1
|
Hou X, Ren C, Jin J, Chen Y, Lyu X, Bi K, Carrillo ND, Cryns VL, Anderson RA, Sun J, Chen M. Phosphoinositide signalling in cell motility and adhesion. Nat Cell Biol 2025; 27:736-748. [PMID: 40169755 DOI: 10.1038/s41556-025-01647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Cell motility and adhesion are fundamental components for diverse physiological functions, including embryonic development, immune responses and tissue repair. Dysregulation of these processes can lead to a range of diseases, including cancer. Cell motility and adhesion are complex and often require regulation by an intricate network of signalling pathways, with phosphatidylinositol phosphates (PIPs) having a central role. PIPs are derived from phosphatidylinositol phosphorylation and are instrumental in mediating membrane dynamics, intracellular trafficking, cytoskeletal organization and signal transduction, all of which are crucial for cellular responses to environmental stimuli. Here we discuss the mechanisms through which PIPs modulate cell motility and adhesion by examining their roles at focal adhesions, within the cytoskeleton, at protein scaffolds and in the nucleus. By providing a comprehensive overview of PIP signalling, this Review underscores their significance in maintaining cellular homeostasis and highlights their potential as therapeutic targets in diseases characterized by aberrant cell motility and adhesion.
Collapse
Affiliation(s)
- Xiaoting Hou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jing Jin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College at Jinan University and The First Affiliated Hospital at the Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Yu Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xinyu Lyu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kangle Bi
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jichao Sun
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College at Jinan University and The First Affiliated Hospital at the Southern University of Science and Technology), Shenzhen, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025:10.1038/s41568-025-00810-1. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Du Y, Wang L, Perez-Castro L, Conacci-Sorrell M, Sieber M. Non-cell autonomous regulation of cell-cell signaling and differentiation by mitochondrial ROS. J Cell Biol 2024; 223:e202401084. [PMID: 39535785 PMCID: PMC11561560 DOI: 10.1083/jcb.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondrial reactive oxygen species (ROS) function intrinsically within cells to induce cell damage, regulate transcription, and cause genome instability. However, we know little about how mitochondrial ROS production non-cell autonomously impacts cell-cell signaling. Here, we show that mitochondrial dysfunction inhibits the plasma membrane localization of cell surface receptors that drive cell-cell communication during oogenesis. Within minutes, we found that mitochondrial ROS impairs exocyst membrane binding and leads to defective endosomal recycling. This endosomal defect impairs the trafficking of receptors, such as the Notch ligand Delta, during oogenesis. Remarkably, we found that overexpressing RAB11 restores ligand trafficking and rescues the developmental defects caused by ROS production. ROS production from adjacent cells acutely initiates a transcriptional response associated with growth and migration by suppressing Notch signaling and inducing extra cellualr matrix (ECM) remodeling. Our work reveals a conserved rapid response to ROS production that links mitochondrial dysfunction to the non-cell autonomous regulation of cell-cell signaling.
Collapse
Affiliation(s)
- Yipeng Du
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Suárez Freire S, Perez-Pandolfo S, Fresco SM, Valinoti J, Sorianello E, Wappner P, Melani M. The exocyst complex controls multiple events in the pathway of regulated exocytosis. eLife 2024; 12:RP92404. [PMID: 39585321 PMCID: PMC11588341 DOI: 10.7554/elife.92404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.
Collapse
Affiliation(s)
- Sofía Suárez Freire
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
| | - Sebastián Perez-Pandolfo
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
| | | | | | - Eleonora Sorianello
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental (IBYME-CONICET)Buenos AiresArgentina
| | - Pablo Wappner
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos AiresBuenos AiresArgentina
| | - Mariana Melani
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos AiresBuenos AiresArgentina
| |
Collapse
|
5
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
6
|
Hou J, Mei K, Wang D, Ke S, Chen X, Shang J, Li G, Gao Y, Xiong H, Zhang H, Chen L, Zhang W, Deng Y, Hong X, Liu DA, Hu T, Guo W, Zhan YY. TGM1/3-mediated transamidation of Exo70 promotes tumor metastasis upon LKB1 inactivation. Cell Rep 2024; 43:114604. [PMID: 39146185 DOI: 10.1016/j.celrep.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.
Collapse
Affiliation(s)
- Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Daxuan Wang
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guixia Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yabin Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoting Hong
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Di-Ao Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Thapa N, Chen M, Cryns VL, Anderson R. A p85 isoform switch enhances PI3K activation on endosomes by a MAP4- and PI3P-dependent mechanism. Cell Rep 2024; 43:114119. [PMID: 38630589 PMCID: PMC11380499 DOI: 10.1016/j.celrep.2024.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Phosphatidylinositol 3-kinase α (PI3Kα) is a heterodimer of p110α catalytic and p85 adaptor subunits that is activated by agonist-stimulated receptor tyrosine kinases. Although p85α recruits p110α to activated receptors on membranes, p85α loss, which occurs commonly in cancer, paradoxically promotes agonist-stimulated PI3K/Akt signaling. p110α localizes to microtubules via microtubule-associated protein 4 (MAP4), facilitating its interaction with activated receptor kinases on endosomes to initiate PI3K/Akt signaling. Here, we demonstrate that in response to agonist stimulation and p85α knockdown, the residual p110α, coupled predominantly to p85β, exhibits enhanced recruitment with receptor tyrosine kinases to endosomes. Moreover, the p110α C2 domain binds PI3-phosphate, and this interaction is also required to recruit p110α to endosomes and for PI3K/Akt signaling. Stable knockdown of p85α, which mimics the reduced p85α levels observed in cancer, enhances cell growth and tumorsphere formation, and these effects are abrogated by MAP4 or p85β knockdown, underscoring their role in the tumor-promoting activity of p85α loss.
