1
|
Iu E, Bogatch A, Deng W, Humphries JD, Yang C, Valencia FR, Li C, McCulloch CA, Tanentzapf G, Svitkina TM, Humphries MJ, Plotnikov SV. A TRPV4-dependent calcium signaling axis governs lamellipodial actin architecture to promote cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646012. [PMID: 40196692 PMCID: PMC11974816 DOI: 10.1101/2025.03.28.646012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cell migration is crucial for development and tissue homeostasis, while its dysregulation leads to severe pathologies. Cell migration is driven by the extension of actin-based lamellipodia protrusions, powered by actin polymerization, which is tightly regulated by signaling pathways, including Rho GTPases and Ca2+ signaling. While the importance of Ca2+ signaling in lamellipodia protrusions has been established, the molecular mechanisms linking Ca2+ to lamellipodia assembly are unknown. Here, we identify a novel Ca2+ signaling axis involving the mechano-gated channel TRPV4, which regulates lamellipodia protrusions in various cell types. Using Ca2+ and FRET imaging, we demonstrate that TRPV4-mediated Ca2+ influx upregulates RhoA activity within lamellipodia, which then facilitates formin-mediated actin assembly. Mechanistically, we identify CaMKII and TEM4 as key mediators relaying the TRPV4-mediated Ca2+ signal to RhoA. These data define a molecular pathway by which Ca2+ influx regulates small GTPase activity within a specific cellular domain - lamellipodia - and demonstrate the critical role in organizing the actin machinery and promoting cell migration in diverse biological contexts.
Collapse
Affiliation(s)
- Ernest Iu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Bogatch
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wenjun Deng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan D. Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fernando R. Valencia
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Sergey V. Plotnikov
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ford CA, Koludrovic D, Centeno PP, Foth M, Tsonou E, Vlahov N, Sphyris N, Gilroy K, Bull C, Nixon C, Serrels B, Munro AF, Dawson JC, Carragher NO, Pavet V, Hornigold DC, Dunne PD, Downward J, Welch HC, Barry ST, Sansom OJ, Campbell AD. Targeting the PREX2/RAC1/PI3Kβ Signaling Axis Confers Sensitivity to Clinically Relevant Therapeutic Approaches in Melanoma. Cancer Res 2025; 85:808-824. [PMID: 39636745 PMCID: PMC11831108 DOI: 10.1158/0008-5472.can-23-2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression. Here, we used genetically engineered mouse models and patient-derived BRAFV600E-driven melanoma cell lines to dissect the role of PREX2 in melanomagenesis and response to therapy. Although PREX2 was dispensable for the initiation and progression of melanoma, its loss conferred sensitivity to clinically relevant therapeutics targeting the MAPK pathway. Importantly, genetic and pharmacologic targeting of PI3Kβ phenocopied PREX2 deficiency, sensitizing model systems to therapy. These data reveal a druggable PREX2/RAC1/PI3Kβ signaling axis in BRAF-mutant melanoma that could be exploited clinically. Significance: Cotargeting the MAPK and the PREX2/RAC1/PI3Kβ pathways has remarkable efficacy and outperforms monotherapy MAPK inhibition in BRAF-mutant melanoma, supporting the potential of this combination therapy for treating metastatic melanoma.
Collapse
Affiliation(s)
| | - Dana Koludrovic
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Mona Foth
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Elpida Tsonou
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nikola Vlahov
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Kathryn Gilroy
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Courtney Bull
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Bryan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F. Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Dawson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Valeria Pavet
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Philip D. Dunne
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Heidi C.E. Welch
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, United Kingdom
| | | |
Collapse
|
3
|
Leng D, Yang M, Miao X, Huang Z, Li M, Liu J, Wang T, Li D, Feng C. Dynamic changes in the skin transcriptome for the melanin pigmentation in embryonic chickens. Poult Sci 2025; 104:104210. [PMID: 39693959 PMCID: PMC11720608 DOI: 10.1016/j.psj.2024.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 12/20/2024] Open
Abstract
Dermal hyperpigmentation stands out among the various skin pigmentation phenotypes in chickens, where most other pigmentation variants affect feather color and patterning predominantly. Despite numerous black chicken breeds worldwide, only a select few exhibit comprehensive black pigmentation, which encompasses the skin, meat, flesh, and bones. The process of skin melanin pigmentation is intricate and develops successively. Historically, research has concentrated primarily on specific developmental points or stages, but fewer studies have examined the entire transcriptome across the timeline of the development of the embryo integument. In our investigation, we undertook the sequencing of chicken embryo skin samples from d 4 to d 13 of incubation. Our results showed that melanoblasts continued to migrate from E4 to the epidermis until E12. Beginning with E6, melanin was synthesized and transferred to epidermal cells and feather follicles in large quantities, and genes such as DCT, TYR, TYRP1, and MITF played a key role in this process, which is significantly different from that of white-skinned chickens. There were 854 differentially expressed genes between E7 and E8. At this stage, melanocytes formed dendritic forms and transferred melanin to keratinocytes, while the dorsal skin became visibly dark. In addition, CDH3, which is a core factor involved in a variety of biological processes, may have an important impact on skin melanin pigmentation. Collectively, our findings unveiled a phased relationship between the canonical pathway and the noncanonical pathway from E4 to E13. These analyses illuminated the gene regulatory mechanism and provided foundational data that pertained to pigmentation in chickens.
Collapse
Affiliation(s)
- Dong Leng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Maosen Yang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Zhiying Huang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Mengmeng Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jia Liu
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Micovic K, Canuel A, Remtulla A, Chuyen A, Byrsan M, McGarry DJ, Olson MF. Mical1 deletion in tyrosinase expressing cells affects mouse running gaits. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70004. [PMID: 39344934 PMCID: PMC11440367 DOI: 10.1111/gbb.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Neuronal development is a highly regulated process that is dependent on the correct coordination of cellular responses to extracellular cues. In response to semaphorin axon guidance proteins, the MICAL1 protein is stimulated to produce reactive oxygen species that oxidize actin on specific methionine residues, leading to filamentous actin depolymerization and consequent changes in neuronal growth cone dynamics. Crossing genetically modified mice homozygous for floxed Mical1 (Mical1fl/fl) alleles with transgenic mice expressing Cre recombinase under the control of a tyrosinase gene enhancer/promoter (Tyr::Cre) enabled conditional Mical1 deletion. Immunohistochemical analysis showed Mical1 expression in the cerebellum, which plays a prominent role in the coordination of motor movements, with reduced Mical1 expression in Mical1fl/fl mice co-expressing Tyr::Cre. Analysis of the gaits of mice running on a treadmill showed that both male and female Mical1fl/fl, Tyr::Cre mutant mice had significant alterations to their striding patterns relative to wild-type mice, although the specific aspects of their altered gaits differed between the sexes. Additional motor tests that involved movement on a rotating rod, descending a vertical pole, or crossing a balance beam did not show significant differences between the genotypes, suggesting that the effect of the Mical1fl/fl, Tyr::Cre genetic modifications was only manifested during specific highly coordinated movements that contribute to running. These findings indicate that there is a behavioral consequence in Mical1fl/fl, Tyr::Cre mutant mice that affects motor control as manifested by alterations in their gait.
Collapse
Affiliation(s)
- Katarina Micovic
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| | - Alicia Canuel
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Aasiya Remtulla
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Alexandre Chuyen
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| | - Margarita Byrsan
- Biomedical Engineering ProgramToronto Metropolitan UniversityTorontoOntarioCanada
| | - David J. McGarry
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| | - Michael F. Olson
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
- Biomedical Engineering ProgramToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
5
|
Isogai T, Murali VS, Zhou F, Wang X, Rajendran D, Perez-Castro L, Venkateswaran N, Conacci-Sorrell M, Danuser G. Anchorage-independent cell proliferation promoted by fascin's F-actin bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592404. [PMID: 38746129 PMCID: PMC11092747 DOI: 10.1101/2024.05.04.592404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The actin filament (F-actin) bundling protein fascin-1 is highly enriched in many metastatic cancers. Fascin's contribution to metastasis have been ascribed to its enhancement of cell migration and invasion. However, mouse genetic studies clearly point to functions also in tumorigenesis, yet without mechanistic underpinnings. Here, we show that fascin expression promotes the formation of a non-canonical signaling complex that enables anchorage-independent proliferation. This complex shares similarities to focal adhesions and we refer to them as pseudo-adhesion signaling scaffolds (PASS). PASS are enriched with tyrosine phosphorylated proteins and require fascin's F-actin-bundling activity for its assembly. PASS serve as hubs for the Rac1/PAK/JNK proliferation signaling axis, driven by PASS-associated Rac-specific GEFs. Experimental disruption of either fascin or RacGEF function abrogates sustained proliferation of aggressive cancers in vitro and in vivo . These results add a new molecular element to the growing arsenal of metabolic and oncogenic signaling programs regulated by the cytoskeleton architecture.
