigenetics and Control of Tumor Angiogenesis in Melanoma: An Update with Therapeutic Implications. Cancers (Basel) 2024; 16:2843. [PMID: 39199614 PMCID: PMC11352434 DOI: 10.3390/cancers16162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process in the progression and metastasis of melanoma. Recent research has highlighted the significant role of epigenetic modifications in regulating angiogenesis. This review comprehensively examines the current understanding of how epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, influence angiogenic pathways in melanoma. DNA methylation, a key epigenetic modification, can silence angiogenesis inhibitors such as thrombospondin-1 and TIMP3 while promoting pro-angiogenic factors like vascular endothelial growth factor (VEGF). Histone modifications, including methylation and acetylation, also play a pivotal role in regulating the expression of angiogenesis-related genes. For instance, the acetylation of histones H3 and H4 is associated with the upregulation of pro-angiogenic genes, whereas histone methylation patterns can either enhance or repress angiogenic signals, depending on the specific histone mark and context. Non-coding RNAs, particularly microRNAs (miRNAs) further modulate angiogenesis. miRNAs, such as miR-210, have been identified as key regulators, with miR-9 promoting angiogenesis by targeting E-cadherin and enhancing the expression of VEGF. This review also discusses the therapeutic potential of targeting epigenetic modifications to inhibit angiogenesis in melanoma. Epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., 5-azacytidine) and histone deacetylase inhibitors (e.g., Vorinostat), have shown promise in preclinical models by reactivating angiogenesis inhibitors and downregulating pro-angiogenic factors. Moreover, the modulation of miRNAs and lncRNAs presents a novel approach for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nicoletta Sgarro
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nadia Casatta
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
| | - Carmelo Lupo
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
- Engineering and Applied Science Department, University of Bergamo, 24127 Bergamo, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Domenico Ribatti
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
50
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|