1
|
Westöö C, Mutgan AC, van der Have O, Mead TJ, Ahmed S, Lampei E, Koch CD, Norvik C, Aspberg A, Bech M, Peruzzi N, Brunnström H, Kwapiszewska G, Rådegran G, Apte SS, Tran-Lundmark K. Localization, Proteolytic Processing, and Binding Partners of Versican Isoforms in Vascular Lesions of Pulmonary Arterial Hypertension. J Histochem Cytochem 2025; 73:129-145. [PMID: 40219589 PMCID: PMC11993537 DOI: 10.1369/00221554251331271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/14/2025] [Indexed: 04/14/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal condition where expansion of the vascular extracellular matrix contributes to increased pulmonary vascular resistance. Versican, a chondroitin sulfate proteoglycan, is known to accumulate in vascular lesions of PAH and hyaluronan and tenascin-C, binding partners of versican, are elevated in PAH. The specific distribution and localization of versican isoforms, their cleavage products, and binding partners in vascular lesions of PAH had not been studied previously. Versican has five distinct isoforms, V0-V4, identified by the arrangement of its chondroitin-sulfate attachment regions, GAGα and GAGβ. Here, tissue from idiopathic PAH was imaged with synchrotron-based phase-contrast micro-CT and analyzed by histology, immunohistochemistry, and in situ hybridization. Plasma concentration of versican in PAH patients and controls was measured using ELISA. GAGα- and GAGβ-containing isoforms were identified in pulmonary arteriopathy of all patients. However, immunohistochemical staining of N-terminal G1 domain (versican G1) and C-terminal G3 domain (versican G3) using specific antibodies did not consistently co-localize. Tenascin-C was occasionally found in neointima, but also in thin-walled collateral vessels. Hyaluronan accumulated in the neointima, co-localizing with both versican G3 and the neoepitope DPEAAE. DPEAAE did not co-localize with the corresponding neoepitope of the C-terminal fragment generated by cleavage, possibly indicating motility of fragments. Patient plasma had a higher concentration of versican G3-containing fragments, compared to controls. The distribution of versican isoforms, cleavage products, and binding partners demonstrated here warrants further investigation of their functional roles in PAH, versican G3 was reinforced as a potential biomarker for PAH.
Collapse
Affiliation(s)
- Christian Westöö
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Ayse Ceren Mutgan
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Lung Research Cluster, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Oscar van der Have
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Children’s Heart Centre, Skåne University Hospital, Lund, Sweden
| | - Timothy J. Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH
- University Hospitals Rainbow Babies & Children’s Hospital, Cleveland, OH
| | - Salaheldin Ahmed
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Department of Clinical Science Lund, Cardiology, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Elna Lampei
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Children’s Heart Centre, Skåne University Hospital, Lund, Sweden
| | - Christopher D. Koch
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
- Department of Pathology, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
- Sanford Laboratories, Sanford Health, Sioux Falls, SD
| | - Christian Norvik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anders Aspberg
- Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal Biology, Lund University, Lund, Sweden
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
- Department of Genetics and Pathology, Division of Laboratory Medicine, Region Skåne, Lund, Sweden
| | - Grazyna Kwapiszewska
- Lung Research Cluster, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institute for Lung Health, German Center for Lung Research (DZL), Cardio Pulmonary Institute, Giessen, Germany
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Department of Clinical Science Lund, Cardiology, Skåne University Hospital, Lund, Sweden
| | - Suneel S. Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Children’s Heart Centre, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Pollard MD, Meyer WK, Puckett EE. Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets. Genome Res 2024; 34:2176-2189. [PMID: 39578099 PMCID: PMC11694762 DOI: 10.1101/gr.278930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Mammalia comprises a great diversity of diet types and associated adaptations. An understanding of the genomic mechanisms underlying these adaptations may offer insights for improving human health. Comparative genomic studies of diet that employ taxonomically restricted analyses or simplified diet classifications may suffer reduced power to detect molecular convergence associated with diet evolution. Here, we use a quantitative carnivory score-indicative of the amount of animal protein in the diet-for 80 mammalian species to detect significant correlations between the relative evolutionary rates of genes and changes in diet. We have identified six genes-ACADSB, CLDN16, CPB1, PNLIP, SLC13A2, and SLC14A2-that experienced significant changes in evolutionary constraint alongside changes in carnivory score, becoming less constrained in lineages evolving more herbivorous diets. We further consider the biological functions associated with diet evolution and observe that pathways related to amino acid and lipid metabolism, biological oxidation, and small molecule transport experienced reduced purifying selection as lineages became more herbivorous. Liver and kidney functions show similar patterns of constraint with dietary change. Our results indicate that these functions are important for the consumption of animal matter and become less important with the evolution of increasing herbivory. So, genes expressed in these tissues experience a relaxation of evolutionary constraint in more herbivorous lineages.
Collapse
Affiliation(s)
- Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA;
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
3
|
Souza MC, Nunes S, Figuerêdo SHS, de Almeida BS, Santos IPC, Cassali GD, Arruda SM, Cardoso TMDS, Estrela-Lima A, Damasceno KA. Versican Proteolysis by ADAMTS: Understanding Versikine Expression in Canine Spontaneous Mammary Carcinomas. Cancers (Basel) 2024; 16:4057. [PMID: 39682243 DOI: 10.3390/cancers16234057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The present study investigates VKINE, a bioactive proteolytic fragment of the proteoglycan VCAN, as a novel and significant element in the tumor extracellular matrix (ECM). Although VKINE has been recognized for its immunomodulatory potential in certain tumor types, its impact on ECM degradation and prognostic implications remains poorly understood. Objectives: This study aimed to evaluate VCAN proteolysis and its association with ADAMTS enzymes involved in extracellular matrix remodeling in spontaneous canine mammary gland cancer. Methods: The expression levels of VKINE, ADAMTS enzymes, and collagen fibers were comparatively analyzed in situ and in invasive areas of carcinoma in mixed tumor (CMT) and carcinosarcoma (CSS) with different prognoses. Results: VKINE was notably expressed in the stroma adjacent to the invasion areas in CMT, whereas ADAMTS-15 was identified as the enzyme associated with VCAN proteolysis. Inverse correlations were observed between type III collagen and VCAN expression in in situ areas. Conclusions: Our findings suggest that VKINE and ADAMTS-15 play crucial roles in the tumor microenvironment, influencing invasiveness and type III collagen deposition. This study contributes to a better understanding of the dynamics within the ECM, paving the way for potential new tools in diagnosing and treating human and canine mammary tumors.
Collapse
Affiliation(s)
- Maria Carolina Souza
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Simone Nunes
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Samantha Hellen Santos Figuerêdo
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Bruno Sousa de Almeida
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Isac Patrick Conceição Santos
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Geovanni Dantas Cassali
- Comparative Pathology Laboratory, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, 6627 Av. Pres. Antônio Carlos, Belo Horizonte 31270-901, MG, Brazil
| | - Sérgio Marcos Arruda
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Thiago Marconi de Souza Cardoso
- Clinical Research Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| | - Alessandra Estrela-Lima
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador 40170-110, BA, Brazil
| | - Karine Araújo Damasceno
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão, Salvador 40296-710, BA, Brazil
| |
Collapse
|
4
|
Zhang B, He P, Lawrence JEG, Wang S, Tuck E, Williams BA, Roberts K, Kleshchevnikov V, Mamanova L, Bolt L, Polanski K, Li T, Elmentaite R, Fasouli ES, Prete M, He X, Yayon N, Fu Y, Yang H, Liang C, Zhang H, Blain R, Chedotal A, FitzPatrick DR, Firth H, Dean A, Bayraktar OA, Marioni JC, Barker RA, Storer MA, Wold BJ, Zhang H, Teichmann SA. A human embryonic limb cell atlas resolved in space and time. Nature 2024; 635:668-678. [PMID: 38057666 PMCID: PMC7616500 DOI: 10.1038/s41586-023-06806-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.
Collapse
Affiliation(s)
- Bao Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peng He
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Shuaiyu Wang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Genomics England, London, UK
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eirini S Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nadav Yayon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yixi Fu
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Liang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Chedotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Dean
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | | | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mekayla A Storer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongbo Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Larsson S, Lalande A, Stefan Lohmander L, Soret P, Bernard K, Pueyo M, Struglics A. Serum ARGS-aggrecan in a phase 2 clinical trial targeting osteoarthritis. Osteoarthritis Cartilage 2024; 32:1463-1470. [PMID: 38862084 DOI: 10.1016/j.joca.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To monitor serum concentrations of the aggrecan alanine-arginine-glycine-serine (ARGS) neoepitope in a clinical trial of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 inhibition as disease-modifying therapy of knee osteoarthritis, and to investigate relationships between reduction in ARGS and change in cartilage thickness, knee-related pain and function. DESIGN ROCCELLA trial participants received once-daily oral S201086 75, 150 or 300 mg, or placebo, for 52 weeks. Serum was collected at baseline, 4, 12, 28 and 52 weeks, and 2 weeks post-treatment with ARGS measured by an in-house immunoassay. Change from baseline to week 52 in central medial femorotibial compartment cartilage thickness was measured by magnetic resonance imaging, function and pain by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) subscores. Associations between cumulative change in ARGS and change in cartilage thickness or WOMAC subscores were evaluated by linear regression. RESULTS S201086 reduced serum levels of ARGS in a dose-dependent manner throughout the treatment period. Maximal reduction was at 4 weeks with a 58.5% [95% CI 60.8%, 56.2%] reduction of ARGS compared to baseline for 300 mg S201086. Two weeks post-treatment, ARGS concentrations rebounded with a dose-dependent overshoot compared to baseline levels. Cumulative change of ARGS concentration from baseline to week 52 had no effect on change in cartilage thickness (slope -0.8×10-6 [-2.9×10-6, 1.3×10-6]) or change in WOMAC pain and function (slopes -30×10-6 [-64×10-6, 5.2×10-6] and -97×10-6 [-214×10-6, 20×10-6], respectively) at week 52. CONCLUSION Systemic inhibition of ADAMTS-5 resulted in markedly reduced serum ARGS, but change in serum ARGS concentrations showed no association with the progression of cartilage thinning, or patient reported pain and function.
