1
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Robertson T, Li J, Bennin D, Juang T, Ahmed A, Li C, Huttenlocher A, Beebe DJ. Confinement by Liquid-Liquid Interface Replicates In Vivo Neutrophil Deformations and Elicits Bleb-Based Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414024. [PMID: 40151891 DOI: 10.1002/advs.202414024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Leukocytes forge paths through interstitial spaces by exerting forces to overcome confining mechanical pressures provided by surrounding cells. While such mechanical cues regulate leukocyte motility, engineering an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, microchannels are constructed with a liquid-liquid interface that exerts confining pressures similar to cells in tissues, and thus, is deformable by cell-generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. It is discovered that neutrophils employ a bleb-based mechanism of force generation to deform a soft barrier exerting cell-scale confining pressures. In all, this work introduces a tunable in vitro material interface that replicates confining pressures applied by soft tissue environments.
Collapse
Affiliation(s)
- Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kaitlyn Lazorchak
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Clyde W Tinnen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jack J Stevens
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mehtab Farooqui
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tanner Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David Bennin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adeel Ahmed
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
2
|
Wang T, Kim DH, Ding C, Wang D, Zhang W, Silic M, Cheng X, Shao K, Ku T, Zheng C, Xie J, Yuan C, Chubykin A, Staiger CJ, Zhang G, Deng Q. Inwardly rectifying potassium channels regulate membrane potential polarization and direction sensing during neutrophil chemotaxis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641746. [PMID: 40093039 PMCID: PMC11908270 DOI: 10.1101/2025.03.06.641746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Potassium channels regulate membrane potential and diverse physiological processes, including cell migration. However, the specific function of the inwardly rectifying potassium channels in immune cell chemotaxis is unknown. Here, we identified that the inwardly rectifying potassium channel Kir7.1 (KCNJ13) maintains the resting membrane potential and is required for directional sensing during neutrophil chemotaxis. Pharmacological or genetic inhibition of Kir7.1 in neutrophils impaired direction sensing toward various chemoattractants without affecting cell polarization in multiple neutrophil models. Using genetically encoded voltage indicators, we observed oscillating depolarization of the membrane potential in protrusions in zebrafish neutrophils, and Kir7.1 is required for polarized depolarization towards the chemokine source. Focal depolarization with optogenetic tools biases pseudopod selection and induces de novo protrusions. Global hyperpolarizing neutrophils stalled cell migration. Furthermore, Kir7.1 regulates GPCR signaling activation. This work adds membrane potential to the intricate feedforward mechanism, coupling the adaptive and excitable network required to steer immune cells in complex tissue environments.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel H Kim
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Ding
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Dingxun Wang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Weiwei Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907, USA
| | - Martin Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Xi Cheng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kunming Shao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - TingHsuan Ku
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Conwy Zheng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Alexander Chubykin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, West Lafayette, IN, 47907
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907, USA
| | - Guangjun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Gao W, Zhang X, Hu W, Han J, Liu X, Zhang Y, Long M. Neutrophils exhibit flexible migration strategies and trail formation mechanisms on varying adhesive substrates. Biomaterials 2025; 314:122881. [PMID: 39454506 DOI: 10.1016/j.biomaterials.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Substrate anchorage is essential for cell migration, and actin polymerization at cell front and myosin contractility at cell rear are known to govern cell forward movement. Yet their differential driving strategies for neutrophil migration on distinct adhesiveness substrates and their contributions to the migration-induced trail formation remain unclear. Here we explore the morphological changes, migration dynamics, and trail formation of neutrophils on ICAM-1 and PLL substrates, with a focus on the relationships among adhesive forces, traction forces, and out-of-plane forces. Results indicate that, on ICAM-1, neutrophil migration and trail formation rely on the coordinated interactions of Arp2/3 and myosin, along with biochemical regulation (via Syk and calpain) of adhesion and de-adhesion. This pattern leads to traction forces being concentrated at relatively fewer adhesive sites, facilitating cell forward migration. On PLL, however, neutrophils primarily depend on Arp2/3-mediated actin polymerization, resulting in a broader distribution of traction forces and weaker adhesions, which allows for higher leading-edge migrating velocities. Elevated membrane tension and out-of-plane forces generated by bleb protrusions on PLL reduce the reliance on myosin-driven contraction at the trailing edge, enabling easier tail detachment through elastic recoil. This work highlights the differential impact of substrate adhesiveness on neutrophil migration and trail formation and dynamics, providing new insights into cell migration mechanisms and potential therapeutic targets for inflammatory and immune-related disorders.
Collapse
Affiliation(s)
- Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoning Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Han
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Minegishi T, Hasebe H, Aoyama T, Naruse K, Takahashi Y, Inagaki N. Mechanical signaling through membrane tension induces somal translocation during neuronal migration. EMBO J 2025; 44:767-780. [PMID: 39707024 PMCID: PMC11790904 DOI: 10.1038/s44318-024-00326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/23/2024] Open
Abstract
Neurons migrate in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. The former step is critical for determining the migratory route in response to extracellular guidance cues. In the latter step, neurons must generate robust forces that translocate the bulky soma against mechanical barriers of the surrounding three-dimensional environment. However, the link between the leading process extension and subsequent somal translocation remains unknown. By using the membrane tension sensor Flipper-TR and scanning ion conductance microscopy, we show that leading process extension increases plasma membrane tension. The tension elevation activated the mechanosensitive ion channel Tmem63b and triggered Ca2+ influx, leading to actomyosin activation at the rear of the cell. Blockade of this signaling pathway disturbed somal translocation, thereby inhibiting neuronal migration in three-dimensional environments. These data suggest that mechanical signaling through plasma membrane tension and mechano-channels links the leading process extension to somal translocation, allowing rapid and saltatory neuronal migration.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Honami Hasebe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tomoya Aoyama
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, 700-8558, Japan
| | - Yasufumi Takahashi
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
5
|
Roy AD, Gonzalez CS, Shahid F, Yadav E, Inoue T. Optogenetically Induced Microtubule Acetylation Unveils the Molecular Dynamics of Actin-Microtubule Crosstalk in Directed Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626286. [PMID: 39677776 PMCID: PMC11642777 DOI: 10.1101/2024.12.01.626286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Microtubule acetylation is implicated in regulating cell motility, yet its physiological role in directional migration and the underlying molecular mechanisms have remained unclear. This knowledge gap has persisted primarily due to a lack of tools capable of rapidly manipulating microtubule acetylation in actively migrating cells. To overcome this limitation and elucidate the causal relationship between microtubule acetylation and cell migration, we developed a novel optogenetic actuator, optoTAT, which enables precise and rapid induction of microtubule acetylation within minutes in live cells. Using optoTAT, we observed striking and rapid responses at both molecular and cellular level. First, microtubule acetylation triggers release of the RhoA activator GEF-H1 from sequestration on microtubules. This release subsequently enhances actomyosin contractility and drives focal adhesion maturation. These subcellular processes collectively promote sustained directional cell migration. Our findings position GEF-H1 as a critical molecular responder to microtubule acetylation in the regulation of directed cell migration, revealing a dynamic crosstalk between the actin and microtubule cytoskeletal networks.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Cristian Saez Gonzalez
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Farid Shahid
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eesha Yadav
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Li J, Bennin D, Robertson T, Juang TD, Ahmed A, Li C, Huttenlocher A, Beebe D. Confinement by liquid-liquid interface replicates in vivo neutrophil deformations and elicits bleb based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544898. [PMID: 38106211 PMCID: PMC10723256 DOI: 10.1101/2023.06.14.544898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations are made to match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. We discover that, in this context, neutrophils employ a bleb-based mechanism of force generation to deform a barrier exerting cell-scale confining pressures.
