1
|
Tang Q, Lee JM, Li L, Cai C, Jung H, Kwon HJE. p63 co-opts the skin Krt8-to-Krt5 transition for enamel organ development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637463. [PMID: 39990386 PMCID: PMC11844444 DOI: 10.1101/2025.02.11.637463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Tooth enamel, the hardest vertebrate tissue, is crucial for mastication and dental protection. Its formation depends on the enamel organ (EO), a specialized epithelial structure derived from oral epithelium. How uniform oral epithelium differentiates into diverse EO cell types remains unclear. While p63 , an ectodermal development master regulator, is essential for dental placode formation, its specific roles in EO development have been obscured by early arrest in p63 knockout mice. Using single-cell RNA sequencing from mouse incisors, we show p63 expression across all EO cell types with both shared and distinct functions. Through trajectory reconstruction, we identify p63 's role in regulating both amelogenic (AmG) and non-AmG lineage commitment during EO development. Comparative transcriptome analyses reveal that p63 regulates the Krt8-to-Krt5 transition during AmG cell differentiation, paralleling its function in skin development. This parallel is reinforced by comparative motif discovery showing shared transcription factor usage, particularly p63 and AP-2 family members. Chromatin accessibility analyses further illustrate that p63 mediates this transition through chromatin landscape remodeling. These findings demonstrate that p63 co-opts the Krt8-to-Krt5 transition mechanism from skin development for EO formation. Summary statement This study reveals how p63 repurposes a skin keratinization mechanism for tooth enamel formation, providing novel insights into how specialized dental tissues develop and potential therapeutic targets for enamel disorders.
Collapse
|
2
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2025; 145:766-779. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Wrynn T, Min S, Horeth E, Osinski J, Sinha S, Romano RA. ΔNp63 regulates Sfrp1 expression to direct salivary gland branching morphogenesis. PLoS One 2024; 19:e0301082. [PMID: 38722977 PMCID: PMC11081224 DOI: 10.1371/journal.pone.0301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 05/13/2024] Open
Abstract
Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.
Collapse
Affiliation(s)
- Theresa Wrynn
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sangwon Min
- Department of Stem Cell and Regenerative Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Erich Horeth
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jason Osinski
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
4
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
5
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
6
|
Wang D, Li H, Chandel NS, Dou Y, Yi R. MOF-mediated histone H4 Lysine 16 acetylation governs mitochondrial and ciliary functions by controlling gene promoters. Nat Commun 2023; 14:4404. [PMID: 37479688 PMCID: PMC10362062 DOI: 10.1038/s41467-023-40108-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Histone H4 lysine 16 acetylation (H4K16ac), governed by the histone acetyltransferase MOF, orchestrates gene expression regulation and chromatin interaction. However, the roles of MOF and H4K16ac in controlling cellular function and regulating mammalian tissue development remain unclear. Here we show that conditional deletion of Mof in the skin, but not Kansl1, causes severe defects in the self-renewal of basal epithelial progenitors, epidermal differentiation, and hair follicle growth, resulting in barrier defects and perinatal lethality. MOF-regulated genes are highly enriched for essential functions in the mitochondria and cilia. Genetic deletion of Uqcrq, an essential subunit for the electron transport chain (ETC) Complex III, in the skin, recapitulates the defects in epidermal differentiation and hair follicle growth observed in MOF knockout mouse. Together, this study reveals the requirement of MOF-mediated epigenetic mechanism for regulating mitochondrial and ciliary gene expression and underscores the important function of the MOF/ETC axis for mammalian skin development.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Haimin Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yali Dou
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Zhang C, Wang D, Dowell R, Yi R. Single cell analysis of transcriptome and open chromatin reveals the dynamics of hair follicle stem cell aging. FRONTIERS IN AGING 2023; 4:1192149. [PMID: 37465120 PMCID: PMC10350644 DOI: 10.3389/fragi.2023.1192149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Aging is defined as the functional decline of tissues and organisms, leading to many human conditions, such as cancer, neurodegenerative diseases, and hair loss. Although stem cell exhaustion is widely recognized as a hallmark of aging, our understanding of cell state changes-specifically, the dynamics of the transcriptome and open chromatin landscape, and their relationship with aging-remains incomplete. Here we present a longitudinal, single-cell atlas of the transcriptome and open chromatin landscape for epithelia cells of the skin across various hair cycle stages and ages in mice. Our findings reveal fluctuating hair follicle stem cell (HF-SC) states, some of which are associated with the progression of the hair cycle during aging. Conversely, inner bulge niche cells display a more linear progression, seemingly less affected by the hair cycle. Further analysis of the open chromatin landscape, determined by single-cell Assay for Transposase-Accessible Chromatin (ATAC) sequencing, demonstrates that reduced open chromatin regions in HF-SCs are associated with differentiation, whereas gained open chromatin regions in HF-SCs are linked to the transcriptional control of quiescence. These findings enhance our understanding of the transcriptional dynamics in HF-SC aging and lay the molecular groundwork for investigating and potentially reversing the aging process in future experimental studies.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Zhu X, Senoo M, Millar SE, Ma G. Wnt/β-catenin signaling controls mouse eyelid growth by mediating epithelial-mesenchymal interactions. Ocul Surf 2023; 29:486-494. [PMID: 37453535 PMCID: PMC10530504 DOI: 10.1016/j.jtos.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To investigate the role of Wnt/β-catenin signaling in mouse eyelid development. METHODS Wnt/β-catenin signaling was disrupted by deleting supraorbital mesenchymal β-catenin or epithelial Wls. p63 was removed to determine whether the expression of Wnts is affected. The eyelid morphology was examined at different stages. Proliferation, apoptosis, and expression of Wnt ligands and their target genes were analyzed via immunofluorescence staining, TUNEL assay, and in situ hybridization. RESULTS Deletion of β-catenin in supraorbital mesenchyme abolishes eyelid growth by causing decreased proliferation in supraorbital epithelium and underlying mesenchyme. Inhibition of Wnt secretion by deleting Wls in supraorbital epithelium results in failure of eyelid development, similar to the effects of deleting mesenchymal β-catenin. Knockout of p63 results in formation of hypoplastic eyelids and reduced expression of several Wnt ligands in eyelid epithelium. CONCLUSIONS Epithelial Wnt ligands activate mesenchymal Wnt/β-catenin signaling to control eyelid growth and their expression is partially regulated by p63.