Collapse
Affiliation(s)
- Staffan Larsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | - Agnès Lalande
- Institut de Recherches et Développement Servier Paris SACLAY, Gif-sur-Yvette, France.
| | - L Stefan Lohmander
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | - Perrine Soret
- Institut de Recherches et Développement Servier Paris SACLAY, Gif-sur-Yvette, France.
| | - Katy Bernard
- Institut de Recherches et Développement Servier Paris SACLAY, Gif-sur-Yvette, France.
| | - Maria Pueyo
- Institut de Recherches et Développement Servier Paris SACLAY, Gif-sur-Yvette, France.
| | - André Struglics
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| |
Collapse
|
6
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
7
|
Debruin D, McRae NL, Addinsall AB, McCulloch DR, Barker RG, Debrincat D, Hayes A, Murphy RM, Stupka N. In dystrophic mdx hindlimb muscles where fibrosis is limited, versican haploinsufficiency transiently improves contractile function without reducing inflammation. Am J Physiol Cell Physiol 2024; 327:C1035-C1050. [PMID: 39159389 DOI: 10.1152/ajpcell.00320.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Versican is increased with inflammation and fibrosis, and is upregulated in Duchenne muscular dystrophy. In fibrotic diaphragm muscles from dystrophic mdx mice, genetic reduction of versican attenuated macrophage infiltration and improved contractile function. Versican is also implicated in myogenesis. Here, we investigated whether versican modulated mdx hindlimb muscle pathology, where inflammation and regeneration are increased but fibrosis is minimal. Immunohistochemistry and qRT-PCR were used to assess how fiber type and glucocorticoids (α-methylprednisolone) modify versican expression. To genetically reduce versican, female mdx and male versican haploinsufficient (hdf) mice were bred resulting in male mdx-hdf and mdx (control) pups. Versican expression, contractile function, and pathology were evaluated in hindlimb muscles. Versican immunoreactivity was greater in slow versus fast hindlimb muscles. Versican mRNA transcripts were reduced by α-methylprednisolone in soleus, but not in fast extensor digitorum longus, muscles. In juvenile (6-wk-old) mdx-hdf mice, versican expression was most robustly decreased in soleus muscles leading to improved force output and a modest reduction in fatiguability. These functional benefits were not accompanied by decreased inflammation. Muscle architecture, regeneration markers, and fiber type also did not differ between mdx-hdf mice and mdx littermates. Improvements in soleus contractile function were not retained in adult (20-wk-old) mdx-hdf mice. In conclusion, soleus muscles from juvenile mdx mice were most responsive to pharmacological or genetic approaches targeting versican; however, the benefits of versican reduction were limited due to low fibrosis. Preclinical matrix research in dystrophy should account for muscle phenotype (including age) and the interdependence between inflammation and fibrosis. NEW & NOTEWORTHY The proteoglycan versican is upregulated in muscular dystrophy. In fibrotic diaphragm muscles from mdx mice, versican reduction attenuated macrophage infiltration and improved performance. Here, in hindlimb muscles from 6- and 20-wk-old mdx mice, where pathology is mild, versican reduction did not decrease inflammation and contractile function improvements were limited to juvenile mice. In dystrophic mdx muscles, the association between versican and inflammation is mediated by fibrosis, demonstrating interdependence between the immune system and extracellular matrix.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Fibrosis
- Haploinsufficiency
- Hindlimb
- Inflammation/metabolism
- Inflammation/genetics
- Inflammation/pathology
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Contraction
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Versicans/genetics
- Versicans/metabolism
Collapse
Affiliation(s)
- Danielle Debruin
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Natasha L McRae
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Alex B Addinsall
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R McCulloch
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Robert G Barker
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Didier Debrincat
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Alan Hayes
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Sciences (AIMSS), Victoria University & Western Health, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Nicole Stupka
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Mead TJ, Bhutada S, Foulcer SJ, Peruzzi N, Nelson CM, Seifert DE, Larkin J, Tran-Lundmark K, Filmus J, Apte SS. Combined genetic-pharmacologic inactivation of tightly linked ADAMTS proteases in temporally specific windows uncovers distinct roles for versican proteolysis and glypican-6 in cardiac development. Matrix Biol 2024; 131:1-16. [PMID: 38750698 PMCID: PMC11526477 DOI: 10.1016/j.matbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Simon J Foulcer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Courtney M Nelson
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deborah E Seifert
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Karin Tran-Lundmark
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Jorge Filmus
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
9
|
Kaneko N, Hirai K, Oshima M, Yura K, Hattori M, Maeda N, Ohtaka-Maruyama C. ADAMTS2 promotes radial migration by activating TGF-β signaling in the developing neocortex. EMBO Rep 2024; 25:3090-3115. [PMID: 38871984 PMCID: PMC11239934 DOI: 10.1038/s44319-024-00174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
The mammalian neocortex is formed by sequential radial migration of newborn excitatory neurons. Migrating neurons undergo a multipolar-to-bipolar transition at the subplate (SP) layer, where extracellular matrix (ECM) components are abundantly expressed. Here, we investigate the role of the ECM at the SP layer. We show that TGF-β signaling-related ECM proteins, and their downstream effector, p-smad2/3, are selectively expressed in the SP layer. We also find that migrating neurons express a disintegrin and metalloproteinase with thrombospondin motif 2 (ADAMTS2), an ECM metalloproteinase, just below the SP layer. Knockdown and knockout of Adamts2 suppresses the multipolar-to-bipolar transition of migrating neurons and disturbs radial migration. Time-lapse luminescence imaging of TGF-β signaling indicates that ADAMTS2 activates this signaling pathway in migrating neurons during the multipolar-to-bipolar transition at the SP layer. Overexpression of TGF-β2 in migrating neurons partially rescues migration defects in ADAMTS2 knockout mice. Our data suggest that ADAMTS2 secreted by the migrating multipolar neurons activates TGF-β signaling by ECM remodeling of the SP layer, which might drive the multipolar to bipolar transition.
Collapse
Affiliation(s)
- Noe Kaneko
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Kumiko Hirai
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minori Oshima
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Kei Yura
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
10
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
11
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
12
|
Bacchetti R, Yuan S, Rainero E. ADAMTS Proteases: Their Multifaceted Role in the Regulation of Cancer Metastasis. DISEASES & RESEARCH 2024; 4:40-52. [PMID: 38948119 PMCID: PMC7616120 DOI: 10.54457/dr.202401004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cancer leads to nearly 10 million deaths worldwide per year. The tumour microenvironment (TME) is fundamental for tumour growth and progression. A key component of the TME, the extracellular matrix (ECM) has recently become a focus of interest in cancer research. Dysregulation of ECM synthesis and proteolysis leads to uncontrolled tumour growth and metastasis. Matrix remodelling enzymes, secreted by cancer cells and stromal cells, modify the overall structure and organisation of ECM proteins, therefore influencing biochemical interactions, tissue integrity and tissue turnover. While A Disintegrin and Metalloproteinases (ADAMs)' and matrix metalloproteinases' role in cancer has been deeply investigated, other proteolytic enzymes, like ADAMs with thrombospondin(-like) motifs (ADAMTSs) have been gaining interest due to their roles in modulating cancer cell-ECM interactions and oncogenic signalling pathways. In this review, we will discuss the dysregulation of ADAMTSs in cancer and their roles in regulating cancer development and progression, via ECM remodelling and cell signalling modulation.