Collapse
|
6
|
Crawford M, Barr K, Dagnino L. Analysis of Proliferation, Apoptosis, and Motility in Mouse Embryonic Melanocytic Precursor Cells. Methods Mol Biol 2024; 2849:135-148. [PMID: 38441720 DOI: 10.1007/7651_2024_528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we provide a method to purify and culture embryonic melanocytic stem cells that express green fluorescent protein in a cell-type specific manner. Isolation of melanocytic lineage cell populations that are >98% pure is accomplished through the use of GFP-based fluorescence activated cell sorting. We also provide a method to culture the purified melanoblasts and to analyze their proliferation, apoptosis, and motility properties.
Collapse
Affiliation(s)
- Melissa Crawford
- Department of Physiology and Pharmacology, Child Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Kevin Barr
- Department of Physiology and Pharmacology, Child Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Child Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Oncology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
7
|
Twumasi G, Wang H, Xi Y, Qi J, Li L, Bai L, Liu H. Genome-Wide Association Studies Reveal Candidate Genes Associated with Pigmentation Patterns of Single Feathers of Tianfu Nonghua Ducks. Animals (Basel) 2023; 14:85. [PMID: 38200816 PMCID: PMC10778472 DOI: 10.3390/ani14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
In modern advanced genetics and breeding programs, the study of genes related to pigmentation in ducks is gaining much attention and popularity. Genes and DNA mutation cause variations in the plumage color traits of ducks. Therefore, discovering related genes responsible for different color traits and pigment patterns on each side of the single feathers in Chinese ducks is important for genetic studies. In this study, we collected feather images from 340 ducks and transported them into Image Pro Plus (IPP) 6.0 software to quantify the melanin content in the feathers. Thereafter, a genome-wide association study was conducted to reveal the genes responsible for variations in the feather color trait. The results from this study revealed that the pigmented region was larger in the male ducks as compared to the female ducks. In addition, the pigmented region was larger on the right side of the feather vane than on the left side in both dorsal and ventral feathers, and a positive correlation was observed among the feather color traits. Further, among the annotated genes, WNT3A, DOCK1, RAB1A, and ALDH1A3 were identified to play important roles in the variation in pigmented regions of the various feathers. This study also revealed that five candidate genes, including DPP8, HACD3, INTS14, SLC24A1, and DENND4A, were associated with the color pigment on the dorsal feathers of the ducks. Genes such as PRKG1, SETD6, RALYL, and ZNF704 reportedly play important roles in ventral feather color traits. This study revealed that genes such as WNT3A, DOCK1, RAB1A, and ALDH1A3 were associated with different pigmentation patterns, thereby providing new insights into the genetic mechanisms of single-feather pigmentation patterns in ducks.
Collapse
Affiliation(s)
- Grace Twumasi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huazhen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Haage A, Tanentzapf G. Analysis of Integrin-Dependent Melanoblast Migration During Development. Methods Mol Biol 2023; 2608:207-221. [PMID: 36653710 DOI: 10.1007/978-1-0716-2887-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The neural crest is a transient embryonic structure that gives rise to a number of important cell types and tissues, including most of the peripheral and enteric nervous systems, pigment-producing skin cells known as melanocytes, and many craniofacial structures. Melanoblasts, the precursors of melanocytes, are derived from the so-called trunk neural crest cells. These cells delaminate and migrate along a dorsolateral pathway to colonize their final destination in the skin, and consequently, defects in melanoblast migration result in pigmentation defects. Studying melanocyte migration is a topic of great interest due to the involvement of melanocytes in highly metastatic skin cancer. A role for integrin-mediated adhesion is well established in neural crest migration, and our recent work has provided direct evidence for a key role for integrin-based adhesion in melanocyte migration. Imaging of melanoblast migration in the context of intact skin has proven to be a particularly powerful tool to study integrin-based adhesion during melanoblast migration. Here, we describe the use of skin explants combined with genetically encoded markers for melanocytes and high-resolution live imaging as a powerful and informative approach to analyze melanoblast migration in an ex vivo context.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Wilkinson EL, Brennan LC, Harrison OJ, Crane‐Smith Z, Gautier P, Keighren MA, Budd P, Swaminathan K, Machesky LM, Allinson SL, Jackson IJ, Mort RL. Genetically engineered multicistronic allele of Pmel yielding highly specific CreERT2-mediated recombination in the melanocyte lineage. Pigment Cell Melanoma Res 2023; 36:71-77. [PMID: 36412082 PMCID: PMC10107733 DOI: 10.1111/pcmr.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Genetic approaches that allow lineage tracing are essential to our future understanding of melanocytes and melanoma. To date, the approaches used to label melanocytes in mice have relied on random integration of transgenes driven by the promoters of the Tyrosinase and Dopachrome tautomerase genes, knock-in to the Dopachrome tautomerase locus or knock-in to the Mlana locus in a bacterial artificial chromosome. These strategies result in expression in other tissues such as telencephalon and other cell types such as nerves. Here we used homologous recombination in mouse embryonic stem cells to generate a targeted multicistronic allele of the Pmel locus that drives melanocyte-specific expression of CreERT2, nuclear localised H2B-Cerulean and membrane localised marcks-mKate2 allowing live imaging of melanocytes and activation of other conditional alleles. We combined this allele with R26R-EYFP mice allowing induction of EYFP expression on administration of tamoxifen or its metabolite 4-OHT. The fluorescent proteins H2B-Cerulean and marcks-mKate2 label the cell nucleus and plasma membrane respectively allowing live imaging and FACS isolation of melanoblasts and melanocytes as well as serving to provide an internal control allowing estimation of recombination efficiency after administration of tamoxifen. We demonstrate the utility of the transgene in embryonic and adult tissues.
Collapse
Affiliation(s)
- Emma L. Wilkinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Louise C. Brennan
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Olivia J. Harrison
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Zoe Crane‐Smith
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Margaret A. Keighren
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Peter Budd
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Karthic Swaminathan
- Centre for Skin Sciences, Faculty of Life SciencesUniversity of BradfordBradfordUK
| | - Laura M. Machesky
- Cancer Research UK, Beatson Institute, and Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Sarah L. Allinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Ian J. Jackson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General HospitalUniversity of EdinburghEdinburghUK
- Roslin InstituteUniversity of EdinburghRoslinUK
| | - Richard L. Mort
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| |
Collapse
|
10
|
van den Bosch QCC, Nguyen JQN, Brands T, van den Bosch TPP, Verdijk RM, Paridaens D, Naus NC, de Klein A, Kiliç E, Brosens E. FOXD1 Is a Transcription Factor Important for Uveal Melanocyte Development and Associated with High-Risk Uveal Melanoma. Cancers (Basel) 2022; 14:cancers14153668. [PMID: 35954332 PMCID: PMC9367502 DOI: 10.3390/cancers14153668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Despite successful treatment of primary uveal melanoma (UM), metastases still occur in approximately 50% of the patients. Unfortunately, little is known about the mechanism behind metastasized UM. By reanalyzing publicly available single-cell RNA sequencing data of embryonic zebrafish larvae and validating the results with UM data, we have identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. The most significant finding is FOXD1, which is nearly exclusively expressed in high-risk UM and is associated with poor survival. FOXD1 is a novel gene which could be involved in the metastatic capability of UM. Elucidating its function and role in metastatic UM could help to understand and develop treatment for UM. Abstract Uveal melanoma (UM) is a deadly ocular malignancy, originating from uveal melanocytes. Although much is known regarding prognostication in UM, the exact mechanism of metastasis is mostly unknown. Metastatic tumor cells are known to express a more stem-like RNA profile which is seen often in cell-specific embryonic development to induce tumor progression. Here, we identified novel transcription regulators by reanalyzing publicly available single cell RNA sequencing experiments. We identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. Our most significant finding is FOXD1, as this gene is nearly exclusively expressed in high-risk UM and its expression is associated with a poor prognosis. Even within the BAP1-mutated UM, the expression of FOXD1 is correlated with poor survival. FOXD1 is a novel factor which could potentially be involved in the metastatic capacity of high-risk UM. Elucidating the function of FOXD1 in UM could provide insight into the malignant transformation of uveal melanocytes, especially in high-risk UM.