Collapse
Affiliation(s)
- Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Siegfried H, Farkouh G, Le Borgne R, Pioche-Durieu C, De Azevedo Laplace T, Verraes A, Daunas L, Verbavatz JM, Heuzé ML. The ER tether VAPA is required for proper cell motility and anchors ER-PM contact sites to focal adhesions. eLife 2024; 13:e85962. [PMID: 38446032 PMCID: PMC10917420 DOI: 10.7554/elife.85962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Cell motility processes highly depend on the membrane distribution of Phosphoinositides, giving rise to cytoskeleton reshaping and membrane trafficking events. Membrane contact sites serve as platforms for direct lipid exchange and calcium fluxes between two organelles. Here, we show that VAPA, an ER transmembrane contact site tether, plays a crucial role during cell motility. CaCo2 adenocarcinoma epithelial cells depleted for VAPA exhibit several collective and individual motility defects, disorganized actin cytoskeleton and altered protrusive activity. During migration, VAPA is required for the maintenance of PI(4)P and PI(4,5)P2 levels at the plasma membrane, but not for PI(4)P homeostasis in the Golgi and endosomal compartments. Importantly, we show that VAPA regulates the dynamics of focal adhesions (FA) through its MSP domain, is essential to stabilize and anchor ventral ER-PM contact sites to FA, and mediates microtubule-dependent FA disassembly. To conclude, our results reveal unknown functions for VAPA-mediated membrane contact sites during cell motility and provide a dynamic picture of ER-PM contact sites connection with FA mediated by VAPA.
Collapse
Affiliation(s)
- Hugo Siegfried
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Georges Farkouh
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | | | - Agathe Verraes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Lucien Daunas
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | - Mélina L Heuzé
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| |
Collapse
|
9
|
Thapa N, Wen T, Cryns VL, Anderson RA. Regulation of Cell Adhesion and Migration via Microtubule Cytoskeleton Organization, Cell Polarity, and Phosphoinositide Signaling. Biomolecules 2023; 13:1430. [PMID: 37892112 PMCID: PMC10604632 DOI: 10.3390/biom13101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity for cancer cells to metastasize to distant organs depends on their ability to execute the carefully choreographed processes of cell adhesion and migration. As most human cancers are of epithelial origin (carcinoma), the transcriptional downregulation of adherent/tight junction proteins (e.g., E-cadherin, Claudin and Occludin) with the concomitant gain of adhesive and migratory phenotypes has been extensively studied. Most research and reviews on cell adhesion and migration focus on the actin cytoskeleton and its reorganization. However, metastasizing cancer cells undergo the extensive reorganization of their cytoskeletal system, specifically in originating/nucleation sites of microtubules and their orientation (e.g., from non-centrosomal to centrosomal microtubule organizing centers). The precise mechanisms by which the spatial and temporal reorganization of microtubules are linked functionally with the acquisition of an adhesive and migratory phenotype as epithelial cells reversibly transition into mesenchymal cells during metastasis remains poorly understood. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we highlight cell adhesion and migration from the perspectives of microtubule cytoskeletal reorganization, cell polarity and phosphoinositide signaling.
Collapse
Affiliation(s)
- Narendra Thapa
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Tianmu Wen
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Vincent L. Cryns
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| |
Collapse
|
10
|
Weindel CG, Ellzey LM, Martinez EL, Watson RO, Patrick KL. Gasdermins gone wild: new roles for GSDMs in regulating cellular homeostasis. Trends Cell Biol 2023; 33:773-787. [PMID: 37062616 PMCID: PMC10611448 DOI: 10.1016/j.tcb.2023.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 04/18/2023]
Abstract
Since their discovery, members of the gasdermin (GSDM) family of proteins have been firmly established as executors of pyroptosis, with the N-terminal fragment of most GSDMs capable of forming pores in the plasma membrane. More recent findings suggest that some GSDMs can drive additional cell death pathways, such as apoptosis and necroptosis, through mechanisms independent of plasma membrane perforation. There is also emerging evidence that by associating with cellular compartments such as mitochondria, peroxisomes, endosomes, and the nucleus, GSDMs regulate cell death-independent aspects of cellular homeostasis. Here, we review the diversity of GSDM function across several cell types and explore how various cellular stresses can promote relocalization - and thus refunctionalization - of GSDMs.
Collapse
Affiliation(s)
- Chi G Weindel
- Texas A&M University School of Medicine, Bryan, TX, USA
| | - Lily M Ellzey
- Texas A&M University School of Medicine, Bryan, TX, USA
| | | | | | | |
Collapse
|
11
|
Pereira C, Stalder D, Anderson GS, Shun-Shion AS, Houghton J, Antrobus R, Chapman MA, Fazakerley DJ, Gershlick DC. The exocyst complex is an essential component of the mammalian constitutive secretory pathway. J Cell Biol 2023; 222:e202205137. [PMID: 36920342 PMCID: PMC10041652 DOI: 10.1083/jcb.202205137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
Secreted proteins fulfill a vast array of functions, including immunity, signaling, and extracellular matrix remodeling. In the trans-Golgi network, proteins destined for constitutive secretion are sorted into post-Golgi carriers which fuse with the plasma membrane. The molecular machinery involved is poorly understood. Here, we have used kinetic trafficking assays and transient CRISPR-KO to study biosynthetic sorting from the Golgi to the plasma membrane. Depletion of all canonical exocyst subunits causes cargo accumulation in post-Golgi carriers. Exocyst subunits are recruited to and co-localize with carriers. Exocyst abrogation followed by kinetic trafficking assays of soluble cargoes results in intracellular cargo accumulation. Unbiased secretomics reveals impairment of soluble protein secretion after exocyst subunit knockout. Importantly, in specialized cell types, the loss of exocyst prevents constitutive secretion of antibodies in lymphocytes and of leptin in adipocytes. These data identify exocyst as the functional tether of secretory post-Golgi carriers at the plasma membrane and an essential component of the mammalian constitutive secretory pathway.
Collapse
Affiliation(s)
- Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Amber S. Shun-Shion
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jack Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Daniel J. Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
13
|
Integrin receptor trafficking in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:271-302. [PMID: 36813362 DOI: 10.1016/bs.pmbts.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Integrins are a family of 24 different heterodimers that are indispensable for multicellular life. Cell polarity, adhesion and migration are controlled by integrins delivered to the cell surface which in turn is regulated by the exo- and endocytic trafficking of integrins. The deep integration between trafficking and cell signaling determines the spatial and temporal output from any biochemical cue. Integrin trafficking plays a key role in development and many pathological conditions, especially cancer. Several novel regulators of integrin traffic have been discovered in recent times, including a novel class of integrin carrying vesicles, the intracellular nanovesicles (INVs). The tight regulation of trafficking pathways by cell signaling, where kinases phosphorylate key small GTPases in the trafficking pathway enable coordination of cell response to the extracellular milieu. Integrin heterodimer expression and trafficking differ in different tissues and contexts. In this Chapter, we discuss recent studies on integrin trafficking and its contribution to normal physiological and pathophysiological states.