Collapse
Affiliation(s)
- Rachele Bacchetti
- School of Biosciences, Department of Biomedical science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Shengnan Yuan
- School of Biosciences, Department of Biomedical science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Elena Rainero
- School of Biosciences, Department of Biomedical science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
13
|
Zhang Z, Song Z, Luo L, Zhu Z, Zuo X, Ju C, Wang X, Ma Y, Wu T, Yao Z, Zhou J, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation inhibits the expression of chondroitin sulfate proteoglycans after spinal cord injury via the Sox9 pathway. Neural Regen Res 2024; 19:180-189. [PMID: 37488865 PMCID: PMC10479858 DOI: 10.4103/1673-5374.374136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 07/26/2023] Open
Abstract
Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment. The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair. These proteins are thus candidate targets for spinal cord injury therapy. Our previous studies demonstrated that 810 nm photobiomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals. However, the specific mechanism and potential targets involved remain to be clarified. In this study, to investigate the therapeutic effect of photobiomodulation, we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm2 for 50 minutes once a day for 7 consecutive days. We found that photobiomodulation greatly restored motor function in mice and downregulated chondroitin sulfate proteoglycan expression in the injured spinal cord. Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury, and versican, a type of proteoglycan, was one of the most markedly changed molecules. Immunofluorescence staining showed that after spinal cord injury, versican was present in astrocytes in spinal cord tissue. The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction, whereas photobiomodulation inhibited the expression of versican. Furthermore, we found that the increased levels of p-Smad3, p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204, (E)-SIS3, and SB 202190. This suggests that Smad3/Sox9 and MAPK/Sox9 pathways may be involved in the effects of photobiomodulation. In summary, our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans, and versican is one of the key target molecules of photobiomodulation. MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photobiomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Beiyu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
14
|
Minns AF, Santamaria S. Determination of Versikine Levels by Enzyme-Linked Immunosorbent Assay (ELISA). Methods Mol Biol 2024; 2747:83-93. [PMID: 38038934 DOI: 10.1007/978-1-0716-3589-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The proteoglycan versican plays multiple roles in cancer progression, from promoting cell invasion and proliferation to evasion of immune surveillance. Metalloproteinases of the A Disintegrin and Metalloproteinase with Thrombospondin-like motif (ADAMTS) family cleave versican at a specific Glu-Ala bond, thus releasing a bioactive fragment named versikine, whose biological function, still not entirely revealed, seems that of antagonizing the effects of the parental molecule. Here we describe an enzyme-linked immunosorbent assay (ELISA) that specifically detects versikine in media, pure component systems, and biological fluids using neoepitope antibodies. Such antibodies recognize their target proteolytic fragment but not the intact, parental molecule. Versikine fragments are captured by neoepitope antibodies and detected by antibodies directed against its N-terminal globular (G1) domain. The method here described can therefore be used to measure ADAMTS versicanase activity and provides a quantitative alternative to immunoblotting.
Collapse
Affiliation(s)
- Alexander Frederick Minns
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, UK
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
15
|
Papadas A, Huang Y, Cicala A, Dou Y, Fields M, Gibbons A, Hong D, Lagal DJ, Quintana V, Rizo A, Zomalan B, Asimakopoulos F. Emerging roles for tumor stroma in antigen presentation and anti-cancer immunity. Biochem Soc Trans 2023; 51:2017-2028. [PMID: 38031753 PMCID: PMC10754280 DOI: 10.1042/bst20221083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Advances in immunotherapy in the last decade have revolutionized treatment paradigms across multiple cancer diagnoses. However, only a minority of patients derive durable benefit and progress with traditional approaches, such as cancer vaccines, remains unsatisfactory. A key to overcoming these barriers resides with a deeper understanding of tumor antigen presentation and the complex and dynamic heterogeneity of tumor-infiltrating antigen-presenting cells (APCs). Reminiscent of the 'second touch' hypothesis proposed by Klaus Ley for CD4+ T cell differentiation, the acquisition of full effector potential by lymph node- primed CD8+ T cells requires a second round of co-stimulation at the site where the antigen originated, i.e. the tumor bed. The tumor stroma holds a prime role in this process by hosting specialized APC niches, apparently distinct from tertiary lymphoid structures, that support second antigenic touch encounters and CD8+ T cell effector proliferation and differentiation. We propose that APC within second-touch niches become licensed for co-stimulation through stromal-derived instructive signals emulating embryonic or wound-healing provisional matrix remodeling. These immunostimulatory roles of stroma contrast with its widely accepted view as a physical and functional 'immune barrier'. Stromal control of antigen presentation makes evolutionary sense as the host stroma-tumor interface constitutes the prime line of homeostatic 'defense' against the emerging tumor. In this review, we outline how stroma-derived signals and cells regulate tumor antigen presentation and T-cell effector differentiation in the tumor bed. The re-definition of tumor stroma as immune rheostat rather than as inflexible immune barrier harbors significant untapped therapeutic opportunity.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yun Huang
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yaling Dou
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Matteo Fields
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alicia Gibbons
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Duncan Hong
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Daniel J. Lagal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Victoria Quintana
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alejandro Rizo
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Brolyn Zomalan
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| |
Collapse
|
16
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
17
|
Drysdale A, Unsworth AJ, White SJ, Jones S. The Contribution of Vascular Proteoglycans to Atherothrombosis: Clinical Implications. Int J Mol Sci 2023; 24:11854. [PMID: 37511615 PMCID: PMC10380219 DOI: 10.3390/ijms241411854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The vascular extracellular matrix (ECM) produced by endothelial and smooth muscle cells is composed of collagens and glycoproteins and plays an integral role in regulating the structure and function of the vascular wall. Alteration in the expression of these proteins is associated with endothelial dysfunction and has been implicated in the development and progression of atherosclerosis. The ECM composition of atherosclerotic plaques varies depending on plaque phenotype and vulnerability, with distinct differences observed between ruptured and erodes plaques. Moreover, the thrombi on the exposed ECM are diverse in structure and composition, suggesting that the best antithrombotic approach may differ depending on plaque phenotype. This review provides a comprehensive overview of the role of proteoglycans in atherogenesis and thrombosis. It discusses the differential expression of the proteoglycans in different plaque phenotypes and the potential impact on platelet function and thrombosis. Finally, the review highlights the importance of this concept in developing a targeted approach to antithrombotic treatments to improve clinical outcomes in cardiovascular disease.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| | - Amanda J. Unsworth
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| | - Stephen J. White
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;
| | - Sarah Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| |
Collapse
|
18
|
Nandadasa S, Martin D, Deshpande G, Robert KL, Stack MS, Itoh Y, Apte SS. Degradomic Identification of Membrane Type 1-Matrix Metalloproteinase as an ADAMTS9 and ADAMTS20 Substrate. Mol Cell Proteomics 2023; 22:100566. [PMID: 37169079 PMCID: PMC10267602 DOI: 10.1016/j.mcpro.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023] Open
Abstract
The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Imaging Core Facility, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Karyn L Robert
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry and Harper Cancer Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yoshifumi Itoh
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
19
|
Anthwal N, Urban DJ, Sadier A, Takenaka R, Spiro S, Simmons N, Behringer RR, Cretekos CJ, Rasweiler JJ, Sears KE. Insights into the formation and diversification of a novel chiropteran wing membrane from embryonic development. BMC Biol 2023; 21:101. [PMID: 37143038 PMCID: PMC10161559 DOI: 10.1186/s12915-023-01598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Through the evolution of novel wing structures, bats (Order Chiroptera) became the only mammalian group to achieve powered flight. This achievement preceded the massive adaptive radiation of bats into diverse ecological niches. We investigate some of the developmental processes that underlie the origin and subsequent diversification of one of the novel membranes of the bat wing: the plagiopatagium, which connects the fore- and hind limb in all bat species. RESULTS Our results suggest that the plagiopatagium initially arises through novel outgrowths from the body flank that subsequently merge with the limbs to generate the wing airfoil. Our findings further suggest that this merging process, which is highly conserved across bats, occurs through modulation of the programs controlling the development of the periderm of the epidermal epithelium. Finally, our results suggest that the shape of the plagiopatagium begins to diversify in bats only after this merging has occurred. CONCLUSIONS This study demonstrates how focusing on the evolution of cellular processes can inform an understanding of the developmental factors shaping the evolution of novel, highly adaptive structures.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Daniel J Urban
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA
| | - Risa Takenaka
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Nancy Simmons
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - John J Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, New York, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA.