Collapse
Affiliation(s)
- Quincy C. C. van den Bosch
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Josephine Q. N. Nguyen
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Tom Brands
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Thierry P. P. van den Bosch
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.P.P.v.d.B.); (R.M.V.)
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (T.P.P.v.d.B.); (R.M.V.)
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dion Paridaens
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands;
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Q.C.C.v.d.B.); (J.Q.N.N.); (T.B.); (N.C.N.)
- Correspondence: (E.K.); (E.B.); Tel.: +31-107030683 (E.B.)
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Cancer Center, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
- Correspondence: (E.K.); (E.B.); Tel.: +31-107030683 (E.B.)
| |
Collapse
|
11
|
Ma Z, Jiang K, Wang D, Wang Z, Gu Z, Li G, Jiang R, Tian Y, Kang X, Li H, Liu X. Comparative analysis of hypothalamus transcriptome between laying hens with different egg-laying rates. Poult Sci 2021; 100:101110. [PMID: 34102485 PMCID: PMC8187251 DOI: 10.1016/j.psj.2021.101110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Egg-laying performance is one of the most important economic traits in the poultry industry. Commercial layers can lay one egg almost every day during their peak-laying period. However, many Chinese indigenous chicken breeds show a relatively low egg-laying rate, even during their peak-laying period. To understand what makes the difference in egg production, we compared the hypothalamus transcriptome profiles of Lushi blue-shelled-egg chickens (LBS), a Chinese indigenous breed with low egg-laying rate and Rhode Island Red chickens (RIR), a commercial layer with relatively high egg-laying rate using RNA-seq. A total of 753 differentially expressed genes (DEGs) were obtained. Of these DEGs, 38 genes were enriched in 2 Gene Ontology (GO) terms, namely reproduction term and the reproductive process term, and 6 KEGG pathways, namely Wnt signaling pathway, Oocyte meiosis, GnRH signaling pathway, Thyroid hormone signaling pathway, Thyroid hormone synthesis and MAPK signaling pathway, which have been long known to be involved in egg production regulation. To further determine the core genes from the 38 DEGs, protein-protein interaction (PPI) network, co-expression network and transcriptional regulatory network analyses were carried out. After integrated analysis and experimental validation, 4 core genes including RAC1, MRE11A, MAP7 and SOX5 were identified as the potential core genes that are responsible for the laying-rate difference between the 2 breeds. These findings paved the way for future investigating the mechanism of egg-laying regulation and enriched the chicken reproductive regulation theory.
Collapse
Affiliation(s)
- Zheng Ma
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Keren Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Dandan Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhang Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenzhen Gu
- School of life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Guoxi Li
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Swaminathan K, Campbell A, Papalazarou V, Jaber-Hijazi F, Nixon C, McGhee E, Strathdee D, Sansom OJ, Machesky LM. The RAC1 Target NCKAP1 Plays a Crucial Role in the Progression of Braf;Pten-Driven Melanoma in Mice. J Invest Dermatol 2021; 141:628-637.e15. [PMID: 32777214 DOI: 10.1016/j.jid.2020.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
BRAFV600E is the most common driver mutation in human cutaneous melanoma and is frequently accompanied by loss of the tumor-suppressing phosphatase PTEN. Recent evidence suggests a co-operative role for RAC1 activity in BRAFV600E-driven melanoma progression and drug resistance. However, the underlying molecular mechanisms and the role of RAC1 downstream targets are not well-explored. In this study, we examine the role of the NCKAP1 subunit of the pentameric cytoskeletal SCAR/WAVE complex, a major downstream target of RAC1, in a mouse model of melanoma driven by BRAFV600E;PTEN loss. The SCAR/WAVE complex is the major driver of lamellipodia formation and cell migration downstream of RAC1 and depends on NCKAP1 for its integrity. Targeted deletion of Nckap1 in the melanocyte lineage delayed tumor onset and progression of a mutant Braf;Pten loss‒driven melanoma mouse model. Nckap1-depleted tumors displayed fibrotic stroma with increased collagen deposition concomitant with enhanced immune infiltration. Nckap1 loss slowed proliferation and tumor growth, highlighting a role in cell-cycle progression. Altogether, we propose that NCKAP1-orchestrated actin polymerization is essential for tumor progression and maintenance of tumor tissue integrity in a mutant Braf/Pten loss‒driven mouse model for melanoma.
Collapse
Affiliation(s)
- Karthic Swaminathan
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Andrew Campbell
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Farah Jaber-Hijazi
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Ewan McGhee
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | - Owen J Sansom
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
13
|
Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021; 10:e61037. [PMID: 33448265 PMCID: PMC7895527 DOI: 10.7554/elife.61037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin-based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that the differentiation between animal epithelial and crawling cells might have evolved from a stress-induced switch between flagellate and amoeboid forms in their single-celled ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marvin Albert
- Department of Molecular Life Sciences, University of ZürichZurichSwitzerland
| | - William Roman
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNEDBarcelonaSpain
| | - Maxwell C Coyle
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Danielle C Spitzer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Nicole King
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
14
|
Wufuer R, Ma HX, Luo MY, Xu KY, Kang L. Downregulation of Rac1/PAK1/LIMK1/cofilin signaling pathway in colon cancer SW620 cells treated with Chlorin e6 photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 33:102143. [PMID: 33307230 DOI: 10.1016/j.pdpdt.2020.102143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most common gastrointestinal malignancies. Photodynamic therapy (PDT) is a novel and non-invasive treatment for tumors as PDT features small trauma, good applicability, andaccurate targeting. PDT may also be a potential treatment for colon cancer as itmay may induce suppressive effects on metastatic potential.. However, the molecular mechanism of the Chlorin e6 Photodynamic therapy (Ce6-PDT) inhibiting the migration of human colon cancer SW620 cells remains unclear. METHODS Scratch wound healing assay, scanning electron microscope, MTT, immunofluorescence and laser confocal technique were used to investigate the suppressive effects of Ce6-PDT on the SW620 cells migration, pseudopodia, viability and the actin cytoskeleton. The effect of Ce6-PDT on actin-Filaments and signaling molecules of the Rac1/PAK1/LIMK1/cofilin signaling pathway in SW620 cells were examined by western blot analysis. RNA interference (RNAi) technology was used to establish siRNA-Rac1/SW620 cells. The combined effects of Ce6-PDT and RNAi on colon cancer SW620 cells was investigated by the same technology and methods mentioned above to clarify the signal transduction effect of Rac1/PAK1/LIMK1/cofilin signaling pathway in Ce6-PDT caused inhibition of SW620 cell migration. RESULTS The healing and migration rate of the SW620 cells was significantly reduced and the cell pseudopodia were reduced or disappeared by Ce6-PDT. The Immunofluorescence and western blot analysis results showed that Ce6-PDT destroy microfilament's original structure and significantly downregulated F-actin protein expression. The Rac1/PAK1/LIMK1/cofilin signaling pathway was downregulated by Ce6-PDT. Furthermore, the RNAi significantly strengthened the effect of Ce6-PDT on colon cancer SW620 cells migration. CONCLUSIONS Actin cytoskeleton and protrusions of SW620 cells correlate with its migration ability. Ce6-PDT suppresses SW620 cells migration by downregulating the Rac1/PAK1/LIMK1/cofilin signaling pathway, and its suppressive effect was enhanced by knocking down Rac1 gene expression.