Collapse
|
14
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
An SJ, Anneken A, Xi Z, Choi C, Schlessinger J, Toomre D. Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis. Proc Natl Acad Sci U S A 2022; 119:e2208947119. [PMID: 36417441 PMCID: PMC9860279 DOI: 10.1073/pnas.2208947119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phosphoinositide-3 kinase (PI-3K)/AKT cell survival pathway is an important pathway activated by EGFR signaling. Here we show, that in addition to previously described critical components of this pathway, i.e., the docking protein Gab1, the PI-3K/AKT pathway in epithelial cells is regulated by the exocyst complex, which is a vesicle tether that is essential for exocytosis. Using live-cell imaging, we demonstrate that PI(3,4,5)P3 levels fluctuate at the membrane on a minutes time scale and that these fluctuations are associated with local PI(3,4,5)P3 increases at sites where recycling vesicles undergo exocytic fusion. Supporting a role for exocytosis in PI(3,4,5)P3 generation, acute promotion of exocytosis by optogenetically driving exocyst-mediated vesicle tethering up-regulates PI(3,4,5)P3 production and AKT activation. Conversely, acute inhibition of exocytosis using Endosidin2, a small-molecule inhibitor of the exocyst subunit Exo70 (also designated EXOC7), or inhibition of exocyst function by siRNA-mediated knockdown of the exocyst subunit Sec15 (EXOC6), impairs PI(3,4,5)P3 production and AKT activation induced by EGF stimulation of epithelial cells. Moreover, prolonged inhibition of EGF signaling by EGFR tyrosine kinase inhibitors results in spontaneous reactivation of AKT without a concomitant relief of EGFR inhibition. However, this reactivation can be negated by acutely inhibiting the exocyst. These experiments demonstrate that exocyst-mediated exocytosis-by regulating PI(3,4,5)P3 levels at the plasma membrane-subserves activation of the PI-3K/AKT pathway by EGFR in epithelial cells.
Collapse
Affiliation(s)
- Seong J. An
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| | - Alexander Anneken
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhiqun Xi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Changseon Choi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Joseph Schlessinger
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
| | - Derek Toomre
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| |
Collapse
|
16
|
Langemeyer L, Ungermann C. Vesicle transport: Exocyst follows PIP 2 to tether membranes. Curr Biol 2022; 32:R748-R750. [PMID: 35820387 DOI: 10.1016/j.cub.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A new study uses reconstituted, functional octameric exocyst complex to provide new insights into the assembly of this tethering complex and reveal how the activity of the lipid kinase PIP5K1C stimulated by Arf6 on exocytic vesicles allows for exocyst-mediated tethering at the plasma membrane.
Collapse
Affiliation(s)
- Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section and Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 13, 49076 Osnabrück, Germany.
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section and Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 13, 49076 Osnabrück, Germany.
| |
Collapse
|
17
|
A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion. Curr Biol 2022; 32:2821-2833.e6. [PMID: 35609603 PMCID: PMC9382030 DOI: 10.1016/j.cub.2022.04.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane. Complete reconstitution and subunit connectivity of the human exocyst complex Binding to PI(4,5)P2 in trans by each subcomplex enables membrane tethering PI(4)P to PI(4,5)P2 conversion is sufficient for exocyst recruitment and tethering Arf6 controls phosphoinositide conversion by PIP5K1C in cells and in vitro
Collapse
|
18
|
Rivera-Molina FE, Xi Z, Reales E, Wang B, Toomre D. Exocyst complex mediates recycling of internal cilia. Curr Biol 2021; 31:5580-5589.e5. [PMID: 34678163 DOI: 10.1016/j.cub.2021.09.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Primary cilia are slender, cellular antennae that sense extracellular stimuli, and their absence or dysfunction plays a role in numerous human diseases. Prior work has indicated a role of the exocyst tethering complex in cilia biogenesis and maintenance,1-6 with the underlying paradigm that the exocyst targets vesicles to the ciliary base to deliver ciliary cargoes.7-9 However, the role of the exocyst vis-à-vis to primary cilia in living cells and during stimulation is unknown. Herein, using advanced imaging and quantitative analysis reveals that serum stimulation increases the exocyst's localization to cilia by three-fold. This serum-stimulated localization is highly dynamic, and FRAP experiments show that exocysts at the cilia are highly mobile (60%-80%). Super resolution imaging reveals that the xocyst extends past the cilia base to the entire ciliary pocket. To visualize cilia exocytosis, we conducted live cell imaging with pH-sensitive cilia reporters in combination with extracellular pH switching. Strikingly, we observed that an exocyst-positive internal cilia fuses with the cell surface. These live cell results support a novel and dynamic role of the exocyst complex in the delivery of internalized cilia to the cell surface. Moreover, they suggest a novel pathway may be used to recycle primary cilia to the cell surface that engages the exocyst in response to stimuli. This new remarkable plasticity in cilia presence on the surface in response to extracellular stimuli suggest new means to potentially modulate cilia signaling.
Collapse
Affiliation(s)
- Félix E Rivera-Molina
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520, USA.
| | - Zhiqun Xi
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Elena Reales
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Bryan Wang
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
19
|
An SJ, Rivera-Molina F, Anneken A, Xi Z, McNellis B, Polejaev VI, Toomre D. An active tethering mechanism controls the fate of vesicles. Nat Commun 2021; 12:5434. [PMID: 34521845 PMCID: PMC8440521 DOI: 10.1038/s41467-021-25465-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Vesicle tethers are thought to underpin the efficiency of intracellular fusion by bridging vesicles to their target membranes. However, the interplay between tethering and fusion has remained enigmatic. Here, through optogenetic control of either a natural tether-the exocyst complex-or an artificial tether, we report that tethering regulates the mode of fusion. We find that vesicles mainly undergo kiss-and-run instead of full fusion in the absence of functional exocyst. Full fusion is rescued by optogenetically restoring exocyst function, in a manner likely dependent on the stoichiometry of tether engagement with the plasma membrane. In contrast, a passive artificial tether produces mostly kissing events, suggesting that kiss-and-run is the default mode of vesicle fusion. Optogenetic control of tethering further shows that fusion mode has physiological relevance since only full fusion could trigger lamellipodial expansion. These findings demonstrate that active coupling between tethering and fusion is critical for robust membrane merger.