| |
Collapse
|
20
|
Dupuis LE, Evins SE, Abell MC, Blakley ME, Horkey SL, Barth JL, Kern CB. Increased Proteoglycanases in Pulmonary Valves after Birth Correlate with Extracellular Matrix Maturation and Valve Sculpting. J Cardiovasc Dev Dis 2023; 10:27. [PMID: 36661922 PMCID: PMC9865826 DOI: 10.3390/jcdd10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Increased mechanical forces on developing cardiac valves drive formation of the highly organized extracellular matrix (ECM) providing tissue integrity and promoting cell behavior and signaling. However, the ability to investigate the response of cardiac valve cells to increased mechanical forces is challenging and remains poorly understood. The developmental window from birth (P0) to postnatal day 7 (P7) when biomechanical forces on the pulmonary valve (PV) are altered due to the initiation of blood flow to the lungs was evaluated in this study. Grossly enlarged PV, in mice deficient in the proteoglycan protease ADAMTS5, exhibited a transient phenotypic rescue from postnatal day 0 (P0) to P7; the Adamts5-/- aortic valves (AV) did not exhibit a phenotypic correction. We hypothesized that blood flow, initiated to the lungs at birth, alters mechanical load on the PV and promotes ECM maturation. In the Adamts5-/- PV, there was an increase in localization of the proteoglycan proteases ADAMTS1, MMP2, and MMP9 that correlated with reduced Versican (VCAN). At birth, Decorin (DCN), a Collagen I binding, small leucine-rich proteoglycan, exhibited complementary stratified localization to VCAN in the wild type at P0 but colocalized with VCAN in Adamts5-/- PV; concomitant with the phenotypic rescue at P7, the PVs in Adamts5-/- mice exhibited stratification of VCAN and DCN similar to wild type. This study indicates that increased mechanical forces on the PV at birth may activate ECM proteases to organize specialized ECM layers during cardiac valve maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine B. Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Porto SC, Rogers-DeCotes A, Schafer E, Kern CB. The adaptive response of the mandibular condyle to increased load is disrupted by ADAMTS5 deficiency. Connect Tissue Res 2023; 64:93-104. [PMID: 35913086 PMCID: PMC9852085 DOI: 10.1080/03008207.2022.2102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the impact of increased load on the temporomandibular joint (TMJ) from mice deficient in the extracellular matrix protease ADAMTS5. MATERIALS AND METHODS Wire springs exerting 0.5 N for 1 h/day for 5 days (Adamts5+/+ -n = 18; Adamts5-/- n = 19) or 0.8 N for 1 h/day for 10 days (Adamts5+/+-n = 18; Adamts5-/- n = 17) were used to increase murine TMJ load. Safranin O-staining was used to determine mandibular condylar cartilage (MCC) morphology. Chondrogenic factors Sox9 and aggrecan were immunolocalized. Microcomputed topography was employed to evaluate mineralized tissues, and Tartrate-Resistant Acid Phosphatase staining was used to quantify osteoclasts. RESULTS Increased load on the mandibular condyle of Adamts5-/- mice resulted in an increase in the hypertrophic zone of mandibular condylar cartilage (MCC) compared to normal load (NL) (P < 0.01). In the trabecular bone of the mandibular condyle, the total volume (TV), bone volume (BV), trabecular thickness (TbTh), and trabecular separation (TbSp) of the mandibular condyles in Adamts5-/- mice (n = 27) did not change significantly with increased load, compared to Adamts5+/+ (n = 38) that exhibited significant responses (TV-P < 0.05; BV-P < 0.001; TbTh-P < 0.01; TbSp-P < 0.01). The bone volume fraction (BV/TV) was significantly reduced in response to increased load in both Adamts5-/- (P < 0.05) and Adamts5+/+ mandibular condyles (P < 0.001) compared to NL. Increased load in Adamts5-/- mandibular condyles also resulted in a dramatic increase in osteoclasts compared to Adamts5-/- NL (P < 0.001) and to Adamts5+/+ with increased load (P < 01). CONCLUSION The trabeculated bone of the Adamts5-/- mandibular condyle was significantly less responsive to the increased load compared to Adamts5+/+. ADAMTS5 may be required for mechanotransduction in the trabeculated bone of the mandibular condyle.
Collapse
Affiliation(s)
- Sarah C. Porto
- Department of Health and Human Performance, College of Charleston, Charleston, SC 29424
| | - Alexandra Rogers-DeCotes
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC 29525
| | - Emmaline Schafer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC 29525
| | - Christine B. Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC 29525
| |
Collapse
|
22
|
Boschann F, Cogulu MÖ, Pehlivan D, Balachandran S, Vallecillo-Garcia P, Grochowski CM, Hansmeier NR, Coban Akdemir ZH, Prada-Medina CA, Aykut A, Fischer-Zirnsak B, Badura S, Durmaz B, Ozkinay F, Hägerling R, Posey JE, Stricker S, Gillessen-Kaesbach G, Spielmann M, Horn D, Brockmann K, Lupski JR, Kornak U, Schmidt J. Biallelic variants in ADAMTS15 cause a novel form of distal arthrogryposis. Genet Med 2022; 24:2187-2193. [PMID: 35962790 PMCID: PMC9982667 DOI: 10.1016/j.gim.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. METHODS Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. RESULTS We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. CONCLUSION In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome.
Collapse
Affiliation(s)
- Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Muhsin Ö Cogulu
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Saranya Balachandran
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, Kiel University, Kiel, Germany
| | | | | | - Nils R Hansmeier
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Zeynep H Coban Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, The University of Texas, Houston, TX
| | - Cesar A Prada-Medina
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ayca Aykut
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon Badura
- Interdisciplinary Pediatric Center for Children With Developmental Disabilities and Severe Chronic Disorders, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Burak Durmaz
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - René Hägerling
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Sigmar Stricker
- Institute of Biochemistry, Freie University Berlin, Berlin, Germany
| | | | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, Kiel University, Kiel, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children With Developmental Disabilities and Severe Chronic Disorders, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Julia Schmidt
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Mead TJ, Bhutada S, Martin DR, Apte SS. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 2022; 323:C651-C665. [PMID: 35785985 PMCID: PMC9448339 DOI: 10.1152/ajpcell.00215.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
24
|
Papadas A, Deb G, Cicala A, Officer A, Hope C, Pagenkopf A, Flietner E, Morrow ZT, Emmerich P, Wiesner J, Arauz G, Bansal V, Esbona K, Capitini CM, Matkowskyj KA, Deming DA, Politi K, Abrams SI, Harismendy O, Asimakopoulos F. Stromal remodeling regulates dendritic cell abundance and activity in the tumor microenvironment. Cell Rep 2022; 40:111201. [PMID: 35977482 PMCID: PMC9402878 DOI: 10.1016/j.celrep.2022.111201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulatory type 1 conventional dendritic cells (cDC1s) engage in productive interactions with CD8+ effectors along tumor-stroma boundaries. The paradoxical accumulation of “poised” cDC1s within stromal sheets is unlikely to simply reflect passive exclusion from tumor cores. Drawing parallels with embryonic morphogenesis, we hypothesized that invasive margin stromal remodeling generates developmentally conserved cell fate cues that regulate cDC1 behavior. We find that, in human T cell-inflamed tumors, CD8+ T cells penetrate tumor nests, whereas cDC1s are confined within adjacent stroma that recurrently displays site-specific proteolysis of the matrix proteoglycan versican (VCAN), an essential organ-sculpting modification in development. VCAN is necessary, and its proteolytic fragment (matrikine) versikine is sufficient for cDC1 accumulation. Versikine does not influence tumor-seeding pre-DC differentiation; rather, it orchestrates a distinctive cDC1 activation program conferring exquisite sensitivity to DNA sensing, supported by atypical innate lymphoid cells. Thus, peritumoral stroma mimicking embryonic provisional matrix remodeling regulates cDC1 abundance and activity to elicit T cell-inflamed tumor microenvironments. T cell-inflamed tumor microenvironments are a prerequisite for immunotherapy efficacy; however, why some tumors are inflamed and others not remains poorly understood. Papadas et al. link stromal reaction dynamics with T cell-induced inflammation. Peritumoral stroma emulating embryonic provisional matrix remodeling regulates cDC1-NK-CD8+ crosstalk to promote T cell repriming and penetration into tumor nests.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Adam Officer
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Chelsea Hope
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Pagenkopf
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan Flietner
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary T Morrow
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip Emmerich
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Varun Bansal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Karla Esbona
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian M Capitini
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristina A Matkowskyj
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
25
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
26
|
Cassim A, Hettiarachchi D, Dissanayake VHW. Genetic determinants of syndactyly: perspectives on pathogenesis and diagnosis. Orphanet J Rare Dis 2022; 17:198. [PMID: 35549993 PMCID: PMC9097448 DOI: 10.1186/s13023-022-02339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The formation of the digits is a tightly regulated process. During embryogenesis, disturbance of genetic pathways in limb development could result in syndactyly; a common congenital malformation consisting of webbing in adjacent digits. Currently, there is a paucity of knowledge regarding the exact developmental mechanism leading to this condition. The best studied canonical interactions of Wingless‐type–Bone Morphogenic Protein–Fibroblast Growth Factor (WNT–BMP–FGF8), plays a role in the interdigital cell death (ICD) which is thought to be repressed in human syndactyly. Animal studies have displayed other pathways such as the Notch signaling, metalloprotease and non-canonical WNT-Planar cell polarity (PCP), to also contribute to failure of ICD, although less prominence has been given. The current diagnosis is based on a clinical evaluation followed by radiography when indicated, and surgical release of digits at 6 months of age is recommended. This review discusses the interactions repressing ICD in syndactyly, and characterizes genes associated with non-syndromic and selected syndromes involving syndactyly, according to the best studied canonical WNT-BMP-FGF interactions in humans. Additionally, the controversies regarding the current syndactyly classification and the effect of non-coding elements are evaluated, which to our knowledge has not been previously highlighted. The aim of the review is to better understand the developmental process leading to this condition.
Collapse
Affiliation(s)
- Afraah Cassim
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka.
| | - Dineshani Hettiarachchi
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| | - Vajira H W Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, Sri Lanka
| |
Collapse
|
27
|
Mead TJ, Martin DR, Wang LW, Cain SA, Gulec C, Cahill E, Mauch J, Reinhardt D, Lo C, Baldock C, Apte SS. Proteolysis of fibrillin-2 microfibrils is essential for normal skeletal development. eLife 2022; 11:71142. [PMID: 35503090 PMCID: PMC9064305 DOI: 10.7554/elife.71142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Daniel R Martin
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Lauren W Wang
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Stuart A Cain
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Cagri Gulec
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elisabeth Cahill
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Joseph Mauch
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Dieter Reinhardt
- Faculty of Medicine and Health Sciences and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| |
Collapse
|
28
|
Abstract
Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores TGFb and BMPs and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.