Collapse
Affiliation(s)
- Reziwan Wufuer
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Hai-Xiu Ma
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Meng-Yu Luo
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Kai-Yue Xu
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Ling Kang
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China.
| |
Collapse
|
15
|
Li M, Knapp SK, Iden S. Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr Opin Cell Biol 2020; 67:99-108. [PMID: 33099084 DOI: 10.1016/j.ceb.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Abstract
Melanocytes are neuroectoderm-derived pigment-producing cells with highly polarized dendritic morphology. They protect the skin against ultraviolet radiation by providing melanin to neighbouring keratinocytes. However, the mechanisms underlying melanocyte polarization and its relevance for diseases remain mostly elusive. Numerous studies have instead revealed roles for polarity regulators in other neuroectoderm-derived lineages including different neuronal cell types. Considering the shared ontogeny and morphological similarities, these lineages may be used as reference models for the exploration of melanocyte polarity, for example, regarding dendrite formation, spine morphogenesis and polarized organelle transport. In this review, we summarize and compare the latest progress in understanding polarity regulation in neuronal cells and melanocytes and project key open questions for future work.
Collapse
Affiliation(s)
- Mengnan Li
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Sina K Knapp
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Sandra Iden
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
16
|
Hirata H, Dobrokhotov O, Sokabe M. Coordination between Cell Motility and Cell Cycle Progression in Keratinocyte Sheets via Cell-Cell Adhesion and Rac1. iScience 2020; 23:101729. [PMID: 33225242 PMCID: PMC7662878 DOI: 10.1016/j.isci.2020.101729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
Regulations of cell motility and proliferation are essential for epithelial development and homeostasis. However, it is not fully understood how these cellular activities are coordinated in epithelial collectives. In this study, we find that keratinocyte sheets exhibit time-dependent coordination of collective cell movement and cell cycle progression after seeding cells. Cell movement and cell cycle progression are coordinately promoted by Rac1 in the “early phase” (earlier than ∼30 h after seeding cells), which is not abrogated by increasing the initial cell density to a saturated level. The Rac1 activity is gradually attenuated in the “late phase” (later than ∼30 h after seeding cells), leading to arrests in cell motility and cell cycle. Intact adherens junctions are required for normal coordination between cell movement and cell cycle progression in both early and late phases. Our results unveil a novel basis for integrating motile and proliferative behaviors of epithelial collectives. Cell motility and cell cycle progression in keratinocyte sheets are temporally coordinated Rac1 promotes both cell motility and cell cycle progression in keratinocyte sheets Arrest of cell motility and cell cycle is associated with Rac1 deactivation Adherens junction is required for coordinating cell motility and cell cycle
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Oleg Dobrokhotov
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
17
|
Papalazarou V, Swaminathan K, Jaber-Hijazi F, Spence H, Lahmann I, Nixon C, Salmeron-Sanchez M, Arnold HH, Rottner K, Machesky LM. The Arp2/3 complex is crucial for colonisation of the mouse skin by melanoblasts. Development 2020; 147:dev194555. [PMID: 33028610 PMCID: PMC7687863 DOI: 10.1242/dev.194555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023]
Abstract
The Arp2/3 complex is essential for the assembly of branched filamentous actin, but its role in physiology and development is surprisingly little understood. Melanoblasts deriving from the neural crest migrate along the developing embryo and traverse the dermis to reach the epidermis, colonising the skin and eventually homing within the hair follicles. We have previously established that Rac1 and Cdc42 direct melanoblast migration in vivo We hypothesised that the Arp2/3 complex might be the main downstream effector of these small GTPases. Arp3 depletion in the melanocyte lineage results in severe pigmentation defects in dorsal and ventral regions of the mouse skin. Arp3 null melanoblasts demonstrate proliferation and migration defects and fail to elongate as their wild-type counterparts. Conditional deletion of Arp3 in primary melanocytes causes improper proliferation, spreading, migration and adhesion to extracellular matrix. Collectively, our results suggest that the Arp2/3 complex is absolutely indispensable in the melanocyte lineage in mouse development, and indicate a significant role in developmental processes that require tight regulation of actin-mediated motility.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - Karthic Swaminathan
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Farah Jaber-Hijazi
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Heather Spence
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ines Lahmann
- Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Colin Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | - Hans-Henning Arnold
- Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
18
|
McMenamin PG, Shields GT, Seyed-Razavi Y, Kalirai H, Insall RH, Machesky LM, Coupland SE. Melanoblasts Populate the Mouse Choroid Earlier in Development Than Previously Described. Invest Ophthalmol Vis Sci 2020; 61:33. [PMID: 32797202 PMCID: PMC7441366 DOI: 10.1167/iovs.61.10.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Human choroidal melanocytes become evident in the last trimester of development, but very little is known about them. To better understand normal and diseased choroidal melanocyte biology we examined their precursors, melanoblasts (MB), in mouse eyes during development, particularly their relation to the developing vasculature and immune cells. Methods Naïve B6(Cg)-Tyrc-2J/J albino mice were used between embryonic (E) day 15.5 and postnatal (P) day 8, with adult controls. Whole eyes, posterior segments, or dissected choroidal wholemounts were stained with antibodies against tyrosinase-related protein 2, ionized calcium binding adaptor molecule-1 or isolectin B4, and examined by confocal microscopy. Immunoreactive cell numbers in the choroid were quantified with Imaris. One-way ANOVA with Tukey's post hoc test assessed statistical significance. Results Small numbers of MB were present in the presumptive choroid at E15.5 and E18.5. The density significantly increased between E18.5 (381.4 ± 45.8 cells/mm2) and P0 (695.2 ± 87.1 cells/mm2; P = 0.032). In postnatal eyes MB increased in density and formed multiple layers beneath the choriocapillaris. MB in the periocular mesenchyme preceded the appearance of vascular structures at E15.5. Myeloid cells (Ionized calcium binding adaptor molecule-1-positive) were also present at high densities from this time, and attained adult-equivalent densities by P8 (556.4 ± 73.6 cells/mm2). Conclusions We demonstrate that choroidal MB and myeloid cells are both present at very early stages of mouse eye development (E15.5). Although MB and vascularization seemed to be unlinked early in choroidal development, they were closely associated at later stages. MB did not migrate into the choroid in waves, nor did they have a consistent relationship with nerves.
Collapse
Affiliation(s)
- Paul G. McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Graham T. Shields
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yashar Seyed-Razavi
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Robert H. Insall
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Machesky
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
19
|
Haage A, Wagner K, Deng W, Venkatesh B, Mitchell C, Goodwin K, Bogutz A, Lefebvre L, Van Raamsdonk CD, Tanentzapf G. Precise coordination of cell-ECM adhesion is essential for efficient melanoblast migration during development. Development 2020; 147:dev.184234. [PMID: 32580934 DOI: 10.1242/dev.184234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
Melanoblasts disperse throughout the skin and populate hair follicles through long-range cell migration. During migration, cells undergo cycles of coordinated attachment and detachment from the extracellular matrix (ECM). Embryonic migration processes that require cell-ECM attachment are dependent on the integrin family of adhesion receptors. Precise regulation of integrin-mediated adhesion is important for many developmental migration events. However, the mechanisms that regulate integrin-mediated adhesion in vivo in melanoblasts are not well understood. Here, we show that autoinhibitory regulation of the integrin-associated adapter protein talin coordinates cell-ECM adhesion during melanoblast migration in vivo Specifically, an autoinhibition-defective talin mutant strengthens and stabilizes integrin-based adhesions in melanocytes, which impinges on their ability to migrate. Mice with defective talin autoinhibition exhibit delays in melanoblast migration and pigmentation defects. Our results show that coordinated integrin-mediated cell-ECM attachment is essential for melanoblast migration and that talin autoinhibition is an important mechanism for fine-tuning cell-ECM adhesion during cell migration in development.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND 58202, ND, USA
| | - Kelsey Wagner
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Wenjun Deng
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Caitlin Mitchell
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aaron Bogutz
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
21
|
Diverse roles of non-muscle myosin II contractility in 3D cell migration. Essays Biochem 2020; 63:497-508. [PMID: 31551323 DOI: 10.1042/ebc20190026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 01/13/2023]
Abstract
All is flux, nothing stays still. Heraclitus of Ephesus' characterization of the universe holds true for cells within animals and for proteins within cells. In this review, we examine the dynamics of actin and non-muscle myosin II within cells, and how their dynamics power the movement of cells within tissues. The 3D environment that migrating cells encounter along their path also changes over time, and cells can adopt various mechanisms of motility, depending on the topography, mechanics and chemical composition of their surroundings. We describe the differential spatio-temporal regulation of actin and myosin II-mediated contractility in mesenchymal, lobopodial, amoeboid, and swimming modes of cell migration. After briefly reviewing the biochemistry of myosin II, we discuss the role actomyosin contractility plays in the switch between modes of 3D migration that cells use to adapt to changing environments.