Collapse
|
7
|
De Belly H, Gallen AF, Strickland E, Estrada DC, Zager PJ, Burkhardt JK, Turlier H, Weiner OD. Long range mutual activation establishes Rho and Rac polarity during cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616161. [PMID: 40236007 PMCID: PMC11996577 DOI: 10.1101/2024.10.01.616161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In migrating cells, the GTPase Rac organizes a protrusive front, whereas Rho organizes a contractile back. How these GTPases are appropriately positioned at the opposite poles of a migrating cell is unknown. Here we leverage optogenetics, manipulation of cell mechanics, and mathematical modeling to reveal a surprising long-range mutual activation of the front and back polarity programs that complements their well-known local mutual inhibition. This long-range activation is rooted in two distinct modes of mechanochemical crosstalk. Local Rac-based protrusion stimulates Rho activation at the opposite side of the cell via membrane tension-based activation of mTORC2. Conversely, local Rho-based contraction induces cortical-flow-based remodeling of membrane-to-cortex interactions leading to PIP2 release, PIP3 generation, and Rac activation at the opposite side of the cell. We develop a minimal unifying mechanochemical model of the cell to explain how this long-range mechanical facilitation complements local biochemical inhibition to enable robust global Rho and Rac partitioning. Finally, we validate the importance of this long-range facilitation in the context of chemoattractant-based cell polarization and migration in primary human lymphocytes. Our findings demonstrate that the actin cortex and plasma membrane function as an integrated mechanochemical system for long-range partitioning of Rac and Rho during cell migration and likely other cellular contexts.
Collapse
|
8
|
Belliveau NM, Footer MJ, Platenkamp A, Kim H, Eustis TE, Theriot JA. Galvanin is an electric-field sensor for directed cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614580. [PMID: 39386424 PMCID: PMC11463530 DOI: 10.1101/2024.09.23.614580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Directed cell migration is critical for the rapid response of immune cells, such as neutrophils, following tissue injury or infection. Endogenous electric fields, generated by the disruption of the transepithelial potential across the skin, help to guide the movement of immune and skin cells toward the wound site. However, the mechanisms by which cells sense these physical cues remain largely unknown. Through a CRISPR-based screen, we identified Galvanin, a previously uncharacterized single-pass transmembrane protein that is required for human neutrophils to change their direction of migration in response to an applied electric field. Our results indicate that Galvanin rapidly relocalizes to the anodal side of a cell on exposure to an electric field, and that the net charge on its extracellular domain is necessary and sufficient to drive this relocalization. The spatial pattern of neutrophil protrusion and retraction changes immediately upon Galvanin relocalization, suggesting that it acts as a direct sensor of the electric field that then transduces spatial information about a cell's electrical environment to the migratory apparatus. The apparent mechanism of cell steering by sensor relocalization represents a new paradigm for directed cell migration.
Collapse
Affiliation(s)
- Nathan M. Belliveau
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Matthew J. Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Amy Platenkamp
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Heonsu Kim
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Tara E. Eustis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A. Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Martin E, Girardello R, Dittmar G, Ludwig A. Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells. eLife 2024; 13:e85601. [PMID: 39315773 PMCID: PMC11509677 DOI: 10.7554/elife.85601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to increased membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. Caveolae have also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and their role in mechanotransduction remains unclear. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disrupts the caveolar protein coat. Membrane tension also detaches caveolin-1 from focal adhesion proteins and several mechanosensitive regulators of cortical actin including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 associate with caveolin-1 in a manner dependent on membrane tension, with ARHGAP29 influencing caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.
Collapse
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| | - Rossana Girardello
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Hwang IY, Kim JS, Harrison KA, Park C, Shi CS, Kehrl JH. Chemokine-mediated F-actin dynamics, polarity, and migration in B lymphocytes depend on WNK1 signaling. Sci Signal 2024; 17:eade1119. [PMID: 39190707 PMCID: PMC11542683 DOI: 10.1126/scisignal.ade1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/01/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ligand-engaged chemokine receptors trigger nucleotide exchange in heterotrimeric Gαi proteins, which stimulates cytoskeletal reorganization and cell polarity changes. To better understand the signaling events responsible for these cellular changes, we focused on early changes in F-actin dynamics after engagement of the chemokine receptor CXCR5 in murine splenic B cells. Within 10 seconds of exposure to the CXCR5 ligand CXCL13, three-dimensional lamellar-like pseudopods and F-actin-rich ridges appeared. The transient F-actin increase depended on Gαi2/3 signaling, the PI3K/AKT pathway, ERK activation, phospholipase C activity, and Rac1/2 activation mediated by Dock2 (dedicator of cytokinesis 2). Immunoblot analyses identified the kinase WNK1 (with no lysine kinase 1) as a potential early AKT effector. Treating B cells with specific WNK inhibitors disrupted F-actin dynamics and impaired B cell polarity, motility, and chemotaxis. These changes were mimicked in a murine B cell line by CRISPR-Cas9 gene editing of Wnk1, which also suggested that WNK1 contributed to B cell proliferation. Administration of a single dose of a WNK inhibitor transiently reduced B cell motility and polarity in the lymph nodes of live mice. These results indicate that WNK1 signaling maintains B cell responsiveness to CXCL13 and suggest that pharmacological inhibition of WNK1, which is involved in cancer progression and blood pressure regulation, may affect humoral immunity.