Collapse
Affiliation(s)
- Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
29
|
MacDonald BT, Keshishian H, Mundorff CC, Arduini A, Lai D, Bendinelli K, Popp NR, Bhandary B, Clauser KR, Specht H, Elowe NH, Laprise D, Xing Y, Kaushik VK, Carr SA, Ellinor PT. TAILS Identifies Candidate Substrates and Biomarkers of ADAMTS7, a Therapeutic Protease Target in Coronary Artery Disease. Mol Cell Proteomics 2022; 21:100223. [PMID: 35283288 PMCID: PMC9035411 DOI: 10.1016/j.mcpro.2022.100223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutations in the secreted enzyme ADAMTS7 (a disintegrin and metalloproteinase with thrombospondin motifs 7) are associated with protection for coronary artery disease. ADAMTS7 catalytic inhibition has been proposed as a therapeutic strategy for treating coronary artery disease; however, the lack of an endogenous substrate has hindered the development of activity-based biomarkers. To identify ADAMTS7 extracellular substrates and their cleavage sites relevant to vascular disease, we used TAILS (terminal amine isotopic labeling of substrates), a method for identifying protease-generated neo-N termini. We compared the secreted proteome of vascular smooth muscle and endothelial cells expressing either full-length mouse ADAMTS7 WT, catalytic mutant ADAMTS7 E373Q, or a control luciferase adenovirus. Significantly enriched N-terminal cleavage sites in ADAMTS7 WT samples were compared to the negative control conditions and filtered for stringency, resulting in catalogs of high confidence candidate ADAMTS7 cleavage sites from our three independent TAILS experiments. Within the overlap of these discovery sets, we identified 24 unique cleavage sites from 16 protein substrates, including cleavage sites in EFEMP1 (EGF-containing fibulin-like extracellular matrix protein 1/Fibulin-3). The ADAMTS7 TAILS preference for EFEMP1 cleavage at the amino acids 123.124 over the adjacent 124.125 site was validated using both endogenous EFEMP1 and purified EFEMP1 in a binary in vitro cleavage assay. Collectively, our TAILS discovery experiments have uncovered hundreds of potential substrates and cleavage sites to explore disease-related biological substrates and facilitate activity-based ADAMTS7 biomarker development.
Collapse
Affiliation(s)
- Bryan T MacDonald
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Hasmik Keshishian
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Charles C Mundorff
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alessandro Arduini
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Daniel Lai
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kayla Bendinelli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas R Popp
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Bidur Bhandary
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Karl R Clauser
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Harrison Specht
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nadine H Elowe
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dylan Laprise
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yi Xing
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Islam S, Jahan N, Shahida A, Karnan S, Watanabe H. Accumulation of versican and lack of versikine ameliorate acute colitis. Matrix Biol 2022; 107:59-76. [DOI: 10.1016/j.matbio.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
31
|
Clement-Lacroix P, Little CB, Smith MM, Cottereaux C, Merciris D, Meurisse S, Mollat P, Touitou R, Brebion F, Gosmini R, De Ceuninck F, Botez I, Lepescheux L, van der Aar E, Christophe T, Vandervoort N, Blanqué R, Comas D, Deprez P, Amantini D. Pharmacological characterization of GLPG1972/S201086, a potent and selective small-molecule inhibitor of ADAMTS5. Osteoarthritis Cartilage 2022; 30:291-301. [PMID: 34626798 DOI: 10.1016/j.joca.2021.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) is a key enzyme in degradation of cartilage in osteoarthritis (OA). We report the pharmacological characterization of GLPG1972/S201086, a new, potent and selective small-molecule ADAMTS5 inhibitor. METHODS Potency and selectivity of GLPG1972/S201086 for ADAMTS5 were determined using fluorescently labeled peptide substrates. Inhibitory effects of GLPG1972/S201086 on interleukin-1α-stimulated glycosaminoglycan release in mouse femoral head cartilage explants and on interleukin-1β-stimulated release of an ADAMTS5-derived aggrecan neoepitope (quantified with ELISA) in human articular cartilage explants were determined. In the destabilization of the medial meniscus (DMM) mouse and menisectomized (MNX) rat models, effects of oral GLPG1972/S201086 on relevant OA histological and histomorphometric parameters were evaluated. RESULTS GLPG1972/S201086 inhibited human and rat ADAMTS5 (IC50 ± SD: 19 ± 2 nM and <23 ± 1 nM, respectively), with 8-fold selectivity over ADAMTS4, and 60->5,000-fold selectivity over other related proteases in humans. GLPG1972/S201086 dose-dependently inhibited cytokine-stimulated aggrenolysis in mouse and human cartilage explants (100% at 20 μM and 10 μM, respectively). In DMM mice, GLPG1972/S201086 (30-120 mg/kg b.i.d) vs vehicle reduced femorotibial cartilage proteoglycan loss (23-37%), cartilage structural damage (23-39%) and subchondral bone sclerosis (21-36%). In MNX rats, GLPG1972/S201086 (10-50 mg/kg b.i.d) vs vehicle reduced cartilage damage (OARSI score reduction, 6-23%), and decreased proteoglycan loss (∼27%) and subchondral bone sclerosis (77-110%). CONCLUSIONS GLPG1972/S201086 is a potent, selective and orally available ADAMTS5 inhibitor, demonstrating significant protective efficacy on both cartilage and subchondral bone in two relevant in vivo preclinical OA models.
Collapse
Affiliation(s)
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, University of Sydney, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | - M M Smith
- Raymond Purves Bone and Joint Research Laboratories, University of Sydney, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | | | | | | - P Mollat
- Galapagos SASU, Romainville, France.
| | - R Touitou
- Galapagos SASU, Romainville, France.
| | - F Brebion
- Galapagos SASU, Romainville, France.
| | - R Gosmini
- Galapagos SASU, Romainville, France.
| | | | - I Botez
- Institut de Recherches Servier, France.
| | | | | | | | | | - R Blanqué
- Galapagos SASU, Romainville, France.
| | - D Comas
- Galapagos SASU, Romainville, France.
| | - P Deprez
- Galapagos SASU, Romainville, France.
| | | |
Collapse
|
32
|
Li J, Glover JD, Zhang H, Peng M, Tan J, Mallick CB, Hou D, Yang Y, Wu S, Liu Y, Peng Q, Zheng SC, Crosse EI, Medvinsky A, Anderson RA, Brown H, Yuan Z, Zhou S, Xu Y, Kemp JP, Ho YYW, Loesch DZ, Wang L, Li Y, Tang S, Wu X, Walters RG, Lin K, Meng R, Lv J, Chernus JM, Neiswanger K, Feingold E, Evans DM, Medland SE, Martin NG, Weinberg SM, Marazita ML, Chen G, Chen Z, Zhou Y, Cheeseman M, Wang L, Jin L, Headon DJ, Wang S. Limb development genes underlie variation in human fingerprint patterns. Cell 2022; 185:95-112.e18. [PMID: 34995520 PMCID: PMC8740935 DOI: 10.1016/j.cell.2021.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/20/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.
Collapse
Affiliation(s)
- Jinxi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - James D Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Haiguo Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Meifang Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Chandana Basu Mallick
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK; Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dan Hou
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Sijie Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Edie I Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Helen Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu 225326, PRC
| | - Shen Zhou
- Shanghai Foreign Language School, Shanghai 200083, PRC
| | - Yanqing Xu
- Forest Ridge School of the Sacred Heart, Bellevue, WA 98006, USA
| | - John P Kemp
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y W Ho
- QIMR Berghofer Medical Rese Institute, Brisbane, QLD, Australia
| | - Danuta Z Loesch
- Psychology Department, La Trobe University, Melbourne, VIC, Australia
| | | | | | | | - Xiaoli Wu
- WeGene, Shenzhen, Guangdong 518040, PRC
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Medical Research Council Population Health Research Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ruogu Meng
- Center for Data Science in Health and Medicine, Peking University, Beijing 100191, PRC
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, PRC
| | - Jonathan M Chernus
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Katherine Neiswanger
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David M Evans
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Rese Institute, Brisbane, QLD, Australia
| | | | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mary L Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219, USA; Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gang Chen
- WeGene, Shenzhen, Guangdong 518040, PRC
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Medical Research Council Population Health Research Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PRC
| | - Michael Cheeseman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, PRC; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai 200438, PRC.