Collapse
Affiliation(s)
- Seong J An
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Anneken
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Brian McNellis
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Vladimir I Polejaev
- International Science and Technology Center, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Phosphatidylinositol-3-OH kinase signalling is spatially organized at endosomal compartments by microtubule-associated protein 4. Nat Cell Biol 2020; 22:1357-1370. [PMID: 33139939 DOI: 10.1038/s41556-020-00596-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
The canonical model of agonist-stimulated phosphatidylinositol-3-OH kinase (PI3K)-Akt signalling proposes that PI3K is activated at the plasma membrane, where receptors are activated and phosphatidylinositol-4,5-bisphosphate is concentrated. Here we show that phosphatidylinositol-3,4,5-trisphosphate generation and activated Akt are instead largely confined to intracellular membranes upon receptor tyrosine kinase activation. Microtubule-associated protein 4 (MAP4) interacts with and controls localization of membrane vesicle-associated PI3Kα to microtubules. The microtubule-binding domain of MAP4 binds directly to the C2 domain of the p110α catalytic subunit. MAP4 controls the interaction of PI3Kα with activated receptors at endosomal compartments along microtubules. Loss of MAP4 results in the loss of PI3Kα targeting and loss of PI3K-Akt signalling downstream of multiple agonists. The MAP4-PI3Kα assembly defines a mechanism for spatial control of agonist-stimulated PI3K-Akt signalling at internal membrane compartments linked to the microtubule network.
Collapse
|
21
|
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int J Biol Sci 2020; 16:2761-2774. [PMID: 33061794 PMCID: PMC7545710 DOI: 10.7150/ijbs.49665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositides are membrane lipids generated by phosphorylation on the inositol head group of phosphatidylinositol. By specifically distributed to distinct subcellular membrane locations, different phosphoinositide species play diverse roles in modulating membrane trafficking. Among the seven known phosphoinositide species, phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is the one species most abundant at the plasma membrane. Thus, the PI4,5P2 function in membrane trafficking is first identified in controlling plasma membrane dynamic-related events including endocytosis and exocytosis. However, recent studies indicate that PI4,5P2 is also critical in many other membrane trafficking events such as endosomal trafficking, hydrolases sorting to lysosomes, autophagy initiation, and autophagic lysosome reformation. These findings suggest that the role of PI4,5P2 in membrane trafficking is far beyond just plasma membrane. This review will provide a concise synopsis of how PI4,5P2 functions in multiple membrane trafficking events. PI4,5P2, the enzymes responsible for PI4,5P2 production at specific subcellular locations, and distinct PI4,5P2 effector proteins compose a regulation network to control the specific membrane trafficking events.
Collapse
Affiliation(s)
- Suhua Li
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yanli Xing
- Department of Otolaryngology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
22
|
Dual Function of PI(4,5)P2 in Insulin-Regulated Exocytic Trafficking of GLUT4 in Adipocytes. J Mol Biol 2020; 432:4341-4357. [DOI: 10.1016/j.jmb.2020.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
|
23
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
24
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
25
|
Wang R, Jiao Y, Li Y, Ye S, Pan G, Qin S, Hua F, Liu Y. The Prediction and Prognostic Significance of INPP5K Expression in Patients with Liver Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9519235. [PMID: 32420386 PMCID: PMC7201693 DOI: 10.1155/2020/9519235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is a devastating disease for humans with poor prognosis. Although the survival rate of patients with liver cancer has improved in the past decades, the recurrence and metastasis of liver cancer are still obstacles for us. Inositol polyphosphate-5-phosphatase K (INPP5K) belongs to the family of phosphoinositide 5-phosphatases (PI 5-phosphatases), which have been reported to be associated with cell migration, polarity, adhesion, and cell invasion, especially in cancers. However, there have been few studies on the correlation of INPP5K and liver cancer. In this study, we explored the prognostic significance of INPP5K in liver cancer through bioinformatics analysis of data collected from The Cancer Genome Atlas (TCGA) database. Chi-square and Fisher exact tests were used to evaluate the relationship between INPP5K expression and clinical characteristics. Our results showed that low INPP5K expression was correlated with poor outcomes in liver cancer patients. Univariate and multivariate Cox analyses demonstrated that low INPP5K mRNA expression played a significant role in shortening overall survival (OS) and relapse-free survival (RFS), which might serve as the useful biomarker and prognostic factor for liver cancer. In conclusion, low INPP5K mRNA expression is an independent risk factor for poor prognosis in liver cancer.