Collapse
Affiliation(s)
- Il-Young Hwang
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Ji Sung Kim
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kathleen A. Harrison
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chong Shan Shi
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - John H. Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
12
|
De Belly H, Weiner OD. Follow the flow: Actin and membrane act as an integrated system to globally coordinate cell shape and movement. Curr Opin Cell Biol 2024; 89:102392. [PMID: 38991476 PMCID: PMC11929537 DOI: 10.1016/j.ceb.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Migratory cells are polarized with protrusive fronts and contractile rears. This spatial organization necessitates long-range coordination of the signals that organize protrusions and contractions. Cells leverage reciprocal interactions of short-range biochemical signals and long-range mechanical forces for this integration. The interface between the plasma membrane and actin cortex is where this communication occurs. Here, we review how the membrane and cortex form an integrated system for long-range coordination of cell polarity. We highlight the role of membrane-to-cortex-attachment proteins as regulators of tension transmission across the cell and discuss the interplay between actin-membrane and polarity signaling complexes. Rather than presenting an exhaustive list of recent findings, we focus on important gaps in our current understanding.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Gong B, Johnston JD, Thiemicke A, de Marco A, Meyer T. Endoplasmic reticulum-plasma membrane contact gradients direct cell migration. Nature 2024; 631:415-423. [PMID: 38867038 PMCID: PMC11236710 DOI: 10.1038/s41586-024-07527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Directed cell migration is driven by the front-back polarization of intracellular signalling1-3. Receptor tyrosine kinases and other inputs activate local signals that trigger membrane protrusions at the front2,4-6. Equally important is a long-range inhibitory mechanism that suppresses signalling at the back to prevent the formation of multiple fronts7-9. However, the identity of this mechanism is unknown. Here we report that endoplasmic reticulum-plasma membrane (ER-PM) contact sites are polarized in single and collectively migrating cells. The increased density of these ER-PM contacts at the back provides the ER-resident PTP1B phosphatase more access to PM substrates, which confines receptor signalling to the front and directs cell migration. Polarization of the ER-PM contacts is due to microtubule-regulated polarization of the ER, with more RTN4-rich curved ER at the front and more CLIMP63-rich flattened ER at the back. The resulting ER curvature gradient leads to small and unstable ER-PM contacts only at the front. These contacts flow backwards and grow to large and stable contacts at the back to form the front-back ER-PM contact gradient. Together, our study suggests that the structural polarity mediated by ER-PM contact gradients polarizes cell signalling, directs cell migration and prolongs cell migration.
Collapse
Affiliation(s)
- Bo Gong
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| | - Jake D Johnston
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alexander Thiemicke
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tobias Meyer
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Ullo MF, D'Amico AE, Lavenus SB, Logue JS. The amoeboid migration of monocytes in confining channels requires the local remodeling of the cortical actin cytoskeleton by cofilin-1. Sci Rep 2024; 14:10241. [PMID: 38702365 PMCID: PMC11068741 DOI: 10.1038/s41598-024-60971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA, 02142, USA
| | - Anna E D'Amico
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Sandrine B Lavenus
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
- Regeneron Pharmaceuticals, 81 Columbia Turnpike, Rensselaer, NY, 12144, USA
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
15
|
Garrido-Casado M, Asensio-Juárez G, Talayero VC, Vicente-Manzanares M. Engines of change: Nonmuscle myosin II in mechanobiology. Curr Opin Cell Biol 2024; 87:102344. [PMID: 38442667 DOI: 10.1016/j.ceb.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The emergence of mechanobiology has unveiled complex mechanisms by which cells adjust intracellular force production to their needs. Most communicable intracellular forces are generated by myosin II, an actin-associated molecular motor that transforms adenosine triphosphate (ATP) hydrolysis into contraction in nonmuscle and muscle cells. Myosin II-dependent force generation is tightly regulated, and deregulation is associated with specific pathologies. Here, we focus on the role of myosin II (nonmuscle myosin II, NMII) in force generation and mechanobiology. We outline the regulation and molecular mechanism of force generation by NMII, focusing on the actual outcome of contraction, that is, force application to trigger mechanosensitive events or the building of dissipative structures. We describe how myosin II-generated forces drive two major types of events: modification of the cellular morphology and/or triggering of genetic programs, which enhance the ability of cells to adapt to, or modify, their microenvironment. Finally, we address whether targeting myosin II to impair or potentiate its activity at the motor level is a viable therapeutic strategy, as illustrated by recent examples aimed at modulating cardiac myosin II function in heart disease.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Vanessa C Talayero
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
16
|
Miller SG, Hoh M, Ebmeier CC, Tay JW, Ahn NG. Cooperative polarization of MCAM/CD146 and ERM family proteins in melanoma. Mol Biol Cell 2024; 35:ar31. [PMID: 38117590 PMCID: PMC10916866 DOI: 10.1091/mbc.e23-06-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023] Open
Abstract
The WRAMP structure is a protein network associated with tail-end actomyosin contractility, membrane retraction, and directional persistence during cell migration. A marker of WRAMP structures is melanoma cell adhesion molecule (MCAM) which dynamically polarizes to the cell rear. However, factors that mediate MCAM polarization are still unknown. In this study, BioID using MCAM as bait identifies the ERM family proteins, moesin, ezrin, and radixin, as WRAMP structure components. We also present a novel image analysis pipeline, Protein Polarity by Percentile ("3P"), which classifies protein polarization using machine learning and facilitates quantitative analysis. Using 3P, we find that depletion of moesin, and to a lesser extent ezrin, decreases the proportion of cells with polarized MCAM. Furthermore, although copolarized MCAM and ERM proteins show high spatial overlap, 3P identifies subpopulations with ERM proteins closer to the cell periphery. Live-cell imaging confirms that MCAM and ERM protein polarization is tightly coordinated, but ERM proteins enrich at the cell edge first. Finally, deletion of a juxtamembrane segment in MCAM previously shown to promote ERM protein interactions impedes MCAM polarization. Our findings highlight the requirement for ERM proteins in recruitment of MCAM to WRAMP structures and an advanced computational tool to characterize protein polarization.
Collapse
Affiliation(s)
- Suzannah G. Miller
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | - Maria Hoh
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | | | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| | - Natalie G. Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| |
Collapse
|
17
|
Ren X, Shi P, Su J, Wei T, Li J, Hu Y, Wu C. Loss of Myo19 increases metastasis by enhancing microenvironmental ROS gradient and chemotaxis. EMBO Rep 2024; 25:971-990. [PMID: 38279020 PMCID: PMC10933354 DOI: 10.1038/s44319-023-00052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024] Open
Abstract
Tumor metastasis involves cells migrating directionally in response to external chemical signals. Reactive oxygen species (ROS) in the form of H2O2 has been demonstrated as a chemoattractant for neutrophils but its spatial characteristics in tumor microenvironment and potential role in tumor cell dissemination remain unknown. Here we investigate the spatial ROS distribution in 3D tumor spheroids and identify a ROS concentration gradient in spheroid periphery, which projects into a H2O2 gradient in tumor microenvironment. We further reveal the role of H2O2 gradient to induce chemotaxis of tumor cells by activating Src and subsequently inhibiting RhoA. Finally, we observe that the absence of mitochondria cristae remodeling proteins including the mitochondria-localized actin motor Myosin 19 (Myo19) enhances ROS gradient and promotes tumor dissemination. Myo19 downregulation is seen in many tumors, and Myo19 expression is negatively associated with tumor metastasis in vivo. Together, our study reveals the chemoattractant role of tumor microenvironmental ROS and implies the potential impact of mitochondria cristae disorganization on tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Peng Shi
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Yiping Hu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
Fluks M, Collier R, Walewska A, Bruce AW, Ajduk A. How great thou ART: biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies. Front Cell Dev Biol 2024; 12:1342905. [PMID: 38425501 PMCID: PMC10902081 DOI: 10.3389/fcell.2024.1342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Rebecca Collier
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Agnieszka Walewska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alexander W. Bruce
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Patwardhan R, Nanda S, Wagner J, Stockter T, Dehmelt L, Nalbant P. Cdc42 activity in the trailing edge is required for persistent directional migration of keratinocytes. Mol Biol Cell 2024; 35:br1. [PMID: 37910204 PMCID: PMC10881163 DOI: 10.1091/mbc.e23-08-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.