Collapse
Affiliation(s)
- Xuming Zhu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Makoto Senoo
- Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Gang Ma
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
9
|
Wang J, Fu Y, Huang W, Biswas R, Banerjee A, Broussard JA, Zhao Z, Wang D, Bjerke G, Raghavan S, Yan J, Green KJ, Yi R. MicroRNA-205 promotes hair regeneration by modulating mechanical properties of hair follicle stem cells. Proc Natl Acad Sci U S A 2023; 120:e2220635120. [PMID: 37216502 PMCID: PMC10235966 DOI: 10.1073/pnas.2220635120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuheng Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Wenmao Huang
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
| | - Avinanda Banerjee
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Zhihai Zhao
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Glen Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
10
|
May D, Yun S, Gonzalez DG, Park S, Chen Y, Lathrop E, Cai B, Xin T, Zhao H, Wang S, Gonzalez LE, Cockburn K, Greco V. Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo. eLife 2023; 12:83444. [PMID: 36880644 PMCID: PMC10027315 DOI: 10.7554/elife.83444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 03/08/2023] Open
Abstract
Stem cell differentiation requires dramatic changes in gene expression and global remodeling of chromatin architecture. How and when chromatin remodels relative to the transcriptional, behavioral, and morphological changes during differentiation remain unclear, particularly in an intact tissue context. Here, we develop a quantitative pipeline which leverages fluorescently-tagged histones and longitudinal imaging to track large-scale chromatin compaction changes within individual cells in a live mouse. Applying this pipeline to epidermal stem cells, we reveal that cell-to-cell chromatin compaction heterogeneity within the stem cell compartment emerges independent of cell cycle status, and instead is reflective of differentiation status. Chromatin compaction state gradually transitions over days as differentiating cells exit the stem cell compartment. Moreover, establishing live imaging of Keratin-10 (K10) nascent RNA, which marks the onset of stem cell differentiation, we find that Keratin-10 transcription is highly dynamic and largely precedes the global chromatin compaction changes associated with differentiation. Together, these analyses reveal that stem cell differentiation involves dynamic transcriptional states and gradual chromatin rearrangement.
Collapse
Affiliation(s)
- Dennis May
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Sangwon Yun
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - David G Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Sangbum Park
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, East Lansing, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, United States
| | - Yanbo Chen
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Biao Cai
- Department of Biostatistics, Yale University School of Public Health, New Haven, United States
| | - Tianchi Xin
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Department of Biostatistics, Yale University School of Public Health, New Haven, United States
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Deparment of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Lauren E Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Katie Cockburn
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Department of Biochemistry and Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, United States
- Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
11
|
Oceguera-Yanez F, Avila-Robinson A, Woltjen K. Differentiation of pluripotent stem cells for modeling human skin development and potential applications. Front Cell Dev Biol 2022; 10:1030339. [PMID: 36506084 PMCID: PMC9728031 DOI: 10.3389/fcell.2022.1030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The skin of mammals is a multilayered and multicellular tissue that forms an environmental barrier with key functions in protection, regulation, and sensation. While animal models have long served to study the basic functions of the skin in vivo, new insights are expected from in vitro models of human skin development. Human pluripotent stem cells (PSCs) have proven to be invaluable tools for studying human development in vitro. To understand the mechanisms regulating human skin homeostasis and injury repair at the molecular level, recent efforts aim to differentiate PSCs towards skin epidermal keratinocytes, dermal fibroblasts, and skin appendages such as hair follicles and sebaceous glands. Here, we present an overview of the literature describing strategies for human PSC differentiation towards the components of skin, with a particular focus on keratinocytes. We highlight fundamental advances in the field employing patient-derived human induced PSCs (iPSCs) and skin organoid generation. Importantly, PSCs allow researchers to model inherited skin diseases in the search for potential treatments. Skin differentiation from human PSCs holds the potential to clarify human skin biology.
Collapse
Affiliation(s)
- Fabian Oceguera-Yanez
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| | | | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| |
Collapse
|
12
|
Kantzer CG, Yang W, Grommisch D, Patil KV, Mak KHM, Shirokova V, Genander M. ID1 and CEBPA coordinate epidermal progenitor cell differentiation. Development 2022; 149:282464. [PMID: 36330928 PMCID: PMC9845743 DOI: 10.1242/dev.201262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The regulatory circuits that coordinate epidermal differentiation during development are still not fully understood. Here, we report that the transcriptional regulator ID1 is enriched in mouse basal epidermal progenitor cells and find ID1 expression to be diminished upon differentiation. In utero silencing of Id1 impairs progenitor cell proliferation, leads to precocious delamination of targeted progenitor cells and enables differentiated keratinocytes to retain progenitor markers and characteristics. Transcriptional profiling suggests that ID1 acts by mediating adhesion to the basement membrane while inhibiting spinous layer differentiation. Co-immunoprecipitation reveals ID1 binding to transcriptional regulators of the class I bHLH family. We localize bHLH Tcf3, Tcf4 and Tcf12 to epidermal progenitor cells during epidermal stratification and establish TCF3 as a downstream effector of ID1-mediated epidermal proliferation. Finally, we identify crosstalk between CEBPA, a known mediator of epidermal differentiation, and Id1, and demonstrate that CEBPA antagonizes BMP-induced activation of Id1. Our work establishes ID1 as a key coordinator of epidermal development, acting to balance progenitor proliferation with differentiation and unveils how functional crosstalk between CEBPA and Id1 orchestrates epidermal lineage progression.