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, PRC.
| |
Collapse
|
33
|
Papadas A, Cicala A, Kraus SG, Arauz G, Tong A, Deming D, Asimakopoulos F. Versican in Tumor Progression, Tumor–Host Interactions, and Cancer Immunotherapy. BIOLOGY OF EXTRACELLULAR MATRIX 2022:93-118. [DOI: 10.1007/978-3-030-99708-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Martin DR, Santamaria S, Koch CD, Ahnström J, Apte SS. Identification of novel ADAMTS1, ADAMTS4 and ADAMTS5 cleavage sites in versican using a label-free quantitative proteomics approach. J Proteomics 2021; 249:104358. [PMID: 34450332 PMCID: PMC8713443 DOI: 10.1016/j.jprot.2021.104358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
The chondroitin sulfate proteoglycan versican is important for embryonic development and several human disorders. The versican V1 splice isoform is widely expressed and cleaved by ADAMTS proteases at a well-characterized site, Glu441-Ala442. Since ADAMTS proteases cleave the homologous proteoglycan aggrecan at multiple sites, we hypothesized that additional cleavage sites existed within versican. We report a quantitative label-free approach that ranks abundance of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-identified semi-tryptic peptides after versican digestion by ADAMTS1, ADAMTS4 and ADAMTS5 to identify site-specific cleavages. Recombinant purified versican V1 constructs were digested with the recombinant full-length proteases, using catalytically inactive mutant proteases in control digests. Semi-tryptic peptide abundance ratios determined by LC-MS/MS in ADAMTS:control digests were compared to the mean of all identified peptides to obtain a z-score by which outlier peptides were ranked, using semi-tryptic peptides identifying Glu441 -Ala442 cleavage as the benchmark. Tryptic peptides with higher abundance in control digests supported cleavage site identification. We identified several novel cleavage sites supporting the ADAMTS1/4/5 cleavage site preference for a P1-Glu residue in proteoglycan substrates. Digestion of proteins in vitro and application of this z-score approach is potentially widely applicable for mapping protease cleavage sites using label-free proteomics. SIGNIFICANCE: Versican abundance and turnover are relevant to the pathogenesis of several human disorders. Versican is cleaved by A Disintegrin-like And Metalloprotease with Thrombospondin type 1 motifs (ADAMTS) family members at Glu441-Ala442, generating a bioactive proteoform called versikine, but additional cleavage sites and the site-specificity of individual ADAMTS proteases is unexplored. Here, we used a label-free proteomics strategy to identify versican cleavage sites for 3 ADAMTS proteases, applying a novel z-score-based statistical approach to compare the protease digests of versican to controls (digests with inactive protease) using the known protease cleavage site as a benchmark. We identified 21 novel cleavage sites that had a comparable z-score to the benchmark. Given the functional significance of versikine, they represent potentially significant cleavages and helped to refine a substrate site preference for each protease.The z-score approach is potentially widely applicable for discovery of site-specific cleavages within an purified protein or small ensemble of proteins using any protease.
Collapse
Affiliation(s)
- Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, 5th Floor Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom
| | - Christopher D Koch
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, 5th Floor Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
35
|
Isolation and Purification of Versican and Analysis of Versican Proteolysis. Methods Mol Biol 2021. [PMID: 34626407 DOI: 10.1007/978-1-0716-1398-6_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Versican is a widely distributed chondroitin sulfate proteoglycan that forms large complexes with the glycosaminoglycan hyaluronan (HA). As a consequence of HA binding to its receptor CD44 and interactions of the versican C-terminal globular (G3) domain with a variety of extracellular matrix proteins, versican is a key component of well-defined networks in pericellular matrix and extracellular matrix. Versican is crucial for several developmental processes in the embryo ranging from cardiac development to digit separation, and there is an increasing interest in its roles in cancer and inflammation. Versican proteolysis by ADAMTS proteases is highly regulated, occurs at specific peptide bonds, and is relevant to several physiological and disease mechanisms. In this chapter, methods are described for the isolation and detection of intact and cleaved versican in tissues using morphologic and biochemical techniques. These, together with the methodologies for purification and analysis of recombinant versican and an N-terminal versican fragment named versikine that are provided here, are likely to facilitate further progress on the biology of versican and its proteolysis.
Collapse
|
36
|
Jiang L, Lin J, Zhao S, Wu J, Jin Y, Yu L, Wu N, Wu Z, Wang Y, Lin M. ADAMTS5 in Osteoarthritis: Biological Functions, Regulatory Network, and Potential Targeting Therapies. Front Mol Biosci 2021; 8:703110. [PMID: 34434966 PMCID: PMC8381022 DOI: 10.3389/fmolb.2021.703110] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 01/16/2023] Open
Abstract
ADAMTS5 is involved in the pathogenesis of OA. As the major aggrecanase-degrading articular cartilage matrix, ADAMTS5, has been regarded as a potential target for OA treatment. We here provide an updated insight on the regulation of ADAMTS5 and newly discovered therapeutic strategies for OA. Pathophysiological and molecular mechanisms underlying articular inflammation and mechanotransduction, as well as chondrocyte hypertrophy were discussed, and the role of ADAMTS5 in each biological process was reviewed, respectively. Senescence, inheritance, inflammation, and mechanical stress are involved in the overactivation of ADAMTS5, contributing to the pathogenesis of OA. Multiple molecular signaling pathways were observed to modulate ADAMTS5 expression, namely, Runx2, Fgf2, Notch, Wnt, NF-κB, YAP/TAZ, and the other inflammatory signaling pathways. Based on the fundamental understanding of ADAMTS5 in OA pathogenesis, monoclonal antibodies and small molecule inhibitors against ADAMTS5 were developed and proved to be beneficial pre-clinically both in vitro and in vivo. Recent novel RNA therapies demonstrated potentials in OA animal models. To sum up, ADAMTS5 inhibition and its signaling pathway–based modulations showed great potential in future therapeutic strategies for OA.
Collapse
Affiliation(s)
- Lejian Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiachen Lin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqian Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongming Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yu
- Department of Operating Room, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Timms KP, Maurice SB. Context-dependent bioactivity of versican fragments. Glycobiology 2021; 30:365-373. [PMID: 31651027 DOI: 10.1093/glycob/cwz090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Versican (VCAN) proteolysis and the accumulation of VCAN fragments occur in many developmental and disease processes, affecting extracellular matrix (ECM) structure and cell phenotype. Little is known about the significance of proteolysis and the roles of fragments, or how this ECM remodeling affects the microenvironment and phenotype of diseased cells. G1-DPEAAE fragments promote aspects of epithelial-mesenchymal transitioning in developing and diseased cells, resulting in cell migration. Enhanced proliferation and invasion of tumor and endothelial cells is directly associated with G1 domain deposition and G1-DPEAAE localization respectively. These tumorigenic and angiogenic roles could explain the disease exacerbating effect often associated with G1-containing fragments, however, the pathogenicity of G1 fragments depends entirely upon the context. Overall, VCAN fragments promote tumorigenesis and inflammation; however, the specific cleavage site, the extent of cleavage activity and the microenvironment in which cleavage occurs collectively determine how this pleiotropic molecule and its fragments influence cells.
Collapse
Affiliation(s)
- Katherine Payne Timms
- University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sean Bertram Maurice
- Northern Medical Program, University of Northern British Columbia, Dr. Donald Rix Northern Health Sciences Centre, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
38
|
Kern CB. Excess Provisional Extracellular Matrix: A Common Factor in Bicuspid Aortic Valve Formation. J Cardiovasc Dev Dis 2021; 8:92. [PMID: 34436234 PMCID: PMC8396938 DOI: 10.3390/jcdd8080092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most common cardiac malformation, found in 0.5% to 2% of the population. BAVs are present in approximately 50% of patients with severe aortic stenosis and are an independent risk factor for aortic aneurysms. Currently, there are no therapeutics to treat BAV, and the human mutations identified to date represent a relatively small number of BAV patients. However, the discovery of BAV in an increasing number of genetically modified mice is advancing our understanding of molecular pathways that contribute to BAV formation. In this study, we utilized the comparison of BAV phenotypic characteristics between murine models as a tool to advance our understanding of BAV formation. The collation of murine BAV data indicated that excess versican within the provisional extracellular matrix (P-ECM) is a common factor in BAV development. While the percentage of BAVs is low in many of the murine BAV models, the remaining mutant mice exhibit larger and more amorphous tricuspid AoVs, also with excess P-ECM compared to littermates. The identification of common molecular characteristics among murine BAV models may lead to BAV therapeutic targets and biomarkers of disease progression for this highly prevalent and heterogeneous cardiovascular malformation.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Regenerative Medicine and Cell Biology, 171 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
39
|
Rose KWJ, Taye N, Karoulias SZ, Hubmacher D. Regulation of ADAMTS Proteases. Front Mol Biosci 2021; 8:701959. [PMID: 34268335 PMCID: PMC8275829 DOI: 10.3389/fmolb.2021.701959] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
A disintegrin and metalloprotease with thrombospondin type I motifs (ADAMTS) proteases are secreted metalloproteinases that play key roles in the formation, homeostasis and remodeling of the extracellular matrix (ECM). The substrate spectrum of ADAMTS proteases can range from individual ECM proteins to entire families of ECM proteins, such as the hyalectans. ADAMTS-mediated substrate cleavage is required for the formation, remodeling and physiological adaptation of the ECM to the needs of individual tissues and organ systems. However, ADAMTS proteases can also be involved in the destruction of tissues, resulting in pathologies such as arthritis. Specifically, ADAMTS4 and ADAMTS5 contribute to irreparable cartilage erosion by degrading aggrecan, which is a major constituent of cartilage. Arthritic joint damage is a major contributor to musculoskeletal morbidity and the most frequent clinical indication for total joint arthroplasty. Due to the high sequence homology of ADAMTS proteases in their catalytically active site, it remains a formidable challenge to design ADAMTS isotype-specific inhibitors that selectively inhibit ADAMTS proteases responsible for tissue destruction without affecting the beneficial functions of other ADAMTS proteases. In vivo, proteolytic activity of ADAMTS proteases is regulated on the transcriptional and posttranslational level. Here, we review the current knowledge of mechanisms that regulate ADAMTS protease activity in tissues including factors that induce ADAMTS gene expression, consequences of posttranslational modifications such as furin processing, the role of endogenous inhibitors and pharmacological approaches to limit ADAMTS protease activity in tissues, which almost exclusively focus on inhibiting the aggrecanase activity of ADAMTS4 and ADAMTS5.