Collapse
Affiliation(s)
- Rutuja Patwardhan
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Suchet Nanda
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Jessica Wagner
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom Stockter
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Leif Dehmelt
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
20
|
Clausen BE, Amon L, Backer RA, Berod L, Bopp T, Brand A, Burgdorf S, Chen L, Da M, Distler U, Dress RJ, Dudziak D, Dutertre CA, Eich C, Gabele A, Geiger M, Ginhoux F, Giusiano L, Godoy GJ, Hamouda AEI, Hatscher L, Heger L, Heidkamp GF, Hernandez LC, Jacobi L, Kaszubowski T, Kong WT, Lehmann CHK, López-López T, Mahnke K, Nitsche D, Renkawitz J, Reza RA, Sáez PJ, Schlautmann L, Schmitt MT, Seichter A, Sielaff M, Sparwasser T, Stoitzner P, Tchitashvili G, Tenzer S, Tochoedo NR, Vurnek D, Zink F, Hieronymus T. Guidelines for mouse and human DC functional assays. Eur J Immunol 2023; 53:e2249925. [PMID: 36563126 DOI: 10.1002/eji.202249925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anna Brand
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven Burgdorf
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Distler
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Regine J Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christina Eich
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Gabele
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Melanie Geiger
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Lucila Giusiano
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Gloria J Godoy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Ahmed E I Hamouda
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lola C Hernandez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Wan Ting Kong
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Nitsche
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Rifat A Reza
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Schlautmann
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Madeleine T Schmitt
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Malte Sielaff
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venerology & Allergology, Medical University Innsbruck, Innsbruck, Austria
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Stefan Tenzer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Nounagnon R Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Fabian Zink
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Germany
| |
Collapse
|
21
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
De Belly H, Yan S, Borja da Rocha H, Ichbiah S, Town JP, Zager PJ, Estrada DC, Meyer K, Turlier H, Bustamante C, Weiner OD. Cell protrusions and contractions generate long-range membrane tension propagation. Cell 2023; 186:3049-3061.e15. [PMID: 37311454 PMCID: PMC10330871 DOI: 10.1016/j.cell.2023.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023]
Abstract
Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shannon Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hudson Borja da Rocha
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Sacha Ichbiah
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Jason P Town
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick J Zager
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Dorothy C Estrada
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kirstin Meyer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France.
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Schrope JH, Huttenlocher A. The cell's dilemma: resolving directional decisions. Trends Immunol 2023; 44:324-325. [PMID: 37029072 PMCID: PMC10567577 DOI: 10.1016/j.it.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
How neutrophils make decisions about polarity and migration path in complex tissue environments in situ remains unclear. Hadjitheodorou et al. describe how an internal mechanical regulator might help cells resolve the dilemma of two competing cell fronts.
Collapse
Affiliation(s)
- Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anna Huttenlocher
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
24
|
Hu W, Gao W, Gong Y, Guo P, Li W, Shu X, Lü S, Zeng Z, Zhang Y, Long M. Trail Formation Alleviates Excessive Adhesion and Maintains Efficient Neutrophil Migration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17577-17591. [PMID: 36976830 DOI: 10.1021/acsami.3c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Migrating neutrophils are found to leave behind subcellular trails in vivo, but the underlying mechanisms remain unclear. Here, an in vitro cell migration test plus an in vivo observation was applied to monitor neutrophil migration on intercellular cell adhesion molecule-1 (ICAM-1) presenting surfaces. Results indicated that migrating neutrophils left behind long-lasting, chemokine-containing trails. Trail formation tended to alleviate excessive cell adhesion enhanced by the trans-binding antibody and maintain efficient cell migration, which was associated with differential instantaneous edge velocity between the cell front and rear. CD11a and CD11b worked differently in inducing trail formation with polarized distributions on the cell body and uropod. Trail release at the cell rear was attributed to membrane ripping, in which β2-integrin was disrupted from the cell membrane through myosin-mediated rear contraction and integrin-cytoskeleton dissociation, potentiating a specialized strategy of integrin loss and cell deadhesion to maintain efficient migration. Moreover, neutrophil trails left on the substrate served as immune forerunners to recruit dendritic cells. These results provided an insight in elucidating the mechanisms of neutrophil trail formation and deciphering the roles of trail formation in efficient neutrophil migration.
Collapse
Affiliation(s)
- Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixin Gong
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Guo
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Hadjitheodorou A, Bell GRR, Ellett F, Irimia D, Tibshirani R, Collins SR, Theriot JA. Leading edge competition promotes context-dependent responses to receptor inputs to resolve directional dilemmas in neutrophil migration. Cell Syst 2023; 14:196-209.e6. [PMID: 36827986 PMCID: PMC10150694 DOI: 10.1016/j.cels.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/02/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Maintaining persistent migration in complex environments is critical for neutrophils to reach infection sites. Neutrophils avoid getting trapped, even when obstacles split their front into multiple leading edges. How they re-establish polarity to move productively while incorporating receptor inputs under such conditions remains unclear. Here, we challenge chemotaxing HL60 neutrophil-like cells with symmetric bifurcating microfluidic channels to probe cell-intrinsic processes during the resolution of competing fronts. Using supervised statistical learning, we demonstrate that cells commit to one leading edge late in the process, rather than amplifying structural asymmetries or early fluctuations. Using optogenetic tools, we show that receptor inputs only bias the decision similarly late, once mechanical stretching begins to weaken each front. Finally, a retracting edge commits to retraction, with ROCK limiting sensitivity to receptor inputs until the retraction completes. Collectively, our results suggest that cell edges locally adopt highly stable protrusion/retraction programs that are modulated by mechanical feedback.
Collapse
Affiliation(s)
- Amalia Hadjitheodorou
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Felix Ellett
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Tibshirani
- Department of Statistics and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Kunida K, Takagi N, Aoki K, Ikeda K, Nakamura T, Sakumura Y. Decoding cellular deformation from pseudo-simultaneously observed Rho GTPase activities. Cell Rep 2023; 42:112071. [PMID: 36764299 DOI: 10.1016/j.celrep.2023.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Limitations in simultaneously observing the activity of multiple molecules in live cells prevent researchers from elucidating how these molecules coordinate the dynamic regulation of cellular functions. Here, we propose the motion-triggered average (MTA) algorithm to characterize pseudo-simultaneous dynamic changes in arbitrary cellular deformation and molecular activities. Using MTA, we successfully extract a pseudo-simultaneous time series from individually observed activities of three Rho GTPases: Cdc42, Rac1, and RhoA. To verify that this time series encoded information on cell-edge movement, we use a mathematical regression model to predict the edge velocity from the activities of the three molecules. The model accurately predicts the unknown edge velocity, providing numerical evidence that these Rho GTPases regulate edge movement. Data preprocessing using MTA combined with mathematical regression provides an effective strategy for reusing numerous individual observations of molecular activities.