Collapse
Affiliation(s)
| | - Wei Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - David Grommisch
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kim Vikhe Patil
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kylie Hin-Man Mak
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden,Author for correspondence ()
| |
Collapse
|
13
|
Lyu Y, Guan Y, Deliu L, Humphrey E, Frontera JK, Yang YJ, Zamler D, Kim KH, Mohanty V, Jin K, Mohanty V, Liu V, Dou J, Veillon LJ, Kumar SV, Lorenzi PL, Chen Y, McAndrews KM, Grivennikov S, Song X, Zhang J, Xi Y, Wang J, Chen K, Nagarajan P, Ge Y. KLF5 governs sphingolipid metabolism and barrier function of the skin. Genes Dev 2022; 36:gad.349662.122. [PMID: 36008138 PMCID: PMC9480852 DOI: 10.1101/gad.349662.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023]
Abstract
Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lisa Deliu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ericka Humphrey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joanna K Frontera
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Youn Joo Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Daniel Zamler
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kevin Jin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Vakul Mohanty
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Virginia Liu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lucas J Veillon
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sergei Grivennikov
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
15
|
A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration. Bone Res 2022; 10:38. [PMID: 35477573 PMCID: PMC9046296 DOI: 10.1038/s41413-022-00209-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Articular cartilage damage is a universal health problem. Despite recent progress, chondrocyte dedifferentiation has severely compromised the clinical outcomes of cell-based cartilage regeneration. Loss-of-function changes are frequently observed in chondrocyte expansion and other pathological conditions, but the characteristics and intermediate molecular mechanisms remain unclear. In this study, we demonstrate a time-lapse atlas of chondrocyte dedifferentiation to provide molecular details and informative biomarkers associated with clinical chondrocyte evaluation. We performed various assays, such as single-cell RNA sequencing (scRNA-seq), live-cell metabolic assays, and assays for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), to develop a biphasic dedifferentiation model consisting of early and late dedifferentiation stages. Early-stage chondrocytes exhibited a glycolytic phenotype with increased expression of genes involved in metabolism and antioxidation, whereas late-stage chondrocytes exhibited ultrastructural changes involving mitochondrial damage and stress-associated chromatin remodeling. Using the chemical inhibitor BTB06584, we revealed that early and late dedifferentiated chondrocytes possessed distinct recovery potentials from functional phenotype loss. Notably, this two-stage transition was also validated in human chondrocytes. An image-based approach was established for clinical use to efficiently predict chondrocyte plasticity using stage-specific biomarkers. Overall, this study lays a foundation to improve the quality of chondrocytes in clinical use and provides deep insights into chondrocyte dedifferentiation.
Collapse
|
16
|
Van Otterloo E, Milanda I, Pike H, Thompson JA, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development. eLife 2022; 11:e70511. [PMID: 35333176 PMCID: PMC9038197 DOI: 10.7554/elife.70511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here, we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2ß, within the early embryonic ectoderm of the mouse leads to major alterations in the craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. We also determined that the mutant clefting phenotypes that correlated with reduced WNT signaling could be rescued by Wnt1 ligand overexpression in the ectoderm. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Periodontics, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Isaac Milanda
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Hamish Pike
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jamie A Thompson
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital ColoradoAuroraUnited States
| |
Collapse
|
17
|
Zhang C, Wang D, Wang J, Wang L, Qiu W, Kume T, Dowell R, Yi R. Escape of hair follicle stem cells causes stem cell exhaustion during aging. NATURE AGING 2021; 1:889-903. [PMID: 37118327 PMCID: PMC11323283 DOI: 10.1038/s43587-021-00103-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/25/2021] [Indexed: 04/30/2023]
Abstract
Stem cell (SC) exhaustion is a hallmark of aging. However, the process of SC depletion during aging has not been observed in live animals, and the underlying mechanism contributing to tissue deterioration remains obscure. We find that, in aged mice, epithelial cells escape from the hair follicle (HF) SC compartment to the dermis, contributing to HF miniaturization. Single-cell RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq) reveal reduced expression of cell adhesion and extracellular matrix genes in aged HF-SCs, many of which are regulated by Foxc1 and Nfatc1. Deletion of Foxc1 and Nfatc1 recapitulates HF miniaturization and causes hair loss. Live imaging captures individual epithelial cells migrating away from the SC compartment and HF disintegration. This study illuminates a hitherto unknown activity of epithelial cells escaping from their niche as a mechanism underlying SC reduction and tissue degeneration. Identification of homeless epithelial cells in aged tissues provides a new perspective for understanding aging-associated diseases.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dongmei Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jingjing Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li Wang
- 10x Genomics, Pleasanton, CA, USA
| | - Wenli Qiu
- Lung Biology Center, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robin Dowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Oss-Ronen L, Cohen I. Epigenetic regulation and signalling pathways in Merkel cell development. Exp Dermatol 2021; 30:1051-1064. [PMID: 34152646 DOI: 10.1111/exd.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
Merkel cells are specialized epithelial cells connected to afferent nerve endings responsible for light-touch sensations, formed at specific locations in touch-sensitive regions of the mammalian skin. Although Merkel cells are descendants of the epidermal lineage, little is known about the mechanisms responsible for the development of these unique mechanosensory cells. Recent studies have highlighted that the Polycomb group (PcG) of proteins play a significant role in spatiotemporal regulation of Merkel cell formation. In addition, several of the major signalling pathways involved in skin development have been shown to regulate Merkel cell development as well. Here, we summarize the current understandings of the role of developmental regulators in Merkel cell formation, including the interplay between the epigenetic machinery and key signalling pathways, and the lineage-specific transcription factors involved in the regulation of Merkel cell development.