Collapse
Affiliation(s)
- Ruobing Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Siyang Ye
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Guoqiang Pan
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shanshan Qin
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Fang Hua
- Cardiovascular Internal Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
26
|
Sun M, Luong G, Plastikwala F, Sun Y. Control of Rab7a activity and localization through endosomal type Igamma PIP 5-kinase is required for endosome maturation and lysosome function. FASEB J 2019; 34:2730-2748. [PMID: 31908013 DOI: 10.1096/fj.201901830r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023]
Abstract
The small GTPase Ras-related protein Rab-7a (Rab7a) serves as a key organizer of the endosomal-lysosomal system. However, molecular mechanisms controlling Rab7a activation levels and subcellular translocation are still poorly defined. Here, we demonstrate that type Igamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an endosome-localized enzyme that produces phosphatidylinositol 4,5-bisphosphate, directly interacts with Rab7a and plays critical roles in the control of the endosomal-lysosomal system. The loss of PIPKIγi5 blocks Rab7a recruitment to early endosomes, which prevents the maturation of early to late endosomes. PIPKIγi5 loss disturbs retromer complex connection with Rab7a, which blocks the retrograde sorting of Cation-independent Mannose 6-Phosphate Receptor from late endosomes. This leads to the decreased sorting of hydrolases to lysosomes and reduces the autophagic degradation. By modulating the retromer-Rab7a connection, PIPKIγi5 is also required for the recruitment of the GTPase-activating protein TBC1 domain family member 5 to late endosomes, which controls the conversion of Rab7a from the active state to the inactive state. Thus, PIPKIγi5 is critical for the modulation of Rab7a activity, localization, and function in the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Ming Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary Luong
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Faiz Plastikwala
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Ni W, Li Y, Cai L, Dong C, Fang H, Chen Y, Li H, Yao M, Xiao N. SUMOylation is required for PIPK1γ-driven keratinocyte migration and growth. FEBS J 2019; 286:4709-4720. [PMID: 31276292 DOI: 10.1111/febs.14978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
PIPKIγ, a key member of the type I phosphatidylinositol 4-phosphate kinase (PIPKI) family that regulates the spatial-temporal generation of PIP2, has been implicated in diverse biological processes including cell survival, cell polarity, and cell migration. An essential role of PIPKIγ in tumor cells and nerve cells has been established in previous studies. However, the function and regulatory mechanism of PIPKIγ remains incompletely understood. Here, we showed that PIPKIγ can specifically associate with the SUMO-conjugating (E2) enzyme UBC9 and can be SUMOylated both in vivo and in vitro. We further identified that Lys-591 is the critical SUMO-acceptor site of PIPKIγ and that SUMO conjugation at this site is required for PIPKIγ-driven keratinocyte migration and growth. Mechanistically, SUMOylation deficiency significantly disrupts PIPKIγ-mediated generation of intracellular PIP2, rather than the subcellular translocation and protein stability of PIPKIγ. Our findings reveal that PIPKIγ is a novel SUMOylation target and highlight the essential role of PIPKIγ SUMOylation in human keratinocyte function, providing an important orientation for in-depth study of wound repair.
Collapse
Affiliation(s)
- Wei Ni
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Bengbu Medical College, Anhui, China
| | - Ying Li
- Department of Emergency, Qingdao Municipal Hospital, Shandong, China
| | - Lili Cai
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Changsheng Dong
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Min Yao
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Ning Xiao
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
28
|
Sáez JJ, Diaz J, Ibañez J, Bozo JP, Cabrera Reyes F, Alamo M, Gobert FX, Obino D, Bono MR, Lennon-Duménil AM, Yeaman C, Yuseff MI. The exocyst controls lysosome secretion and antigen extraction at the immune synapse of B cells. J Cell Biol 2019; 218:2247-2264. [PMID: 31197029 PMCID: PMC6605794 DOI: 10.1083/jcb.201811131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BCR engagement enhances microtubule stability, which triggers the mobilization of Exo70 from the centrosome to the immune synapse. BCR engagement activates GEF-H1, which promotes exocyst assembly required for the docking and secretion of lysosomes, facilitating the extraction of surface-tethered antigens. B lymphocytes capture antigens from the surface of presenting cells by forming an immune synapse. Local secretion of lysosomes, which are guided to the synaptic membrane by centrosome repositioning, can facilitate the extraction of immobilized antigens. However, the molecular basis underlying their delivery to precise domains of the plasma membrane remains elusive. Here we show that microtubule stabilization, triggered by engagement of the B cell receptor, acts as a cue to release centrosome-associated Exo70, which is redistributed to the immune synapse. This process is coupled to the recruitment and activation of GEF-H1, which is required for assembly of the exocyst complex, used to promote tethering and fusion of lysosomes at the immune synapse. B cells silenced for GEF-H1 or Exo70 display defective lysosome secretion, which results in impaired antigen extraction and presentation. Thus, centrosome repositioning coupled to changes in microtubule stability orchestrates the spatial-temporal distribution of the exocyst complex to promote polarized lysosome secretion at the immune synapse.
Collapse
Affiliation(s)
- Juan José Sáez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Jheimmy Diaz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Ibañez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Bozo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Cabrera Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martina Alamo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - François-Xavier Gobert
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - María Rosa Bono
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA
| | - María-Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Abstract
Polarized targeting and deposition of MT1-MMP is pivotal for metastasis. In this issue of Developmental Cell, Wang et al. (2017) reveal that a signaling molecule generated by phospholipase D2 drives deposition of MT1-MMP at the site of invadopodia formation and is critical for metastasis in a transgenic breast cancer model.
Collapse
Affiliation(s)
- Narendra Thapa
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
30
|
Li S, Chen C, Xiong X, Huang Y, Hu J, Fan Z, Ling K. Type Iγ phosphatidylinositol phosphate kinase dependent cell migration and invasion are dispensable for tumor metastasis. Am J Cancer Res 2019; 9:959-974. [PMID: 31218104 PMCID: PMC6556613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023] Open
Abstract
Type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) has been associated with poor prognosis in breast cancer patients by promoting metastasis. Among the six alternative-splicing isoforms of PIPKIγ, PIPKIγ_i2 specifically targets to focal adhesions and regulates focal adhesion turnover, thus was proposed responsible for tumor metastasis. In the present study, we specifically depleted PIPKIγ_i2 from mouse triple negative breast cancer (TNBC) 4T1 cells and analyzed their behaviors. As expected, PIPKIγ_i2-depleted 4T1 cells exhibited reduced proliferation, migration, and invasion in vitro at a comparable level as pan-PIPKIγ depleted cells. However, PIPKIγ_i2 depletion had no effect on metastasis and progression of 4T1 tumors in vivo. PIPKIγ_i2-depleted tumors showed similar levels of growth, hypoxia state, macrophage infiltration, and angiogenesis as parental tumors, although the pan-PIPKIγ depletion led to substantial inhibition on these aspects. Further investigation revealed that depleting PIPKIγ_i2 alone, unlike depleting all PIPKIγ isoforms, had no effect on PD-L1 expression, the status of the epithelial-to-mesenchymal transition, and the anchorage-independent growth of 4T1 cells. In human TNBC MDA-MB-231 cells, we obtained similar results. Thus, while PIPKIγ_i2 indeed is required for cell migration and invasion, these characteristics are not decisive for metastasis. Other PIPKIγ isoform(s) that regulate the expression of key factors to support cell survival under stresses is more critical for the malignant progression of TNBCs.