Collapse
Affiliation(s)
- Katsuyuki Kunida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nobuhiro Takagi
- Graduate School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi 480-1342, Japan
| | - Kazuhiro Aoki
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazushi Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; RIKEN Center for Advanced Intelligence Project (RIKEN AIP), Kyoto 619-0288, Japan
| | - Takeshi Nakamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan.
| |
Collapse
|
27
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
28
|
Li Y, Chen M, Chang W. Roles of the nucleus in leukocyte migration. J Leukoc Biol 2022; 112:771-783. [PMID: 35916042 DOI: 10.1002/jlb.1mr0622-473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocytes patrol our bodies in search of pathogens and migrate to sites of injury in response to various stimuli. Rapid and directed leukocyte motility is therefore crucial to our immunity. The nucleus is the largest and stiffest cellular organelle and a mechanical obstacle for migration through constrictions. However, the nucleus is also essential for 3D cell migration. Here, we review the roles of the nucleus in leukocyte migration, focusing on how cells deform their nuclei to aid cell motility and the contributions of the nucleus to cell migration. We discuss the regulation of the nuclear biomechanics by the nuclear lamina and how it, together with the cytoskeleton, modulates the shapes of leukocyte nuclei. We then summarize the functions of nesprins and SUN proteins in leukocytes and discuss how forces are exerted on the nucleus. Finally, we examine the mechanical roles of the nucleus in cell migration, including its roles in regulating the direction of migration and path selection.
Collapse
Affiliation(s)
- Yutao Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
29
|
Consalvo KM, Kirolos SA, Sestak CE, Gomer RH. Sex-Based Differences in Human Neutrophil Chemorepulsion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:354-367. [PMID: 35793910 PMCID: PMC9283293 DOI: 10.4049/jimmunol.2101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/02/2022] [Indexed: 05/25/2023]
Abstract
A considerable amount is known about how eukaryotic cells move toward an attractant, and the mechanisms are conserved from Dictyostelium discoideum to human neutrophils. Relatively little is known about chemorepulsion, where cells move away from a repellent signal. We previously identified pathways mediating chemorepulsion in Dictyostelium, and here we show that these pathways, including Ras, Rac, protein kinase C, PTEN, and ERK1 and 2, are required for human neutrophil chemorepulsion, and, as with Dictyostelium chemorepulsion, PI3K and phospholipase C are not necessary, suggesting that eukaryotic chemorepulsion mechanisms are conserved. Surprisingly, there were differences between male and female neutrophils. Inhibition of Rho-associated kinases or Cdc42 caused male neutrophils to be more repelled by a chemorepellent and female neutrophils to be attracted to the chemorepellent. In the presence of a chemorepellent, compared with male neutrophils, female neutrophils showed a reduced percentage of repelled neutrophils, greater persistence of movement, more adhesion, less accumulation of PI(3,4,5)P3, and less polymerization of actin. Five proteins associated with chemorepulsion pathways are differentially abundant, with three of the five showing sex dimorphism in protein localization in unstimulated male and female neutrophils. Together, this indicates a fundamental difference in a motility mechanism in the innate immune system in men and women.
Collapse
Affiliation(s)
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX
| | - Chelsea E Sestak
- Department of Biology, Texas A&M University, College Station, TX
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
30
|
Mihlan M, Glaser KM, Epple MW, Lämmermann T. Neutrophils: Amoeboid Migration and Swarming Dynamics in Tissues. Front Cell Dev Biol 2022; 10:871789. [PMID: 35478973 PMCID: PMC9038224 DOI: 10.3389/fcell.2022.871789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment. Once in the tissue, neutrophils undergo rapid shape changes and migrate at speeds higher than most other immune cells. They move in a substrate-independent manner in interstitial spaces and do not follow predetermined tissue paths. Instead, neutrophil navigation is largely shaped by the chemokine and chemoattractant milieu around them. This highlights the decisive role of attractant-sensing G-protein coupled receptors (GPCRs) and downstream molecular pathways for controlling amoeboid neutrophil movement in tissues. A diverse repertoire of cell-surface expressed GPCRs makes neutrophils the perfect sentinel cell type to sense and detect danger-associated signals released from wounds, inflamed interstitium, dying cells, complement factors or directly from tissue-invading microbes. Moreover, neutrophils release attractants themselves, which allows communication and coordination between individual cells of a neutrophil population. GPCR-mediated positive feedback mechanisms were shown to underlie neutrophil swarming, a population response that amplifies the recruitment of amoeboid migrating neutrophils to sites of tissue injury and infection. Here we discuss recent findings and current concepts that counteract excessive neutrophil accumulation and swarm formation. In particular, we will focus on negative feedback control mechanisms that terminate neutrophil swarming to maintain the delicate balance between tissue surveillance, host protection and tissue destruction.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W. Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
31
|
Garner RM, Theriot JA. Leading edge maintenance in migrating cells is an emergent property of branched actin network growth. eLife 2022; 11:74389. [PMID: 35275060 PMCID: PMC9033267 DOI: 10.7554/elife.74389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Animal cell migration is predominantly driven by the coordinated, yet stochastic, polymerization of thousands of nanometer-scale actin filaments across micron-scale cell leading edges. It remains unclear how such inherently noisy processes generate robust cellular behavior. We employed high-speed imaging of migrating neutrophil-like HL-60 cells to explore the fine-scale shape fluctuations that emerge and relax throughout the process of leading edge maintenance. We then developed a minimal stochastic model of the leading edge that reproduces this stable relaxation behavior. Remarkably, we find lamellipodial stability naturally emerges from the interplay between branched actin network growth and leading edge shape – with no additional feedback required – based on a synergy between membrane-proximal branching and lateral spreading of filaments. These results thus demonstrate a novel biological noise-suppression mechanism based entirely on system geometry. Furthermore, our model suggests that the Arp2/3-mediated ~70–80° branching angle optimally smooths lamellipodial shape, addressing its long-mysterious conservation from protists to mammals. In every human cell, there are tens of millions of proteins which work together to control everything from the cell’s shape to its behavior. One of the most abundant proteins is actin, which organizes itself into filaments that mechanically support the cell and help it to move. These filaments are very dynamic, with individual actin molecules constantly being added or removed. This allows the cell to build large structures with distinct shapes and properties. Many motile cells, for example, have a structure called a lamellipodium which protrudes at their ‘leading edge’ and pushes them forward. The lamellipodium has a very robust shape that does not vary much between different cell types, or change significantly as cells migrate. But how the tens of thousands of actin molecules inside the lamellipodium organize themselves into this large, stable structure is not fully understood. To investigate, Garner and Theriot used high-speed video microscopy to track the shape of human cells cultured in the laboratory. As the cells crawled along a glass surface, their leading edge undulated like strings being plucked on a guitar. A computer simulation showed that these ripples can be caused by filaments randomly adding and removing actin molecules. While these random movements could destabilize the structure of the leading edge, the simulation suggests that another aspect of actin filament growth smooths out any fluctuations in the lamellipodium’s shape. Actin networks in the lamellipodium have a branched configuration, with new strands emerging off each other at an angle like branches in a tree. Garner and Theriot found that the specific angle in which new filaments are added smooths out the lamellipodium’s shape, which may explain why this geometry has persisted throughout evolution. These findings suggest that the way in which actin filaments join together helps to maintain the shape of large cellular structures. In the future, scientists could use this design principle to build molecular machines that can self-organize into microstructures. These engineered constructs could be used to modulate the activity of living cells that have been damaged by disease.