Collapse
|
22
|
Crawford M, Leclerc V, Barr K, Dagnino L. Essential Role for Integrin-Linked Kinase in Melanoblast Colonization of the Skin. J Invest Dermatol 2019; 140:425-434.e10. [PMID: 31330146 DOI: 10.1016/j.jid.2019.07.681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 01/16/2023]
Abstract
Melanocytes are pigment-producing cells found in the skin and other tissues. Alterations in the melanocyte lineage give rise to a plethora of human diseases, from neurocristopathies and pigmentation disorders to melanoma. During embryogenesis, neural crest cell subsets give rise to two waves of melanoblasts, which migrate dorsolaterally, hone to the skin, and differentiate into melanocytes. However, the mechanisms that govern colonization of the skin by the first wave of melanoblasts are poorly understood. Here we report that targeted inactivation of the integrin-linked kinase gene in first wave melanoblasts causes defects in the ability of these cells to form long pseudopods, to migrate, and to proliferate in vivo. As a result, integrin-linked kinase-deficient melanoblasts fail to populate normally the developing epidermis and hair follicles. We also show that defects in motility and dendricity occur upon integrin-linked kinase gene inactivation in mature melanocytes, causing abnormalities in cell responses to the extracellular matrix substrates collagen I and laminin 332. Significantly, the ability to form long protrusions in mutant cells in response to collagen is restored in the presence of constitutively active Rac1, suggesting that an integrin-linked kinase-Rac1 nexus is likely implicated in melanocytic cell establishment, dendricity, and functions in the skin.
Collapse
Affiliation(s)
- Melissa Crawford
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Valerie Leclerc
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Kevin Barr
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
23
|
Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT. The Small GTPase Rac1 Increases Cell Surface Stiffness and Enhances 3D Migration Into Extracellular Matrices. Sci Rep 2019; 9:7675. [PMID: 31118438 PMCID: PMC6531482 DOI: 10.1038/s41598-019-43975-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Membrane ruffling and lamellipodia formation promote the motility of adherent cells in two-dimensional motility assays by mechano-sensing of the microenvironment and initiation of focal adhesions towards their surroundings. Lamellipodium formation is stimulated by small Rho GTPases of the Rac subfamily, since genetic removal of these GTPases abolishes lamellipodium assembly. The relevance of lamellipodial or invadopodial structures for facilitating cellular mechanics and 3D cell motility is still unclear. Here, we hypothesized that Rac1 affects cell mechanics and facilitates 3D invasion. Thus, we explored whether fibroblasts that are genetically deficient for Rac1 (lacking Rac2 and Rac3) harbor altered mechanical properties, such as cellular deformability, intercellular adhesion forces and force exertion, and exhibit alterations in 3D motility. Rac1 knockout and control cells were analyzed for changes in deformability by applying an external force using an optical stretcher. Five Rac1 knockout cell lines were pronouncedly more deformable than Rac1 control cells upon stress application. Using AFM, we found that cell-cell adhesion forces are increased in Rac1 knockout compared to Rac1-expressing fibroblasts. Since mechanical deformability, cell-cell adhesion strength and 3D motility may be functionally connected, we investigated whether increased deformability of Rac1 knockout cells correlates with changes in 3D motility. All five Rac1 knockout clones displayed much lower 3D motility than Rac1-expressing controls. Moreover, force exertion was reduced in Rac1 knockout cells, as assessed by 3D fiber displacement analysis. Interference with cellular stiffness through blocking of actin polymerization by Latrunculin A could not further reduce invasion of Rac1 knockout cells. In contrast, Rac1-expressing controls treated with Latrunculin A were again more deformable and less invasive, suggesting actin polymerization is a major determinant of observed Rac1-dependent effects. Together, we propose that regulation of 3D motility by Rac1 partly involves cellular mechanics such as deformability and exertion of forces.
Collapse
Affiliation(s)
- Tom Kunschmann
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Stefanie Puder
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Tony Fischer
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Claudia Tanja Mierke
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
24
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
25
|
Extending the Mathematical Palette for Developmental Pattern Formation: Piebaldism. Bull Math Biol 2019; 81:1461-1478. [PMID: 30689102 DOI: 10.1007/s11538-019-00569-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Here, we present a theoretical investigation with potential insights on developmental mechanisms. Three biological factors, consisting of two diffusing factors and a cell-autonomous immobile transcription factor are combined with different feedback mechanisms. This results in four different situations or fur patterns. Two of them reproduce classical Turing patterns: (1) regularly spaced spots, (2) labyrinth patterns or straight lines with an initial slope in the activation of the transcription factor. The third situation does not lead to patterns, but results in different homogeneous color tones. Finally, the fourth one sheds new light on the possible mechanisms leading to the formation of piebald patterns exemplified by the random patterns on the fur of some cows' strains and Dalmatian dogs. Piebaldism is usually manifested as white areas of fur, hair, or skin due to the absence of pigment-producing cells in those regions. The distribution of the white and colored zones does not reflect the classical Turing patterns. We demonstrate that these piebald patterns are of transient nature, developing from random initial conditions and relying on a system's bistability. We show numerically that the presence of a cell-autonomous factor not only expands the range of reaction diffusion parameters in which a pattern may arise, but also extends the pattern-forming abilities of the reaction-diffusion equations.
Collapse
|
26
|
Bachg AC, Horsthemke M, Skryabin BV, Klasen T, Nagelmann N, Faber C, Woodham E, Machesky LM, Bachg S, Stange R, Jeong HW, Adams RH, Bähler M, Hanley PJ. Phenotypic analysis of Myo10 knockout (Myo10 tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X. Sci Rep 2019; 9:597. [PMID: 30679680 PMCID: PMC6345916 DOI: 10.1038/s41598-018-37160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023] Open
Abstract
We investigated the physiological functions of Myo10 (myosin X) using Myo10 reporter knockout (Myo10tm2) mice. Full-length (motorized) Myo10 protein was deleted, but the brain-specific headless (Hdl) isoform (Hdl-Myo10) was still expressed in homozygous mutants. In vitro, we confirmed that Hdl-Myo10 does not induce filopodia, but it strongly localized to the plasma membrane independent of the MyTH4-FERM domain. Filopodia-inducing Myo10 is implicated in axon guidance and mice lacking the Myo10 cargo protein DCC (deleted in colorectal cancer) have severe commissural defects, whereas MRI (magnetic resonance imaging) of isolated brains revealed intact commissures in Myo10tm2/tm2 mice. However, reminiscent of Waardenburg syndrome, a neural crest disorder, Myo10tm2/tm2 mice exhibited pigmentation defects (white belly spots) and simple syndactyly with high penetrance (>95%), and 24% of mutant embryos developed exencephalus, a neural tube closure defect. Furthermore, Myo10tm2/tm2 mice consistently displayed bilateral persistence of the hyaloid vasculature, revealed by MRI and retinal whole-mount preparations. In principle, impaired tissue clearance could contribute to persistence of hyaloid vasculature and syndactyly. However, Myo10-deficient macrophages exhibited no defects in the phagocytosis of apoptotic or IgG-opsonized cells. RNA sequence analysis showed that Myo10 was the most strongly expressed unconventional myosin in retinal vascular endothelial cells and expression levels increased 4-fold between P6 and P15, when vertical sprouting angiogenesis gives rise to deeper layers. Nevertheless, imaging of isolated adult mutant retinas did not reveal vascularization defects. In summary, Myo10 is important for both prenatal (neural tube closure and digit formation) and postnatal development (hyaloid regression, but not retinal vascularization).