Collapse
Affiliation(s)
- Liat Oss-Ronen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
19
|
Detection of differentially abundant cell subpopulations in scRNA-seq data. Proc Natl Acad Sci U S A 2021; 118:2100293118. [PMID: 34001664 DOI: 10.1073/pnas.2100293118] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.
Collapse
|
20
|
Yu X, Singh PK, Tabrejee S, Sinha S, Buck MJ. ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicits chromatin remodeling. Epigenetics Chromatin 2021; 14:20. [PMID: 33865440 PMCID: PMC8053304 DOI: 10.1186/s13072-021-00394-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. METHODS In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding, we induced ΔNp63 expression in two p63-naïve cell lines. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes. RESULTS Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63's capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound, ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. CONCLUSION Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible and unmodified chromatin sites and induces histone acetylation and nucleosome repositioning.
Collapse
Affiliation(s)
- Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA.,Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Prashant K Singh
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Shamira Tabrejee
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| | - Michael J Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA. .,Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, USA.
| |
Collapse
|
21
|
Haensel D, Jin S, Sun P, Cinco R, Dragan M, Nguyen Q, Cang Z, Gong Y, Vu R, MacLean AL, Kessenbrock K, Gratton E, Nie Q, Dai X. Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics. Cell Rep 2021; 30:3932-3947.e6. [PMID: 32187560 PMCID: PMC7218802 DOI: 10.1016/j.celrep.2020.02.091] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Our knowledge of transcriptional heterogeneities in epithelial stem and progenitor cell compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive wound healing. Previous studies have probed basal cell heterogeneity in stem and progenitor potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. Using single-cell RNA sequencing coupled with RNAScope and fluorescence lifetime imaging, we identify three non-proliferative and one proliferative basal cell state in homeostatic skin that differ in metabolic preference and become spatially partitioned during wound re-epithelialization. Pseudotemporal trajectory and RNA velocity analyses predict a quasi-linear differentiation hierarchy where basal cells progress from Col17a1Hi/Trp63Hi state to early-response state, proliferate at the juncture of these two states, or become growth arrested before differentiating into spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous interconversions at multiple basal transcriptional states. Our study provides a systematic view of epidermal cellular dynamics, supporting a revised “hierarchical-lineage” model of homeostasis. Haensel et al. performed a comprehensive dissection of the cellular makeup of skin during homeostasis and wound healing and the molecular heterogeneity and cellular dynamics within its stem-cell-containing epidermal basal layer. Their work provides insights and stimulates further investigation into the mechanism of skin maintenance and repair.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- These authors contributed equally
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- These authors contributed equally
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel Cinco
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Morgan Dragan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zixuan Cang
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Yanwen Gong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Remy Vu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Adam L. MacLean
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Correspondence: (Q.N.), (X.D.)
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Lead Contact
- Correspondence: (Q.N.), (X.D.)
| |
Collapse
|
22
|
Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, Greenleaf WJ, Furlong EEM, Zhao K, Schmitz RJ, Bock C, Aerts S. Chromatin accessibility profiling methods. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10. [PMID: 38410680 PMCID: PMC10895463 DOI: 10.1038/s43586-020-00008-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Abstract
In this Primer, Moreci and Lechler follow the lifetime of an epidermal cell from its birth to its ultimate death, and detail how this journey is necessary for epidermal function.
Collapse
Affiliation(s)
- Rebecca S Moreci
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Lee SA, Li KN, Tumbar T. Stem cell-intrinsic mechanisms regulating adult hair follicle homeostasis. Exp Dermatol 2020; 30:430-447. [PMID: 33278851 DOI: 10.1111/exd.14251] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Adult hair follicle stem cells (HFSCs) undergo dynamic and periodic molecular changes in their cellular states throughout the hair homeostatic cycle. These states are tightly regulated by cell-intrinsic mechanisms and by extrinsic signals from the microenvironment. HFSCs are essential not only for fuelling hair growth, but also for skin wound healing. Increasing evidence suggests an important role of HFSCs in organizing multiple skin components around the hair follicle, thus functioning as an organizing centre during adult skin homeostasis. Here, we focus on recent findings on cell-intrinsic mechanisms of HFSC homeostasis, which include transcription factors, histone modifications, DNA regulatory elements, non-coding RNAs, cell metabolism, cell polarity and post-transcriptional mRNA processing. Several transcription factors are now known to participate in well-known signalling pathways that control hair follicle homeostasis, as well as in super-enhancer activities to modulate HFSC and progenitor lineage progression. Interestingly, HFSCs have been shown to secrete molecules that are important in guiding the organization of several skin components around the hair follicle, including nerves, arrector pili muscle and vasculature. Finally, we discuss recent technological advances in the field such as single-cell RNA sequencing and live imaging, which revealed HFSC and progenitor heterogeneity and brought new light to understanding crosstalking between HFSCs and the microenvironment. The field is well on its way to generate a comprehensive map of molecular interactions that should serve as a solid theoretical platform for application in hair and skin disease and ageing.