Collapse
Affiliation(s)
- Rikki M Garner
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Julie A Theriot
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
32
|
Özgüç Ö, de Plater L, Kapoor V, Tortorelli AF, Clark AG, Maître JL. Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol 2022; 20:e3001593. [PMID: 35324889 PMCID: PMC8982894 DOI: 10.1371/journal.pbio.3001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis. During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Varun Kapoor
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Gaertner F, Reis-Rodrigues P, de Vries I, Hons M, Aguilera J, Riedl M, Leithner A, Tasciyan S, Kopf A, Merrin J, Zheden V, Kaufmann WA, Hauschild R, Sixt M. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev Cell 2022; 57:47-62.e9. [PMID: 34919802 PMCID: PMC8751638 DOI: 10.1016/j.devcel.2021.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.
Collapse
Affiliation(s)
- Florian Gaertner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | | | - Ingrid de Vries
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Juan Aguilera
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Alexander Leithner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Saren Tasciyan
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Aglaja Kopf
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Vanessa Zheden
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Robert Hauschild
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
34
|
Hadjitheodorou A, Bell GRR, Ellett F, Shastry S, Irimia D, Collins SR, Theriot JA. Directional reorientation of migrating neutrophils is limited by suppression of receptor input signaling at the cell rear through myosin II activity. Nat Commun 2021; 12:6619. [PMID: 34785640 PMCID: PMC8595366 DOI: 10.1038/s41467-021-26622-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
To migrate efficiently to target locations, cells must integrate receptor inputs while maintaining polarity: a distinct front that leads and a rear that follows. Here we investigate what is necessary to overwrite pre-existing front-rear polarity in neutrophil-like HL60 cells migrating inside straight microfluidic channels. Using subcellular optogenetic receptor activation, we show that receptor inputs can reorient weakly polarized cells, but the rear of strongly polarized cells is refractory to new inputs. Transient stimulation reveals a multi-step repolarization process, confirming that cell rear sensitivity to receptor input is the primary determinant of large-scale directional reversal. We demonstrate that the RhoA/ROCK/myosin II pathway limits the ability of receptor inputs to signal to Cdc42 and reorient migrating neutrophils. We discover that by tuning the phosphorylation of myosin regulatory light chain we can modulate the activity and localization of myosin II and thus the amenability of the cell rear to 'listen' to receptor inputs and respond to directional reprogramming.
Collapse
Affiliation(s)
- Amalia Hadjitheodorou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Felix Ellett
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shashank Shastry
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Imoto D, Saito N, Nakajima A, Honda G, Ishida M, Sugita T, Ishihara S, Katagiri K, Okimura C, Iwadate Y, Sawai S. Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space. PLoS Comput Biol 2021; 17:e1009237. [PMID: 34383753 PMCID: PMC8360578 DOI: 10.1371/journal.pcbi.1009237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for quantitative understanding of these features and their origins, however systematic comparisons with real data are underdeveloped. Here, by employing deep-learning-based feature extraction combined with phase-field modeling framework, we show that a low dimensional feature space for 2D migrating cell morphologies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can be fully mapped by an interlinked signaling network of cell-polarization and protrusion dynamics. Our analysis links the data-driven shape analysis to the underlying causalities by identifying key parameters critical for migratory morphologies both normal and aberrant under genetic and pharmacological perturbations. The results underscore the importance of deciphering self-organizing states and their interplay when characterizing morphological phenotypes. Migratory cells that move by crawling do so by extending and retracting their plasma membrane. When and where these events take place determine the cell shape, and this is directly linked to the movement patterns. Understanding how the highly plastic and interconvertible morphologies appear from their underlying dynamics remains a challenge partly because their inherent complexity makes quantitatively comparison against the outputs of mathematical models difficult. To this end, we employed machine-learning based classification to extract features that characterize the basic migrating morphologies. The obtained features were then used to compare real cell data with outputs of a conceptual model that we introduced which describes coupling via feedback between local protrusive dynamics and polarity. The feature mapping showed that the model successfully recapitulates the shape dynamics that were not covered by previous related models and also hints at the critical parameters underlying state transitions. The ability of the present approach to compare model outputs with real cell data systematically and objectively is important as it allows outputs of future mathematical models to be quantitatively tested in an accessible and common reference frame.
Collapse
Affiliation(s)
- Daisuke Imoto
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Nen Saito
- Universal Biological Institute, University of Tokyo, Tokyo, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akihiko Nakajima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Gen Honda
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Motohiko Ishida
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Toyoko Sugita
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Chika Okimura
- Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| | | | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Universal Biological Institute, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Department of Biology, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
36
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Abstract
Bleb-driven cell migration plays important roles in diverse biological processes. Here, we present the mechanism for polarity establishment and maintenance in blebbing cells in vivo. We show that actin polymerization defines the leading edge, the position where blebs form. We show that the cell front can direct the formation of the rear by facilitating retrograde flow of proteins that limit the generation of blebs at the opposite aspect of the cell. Conversely, localization of bleb-inhibiting proteins at one aspect of the cell results in the establishment of the cell front at the opposite side. These antagonistic interactions result in robust polarity that can be initiated in a random direction, or oriented by a chemokine gradient. To study the mechanisms controlling front-rear polarity in migrating cells, we used zebrafish primordial germ cells (PGCs) as an in vivo model. We find that polarity of bleb-driven migrating cells can be initiated at the cell front, as manifested by actin accumulation at the future leading edge and myosin-dependent retrograde actin flow toward the other side of the cell. In such cases, the definition of the cell front, from which bleb-inhibiting proteins such as Ezrin are depleted, precedes the establishment of the cell rear, where those proteins accumulate. Conversely, following cell division, the accumulation of Ezrin at the cleavage plane is the first sign for cell polarity and this aspect of the cell becomes the cell back. Together, the antagonistic interactions between the cell front and back lead to a robust polarization of the cell. Furthermore, we show that chemokine signaling can bias the establishment of the front-rear axis of the cell, thereby guiding the migrating cells toward sites of higher levels of the attractant. We compare these results to a theoretical model according to which a critical value of actin treadmilling flow can initiate a positive feedback loop that leads to the generation of the front-rear axis and to stable cell polarization. Together, our in vivo findings and the mathematical model, provide an explanation for the observed nonoriented migration of primordial germ cells in the absence of the guidance cue, as well as for the directed migration toward the region where the gonad develops.