Collapse
Affiliation(s)
- Anne C Bachg
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Boris V Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models (TRAM), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tim Klasen
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Emma Woodham
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Sandra Bachg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
27
|
Fort L, Batista JM, Thomason PA, Spence HJ, Whitelaw JA, Tweedy L, Greaves J, Martin KJ, Anderson KI, Brown P, Lilla S, Neilson MP, Tafelmeyer P, Zanivan S, Ismail S, Bryant DM, Tomkinson NCO, Chamberlain LH, Mastick GS, Insall RH, Machesky LM. Fam49/CYRI interacts with Rac1 and locally suppresses protrusions. Nat Cell Biol 2018; 20:1159-1171. [PMID: 30250061 PMCID: PMC6863750 DOI: 10.1038/s41556-018-0198-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/20/2018] [Indexed: 11/09/2022]
Abstract
Actin-based protrusions are reinforced through positive feedback, but it is unclear what restricts their size, or limits positive signals when they retract or split. We identify an evolutionarily conserved regulator of actin-based protrusion: CYRI (CYFIP-related Rac interactor) also known as Fam49 (family of unknown function 49). CYRI binds activated Rac1 via a domain of unknown function (DUF1394) shared with CYFIP, defining DUF1394 as a Rac1-binding module. CYRI-depleted cells have broad lamellipodia enriched in Scar/WAVE, but reduced protrusion-retraction dynamics. Pseudopods induced by optogenetic Rac1 activation in CYRI-depleted cells are larger and longer lived. Conversely, CYRI overexpression suppresses recruitment of active Scar/WAVE to the cell edge, resulting in short-lived, unproductive protrusions. CYRI thus focuses protrusion signals and regulates pseudopod complexity by inhibiting Scar/WAVE-induced actin polymerization. It thus behaves like a 'local inhibitor' as predicted in widely accepted mathematical models, but not previously identified in cells. CYRI therefore regulates chemotaxis, cell migration and epithelial polarization by controlling the polarity and plasticity of protrusions.
Collapse
Affiliation(s)
- Loic Fort
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - José Miguel Batista
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | | | | | | | | | - Jennifer Greaves
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Kurt I Anderson
- CRUK Beatson Institute, Glasgow, UK
- Francis Crick Institute, London, UK
| | | | | | | | | | | | - Shehab Ismail
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - David M Bryant
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Robert H Insall
- CRUK Beatson Institute, Glasgow, UK.
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.
| | - Laura M Machesky
- CRUK Beatson Institute, Glasgow, UK.
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.
| |
Collapse
|
28
|
Tokuo H, Bhawan J, Coluccio LM. Myosin X is required for efficient melanoblast migration and melanoma initiation and metastasis. Sci Rep 2018; 8:10449. [PMID: 29993000 PMCID: PMC6041326 DOI: 10.1038/s41598-018-28717-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
Myosin X (Myo10), an actin-associated molecular motor, has a clear role in filopodia induction and cell migration in vitro, but its role in vivo in mammals is not well understood. Here, we investigate the role of Myo10 in melanocyte lineage and melanoma induction. We found that Myo10 knockout (Myo10KO) mice exhibit a white spot on their belly caused by reduced melanoblast migration. Myo10KO mice crossed with available mice that conditionally express in melanocytes the BRAFV600E mutation combined with Pten silencing exhibited reduced melanoma development and metastasis, which extended medial survival time. Knockdown of Myo10 (Myo10kd) in B16F1 mouse melanoma cell lines decreased lung colonization after tail-vein injection. Myo10kd also inhibited long protrusion (LP) formation by reducing the transportation of its cargo molecule vasodilator-stimulated phosphoprotein (VASP) to the leading edge of migrating cells. These findings provide the first genetic evidence for the involvement of Myo10 not only in melanoblast migration, but also in melanoma development and metastasis.
Collapse
Affiliation(s)
- Hiroshi Tokuo
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lynne M Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
29
|
Actin-Based Cell Protrusion in a 3D Matrix. Trends Cell Biol 2018; 28:823-834. [PMID: 29970282 PMCID: PMC6158345 DOI: 10.1016/j.tcb.2018.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix. Cell migration has been well studied in 2D, but how this relates to movement in physiological 3D tissues and matrix is not clear, particularly in vertebrate interstitial matrix. In 3D matrix cells actin polymerisation directly contributes to the formation of lamellipodia to facilitate migration and invasion (mesenchymal movement), analogous to 2D migration; actomyosin contractility promotes bleb formation to indirectly promote protrusion (amoeboid movement). Mesenchymal migration can be characterised by polymerisation of actin to form filopodial protrusions, in the absence of lamellipodia. Translocation of the nucleus is emerging as a critical step due to the constrictive environment of 3D matrices, and the mechanisms that transmit force to the nucleus and allow movement are beginning to be uncovered.
Collapse
|
30
|
Lou S, Wang P, Yang J, Ma J, Liu C, Zhou M. Prognostic and Clinicopathological Value of Rac1 in Cancer Survival: Evidence from a Meta-Analysis. J Cancer 2018; 9:2571-2579. [PMID: 30026856 PMCID: PMC6036885 DOI: 10.7150/jca.24824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022] Open
Abstract
Purpose: The role of Rac1 in cancer survival has been widely studied. However, the prognostic and clinicopathological value of Rac1 remains inconclusive. We performed a meta-analysis to clarify the role of Rac1 in cancer survival as well as its association with clinicopathological features. Methods: Eligible studies were searched from PubMed, Cochrane Library, Embase, and Web of Science databases. The pooled hazard ratios (HRs) and odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were used to detect the prognostic and clinicopathological role of Rac1. Results: A total of 14 studies including 1793 patients were enrolled in the present meta-analysis. Pooled HR for overall survival (OS) (HR=2.02, 95% CI: 1.70-2.39) and disease-free survival (DFS) (HR=2.64, 95% CI: 1.71-4.09) indicated a significant poor prognostic effect for Rac1. Positive Rac1 expression was found to be correlated with tumor stage, blood vessel invasion, and lymph metastasis, but not with histological differentiation. Sensitivity test showed no single study altered OS or DFS significantly. No publication bias was detected by Egger's test and Begg's funnel plot test. Conclusion: This meta-analysis indicated that Rac1 could be used as a potential marker to predict cancer prognosis. Additionally, Rac1 expression was associated with the malignancy-related phenotype.
Collapse
Affiliation(s)
- Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Penglai Wang
- Department of oral and maxillofacial surgery, Xuzhou Stomatological Hospital, 130 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Jianrong Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Chao Liu
- Department of oral and maxillofacial surgery, Xuzhou Stomatological Hospital, 130 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Meng Zhou
- Department of oral and maxillofacial surgery, Xuzhou Stomatological Hospital, 130 Huaihai Road, Xuzhou, Jiangsu 221002, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
31
|
Laurent-Gengoux P, Petit V, Aktary Z, Gallagher S, Tweedy L, Machesky L, Larue L. Simulation of melanoblast displacements reveals new features of developmental migration. Development 2018; 145:dev160200. [PMID: 29769218 PMCID: PMC6031402 DOI: 10.1242/dev.160200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/09/2018] [Indexed: 01/17/2023]
Abstract
To distribute and establish the melanocyte lineage throughout the skin and other developing organs, melanoblasts undergo several rounds of proliferation, accompanied by migration through complex environments and differentiation. Melanoblast migration requires interaction with extracellular matrix of the epidermal basement membrane and with surrounding keratinocytes in the developing skin. Migration has been characterized by measuring speed, trajectory and directionality of movement, but there are many unanswered questions about what motivates and defines melanoblast migration. Here, we have established a general mathematical model to simulate the movement of melanoblasts in the epidermis based on biological data, assumptions and hypotheses. Comparisons between experimental data and computer simulations reinforce some biological assumptions, and suggest new ideas for how melanoblasts and keratinocytes might influence each other during development. For example, it appears that melanoblasts instruct each other to allow a homogeneous distribution in the tissue and that keratinocytes may attract melanoblasts until one is stably attached to them. Our model reveals new features of how melanoblasts move and, in particular, suggest that melanoblasts leave a repulsive trail behind them as they move through the skin.
Collapse
Affiliation(s)
- Pascal Laurent-Gengoux
- Laboratory Mathematics in Interaction with Computer Science (MICS), Centrale Supélec, Université Paris Saclay, Gif-sur-Yvette 91190, France
| | - Valérie Petit
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| | - Zackie Aktary
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| | - Stuart Gallagher
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| | - Luke Tweedy
- CRUK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura Machesky
- CRUK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay 91405, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay 91405, France
- Equipe Labellisée Ligue Contre le Cancer, Orsay 91405, France
| |
Collapse
|
32
|
Innocenti M. New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. Cell Adh Migr 2018. [PMID: 29513145 DOI: 10.1080/19336918.2018.1448352] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lamellipodia and ruffles are veil-shaped cell protrusions composed of a highly branched actin filament meshwork assembled by the Arp2/3 complex. These structures not only hallmark the leading edge of cells adopting the adhesion-based mesenchymal mode of migration but are also thought to drive cell movement. Although regarded as textbook knowledge, the mechanism of formation of lamellipodia and ruffles has been revisited in the last years leveraging new technologies. Furthermore, recent observations have also challenged our current view of the function of lamellipodia and ruffles in mesenchymal cell migration. Here, I review this literature and compare it with older studies to highlight the controversies and the outstanding open issues in the field. Moreover, I outline simple and plausible explanations to reconcile conflicting results and conclusions. Finally, I integrate the mechanisms regulating actin-based protrusion in a unifying model that accounts for random and ballistic mesenchymal cell migration.