Collapse
Affiliation(s)
- Shiheng Li
- Department of Breast Surgery, The First Hospital of Jilin University71 Xinmin Street, Changchun, Jilin Province, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic200 First Street SW, Rochester, MN 55902, USA
| | - Chunhua Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic200 First Street SW, Rochester, MN 55902, USA
| | - Xunhao Xiong
- Department of Pathology, The University of Oklahoma Health Sciences Center940 Stanton L Young Blvd, Oklahoma City, Oklahoma, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic200 First Street SW, Rochester, MN 55902, USA
- Department of Nephrology and Hypertension, Mayo Clinic200 First Street SW, Rochester, MN 55902, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic200 First Street SW, Rochester, MN 55902, USA
- Department of Nephrology and Hypertension, Mayo Clinic200 First Street SW, Rochester, MN 55902, USA
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University71 Xinmin Street, Changchun, Jilin Province, China
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic200 First Street SW, Rochester, MN 55902, USA
| |
Collapse
|
31
|
Cole RA, Peremyslov VV, Van Why S, Moussaoui I, Ketter A, Cool R, Moreno MA, Vejlupkova Z, Dolja VV, Fowler JE. A broadly conserved NERD genetically interacts with the exocyst to affect root growth and cell expansion. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3625-3637. [PMID: 29722827 PMCID: PMC6022600 DOI: 10.1093/jxb/ery162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 05/10/2023]
Abstract
The exocyst, a conserved, octameric protein complex, helps mediate secretion at the plasma membrane, facilitating specific developmental processes that include control of root meristem size, cell elongation, and tip growth. A genetic screen for second-site enhancers in Arabidopsis identified NEW ENHANCER of ROOT DWARFISM1 (NERD1) as an exocyst interactor. Mutations in NERD1 combined with weak exocyst mutations in SEC8 and EXO70A1 result in a synergistic reduction in root growth. Alone, nerd1 alleles modestly reduce primary root growth, both by shortening the root meristem and by reducing cell elongation, but also result in a slight increase in root hair length, bulging, and rupture. NERD1 was identified molecularly as At3g51050, which encodes a transmembrane protein of unknown function that is broadly conserved throughout the Archaeplastida. A functional NERD1-GFP fusion localizes to the Golgi, in a pattern distinct from the plasma membrane-localized exocyst, arguing against a direct NERD1-exocyst interaction. Structural modeling suggests the majority of the protein is positioned in the lumen, in a β-propeller-like structure that has some similarity to proteins that bind polysaccharides. We suggest that NERD1 interacts with the exocyst indirectly, possibly affecting polysaccharides destined for the cell wall, and influencing cell wall characteristics in a developmentally distinct manner.
Collapse
Affiliation(s)
- Rex A Cole
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valera V Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Savannah Van Why
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ibrahim Moussaoui
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ann Ketter
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Renee Cool
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Matthew Andres Moreno
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - John E Fowler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
- Correspondence:
| |
Collapse
|
32
|
Choi S, Houdek X, Anderson RA. Phosphoinositide 3-kinase pathways and autophagy require phosphatidylinositol phosphate kinases. Adv Biol Regul 2018; 68:31-38. [PMID: 29472147 PMCID: PMC5955796 DOI: 10.1016/j.jbior.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) generate a lipid messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2) that controls essentially all aspects of cellular functions. PI4,5P2 rapidly diffuses in the membrane of the lipid bilayer and does not greatly change in membrane or cellular content, and thus PI4,5P2 generation by PIPKs is tightly linked to its usage in subcellular compartments. Based on this verity, recent study of PI4,5P2 signal transduction has been focused on investigations of individual PIPKs and their underlying molecular regulation of cellular processes. Here, we will discuss recent advances in the study of how PIPKs control specific cellular events through assembly and regulation of PI4,5P2 effectors that mediate specific cellular processes. A focus will be on the roles of PIPKs in control of the phosphoinositide 3-kinase pathway and autophagy.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xander Houdek
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031401. [PMID: 28264817 DOI: 10.1101/cshperspect.a031401] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One requirement for establishing polarity within a cell is the asymmetric trafficking of intracellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated trafficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establishment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front-back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
34
|
Huet-Calderwood C, Rivera-Molina F, Iwamoto DV, Kromann EB, Toomre D, Calderwood DA. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun 2017; 8:570. [PMID: 28924207 PMCID: PMC5603536 DOI: 10.1038/s41467-017-00646-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/16/2017] [Indexed: 12/22/2022] Open
Abstract
Integrins are abundant heterodimeric cell-surface adhesion receptors essential in multicellular organisms. Integrin function is dynamically modulated by endo-exocytic trafficking, however, major mysteries remain about where, when, and how this occurs in living cells. To address this, here we report the generation of functional recombinant β1 integrins with traceable tags inserted in an extracellular loop. We demonstrate that these ‘ecto-tagged’ integrins are cell-surface expressed, localize to adhesions, exhibit normal integrin activation, and restore adhesion in β1 integrin knockout fibroblasts. Importantly, β1 integrins containing an extracellular pH-sensitive pHluorin tag allow direct visualization of integrin exocytosis in live cells and revealed targeted delivery of integrin vesicles to focal adhesions. Further, using β1 integrins containing a HaloTag in combination with membrane-permeant and -impermeant Halo dyes allows imaging of integrin endocytosis and recycling. Thus, ecto-tagged integrins provide novel powerful tools to characterize integrin function and trafficking. Integrins are cell-surface adhesion receptors that are modulated by endo-exocytic trafficking, but existing tools to study this process can interfere with function. Here the authors develop β1 integrins carrying traceable tags in the extracellular domain; a pH-sensitive pHlourin tag or a HaloTag to facilitate dye attachment.