Collapse
|
38
|
van Haastert PJM. Unified control of amoeboid pseudopod extension in multiple organisms by branched F-actin in the front and parallel F-actin/myosin in the cortex. PLoS One 2020; 15:e0243442. [PMID: 33296414 PMCID: PMC7725310 DOI: 10.1371/journal.pone.0243442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The trajectory of moving eukaryotic cells depends on the kinetics and direction of extending pseudopods. The direction of pseudopods has been well studied to unravel mechanisms for chemotaxis, wound healing and inflammation. However, the kinetics of pseudopod extension-when and why do pseudopods start and stop- is equally important, but is largely unknown. Here the START and STOP of about 4000 pseudopods was determined in four different species, at four conditions and in nine mutants (fast amoeboids Dictyostelium and neutrophils, slow mesenchymal stem cells, and fungus B.d. chytrid with pseudopod and a flagellum). The START of a first pseudopod is a random event with a probability that is species-specific (23%/s for neutrophils). In all species and conditions, the START of a second pseudopod is strongly inhibited by the extending first pseudopod, which depends on parallel filamentous actin/myosin in the cell cortex. Pseudopods extend at a constant rate by polymerization of branched F-actin at the pseudopod tip, which requires the Scar complex. The STOP of pseudopod extension is induced by multiple inhibitory processes that evolve during pseudopod extension and mainly depend on the increasing size of the pseudopod. Surprisingly, no differences in pseudopod kinetics are detectable between polarized, unpolarized or chemotactic cells, and also not between different species except for small differences in numerical values. This suggests that the analysis has uncovered the fundament of cell movement with distinct roles for stimulatory branched F-actin in the protrusion and inhibitory parallel F-actin in the contractile cortex.
Collapse
|
39
|
Grimaldi C, Schumacher I, Boquet-Pujadas A, Tarbashevich K, Vos BE, Bandemer J, Schick J, Aalto A, Olivo-Marin JC, Betz T, Raz E. E-cadherin focuses protrusion formation at the front of migrating cells by impeding actin flow. Nat Commun 2020; 11:5397. [PMID: 33106478 PMCID: PMC7588466 DOI: 10.1038/s41467-020-19114-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
The migration of many cell types relies on the formation of actomyosin-dependent protrusions called blebs, but the mechanisms responsible for focusing this kind of protrusive activity to the cell front are largely unknown. Here, we employ zebrafish primordial germ cells (PGCs) as a model to study the role of cell-cell adhesion in bleb-driven single-cell migration in vivo. Utilizing a range of genetic, reverse genetic and mathematical tools, we define a previously unknown role for E-cadherin in confining bleb-type protrusions to the leading edge of the cell. We show that E-cadherin-mediated frictional forces impede the backwards flow of actomyosin-rich structures that define the domain where protrusions are preferentially generated. In this way, E-cadherin confines the bleb-forming region to a restricted area at the cell front and reinforces the front-rear axis of migrating cells. Accordingly, when E-cadherin activity is reduced, the bleb-forming area expands, thus compromising the directional persistence of the cells. The arrival of migratory cells at their targets relies on following precise routes within tissues. Here the authors demonstrate that the cell adhesion molecule E-cadherin can control the path of cell migration by confining the site where bleb-type protrusions form within the cell front.
Collapse
Affiliation(s)
- Cecilia Grimaldi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Isabel Schumacher
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 75105, Paris, France.,CNRS UMR 3691, 75105, Paris, France.,Sorbonne Université, 75005, Paris, France
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Bart Eduard Vos
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Jan Bandemer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Anne Aalto
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | | | - Timo Betz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany.,Institute of Physics - Biophysics, Georg August Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
40
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
41
|
Principles of Leukocyte Migration Strategies. Trends Cell Biol 2020; 30:818-832. [DOI: 10.1016/j.tcb.2020.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
|
42
|
Sitarska E, Diz-Muñoz A. Pay attention to membrane tension: Mechanobiology of the cell surface. Curr Opin Cell Biol 2020; 66:11-18. [PMID: 32416466 PMCID: PMC7594640 DOI: 10.1016/j.ceb.2020.04.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/09/2023]
Abstract
The cell surface is a mechanobiological unit that encompasses the plasma membrane, its interacting proteins, and the complex underlying cytoskeleton. Recently, attention has been directed to the mechanics of the plasma membrane, and in particular membrane tension, which has been linked to diverse cellular processes such as cell migration and membrane trafficking. However, how tension across the plasma membrane is regulated and propagated is still not completely understood. Here, we review recent efforts to study the interplay between membrane tension and the cytoskeletal machinery and how they control cell form and function. We focus on factors that have been proposed to affect the propagation of membrane tension and as such could determine whether it can act as a global or local regulator of cell behavior. Finally, we discuss the limitations of the available tool kit as new approaches that reveal its dynamics in cells are needed to decipher how membrane tension regulates diverse cellular processes.
Collapse
Affiliation(s)
- Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
43
|
Allen GM, Lee KC, Barnhart EL, Tsuchida MA, Wilson CA, Gutierrez E, Groisman A, Theriot JA, Mogilner A. Cell Mechanics at the Rear Act to Steer the Direction of Cell Migration. Cell Syst 2020; 11:286-299.e4. [PMID: 32916096 PMCID: PMC7530145 DOI: 10.1016/j.cels.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023]
Abstract
Motile cells navigate complex environments by changing their direction of travel, generating left-right asymmetries in their mechanical subsystems to physically turn. Currently, little is known about how external directional cues are propagated along the length scale of the whole cell and integrated with its force-generating apparatus to steer migration mechanically. We examine the mechanics of spontaneous cell turning in fish epidermal keratocytes and find that the mechanical asymmetries responsible for turning behavior predominate at the rear of the cell, where there is asymmetric centripetal actin flow. Using experimental perturbations, we identify two linked feedback loops connecting myosin II contractility, adhesion strength and actin network flow in turning cells that are sufficient to explain the observed cell shapes and trajectories. Notably, asymmetries in actin polymerization at the cell leading edge play only a minor role in the mechanics of cell turning-that is, cells steer from the rear.
Collapse
Affiliation(s)
- Greg M Allen
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kun Chun Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Erin L Barnhart
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark A Tsuchida
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cyrus A Wilson
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, San Diego, CA 92023, USA
| | - Alexander Groisman
- Department of Physics, University of California, San Diego, San Diego, CA 92023, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
44
|
Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol 2020; 66:123-129. [PMID: 32711300 DOI: 10.1016/j.ceb.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023]
Abstract
During preimplantation development, the mouse embryo forms the blastocyst, which consists of a squamous epithelium enveloping a fluid-filled lumen and a cluster of pluripotent cells. The shaping of the blastocyst into its specific architecture is a prerequisite to implantation and further development of the embryo. Recent studies identified the central role of the actomyosin cortex in generating the forces driving the successive steps of blastocyst morphogenesis. As seen in other developing animals, actomyosin functions across spatial scales from the subcellular to the tissue levels. In addition, the slow development of the mouse embryo reveals that actomyosin contractility operates at multiple timescales with periodic cortical waves of contraction every ∼80 s and tissue remodeling over hours.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, 26, rue d'Ulm - 75248 Paris Cedex 05 - France
| | | |
Collapse
|
45
|
Kopf A, Renkawitz J, Hauschild R, Girkontaite I, Tedford K, Merrin J, Thorn-Seshold O, Trauner D, Häcker H, Fischer KD, Kiermaier E, Sixt M. Microtubules control cellular shape and coherence in amoeboid migrating cells. J Cell Biol 2020; 219:151745. [PMID: 32379884 PMCID: PMC7265309 DOI: 10.1083/jcb.201907154] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.