Collapse
Affiliation(s)
| | | | | | - Dirk Hubmacher
- Orthopaedic Research Laboratories, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
40
|
Nandadasa S, Burin des Roziers C, Koch C, Tran-Lundmark K, Dours-Zimmermann MT, Zimmermann DR, Valleix S, Apte SS. A new mouse mutant with cleavage-resistant versican and isoform-specific versican mutants demonstrate that proteolysis at the Glu 441-Ala 442 peptide bond in the V1 isoform is essential for interdigital web regression. Matrix Biol Plus 2021; 10:100064. [PMID: 34195596 PMCID: PMC8233476 DOI: 10.1016/j.mbplus.2021.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Two inherent challenges in the mechanistic interpretation of protease-deficient phenotypes are defining the specific substrate cleavages whose reduction generates the phenotypes and determining whether the phenotypes result from loss of substrate function, substrate accumulation, or loss of a function(s) embodied in the substrate fragments. Hence, recapitulation of a protease-deficient phenotype by a cleavage-resistant substrate would stringently validate the importance of a proteolytic event and clarify the underlying mechanisms. Versican is a large proteoglycan required for development of the circulatory system and proper limb development, and is cleaved by ADAMTS proteases at the Glu441-Ala442 peptide bond located in its alternatively spliced GAGβ domain. Specific ADAMTS protease mutants have impaired interdigit web regression leading to soft tissue syndactyly that is associated with reduced versican proteolysis. Versikine, the N-terminal proteolytic fragment generated by this cleavage, restores interdigit apoptosis in ADAMTS mutant webs. Here, we report a new mouse transgene, Vcan AA, with validated mutations in the GAGβ domain that specifically abolish this proteolytic event. Vcan AA/AA mice have partially penetrant hindlimb soft tissue syndactyly. However, Adamts20 inactivation in Vcan AA/AA mice leads to fully penetrant, more severe syndactyly affecting all limbs, suggesting that ADAMTS20 cleavage of versican at other sites or of other substrates is an additional requirement for web regression. Indeed, immunostaining with a neoepitope antibody against a cleavage site in the versican GAGα domain demonstrated reduced staining in the absence of ADAMTS20. Significantly, mice with deletion of Vcan exon 8, encoding the GAGβ domain, consistently developed soft tissue syndactyly, whereas mice unable to include exon 7, encoding the GAGα domain in Vcan transcripts, consistently had fully separated digits. These findings suggest that versican is cleaved within each GAG-bearing domain during web regression, and affirms that proteolysis in the GAGβ domain, via generation of versikine, has an essential role in interdigital web regression.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Cyril Burin des Roziers
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Paris Descartes University Medical School, 24, Rue du faubourg Saint Jacques, 75014 Paris, France
| | - Christopher Koch
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | | | - Dieter R. Zimmermann
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sophie Valleix
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Paris Descartes University Medical School, 24, Rue du faubourg Saint Jacques, 75014 Paris, France
| | - Suneel S. Apte
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
41
|
Neupane S, Goto J, Berardinelli SJ, Ito A, Haltiwanger RS, Holdener BC. Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ. Glycobiology 2021; 31:988-1004. [PMID: 33909046 DOI: 10.1093/glycob/cwab033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded Thrombospondin Type 1 Repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9, suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9, and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin (SSPO) TSRs were modified with O-linked glucose-fucose, and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant subcommissural organ intracellular SSPO levels were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
42
|
Rogers-DeCotes AW, Porto SC, Dupuis LE, Kern CB. ADAMTS5 is required for normal trabeculated bone development in the mandibular condyle. Osteoarthritis Cartilage 2021; 29:547-557. [PMID: 33561540 PMCID: PMC8759092 DOI: 10.1016/j.joca.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine the role of the extracellular matrix protease ADAMTS5 in development of the trabeculated bone of the mandibular condyle. METHODS The mandibular condyles of wild type and mice deficient in the protease ADAMTS5 were examined for histopathology with Safranin O staining. Microcomputed tomography was performed to analyze the developing bone of the mandibular condyle. RNAscope and immunohistochemistry were utilized to investigate cell type and extracellular matrix expression. RESULTS Mice deficient in Adamts5, (Adamts5tm1Dgen/J) exhibit an increase in trabecular separation (n = 37 wild type; n = 27: P < 0.0001) and reduction of trabecular thickness P = 0.0116 and bone volume fraction P = 0.0869 in the mandibular condylar head compared to wild type littermates. The altered bone parameters were more pronounced in male Adamts5-/- mice compared to female Adamts5-/- mice (TbSp; P = 0.03). Adamts5 was co-expressed with versican and Gli1 in mesenchymal, stem-like cells in the transition zone where the trabeculated bone is adjacent to mature hypertrophic chondrocytes. Loss of Adamts5 caused a reduction of Bglap expressing osteoblasts throughout mandibular condylar development and in young adult mice. The protease Mmp13, that is involved in mineralization and is expressed by hypertrophic chondrocytes and osteoblasts, was reduced in the mandibular condyle of Adamts5 deficient mice. CONCLUSION This is the first report of a novel and critical role for Adamts5 in bone formation within the mandibular condyle of the temporomandibular joint. These data indicate Adamts5 may be required in the transdifferentiation of hypertrophic chondrocytes to osteoblasts during trabecular bone formation in development of the mandibular condyle.
Collapse
Affiliation(s)
- A W Rogers-DeCotes
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29525, USA
| | - S C Porto
- Department of Health and Human Performance, College of Charleston, Charleston, SC, 29424, USA
| | - L E Dupuis
- Medical University of South Carolina, Division of Cardiothoracic Surgery, Charleston, SC, 29525, USA
| | - C B Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29525, USA.
| |
Collapse
|
43
|
Fontanil T, Mohamedi Y, Espina-Casado J, Obaya ÁJ, Cobo T, Cal S. Hyalectanase Activities by the ADAMTS Metalloproteases. Int J Mol Sci 2021; 22:ijms22062988. [PMID: 33804223 PMCID: PMC8000579 DOI: 10.3390/ijms22062988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The hyalectan family is composed of the proteoglycans aggrecan, versican, brevican and neurocan. Hyalectans, also known as lecticans, are components of the extracellular matrix of different tissues and play essential roles in key biological processes including skeletal development, and they are related to the correct maintenance of the vascular and central nervous system. For instance, hyalectans participate in the organization of structures such as perineural nets and in the regulation of neurite outgrowth or brain recovery following a traumatic injury. The ADAMTS (A Disintegrin and Metalloprotease domains, with thrombospondin motifs) family consists of 19 secreted metalloproteases. These enzymes also perform important roles in the structural organization and function of the extracellular matrix through interactions with other matrix components or as a consequence of their catalytic activity. In this regard, some of their preferred substrates are the hyalectans. In fact, ADAMTSs cleave hyalectans not only as a mechanism for clearance or turnover of proteoglycans but also to generate bioactive fragments which display specific functions. In this article we review some of the physiological and pathological effects derived from cleavages of hyalectans mediated by ADAMTSs.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
| | - Jorge Espina-Casado
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| |
Collapse
|
44
|
Hong CC, Tang AT, Detter MR, Choi JP, Wang R, Yang X, Guerrero AA, Wittig CF, Hobson N, Girard R, Lightle R, Moore T, Shenkar R, Polster SP, Goddard LM, Ren AA, Leu NA, Sterling S, Yang J, Li L, Chen M, Mericko-Ishizuka P, Dow LE, Watanabe H, Schwaninger M, Min W, Marchuk DA, Zheng X, Awad IA, Kahn ML. Cerebral cavernous malformations are driven by ADAMTS5 proteolysis of versican. J Exp Med 2021; 217:151938. [PMID: 32648916 PMCID: PMC7537394 DOI: 10.1084/jem.20200140] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.