Collapse
Affiliation(s)
- Metello Innocenti
- a Division of Molecular Genetics, The Netherlands Cancer Institute , Plesmanlaan 121, Amsterdam , CX , The Netherlands
| |
Collapse
|
33
|
Liakath-Ali K, Vancollie VE, Sequeira I, Lelliott CJ, Watt FM. Myosin 10 is involved in murine pigmentation. Exp Dermatol 2018; 28:391-394. [PMID: 29509981 PMCID: PMC6519374 DOI: 10.1111/exd.13528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 12/25/2022]
Abstract
Myosins are molecular motors that are well known for their role in cell movement and contractile functions. Although extensively studied in muscle physiology, little is known about the function of myosins in mammalian skin. As part of the Sanger Institute Mouse Genetics Project, we have identified a role for Myo10 in pigmentation, with a phenotype unlike those of Myo5a or Myo7a. Adult mice homozygous for a disrupted Myo10 allele on a C57BL/6N background displayed a high degree of penetrance for white patches on their abdomen and dorsal surface. Forepaw syndactyly and hind paw syndactyly were also observed in these mice. Tail epidermal wholemounts showed a complete lack of melanocytes in the hair follicles and interfollicular epidermis. Myo10 has previously been implicated in human pigmentation. Our current study reveals involvement of Myo10 in murine skin pigmentation.
Collapse
Affiliation(s)
| | | | - Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | | | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
34
|
Suppression of RAC1-driven malignant melanoma by group A PAK inhibitors. Oncogene 2017; 37:944-952. [PMID: 29059171 PMCID: PMC5814328 DOI: 10.1038/onc.2017.400] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/28/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Activating mutations in the RAC1 gene have recently been discovered as driver events in malignant melanoma. Expression of this gene is associated with melanocyte proliferation, and melanoma cells bearing this mutation are insensitive to BRAF inhibitors such as vemurafenib and dabrafenib, and also may evade immune surveillance due to enhanced expression of PD-L1. Activating mutations in RAC1 are of special interest, as small molecule inhibitors for the RAC effector p21-activated kinase (PAK) are in late-stage clinical development and might impede oncogenic signaling from mutant RAC1. In this work, we explore the effects of PAK inhibition on RAC1P29S signaling in zebrafish embryonic development, in the proliferation, survival, and motility of RAC1P29S-mutant human melanoma cells, and on tumor formation and progression from such cells in mice. We report that RAC1P29S evokes a Rasopathy-like phenotype on zebrafish development that can be blocked by inhibitors of PAK or MEK. We also found and that RAC1 mutant human melanoma cells are resistant to clinical inhibitors of BRAF but are uniquely sensitive to PAK inhibitors. These data suggest that suppressing the PAK pathway might be of therapeutic benefit in this type of melanoma.
Collapse
|
35
|
Nobis M, Herrmann D, Warren SC, Kadir S, Leung W, Killen M, Magenau A, Stevenson D, Lucas MC, Reischmann N, Vennin C, Conway JRW, Boulghourjian A, Zaratzian A, Law AM, Gallego-Ortega D, Ormandy CJ, Walters SN, Grey ST, Bailey J, Chtanova T, Quinn JMW, Baldock PA, Croucher PI, Schwarz JP, Mrowinska A, Zhang L, Herzog H, Masedunskas A, Hardeman EC, Gunning PW, Del Monte-Nieto G, Harvey RP, Samuel MS, Pajic M, McGhee EJ, Johnsson AKE, Sansom OJ, Welch HCE, Morton JP, Strathdee D, Anderson KI, Timpson P. A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Rep 2017; 21:274-288. [PMID: 28978480 DOI: 10.1016/j.celrep.2017.09.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 09/05/2017] [Indexed: 01/04/2023] Open
Abstract
The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biosensing Techniques
- Bone and Bones/cytology
- Bone and Bones/metabolism
- Cell Movement/drug effects
- Dasatinib/pharmacology
- Erlotinib Hydrochloride/pharmacology
- Female
- Fluorescence Resonance Energy Transfer/instrumentation
- Fluorescence Resonance Energy Transfer/methods
- Gene Expression Regulation
- Intestine, Small/metabolism
- Intestine, Small/ultrastructure
- Intravital Microscopy/instrumentation
- Intravital Microscopy/methods
- Mammary Glands, Animal/blood supply
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/ultrastructure
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/ultrastructure
- Mechanotransduction, Cellular
- Mice
- Mice, Transgenic
- Neutrophils/metabolism
- Neutrophils/ultrastructure
- Osteocytes/metabolism
- Osteocytes/ultrastructure
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/ultrastructure
- Time-Lapse Imaging/instrumentation
- Time-Lapse Imaging/methods
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein
Collapse
Affiliation(s)
- Max Nobis
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shereen Kadir
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Wilfred Leung
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Monica Killen
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Stevenson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Morghan C Lucas
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Nadine Reischmann
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - James R W Conway
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Alice Boulghourjian
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Andrew M Law
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Christopher J Ormandy
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stacey N Walters
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Jacqueline Bailey
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tatyana Chtanova
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Julian M W Quinn
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul A Baldock
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Peter I Croucher
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Juliane P Schwarz
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Lei Zhang
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Andrius Masedunskas
- Neuromuscular and Regenerative Medicine Unit, University of New South Wales, Sydney, NSW 2010, Australia; Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Edna C Hardeman
- Neuromuscular and Regenerative Medicine Unit, University of New South Wales, Sydney, NSW 2010, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Gonzalo Del Monte-Nieto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; St. Vincent's Clinical School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; St. Vincent's Clinical School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Cambridge CB223AT, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | | | - Paul Timpson
- The Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
36
|
Crawford M, Leclerc V, Dagnino L. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases. Biol Open 2017. [PMID: 28642245 PMCID: PMC5576081 DOI: 10.1242/bio.025833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSAmT/mG and Tyr::CreERT2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM) substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage.
Collapse
Affiliation(s)
- Melissa Crawford
- Dept. of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Valerie Leclerc
- Dept. of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lina Dagnino
- Dept. of Physiology and Pharmacology, Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
37
|
The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier. Proc Natl Acad Sci U S A 2017; 114:E4621-E4630. [PMID: 28536193 DOI: 10.1073/pnas.1617004114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression.
Collapse
|
38
|
Woodham EF, Paul NR, Tyrrell B, Spence HJ, Swaminathan K, Scribner MR, Giampazolias E, Hedley A, Clark W, Kage F, Marston DJ, Hahn KM, Tait SWG, Larue L, Brakebusch CH, Insall RH, Machesky LM. Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin. Curr Biol 2017; 27:624-637. [PMID: 28238662 PMCID: PMC5344686 DOI: 10.1016/j.cub.2017.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/12/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
The individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods with dynamic actin bursts. Despite assuming an elongated shape usually associated with fast mesenchymal motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in the epidermis, with nearly static pseudopods. Although much of the basic actin machinery was intact, Cdc42 null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics.
Collapse
Affiliation(s)
- Emma F Woodham
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Nikki R Paul
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Benjamin Tyrrell
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Heather J Spence
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Karthic Swaminathan
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Michelle R Scribner
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Evangelos Giampazolias
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ann Hedley
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - William Clark
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Daniel J Marston
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Stephen W G Tait
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Lionel Larue
- Institute Curie, CNRS UMR3347, INSERM U1021, Bat 110, Centre Universitaire, 91405 Orsay Cedex, France
| | - Cord H Brakebusch
- Biotech Research Center, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | - Robert H Insall
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura M Machesky
- CRUK Beatson Institute, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| |
Collapse
|
39
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
40
|
Rajendran V, Gopalakrishnan C, Purohit R. Impact of point mutation P29S in RAC1 on tumorigenesis. Tumour Biol 2016; 37:15293-15304. [DOI: 10.1007/s13277-016-5329-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
|
41
|
Tyrrell BJ, Woodham EF, Spence HJ, Strathdee D, Insall RH, Machesky LM. Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour. Pigment Cell Melanoma Res 2016; 29:559-71. [PMID: 27390154 PMCID: PMC5082549 DOI: 10.1111/pcmr.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/02/2016] [Indexed: 12/24/2022]
Abstract
The five-subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin.