Collapse
Affiliation(s)
- Seon A Lee
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kefei Nina Li
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Gudjonsson JE, Elder JT. Meeting Report: 68 th Montagna Symposium on the Biology of Skin "Decoding Complex Skin Diseases: Integrating Genetics, Genomics, and Disease Biology". J Invest Dermatol 2020; 140:2105-2110. [PMID: 32603751 PMCID: PMC7606754 DOI: 10.1016/j.jid.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
The 68th Montagna Symposium on the Biology of the Skin was held from 10 to 14 October 2019 at Salishan Lodge in Gleneden Beach, Oregon. The theme of the meeting was "Decoding Complex Skin Diseases: Integrating Genetics, Genomics, and Disease Biology." The meeting emphasized the integration of multiple themes and disciplines to better understand some of the most common skin diseases, ranging from psoriasis to alopecia areata to vitiligo to lupus erythematosus to atopic dermatitis and food allergy. Promising therapeutic strategies are emerging for all of these diseases, providing clues for ways to connect the bench to the bedside. A common thread was the success of GWASs, which have highlighted the importance of regulatory signals versus coding variation. These diseases also share an environmental component linked to immune system function. Hence, beyond GWASs, this meeting focused on gene regulatory mechanisms, the single-cell revolution, in vivo systems for dissection of disease pathogenesis, and the relationship between genetics and environment in the context of host defense. We concluded with a translational roundtable designed to explore how these interrelated fields can best be directed toward long-term disease control and, ultimately, a cure.
Collapse
Affiliation(s)
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA.
| |
Collapse
|
27
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z, Xiong W, Li G, Li X, Tan P, Xiang B. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cell Mol Life Sci 2020; 77:4325-4346. [PMID: 32447427 PMCID: PMC7588389 DOI: 10.1007/s00018-020-03539-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regulator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
Collapse
Affiliation(s)
- Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Department of Head and Neck Surgery, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
28
|
Lin Z, Jin S, Chen J, Li Z, Lin Z, Tang L, Nie Q, Andersen B. Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states. Nat Commun 2020; 11:5434. [PMID: 33116143 PMCID: PMC7595230 DOI: 10.1038/s41467-020-19234-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The interfollicular epidermis (IFE) forms a water-tight barrier that is often disrupted in inflammatory skin diseases. During homeostasis, the IFE is replenished by stem cells in the basal layer that differentiate as they migrate toward the skin surface. Conventionally, IFE differentiation is thought to be stepwise as reflected in sharp boundaries between its basal, spinous, granular and cornified layers. The transcription factor GRHL3 regulates IFE differentiation by transcriptionally activating terminal differentiation genes. Here we use single cell RNA-seq to show that murine IFE differentiation is best described as a single step gradualistic process with a large number of transition cells between the basal and spinous layer. RNA-velocity analysis identifies a commitment point that separates the plastic basal and transition cell state from unidirectionally differentiating cells. We also show that in addition to promoting IFE terminal differentiation, GRHL3 is essential for suppressing epidermal stem cell expansion and the emergence of an abnormal stem cell state by suppressing Wnt signaling in stem cells.
Collapse
Affiliation(s)
- Ziguang Lin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, CA, USA.,Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA, USA.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Jefferson Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Zhuorui Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Zhongqi Lin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Li Tang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA. .,Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA, USA. .,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA. .,Department of Medicine, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
29
|
Min S, Oyelakin A, Gluck C, Bard JE, Song EAC, Smalley K, Che M, Flores E, Sinha S, Romano RA. p63 and Its Target Follistatin Maintain Salivary Gland Stem/Progenitor Cell Function through TGF-β/Activin Signaling. iScience 2020; 23:101524. [PMID: 32932139 PMCID: PMC7498843 DOI: 10.1016/j.isci.2020.101524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
Multipotent ΔNp63-positive cells maintain all epithelial cell lineages of the embryonic and adult salivary gland (SG). However, the molecular mechanisms by which ΔNp63 regulates stem/progenitor (SP) cell populations in the SG remains elusive. To understand the role of ΔNp63 in directing cell fate choices in this gland, we have generated ΔNp63-deleted adult mice and primary salivary cell cultures to probe alterations in SP cell differentiation and function. In parallel, we have leveraged RNA-seq and ChIP-seq-based characterization of the ΔNp63-driven cistrome and scRNA-seq analysis to molecularly interrogate altered SG cellular identities and differentiation states dependent on ΔNp63. Our studies reveal that ablation of ΔNp63 results in a loss of the SP cell population and skewed differentiation that is mediated by Follistatin-dependent dysregulated TGF-β/Activin signaling. These findings offer new revelations into the SP cell gene regulatory networks that are likely to be relevant for normal or diseased SG states.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Christian Gluck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Kirsten Smalley
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
| | - Elsa Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, Buffalo, NY 14214, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
30
|
Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis. Exp Dermatol 2020; 28:332-344. [PMID: 30887615 DOI: 10.1111/exd.13913] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Hair follicle (HF) formation in developing embryonic skin requires stepwise signalling between the epithelial epidermis and mesenchymal dermis, and their specialized derivatives, the placode/germ/peg and dermal condensate/papilla, respectively. Classically, distinct stages of HF morphogenesis have been defined, in the mouse model, based on (a) changes in cell morphology and aggregation; (b) expression of few known molecular markers; (c) the extent of follicle downgrowth; and (d) the presence of differentiating cell types. Refined genetic strategies and recent emerging technologies, such as live imaging and transcriptome analyses of isolated cell populations or single cells, have enabled a closer dissection of the signalling requirements at different stages of HF formation, particularly early on. They have also led to the discovery of precursor cells for placode, dermal condensate and future bulge stem cells that, combined with molecular insights into their fate specification and subsequent formation, serve as novel landmarks for early HF morphogenetic events and studies of the signalling networks mediating these processes. In this review, we integrate the emergence of HF precursor cell states and novel molecular markers of fate and formation to update the widely used 20-year-old seminal classification guide of HF morphogenetic stages by Paus et al. We then temporally describe the latest insights into the early cellular and molecular events and signalling requirements for HF morphogenesis in relation to one another in a holistic manner.