Collapse
Affiliation(s)
- Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Jaesung P Choi
- Centenary Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Andrea A Guerrero
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Carl F Wittig
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Lauren M Goddard
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Li Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | | | - Lukas E Dow
- Department of Medicine, Weill-Cornell Medicine, New York, NY
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lubeck, Lubeck, Germany
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Xiangjian Zheng
- Centenary Institute, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, IL
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
45
|
Nandadasa S, O'Donnell A, Murao A, Yamaguchi Y, Midura RJ, Olson L, Apte SS. The versican-hyaluronan complex provides an essential extracellular matrix niche for Flk1 + hematoendothelial progenitors. Matrix Biol 2021; 97:40-57. [PMID: 33454424 DOI: 10.1016/j.matbio.2021.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Little is known about extracellular matrix (ECM) contributions to formation of the earliest cell lineages in the embryo. Here, we show that the proteoglycan versican and glycosaminoglycan hyaluronan are associated with emerging Flk1+ hematoendothelial progenitors at gastrulation. The mouse versican mutant Vcanhdf lacks yolk sac vasculature, with attenuated yolk sac hematopoiesis. CRISPR/Cas9-mediated Vcan inactivation in mouse embryonic stem cells reduced vascular endothelial and hematopoietic differentiation within embryoid bodies, which generated fewer blood colonies, and had an impaired angiogenic response to VEGF165. Hyaluronan was severely depleted in Vcanhdf embryos, with corresponding upregulation of the hyaluronan-depolymerase TMEM2. Conversely, hyaluronan-deficient mouse embryos also had vasculogenic suppression but with increased versican proteolysis. VEGF165 and Indian hedgehog, crucial vasculogenic factors, utilized the versican-hyaluronan matrix, specifically versican chondroitin sulfate chains, for binding. Versican-hyaluronan ECM is thus an obligate requirement for vasculogenesis and primitive hematopoiesis, providing a vasculogenic factor-enriching microniche for Flk1+ progenitors from their origin at gastrulation.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Anna O'Donnell
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Ayako Murao
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Ronald J Midura
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Lorin Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Suneel S Apte
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States.
| |
Collapse
|
46
|
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS) family comprises 19 proteases that regulate the structure and function of extracellular proteins in the extracellular matrix and blood. The best characterized cardiovascular role is that of ADAMTS-13 in blood. Moderately low ADAMTS-13 levels increase the risk of ischeamic stroke and very low levels (less than 10%) can cause thrombotic thrombocytopenic purpura (TTP). Recombinant ADAMTS-13 is currently in clinical trials for treatment of TTP. Recently, new cardiovascular roles for ADAMTS proteases have been discovered. Several ADAMTS family members are important in the development of blood vessels and the heart, especially the valves. A number of studies have also investigated the potential role of ADAMTS-1, -4 and -5 in cardiovascular disease. They cleave proteoglycans such as versican, which represent major structural components of the arteries. ADAMTS-7 and -8 are attracting considerable interest owing to their implication in atherosclerosis and pulmonary arterial hypertension, respectively. Mutations in the ADAMTS19 gene cause progressive heart valve disease and missense variants in ADAMTS6 are associated with cardiac conduction. In this review, we discuss in detail the evidence for these and other cardiovascular roles of ADAMTS family members, their proteolytic substrates and the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rens de Groot
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
47
|
Imanishi A, Aoki Y, Kakehi M, Mori S, Takano T, Kubota Y, Kim HS, Shibata Y, Nishiwaki K. Genetic interactions among ADAMTS metalloproteases and basement membrane molecules in cell migration in Caenorhabditis elegans. PLoS One 2020; 15:e0240571. [PMID: 33264296 PMCID: PMC7710118 DOI: 10.1371/journal.pone.0240571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
During development of the Caenorhabditis elegans gonad, the gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern to form the U-shaped gonad arms. The ADAMTS (adisintegrin and metalloprotease with thrombospondin motifs) family metalloproteases MIG-17 and GON-1 are required for correct DTC migration. Mutations in mig-17 result in misshapen gonads due to the misdirected DTC migration, and mutations in gon-1 result in shortened and swollen gonads due to the premature termination of DTC migration. Although the phenotypes shown by mig-17 and gon-1 mutants are very different from one another, mutations that result in amino acid substitutions in the same basement membrane protein genes, emb-9/collagen IV α1, let-2/collagen IV α2 and fbl-1/fibulin-1, were identified as genetic suppressors of mig-17 and gon-1 mutants. To understand the roles shared by these two proteases, we examined the effects of the mig-17 suppressors on gon-1 and the effects of the gon-1 suppressors and enhancers on mig-17 gonadal defects. Some of the emb-9, let-2 and fbl-1 mutations suppressed both mig-17 and gon-1, whereas others acted only on mig-17 or gon-1. These results suggest that mig-17 and gon-1 have their specific functions as well as functions commonly shared between them for gonad formation. The levels of collagen IV accumulation in the DTC basement membrane were significantly higher in the gon-1 mutants as compared with wild type and were reduced to the wild-type levels when combined with suppressor mutations, but not with enhancer mutations, suggesting that the ability to reduce collagen IV levels is important for gon-1 suppression.
Collapse
Affiliation(s)
- Ayaka Imanishi
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Yuma Aoki
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Masaki Kakehi
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Shunsuke Mori
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Tomomi Takano
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Yukihiko Kubota
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
48
|
Montero JA, Lorda-Diez CI, Hurle JM. Confluence of Cellular Degradation Pathways During Interdigital Tissue Remodeling in Embryonic Tetrapods. Front Cell Dev Biol 2020; 8:593761. [PMID: 33195267 PMCID: PMC7644521 DOI: 10.3389/fcell.2020.593761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Digits develop in the distal part of the embryonic limb primordium as radial prechondrogenic condensations separated by undifferentiated mesoderm. In a short time interval the interdigital mesoderm undergoes massive degeneration to determine the formation of free digits. This fascinating process has often been considered as an altruistic cell suicide that is evolutionarily-regulated in species with different degrees of digit webbing. Initial descriptions of interdigit remodeling considered lysosomes as the primary cause of the degenerative process. However, the functional significance of lysosomes lost interest among researcher and was displaced to a secondary role because the introduction of the term apoptosis. Accumulating evidence in recent decades has revealed that, far from being a unique method of embryonic cell death, apoptosis is only one among several redundant dying mechanisms accounting for the elimination of tissues during embryonic development. Developmental cell senescence has emerged in the last decade as a primary factor implicated in interdigit remodeling. Our review proposes that cell senescence is the biological process identified by vital staining in embryonic models and implicates lysosomes in programmed cell death. We review major structural changes associated with interdigit remodeling that may be driven by cell senescence. Furthermore, the identification of cell senescence lacking tissue degeneration, associated with the maturation of the digit tendons at the same stages of interdigital remodeling, allowed us to distinguish between two functionally distinct types of embryonic cell senescence, “constructive” and “destructive.”
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| |
Collapse
|
49
|
Satz-Jacobowitz B, Hubmacher D. The quest for substrates and binding partners: A critical barrier for understanding the role of ADAMTS proteases in musculoskeletal development and disease. Dev Dyn 2020; 250:8-26. [PMID: 32875613 DOI: 10.1002/dvdy.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted ADAMTS metalloproteases are involved in the sculpting, remodeling, and erosion of connective tissues throughout the body, including in the musculoskeletal system. ADAMTS proteases contribute to musculoskeletal development, pathological tissue destruction, and are mutated in congenital musculoskeletal disorders. Examples include versican cleavage by ADAMTS9 which is required for interdigital web regression during limb development, ADAMTS5-mediated aggrecan degradation in osteoarthritis resulting in joint erosion, and mutations in ADAMTS10 or ADAMTS17 that cause Weill-Marchesani syndrome, a short stature syndrome with bone, joint, muscle, cardiac, and eye involvement. Since the function of ADAMTS proteases and proteases in general is primarily defined by the molecular consequences of proteolysis of their respective substrates, it is paramount to identify all physiological substrates for each individual ADAMTS protease. Here, we review the current knowledge of ADAMTS proteases and their involvement in musculoskeletal development and disease, focusing on some of their known physiological substrates and the consequences of substrate cleavage. We further emphasize the critical need for the identification and validation of novel ADAMTS substrates and binding partners by describing the principles of mass spectrometry-based approaches and by emphasizing strategies that need to be considered for validating the physiological relevance for ADAMTS-mediated proteolysis of novel putative substrates.
Collapse
Affiliation(s)
- Brandon Satz-Jacobowitz
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
50
|
Islam S, Watanabe H. Versican: A Dynamic Regulator of the Extracellular Matrix. J Histochem Cytochem 2020; 68:763-775. [PMID: 33131383 DOI: 10.1369/0022155420953922] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan belonging to the aggrecan/lectican family. In adults, this proteoglycan serves as a structural macromolecule of the extracellular matrix in the brain and large blood vessels. In contrast, versican is transiently expressed at high levels during development and under pathological conditions when the extracellular matrix dramatically changes, including in the inflammation and repair process. There are many reports showing the upregulation of versican in cancer, which correlates with cancer aggressiveness. Versican has four classical splice variants, and all the variants contain G1 and G3 domains at N- and C-termini, respectively. There are two glycosaminoglycan attachment domains CSα and CSβ. The largest V0 variant contains both CSα and CSβ, V1 contains CSβ, V2 contains CSα, and the shortest G3 variant has neither of them. Versican degradation is initiated by cleavage at a site in the CSβ domain by ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases. The N-terminal fragment containing the G1 domain has been reported to exert various biological functions, although its mechanisms of action have not yet been elucidated. In this review, we describe the role of versican in inflammation and cancer and also address the biological function of versikine.
Collapse
Affiliation(s)
- Shamima Islam
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|