Collapse
Affiliation(s)
- Aglaja Kopf
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jörg Renkawitz
- Institute of Science and Technology Austria, Klosterneuburg, Austria,Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Irute Girkontaite
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Kerry Tedford
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jack Merrin
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY
| | - Hans Häcker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Klaus-Dieter Fischer
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Eva Kiermaier
- Institute of Science and Technology Austria, Klosterneuburg, Austria,Life and Medical Sciences Institute (LIMES), Immune and Tumor Biology, University of Bonn, Bonn, Germany,Eva Kiermaier:
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria,Eva Kiermaier:
| |
Collapse
|
46
|
Garner RM, Skariah G, Hadjitheodorou A, Belliveau NM, Savinov A, Footer MJ, Theriot JA. Neutrophil-like HL-60 cells expressing only GFP-tagged β-actin exhibit nearly normal motility. Cytoskeleton (Hoboken) 2020; 77:181-196. [PMID: 32072765 PMCID: PMC7383899 DOI: 10.1002/cm.21603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/21/2019] [Accepted: 01/27/2020] [Indexed: 12/30/2022]
Abstract
Observations of actin dynamics in living cells using fluorescence microscopy have been foundational in the exploration of the mechanisms underlying cell migration. We used CRISPR/Cas9 gene editing to generate neutrophil‐like HL‐60 cell lines expressing GFP‐β‐actin from the endogenous locus (ACTB). In light of many previous reports outlining functional deficiencies of labeled actin, we anticipated that HL‐60 cells would only tolerate a monoallelic edit, as biallelic edited cells would produce no normal β‐actin. Surprisingly, we recovered viable monoallelic GFP‐β‐actin cells as well as biallelic edited GFP‐β‐actin cells, in which one copy of the ACTB gene is silenced and the other contains the GFP tag. Furthermore, the edited cells migrate with similar speeds and persistence as unmodified cells in a variety of motility assays, and have nearly normal cell shapes. These results might partially be explained by our observation that GFP‐β‐actin incorporates into the F‐actin network in biallelic edited cells at similar efficiencies as normal β‐actin in unedited cells. Additionally, the edited cells significantly upregulate γ‐actin, perhaps helping to compensate for the loss of normal β‐actin. Interestingly, biallelic edited cells have only modest changes in global gene expression relative to the monoallelic line, as measured by RNA sequencing. While monoallelic edited cells downregulate expression of the tagged allele and are thus only weakly fluorescent, biallelic edited cells are quite bright and well‐suited for live cell microscopy. The nondisruptive phenotype and direct interpretability of this fluorescent tagging approach make it a promising tool for studying actin dynamics in these rapidly migrating and highly phagocytic cells.
Collapse
Affiliation(s)
- Rikki M Garner
- Biophysics Program, Stanford University School of Medicine, Stanford, CA.,Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Gemini Skariah
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Amalia Hadjitheodorou
- Department of Bioengineering, Stanford University Schools of Medicine and Engineering, Stanford, CA
| | - Nathan M Belliveau
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Andrew Savinov
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Matthew J Footer
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Julie A Theriot
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA
| |
Collapse
|
47
|
Lorenzo AM, De La Cruz EM, Koslover EF. Thermal fracture kinetics of heterogeneous semiflexible polymers. SOFT MATTER 2020; 16:2017-2024. [PMID: 31996875 PMCID: PMC7047574 DOI: 10.1039/c9sm01637f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The fracture and severing of polymer chains plays a critical role in the failure of fibrous materials and the regulated turnover of intracellular filaments. Using continuum wormlike chain models, we investigate the fracture of semiflexible polymers via thermal bending fluctuations, focusing on the role of filament flexibility and dynamics. Our results highlight a previously unappreciated consequence of mechanical heterogeneity in the filament, which enhances the rate of thermal fragmentation particularly in cases where constraints hinder the movement of the chain ends. Although generally applicable to semiflexible chains with regions of different bending stiffness, the model is motivated by a specific biophysical system: the enhanced severing of actin filaments at the boundary between stiff bare regions and mechanically softened regions that are coated with cofilin regulatory proteins. The results presented here point to a potential mechanism for disassembly of polymeric materials in general and cytoskeletal actin networks in particular by the introduction of locally softened chain regions, as occurs with cofilin binding.
Collapse
Affiliation(s)
- Alexander M Lorenzo
- Department of Physics, University of California San Diego, San Diego, California 92093, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Elena F Koslover
- Department of Physics, University of California San Diego, San Diego, California 92093, USA.
| |
Collapse
|
48
|
Lavi I, Meunier N, Voituriez R, Casademunt J. Motility and morphodynamics of confined cells. Phys Rev E 2020; 101:022404. [PMID: 32168566 DOI: 10.1103/physreve.101.022404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We introduce a minimal hydrodynamic model of polarization, migration, and deformation of a biological cell confined between two parallel surfaces. In our model, the cell is driven out of equilibrium by an active cytsokeleton force that acts on the membrane. The cell cytoplasm, described as a viscous droplet in the Darcy flow regime, contains a diffusive solute that actively transduces the applied cytoskeleton force. While fairly simple and analytically tractable, this quasi-two-dimensional model predicts a range of compelling dynamic behaviours. A linear stability analysis of the system reveals that solute activity first destabilizes a global polarization-translation mode, prompting cell motility through spontaneous symmetry breaking. At higher activity, the system crosses a series of Hopf bifurcations leading to coupled oscillations of droplet shape and solute concentration profiles. At the nonlinear level, we find traveling-wave solutions associated with unique polarized shapes that resemble experimental observations. Altogether, this model offers an analytical paradigm of active deformable systems in which viscous hydrodynamics are coupled to diffusive force transducers.
Collapse
Affiliation(s)
- Ido Lavi
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | | | - Raphael Voituriez
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Jaume Casademunt
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
49
|
Li X, Miao Y, Pal DS, Devreotes PN. Excitable networks controlling cell migration during development and disease. Semin Cell Dev Biol 2019; 100:133-142. [PMID: 31836289 DOI: 10.1016/j.semcdb.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
The directed movements of individual, groups, or sheets of cells at specific times in particular locations bring about form and complexity to developing organisms. Cells move by extending protrusions, such as macropinosomes, pseudopods, lamellipods, filopods, or blebs. Although many of the cytoskeletal components within these structures are known, less is known about the mechanisms that determine their location, number, and characteristics. Recent evidence suggests that control may be exerted by a signal transduction excitable network whose components and activities, including Ras, PI3K, TorC2, and phosphoinositides, self-organize on the plasma membrane and propagate in waves. The waves drive the various types of protrusions, which in turn, determine the modes of cell migration. Acute perturbations at specific points in the network produce abrupt shifts in protrusion type, including transitions from pseudopods to filopods or lamellipods. These observations have also contributed to a delineation of the signal transduction network, including candidate fast positive and delayed negative feedback loops. The network contains many oncogenes and tumor suppressors, and other molecules which have recently been implicated in developmental and metabolic abnormalities. Thus, the concept of signal transduction network excitability in cell migration can be used to understand disease states and morphological changes occurring in development.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|