Collapse
Affiliation(s)
- Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
31
|
Ishitsuka Y, Ogawa T, Roop D. The KEAP1/NRF2 Signaling Pathway in Keratinization. Antioxidants (Basel) 2020; 9:E751. [PMID: 32823937 PMCID: PMC7465315 DOI: 10.3390/antiox9080751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Keratinization is a tissue adaptation, but aberrant keratinization is associated with skin disorders such as ichthyoses, atopic dermatitis, psoriasis, and acne. The disease phenotype stems from the interaction between genes and the environment; therefore, an understanding of the adaptation machinery may lead to a new appreciation of pathomechanisms. The KEAP1/NRF2 signaling pathway mediates the environmental responses of squamous epithelial tissue. The unpredicted outcome of the Keap1-null mutation in mice allowed us to revisit the basic principle of the biological process of keratinization: sulfur metabolism establishes unparalleled cytoprotection in the body wall of terrestrial mammals. We summarize the recent understanding of the KEAP1/NRF2 signaling pathway, which is a thiol-based sensor-effector apparatus, with particular focuses on epidermal differentiation in the context of the gene-environment interaction, the structure/function principles involved in KEAP1/NRF2 signaling, lessons from mouse models, and their pathological implications. This synthesis may provide insights into keratinization, which provides physical insulation and constitutes an essential innate integumentary defense system.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Dennis Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
32
|
Ye CJ, Zhan Y, Yang R, Li Y, Dong R. Single-cell transcriptional profiling identifies a cluster of potential metastasis-associated UBE2C+ cells in immature ovarian teratoma. Biochem Biophys Res Commun 2020; 528:567-573. [PMID: 32505346 DOI: 10.1016/j.bbrc.2020.05.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
To dissect the disease heterogeneity and identify the underlying cellular and molecular events related to metastasis of immature ovarian teratoma in children, single-cell RNA sequencing was performed for a 2-year-old patient with liver metastases from immature ovarian teratoma. A total of 5976 cells were obtained for further analysis, with a median unique molecular identifier count of 6011 per cell and a median number of 1741 genes detected per cell. Fourteen clusters were recognized, with the main lineages comprising epithelial cells, macrophages, fibroblasts, glial cells, and dendritic cells. Ten subclusters of epithelial cells were further defined, originating from the urinary tract, esophagus, bronchus, lung, skin, and gastrointestinal tract. An undefined UBE2C + population in an active state of proliferation was also identified and its biological processes were related to meiosis and maturation of oocytes. Pseudotime analysis revealed different distributions of epithelial cells in the development trajectory. In conclusion, a cluster of UBE2C + epithelial cells in an active state of proliferation was identified in an immature ovarian teratoma in a child, and may contribute to metastasis by regulating epithelial-mesenchymal transition. These findings help toward understanding the origin of the malignant behaviors, offer a potential biomarker for early determination of the tumor nature, and provide new ideas for the therapy of immature ovarian teratoma in children.
Collapse
Affiliation(s)
- Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China.
| |
Collapse
|
33
|
Pyle MP, Hoa M. Applications of single-cell sequencing for the field of otolaryngology: A contemporary review. Laryngoscope Investig Otolaryngol 2020; 5:404-431. [PMID: 32596483 PMCID: PMC7314468 DOI: 10.1002/lio2.388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Single-cell RNA sequencing (scRNA-Seq) is a new technique used to interrogate the transcriptome of individual cells within native tissues that have already resulted in key discoveries in auditory basic science research. Rapid advances in scRNA-Seq make it likely that it will soon be translated into clinical medicine. The goal of this review is to inspire the use of scRNA-Seq in otolaryngology by giving examples of how it can be applied to patient samples and how this information can be used clinically. METHODS Studies were selected based on the scientific quality and relevance to scRNA-Seq. In addition to mouse auditory system (inner ear including hair cells and supporting cells, spiral ganglion neurons, and inner ear organoids), recent studies using human primary cell samples are discussed. We also perform our own analysis on publicly available, published scRNA-Seq data from oral head and neck squamous cell carcinoma (HNSCC) samples to serve as an example of a clinically relevant application of scRNA-Seq. RESULTS Studies focusing on patient tissues show that scRNA-Seq reveals tissue heterogeneity and rare-cell types responsible for disease pathogenesis. The heterogeneity detected by scRNA-Seq can result in both the identification of known or novel disease biomarkers and drug targets. Our analysis of HNSCC data gives an example for how otolaryngologists can use scRNA-Seq for clinical use. CONCLUSIONS Although there are limitations to the translation of scRNA-Seq to the clinic, we show that its use in otolaryngology can give physicians insight into the tissue heterogeneity within their patient's diseased tissue giving them information on disease pathogenesis, novel disease biomarkers or druggable targets, and aid in selecting patient-specific drug cocktails.