Collapse
Affiliation(s)
- Clotilde Huet-Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Emil B Kromann
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.,Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA. .,Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
35
|
Van Ngo H, Bhalla M, Chen DY, Ireton K. A role for host cell exocytosis in InlB-mediated internalisation ofListeria monocytogenes. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Hoan Van Ngo
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Manmeet Bhalla
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Da-Yuan Chen
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| |
Collapse
|
36
|
Yoshida A, Hayashi H, Tanabe K, Fujita A. Segregation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate into distinct microdomains on the endosome membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28648675 DOI: 10.1016/j.bbamem.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4-phosphate (PtdIns(4)P) is the immediate precursor of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which is located on the cytoplasmic leaflet of the plasma membrane and has been reported to possess multiple cellular functions. Although PtdIns(4)P and PtdIns(4,5)P2 have been reported to localize to multiple intracellular compartments and to each function as regulatory molecules, their generation, regulation and functions in most intracellular compartments are not well-defined. To analyze PtdIns(4)P and PtdIns(4,5)P2 distributions, at a nanoscale, we employed an electron microscopy technique that specifically labels PtdIns(4)P and PtdIns(4,5)P2 on the freeze-fracture replica of intracellular biological membranes. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P was localized to the cytoplasmic leaflet of Golgi apparatus and vesicular-shaped structures. The PtdIns(4,5)P2 labeling was observed in the cytoplasmic leaflet of the mitochondrial inner membrane and vesicular-shaped structures. Double labeling of PtdIns(4)P and PtdIns(4,5)P2 with endosome markers illustrated that PtdIns(4)P and PtdIns(4,5)P2 were mainly localized to the late endosome/lysosome and early endosome, respectively. PtdIns(4)P and PtdIns(4,5)P2 were colocalized in some endosomes, with the two phospholipids separated into distinct microdomains on the same endosomes. This is the first report showing, at a nanoscale, segregation of PtdIns(4)P- and PtdIns(4,5)P2-enriched microdomains in the endosome, of likely importance for endosome functionality.
Collapse
Affiliation(s)
- Akane Yoshida
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Hiroki Hayashi
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
37
|
Abstract
The exocyst complex mediates the tethering of secretory vesicles to the plasma membrane before SNARE-mediated membrane fusion. Recent studies have implicated the exocyst in a wide range of cellular processes. Particularly, research on the Exo70 subunit of the complex has linked the function of the exocyst in exocytosis to cell adhesion, migration and invasion. In this review, we will discuss the recent work on how Exo70 regulates these cellular processes, and how small GTPases and kinases interact with Exo70 to orchestrate its function in exocytosis and cytoskeleton organization. The study of Exo70 contributes to the understanding of many pathophysiological processes from organogenesis to cancer metastasis.
Collapse
Affiliation(s)
- Yueyao Zhu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Bin Wu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Wei Guo
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
38
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Thapa N, Tan X, Choi S, Wise T, Anderson RA. PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. Oncogene 2017; 36:899-911. [PMID: 27452517 PMCID: PMC6344042 DOI: 10.1038/onc.2016.267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
Epithelial cells acquire migratory/invasive and stemness traits upon conversion to the mesenchymal phenotype. The expression of E-cadherin is a key to this transition; yet precise understanding of the pathways involved in integrating E-cadherin loss to the gain of mesenchymal traits remains poorly understood. Here, we show that phosphoinositide-generating enzyme, PIPKIγ, expression is upregulated upon epithelial-mesenchymal transition (EMT) and together with the cytoskeletal protein talin assemble into a signaling complex upon E-cadherin loss. PIPKIγ and talin together control the adhesion and phosphoinositide signaling that regulates conversion to the mesenchymal phenotypes. PIPKIγ and talin regulate the stability of E-cadherin transcriptional repressors, snail and slug, induced by transforming growth factor-β1 or extracellular matrix protein. Loss of PIPKIγ or talin or their interaction impaired EMT and the acquisition of cell motility and stemness. This demonstrates a mechanism where a phosphoinositide-generating enzyme PIPKIγ couples with a cytoskeletal protein talin to control the acquisition of mesenchymal phenotypes.
Collapse
Affiliation(s)
- N Thapa
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - X Tan
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - S Choi
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - T Wise
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - R A Anderson
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
40
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
41
|
Lu R, Wilson JM. Rab14 specifies the apical membrane through Arf6-mediated regulation of lipid domains and Cdc42. Sci Rep 2016; 6:38249. [PMID: 27901125 PMCID: PMC5128791 DOI: 10.1038/srep38249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of cell polarity is essential for the development of multi-cellular organisms as well as for the function of epithelial organs in the mature animal. Small GTPases regulate the establishment and maintenance of polarity through effects on cytoskeleton, membrane trafficking, and signaling. Using short-term 3-dimensional culture of MDCK cells, we find that the small GTPase Rab14 is required for apical membrane specification. Rab14 knockdown results in disruption of polarized lipid domains and failure of the Par/aPKC/Cdc42 polarity complex to localize to the apical membrane. These effects are mediated through tight control of lipid localization, as overexpression of the phosphatidylinositol 4-phosphate 5-kinase α [PtdIns(4)P5K] activator Arf6 or PtdIns(4)P5K alone, or treatment with the phosphatidylinositol 3-kinase (PtdInsI3K) inhibitor wortmannin, rescued the multiple-apical domain phenotype observed after Rab14 knockdown. Rab14 also co-immunoprecipitates and colocalizes with the small GTPase Cdc42, and Rab14 knockdown results in increased Cdc42 activity. Furthermore, Rab14 regulates trafficking of vesicles to the apical domain, mitotic spindle orientation, and midbody position, consistent with Rab14’s reported localization to the midbody as well as its effects upon Cdc42. These results position Rab14 at the top of a molecular cascade that regulates the establishment of cell polarity.
Collapse
Affiliation(s)
- Ruifeng Lu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
42
|
Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases. Nat Cell Biol 2016; 18:1324-1335. [PMID: 27870828 DOI: 10.1038/ncb3441] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Generation of the lipid messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) is crucial for development, cell growth and survival, and motility, and it becomes dysfunctional in many diseases including cancers. Here we reveal a mechanism for PtdIns(3,4,5)P3 generation by scaffolded phosphoinositide kinases. In this pathway, class I phosphatidylinositol-3-OH kinase (PI(3)K) is assembled by IQGAP1 with PI(4)KIIIα and PIPKIα, which sequentially generate PtdIns(3,4,5)P3 from phosphatidylinositol. By scaffolding these kinases into functional proximity, the PtdIns(4,5)P2 generated is selectively used by PI(3)K for PtdIns(3,4,5)P3 generation, which then signals to PDK1 and Akt that are also in the complex. Moreover, multiple receptor types stimulate the assembly of this IQGAP1-PI(3)K signalling complex. Blockade of IQGAP1 interaction with PIPKIα or PI(3)K inhibited PtdIns(3,4,5)P3 generation and signalling, and selectively diminished cancer cell survival, revealing a target for cancer chemotherapy.