Collapse
Affiliation(s)
- Benjamin J Tyrrell
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma F Woodham
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Heather J Spence
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert H Insall
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
42
|
Petit V, Larue L. Any route for melanoblasts to colonize the skin! Exp Dermatol 2016; 25:669-73. [DOI: 10.1111/exd.13061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Valérie Petit
- Institut Curie; INSERM U1021; Normal and Pathological Development of Melanocytes; PSL Research University; Orsay France
- CNRS UMR 3347; University of Paris-Sud; University of Paris-Saclay; Orsay France
- Equipe Labellisée Ligue Contre le Cancer; Orsay France
| | - Lionel Larue
- Institut Curie; INSERM U1021; Normal and Pathological Development of Melanocytes; PSL Research University; Orsay France
- CNRS UMR 3347; University of Paris-Sud; University of Paris-Saclay; Orsay France
- Equipe Labellisée Ligue Contre le Cancer; Orsay France
| |
Collapse
|
43
|
Reconciling diverse mammalian pigmentation patterns with a fundamental mathematical model. Nat Commun 2016; 7:10288. [PMID: 26732977 PMCID: PMC4729835 DOI: 10.1038/ncomms10288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/26/2015] [Indexed: 12/18/2022] Open
Abstract
Bands of colour extending laterally from the dorsal to ventral trunk are a common feature of mouse chimeras. These stripes were originally taken as evidence of the directed dorsoventral migration of melanoblasts (the embryonic precursors of melanocytes) as they colonize the developing skin. Depigmented ‘belly spots' in mice with mutations in the receptor tyrosine kinase Kit are thought to represent a failure of this colonization, either due to impaired migration or proliferation. Tracing of single melanoblast clones, however, has revealed a diffuse distribution with high levels of axial mixing—hard to reconcile with directed migration. Here we construct an agent-based stochastic model calibrated by experimental measurements to investigate the formation of diffuse clones, chimeric stripes and belly spots. Our observations indicate that melanoblast colonization likely proceeds through a process of undirected migration, proliferation and tissue expansion, and that reduced proliferation is the cause of the belly spots in Kit mutants. How embryonic melanoblast behaviour influences adult pigmentation patterns and causes patterning defects is unclear. Here, Mort et al. construct a stochastic model parameterised experimentally to show that melanoblast migration is undirected and that reduced proliferation causes patterning defects.
Collapse
|
44
|
Koludrovic D, Laurette P, Strub T, Keime C, Le Coz M, Coassolo S, Mengus G, Larue L, Davidson I. Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells. PLoS Genet 2015; 11:e1005555. [PMID: 26440048 PMCID: PMC4595011 DOI: 10.1371/journal.pgen.1005555] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/07/2015] [Indexed: 12/23/2022] Open
Abstract
MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes. The melanocytes pigmenting the coat of adult mice derive from the melanocyte stem cell population residing in the permanent bulge area of the hair follicle. At each angen phase, melanocyte stem cells are stimulated to generate proliferative transient amplifying cells that migrate to the bulb of the follicle where they differentiate into mature melanin producing melanocytes, a processes involving MIcrophthalmia-associated Transcription Factor (MITF) the master regulator of the melanocyte lineage. We show that MITF associates with the NURF chromatin-remodelling factor in melanoma cells. NURF acts downstream of MITF in melanocytes and melanoma cells co-regulating gene expression in vitro. In vivo, mice lacking the NURF subunit Bptf in the melanocyte lineage show premature greying as they are unable to generate mature melanocytes from the adult stem cell population. We find that the melanocyte stem cells from these animals are abnormal and that once they are stimulated at anagen, Bptf is required to ensure the expression of melanocyte markers and their differentiation into mature adult melanocytes. Chromatin remodelling by NURF therefore appears to be essential for the transition of the transcriptionally quiescent stem cell to the differentiated state.
Collapse
Affiliation(s)
- Dana Koludrovic
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- Beaston Institute for Cancer Research, Glasgow, United Kingdom
| | - Patrick Laurette
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Thomas Strub
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Céline Keime
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Madeleine Le Coz
- Institut Curie CNRS UMR3347, INSERM U1021, Bat 110, Orsay, France
| | - Sebastien Coassolo
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Lionel Larue
- Institut Curie CNRS UMR3347, INSERM U1021, Bat 110, Orsay, France
- Equipes labélisées Ligue Contre le Cancer, Orsay and Strasbourg, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
- Equipes labélisées Ligue Contre le Cancer, Orsay and Strasbourg, France
- * E-mail:
| |
Collapse
|
45
|
Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol 2015; 36:103-12. [PMID: 26363959 PMCID: PMC4728192 DOI: 10.1016/j.ceb.2015.08.005] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
46
|
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
47
|
Abstract
The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.
Collapse
|
48
|
SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton. Sci Rep 2015; 5:9802. [PMID: 25925024 PMCID: PMC5386218 DOI: 10.1038/srep09802] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
Formin proteins are key regulators of the cytoskeleton involved in developmental and homeostatic programs, and human disease. For these reasons, small molecules interfering with Formins' activity have gained increasing attention. Among them, small molecule inhibitor of Formin Homology 2 domains (SMIFH2) is often used as a pharmacological Formin blocker. Although SMIFH2 inhibits actin polymerization by Formins and affects the actin cytoskeleton, its cellular mechanism of action and target specificity remain unclear. Here we show that SMIFH2 induces remodelling of actin filaments, microtubules and the Golgi complex as a result of its effects on Formins and p53. We found that SMIFH2 triggers alternated depolymerization-repolymerization cycles of actin and tubulin, increases cell migration, causes scattering of the Golgi complex, and also cytotoxicity at high dose. Moreover, SMIFH2 reduces expression and activity of p53 through a post-transcriptional, proteasome-independent mechanism that influences remodelling of the cytoskeleton. As the action of SMIFH2 may go beyond Formin inhibition, only short-term and low-dose SMIFH2 treatments minimize confounding effects induced by loss of p53 and cytotoxicity.
Collapse
|
49
|
Abstract
Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. Summary: This Review discusses melanocyte development and differentiation, melanocyte stem cells, and the role of the melanocyte lineage in diseases such as melanoma.
Collapse
Affiliation(s)
| | - Ian J Jackson
- MRC Human Genetics Unit and University of Edinburgh Cancer Research UK Cancer Centre, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit and Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
50
|
Tang Q, Li L, Jin C, Lee JM, Jung HS. Role of region-distinctive expression of Rac1 in regulating fibronectin arrangement during palatal shelf elevation. Cell Tissue Res 2015; 361:857-68. [PMID: 25843690 DOI: 10.1007/s00441-015-2169-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/05/2015] [Indexed: 01/22/2023]
Abstract
Palatal shelf elevation is a crucial process in palate development, with the contribution of various factors. Disturbances in any factor during this process result in cleft palate. Prior to palatal shelf elevation starting from embryonic day 12.5, the Rac1 expression level in the bend region of the mid-palatal shelf progressively increases and the cell densities in the bend and groove regions gradually become higher than those in the middle region. The comparative decrease of cell density in the middle region is correlated with a gradual alteration of the arrangement of fibronectin (FN) fibers, whereas the bend and groove regions with higher cell densities maintain ring-like FN arrangements. Rac1 overexpression alters the fibrillar FN arrangement in the middle region to the ring-like arrangement by increasing cell density. This alteration is sufficient to induce the failure of palatal shelf elevation, ultimately leading to cleft palate. Furthermore, the inhibition of FN delays palatal shelf elevation. Thus, the spatiotemporal expression of Rac1 plays an impressive role in palatal shelf elevation by regulating FN arrangement within the palatal shelf.
Collapse
Affiliation(s)
- Qinghuang Tang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | | | | | | | | |
Collapse
|