Collapse
Affiliation(s)
- Madeline P. Pyle
- Division of Intramural Research, Section on Auditory Development and Restoration, National Institute on Deafness and Other Communication Disorders (NIDCD) Otolaryngology Surgeon‐Scientist ProgramNational Institutes of HealthBethesdaMarylandUSA
| | - Michael Hoa
- Division of Intramural Research, Section on Auditory Development and Restoration, National Institute on Deafness and Other Communication Disorders (NIDCD) Otolaryngology Surgeon‐Scientist ProgramNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
34
|
Liu Y. Clinical implications of chromatin accessibility in human cancers. Oncotarget 2020; 11:1666-1678. [PMID: 32405341 PMCID: PMC7210018 DOI: 10.18632/oncotarget.27584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/03/2020] [Indexed: 01/19/2023] Open
Abstract
Assay for transposase-accessible chromatin using sequencing (ATAC-seq) has not yet been widely used in cancer research. Clinical implications of chromatin accessibility assessed by ATAC-seq profiling in human cancers especially in a large patient cohort is largely unknown. In this study, we analyzed ATAC-seq data in 404 cancer patients from the Cancer Genome Atlas, representing the largest cancer patient cohort with ATAC-seq data, and correlated chromatin accessibility with patient demographics, tumor histology, molecular subtypes, and survival. Our results showed that chromatin accessibility varies from chromosome to chromosome, and is different in different genomic regions along the same chromosome. Chromatin accessibility especially on the X chromosome is strongly dependent on patient sex, but not much on patient age or tumor stage. Striking difference in chromatin accessibility is observed between lung adenocarcinoma and lung squamous cell carcinoma, the two most common histological subgroups in lung cancer. Furthermore, chromatin accessibility was different between basal and non-basal breast cancer. Finally, we identified prognostic peaks in the promoter regions that were significantly correlated with survival. In particular, we identified six peaks in the ESR1 gene promoter region in the ATAC-seq profiling and found that the peak about 247 bp away from the transcription start site was significantly associated with better survival. In conclusion, our study provides an alternative mechanism underlying tumor prognosis.
Collapse
Affiliation(s)
- Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
36
|
Single-cell RNA-seq identifies a reversible mesodermal activation in abnormally specified epithelia of p63 EEC syndrome. Proc Natl Acad Sci U S A 2019; 116:17361-17370. [PMID: 31413199 DOI: 10.1073/pnas.1908180116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mutations in transcription factor p63 are associated with developmental disorders that manifest defects in stratified epithelia including the epidermis. The underlying cellular and molecular mechanism is however not yet understood. We established an epidermal commitment model using human induced pluripotent stem cells (iPSCs) and characterized differentiation defects of iPSCs derived from ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome patients carrying p63 mutations. Transcriptome analyses revealed stepwise cell fate transitions during epidermal commitment: Specification from multipotent simple epithelium to basal stratified epithelia and ultimately to the mature epidermal fate. Differentiation defects of EEC iPSCs caused by p63 mutations occurred during the specification switch from the simple epithelium to the basal-stratified epithelial fate. Single-cell transcriptome and pseudotime analyses of cell states identified mesodermal activation that was associated with the deviated commitment route of EEC iPSCs. Integrated analyses of differentially regulated genes and p63-dependent dynamic genomic enhancers during epidermal commitment suggest that p63 directly controls epidermal gene activation at the specification switch and has an indirect effect on mesodermal gene repression. Importantly, inhibitors of mesodermal induction enhanced epidermal commitment of EEC iPSCs. Our findings demonstrate that p63 is required for specification of stratified epithelia, and that epidermal commitment defects caused by p63 mutations can be reversed by repressing mesodermal induction. This study provides insights into disease mechanisms underlying stratified epithelial defects caused by p63 mutations and suggests potential therapeutic strategies for the disease.