Collapse
|
43
|
Qu F, Lorenzo DN, King SJ, Brooks R, Bear JE, Bennett V. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes. eLife 2016; 5. [PMID: 27718357 PMCID: PMC5089861 DOI: 10.7554/elife.20417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Damaris N Lorenzo
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Rebecca Brooks
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|
44
|
Bloch D, Pleskot R, Pejchar P, Potocký M, Trpkošová P, Cwiklik L, Vukašinović N, Sternberg H, Yalovsky S, Žárský V. Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth. PLANT PHYSIOLOGY 2016; 172:980-1002. [PMID: 27516531 PMCID: PMC5047084 DOI: 10.1104/pp.16.00690] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/08/2016] [Indexed: 05/16/2023]
Abstract
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2 However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.
Collapse
Affiliation(s)
- Daria Bloch
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Roman Pleskot
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Přemysl Pejchar
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Martin Potocký
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Pavlína Trpkošová
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Lukasz Cwiklik
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Nemanja Vukašinović
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Hasana Sternberg
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Shaul Yalovsky
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| | - Viktor Žárský
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.)
| |
Collapse
|
45
|
Tan X, Thapa N, Liao Y, Choi S, Anderson RA. PtdIns(4,5)P2 signaling regulates ATG14 and autophagy. Proc Natl Acad Sci U S A 2016; 113:10896-901. [PMID: 27621469 PMCID: PMC5047215 DOI: 10.1073/pnas.1523145113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a regulated self-digestion pathway with fundamental roles in cell homeostasis and diseases. Autophagy is regulated by coordinated actions of a series of autophagy-related (ATG) proteins. The Barkor/ATG14(L)-VPS34 (a class III phosphatidylinositol 3-kinase) complex and its product phosphatidylinositol 3-phosphate [PtdIns(3)P] play key roles in autophagy initiation. ATG14 contains a C-terminal Barkor/ATG14(L) autophagosome-targeting sequence (BATS) domain that senses the curvature of PtdIns(3)P-containing membrane. The BATS domain also strongly binds PtdIns(4,5)P2, but the functional significance has been unclear. Here we show that ATG14 specifically interacts with type Iγ PIP kinase isoform 5 (PIPKIγi5), an enzyme that generates PtdIns(4,5)P2 in mammalian cells. Autophagosomes have associated PIPKIγi5 and PtdIns(4,5)P2 that are colocalized with late endosomes and the endoplasmic reticulum. PtdIns(4,5)P2 generation at these sites requires PIPKIγi5. Loss of PIPKIγi5 results in a loss of ATG14, UV irradiation resistance-associated gene, and Beclin 1 and a block of autophagy. PtdIns(4,5)P2 binding to the ATG14-BATS domain regulates ATG14 interaction with VPS34 and Beclin 1, and thus plays a key role in ATG14 complex assembly and autophagy initiation. This study identifies an unexpected role for PtdIns(4,5)P2 signaling in the regulation of ATG14 complex and autophagy.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Yihan Liao
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Suyong Choi
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
46
|
Ma W, Wang Y, Yao X, Xu Z, An L, Yin M. The role of Exo70 in vascular smooth muscle cell migration. Cell Mol Biol Lett 2016; 21:20. [PMID: 28536622 PMCID: PMC5415710 DOI: 10.1186/s11658-016-0019-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/10/2016] [Indexed: 01/05/2023] Open
Abstract
Background As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70’s function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5. Methods Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay. Results The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration. Conclusions This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of cardiovascular diseases such as atherosclerosis and restenosis after balloon angioplasty.
Collapse
Affiliation(s)
- Wenqing Ma
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Yu Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250014 People's Republic of China
| | - Xiaomeng Yao
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China.,No.10 High School of Zibo, Zibo, 255000 People's Republic of China
| | - Zijian Xu
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Liguo An
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Miao Yin
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| |
Collapse
|
47
|
Thapa N, Tan X, Choi S, Lambert PF, Rapraeger AC, Anderson RA. The Hidden Conundrum of Phosphoinositide Signaling in Cancer. Trends Cancer 2016; 2:378-390. [PMID: 27819060 DOI: 10.1016/j.trecan.2016.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) generation of PI(3,4,5)P3 from PI(4,5)P2 and the subsequent activation of Akt and its downstream signaling cascades (e.g. mTORC1) dominates the landscape of phosphoinositide signaling axis in cancer research. However, PI(4,5)P2 is breaking its boundary as merely a substrate for PI3K and phospholipase C (PLC), and is now an established lipid messenger pivotal for different cellular events in cancer. Here, we review the phosphoinositide signaling axis in cancer, giving due weight to PI(4,5)P2 and its generating enzymes, the phosphatidylinositol phosphate (PIP) kinases (PIPKs). We highlighted how PI(4,5)P2 and PIP kinases serve as a proximal node in phosphoinositide signaling axis and how its interaction with cytoskeletal proteins regulates migratory and invasive nexus of metastasizing tumor cells.
Collapse
Affiliation(s)
- Narendra Thapa
- University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, 1300 University Avenue, Madison, WI 53706, USA; McArdle Laboratory for Cancer Research, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Alan C Rapraeger
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA; Department of Human Oncology, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
48
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
49
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
50
|
Aerbajinai W, Liu L, Zhu J, Kumkhaek C, Chin K, Rodgers GP. Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin. J Biol Chem 2016; 291:8549-64. [PMID: 26895964 DOI: 10.1074/jbc.m115.674200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane.
Collapse
Affiliation(s)
- Wulin Aerbajinai
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Lunhua Liu
- the Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jianqiong Zhu
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Chutima Kumkhaek
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Kyung Chin
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Griffin P Rodgers
- From the Molecular and Clinical Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|