Collapse
|
37
|
Santos-Pereira JM, Gallardo-Fuentes L, Neto A, Acemel RD, Tena JJ. Pioneer and repressive functions of p63 during zebrafish embryonic ectoderm specification. Nat Commun 2019; 10:3049. [PMID: 31296872 PMCID: PMC6624255 DOI: 10.1038/s41467-019-11121-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factor p63 is a master regulator of ectoderm development. Although previous studies show that p63 triggers epidermal differentiation in vitro, the roles of p63 in developing embryos remain poorly understood. Here, we use zebrafish embryos to analyze in vivo how p63 regulates gene expression during development. We generate tp63-knock-out mutants that recapitulate human phenotypes and show down-regulated epidermal gene expression. Following p63-binding dynamics, we find two distinct functions clearly separated in space and time. During early development, p63 binds enhancers associated to neural genes, limiting Sox3 binding and reducing neural gene expression. Indeed, we show that p63 and Sox3 are co-expressed in the neural plate border. On the other hand, p63 acts as a pioneer factor by binding non-accessible chromatin at epidermal enhancers, promoting their opening and epidermal gene expression in later developmental stages. Therefore, our results suggest that p63 regulates cell fate decisions during vertebrate ectoderm specification.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
38
|
Qu J, Yi G, Zhou H. p63 cooperates with CTCF to modulate chromatin architecture in skin keratinocytes. Epigenetics Chromatin 2019; 12:31. [PMID: 31164150 PMCID: PMC6547520 DOI: 10.1186/s13072-019-0280-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
The transcription factor p63 regulates epidermal genes and the enhancer landscape in skin keratinocytes. Its molecular function in controlling the chromatin structure is, however, not yet completely understood. Here, we integrated multi-omics profiles, including the transcriptome, transcription factor DNA-binding and chromatin accessibility, in skin keratinocytes isolated from EEC syndrome patients carrying p63 mutations, to examine the role of p63 in shaping the chromatin architecture. We found decreased chromatin accessibility in p63- and CTCF-bound open chromatin regions that potentially contributed to gene deregulation in mutant keratinocytes. Cooperation of p63 and CTCF seemed to assist chromatin interactions between p63-bound enhancers and gene promoters in skin keratinocytes. Our study suggests an intriguing model where cell type-specific transcription factors such as p63 cooperate with the genome organizer CTCF in the three-dimensional chromatin space to regulate the transcription program important for the proper cell identity.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Guoqiang Yi
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Present Address: Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese
Academy of Agricultural Sciences, Shenzhen, 518124 China
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Kang S, Chovatiya G, Tumbar T. Epigenetic control in skin development, homeostasis and injury repair. Exp Dermatol 2019; 28:453-463. [PMID: 30624812 PMCID: PMC6488370 DOI: 10.1111/exd.13872] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
Cell-type- and cell-state-specific patterns of covalent modifications on DNA and histone tails form global epigenetic profiles that enable spatiotemporal regulation of gene expression. These epigenetic profiles arise from coordinated activities of transcription factors and epigenetic modifiers, which result in cell-type-specific outputs in response to dynamic environmental conditions and signalling pathways. Recent mouse genetic and functional studies have highlighted the physiological significance of global DNA and histone epigenetic modifications in skin. Importantly, specific epigenetic profiles are emerging for adult skin stem cells that are associated with their cell fate plasticity and proper activity in tissue regeneration. We can now begin to draw a more comprehensive picture of how epigenetic modifiers orchestrate their cell-intrinsic role with microenvironmental cues for proper skin development, homeostasis and wound repair. The field is ripe to begin to implement these findings from the laboratory into skin therapies.
Collapse
Affiliation(s)
- Sangjo Kang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Gopal Chovatiya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
40
|
Sastre-Perona A, Hoang-Phou S, Leitner MC, Okuniewska M, Meehan S, Schober M. De Novo PITX1 Expression Controls Bi-Stable Transcriptional Circuits to Govern Self-Renewal and Differentiation in Squamous Cell Carcinoma. Cell Stem Cell 2019; 24:390-404.e8. [PMID: 30713093 DOI: 10.1016/j.stem.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Basal tumor propagating cells (TPCs) control squamous cell carcinoma (SCC) growth by self-renewing and differentiating into supra-basal SCC cells, which lack proliferative potential. While transcription factors such as SOX2 and KLF4 can drive these behaviors, their molecular roles and regulatory interactions with each other have remained elusive. Here, we show that PITX1 is specifically expressed in TPCs, where it co-localizes with SOX2 and TRP63 and determines cell fate in mouse and human SCC. Combining gene targeting with chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomic analyses reveals that PITX1 cooperates with SOX2 and TRP63 to sustain an SCC-specific transcriptional feed-forward circuit that maintains TPC-renewal, while inhibiting KLF4 expression and preventing KLF4-dependent differentiation. Conversely, KLF4 represses PITX1, SOX2, and TRP63 expression to prevent TPC expansion. This bi-stable, multi-input network reveals a molecular framework that explains self-renewal, aberrant differentiation, and SCC growth in mice and humans, providing clues for developing differentiation-inducing therapeutic strategies.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | - Steven Hoang-Phou
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | - Marie-Christin Leitner
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | | | - Shane Meehan
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | - Markus Schober
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Chen X, Duan H, Xiao L, Gan J. Genetic and Epigenetic Alterations Underlie Oligodendroglia Susceptibility and White Matter Etiology in Psychiatric Disorders. Front Genet 2018; 9:565. [PMID: 30524471 PMCID: PMC6262033 DOI: 10.3389/fgene.2018.00565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Numerous genetic risk loci are found to associate with major neuropsychiatric disorders represented by schizophrenia. The pathogenic roles of genetic risk loci in psychiatric diseases are further complicated by the association with cell lineage- and/or developmental stage-specific epigenetic alterations. Besides aberrant assembly and malfunction of neuronal circuitry, an increasing volume of discoveries clearly demonstrate impairment of oligodendroglia and disruption of white matter integrity in psychiatric diseases. Nonetheless, whether and how genetic risk factors and epigenetic dysregulations for neuronal susceptibility may affect oligodendroglia is largely unknown. In this mini-review, we will discuss emerging evidence regarding the functional interplay between genetic risk loci and epigenetic factors, which may underlie compromised oligodendroglia and myelin development in neuropsychiatric disorders. Transcriptional and epigenetic factors are the major aspects affected in oligodendroglia. Moreover, multiple disease susceptibility genes are connected by epigenetically modulated transcriptional and post-transcriptional mechanisms. Oligodendroglia specific complex molecular orchestra may explain how distinct risk factors lead to the common clinical expression of white matter pathology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Psychiatry, Mental Diseases Prevention and Treatment Institute of PLA, PLA 91st Central Hospital, Jiaozuo, China
| | - Huifeng Duan
- Department of Psychiatry, Mental Diseases Prevention and Treatment Institute of PLA, PLA 91st Central Hospital, Jiaozuo, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingli Gan
- Department of Psychiatry, Mental Diseases Prevention and Treatment Institute of PLA, PLA 91st Central Hospital, Jiaozuo, China
| |
Collapse
|
42
|
|