1
|
Xu H, Wang Y, Wang W, Fu YX, Qiu J, Shi Y, Yuan L, Dong C, Hu X, Chen YG, Guo X. ILC3s promote intestinal tuft cell hyperplasia and anthelmintic immunity through RANK signaling. Sci Immunol 2025; 10:eadn1491. [PMID: 40378237 DOI: 10.1126/sciimmunol.adn1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/01/2024] [Accepted: 04/24/2025] [Indexed: 05/18/2025]
Abstract
Helminth infections, particularly in developing countries, remain a notable health burden worldwide. Group 3 innate lymphoid cells (ILC3s) are enriched in the intestine and play a critical role in immunity against extracellular bacteria and fungi. However, whether ILC3s are involved in intestinal helminth infection is still unclear. Here, we report that helminth infection reprograms ILC3s, which, in turn, promote anthelmintic immunity. ILC3-derived RANKL [receptor activator of NF-κB (nuclear factor κB) ligand] synergizes with interleukin-13 (IL-13) to facilitate intestinal tuft cell expansion after helminth infection, which further activates the tuft cell-group 2 innate lymphoid cell (ILC2) circuit to control helminth infection. Deletion of RANKL in ILC3s or deletion of RANK or its downstream adaptor RelB in intestinal epithelial cells substantially diminishes tuft cell hyperplasia and dampens anthelmintic immunity. Thus, ILC3s play an indispensable role in protecting against helminth infection through the regulation of intestinal tuft cell hyperplasia and type 2 immunity.
Collapse
Affiliation(s)
- Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Yibo Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wenyan Wang
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yang-Xin Fu
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Shi
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Lei Yuan
- Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Westlake University, Hangzhou 310030, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
2
|
Wang S, Yang X, Liu X, Wen Q, Xu L, Feng M, Lang J, Liu D. Iron modulates barrier integrity and stem cell function of small intestine during experimental colitis. Front Nutr 2025; 12:1545956. [PMID: 40416374 PMCID: PMC12100934 DOI: 10.3389/fnut.2025.1545956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Background Ulcerative colitis (UC) brings inconvenience to many patients with inflammatory bowel disease (IBD). Although colonic pathology is widely investigated, little attention has been paid to the disorders in small intestine of UC. In this study, we investigated the impairments of UC to small intestine and further explored how iron metabolism regulated epithelial integrity and the activity of intestinal stem cells (ISCs). Methods Mice were treated by 2.5% dextran sulfate sodium (DSS) for 7 days to established acute experimental colitis. Small intestinal tissues were collected at different time points in the process of DSS-induced colitis. Histological analysis was used to evaluate the changes of small intestine, including H&E, Alcian blue and PAS staining, immunostaining, and qRT-PCR. Iron content was modulated by the supplementation of ferric citrate or depletion by deferoxamine (DFO). The influence of iron on the barrier integrity and stem cell function was further determined by histology, IEC-6 cell, and enteroid culture. ROS content was demonstrated by DHE staining. The proliferation of intestinal stem cells (ISCs) was shown by BrdU and Olfm4 staining, and Lgr5-tdTomato mice were used for lineage tracing study. Results It was shown that during DSS-induced colitis, small intestine underwent a serious injury process, including dysregulated integrity and decreased proliferation of ISCs. Iron overload significantly exacerbated intestinal injury in tissues, epithelial cell line, and intestinal organoids. However, iron chelation by deferoxamine (DFO) would greatly suppress small intestinal injury. Mechanistically, iron overload exacerbated the generation of ROS and enhanced the infiltration of immune cells. In addition, STAT3 and ERK pathways in intestinal epithelium were impaired during experimental colitis, and iron content significantly interrupted the expression of p-STAT3 and p-ERK1/2 within small intestine. Conclusion In summary, this study proved that small intestine was also impaired in experimental colitis, and iron content could affect DSS-induced small intestinal damage and regeneration, indicating the strategy of iron supplementation in clinical practice needs to be more cautious and consider more factors.
Collapse
Affiliation(s)
- Shubin Wang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangjie Yang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangjun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Wen
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Feng
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Medical Oncology, The Third People's Hospital of Sichuan Province, Chengdu, China
| | - Jinyi Lang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Experimental Research, Sichuan Cancer Hospital and Institute, Sichuan Provincial Engineering Research Center for Tumor Organoids and Clinical Transformation, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Lim SJ, Shin S, Lee SI. 4'-Hydroxydehydrokawain Mitigate the Cytotoxicity of Citrinin in Porcine Intestinal Epithelial Cells. TOXICS 2025; 13:315. [PMID: 40278632 PMCID: PMC12031180 DOI: 10.3390/toxics13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Citrinin (CTN) is a mycotoxin that adversely affects livestock by contaminating stored grains, leading to significant health and economic impacts. This study investigates the toxicological effects of CTN on porcine small intestinal epithelial cells (IPEC-J2) and explores potential mitigation strategies using natural products and chemical inhibitors. Our study demonstrates that CTN induces cytotoxicity through the TGF-β signaling pathway, triggering apoptosis and G2/M phase cell cycle arrest. We examined cell viability, cell cycle progression, and gene expression changes in IPEC-J2 cells treated with CTN, 4'-Hydroxydehydrokawain (4-HDK), and LY-364947, a TGF-β receptor inhibitor. LY-364947 treatment confirmed that CTN-induced toxicity is mediated through TGF-β signaling. Although 4-HDK alleviated CTN-induced cytotoxicity by improving cell viability and reducing apoptosis, its direct involvement in TGF-β inhibition remains unclear. These results suggest that CTN disrupts intestinal epithelial cell homeostasis via TGF-β activation, whereas 4-HDK may exert protective effects through an alternative mechanism. Our study provides novel insights into CTN-induced toxicity mechanisms and highlights the therapeutic potential of 4-HDK as a mitigator of mycotoxin-induced cellular damage.
Collapse
Affiliation(s)
- Seung Joon Lim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea; (S.J.L.); (S.S.)
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea; (S.J.L.); (S.S.)
- Research Institute for Innovative Animal Science, Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea; (S.J.L.); (S.S.)
- Research Institute for Innovative Animal Science, Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
| |
Collapse
|
4
|
Morales Castro RA, Kern BC, Díaz-Basabe A, Meinen ER, Zhao D, Zhou Y, Castillo F, Monasterio G, Farcas V, Chávez MN, Fransson J, Villablanca EJ. A zebrafish model of intestinal epithelial damage reveals macrophages and igfbp1a as major modulators of mucosal healing. Mucosal Immunol 2025:S1933-0219(25)00042-X. [PMID: 40252728 DOI: 10.1016/j.mucimm.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Promoting intestinal regeneration and enhancing mucosal healing have emerged as promising therapeutic alternatives for treating intestinal disorders that compromise epithelial barrier integrity and function. However, the cellular and molecular mechanisms underlying these processes remain poorly understood. This knowledge gap is partly due to the lack of reliable and cost-effective in vivo models for studying the mechanisms governing intestinal damage and regeneration. Here, we developed a controlled, inducible, and targeted intestinal epithelial cell (IEC) ablation transgenic zebrafish model that recapitulates features of intestinal damage and regeneration observed in humans. Single-cell RNAseq and live imaging revealed accumulation of macrophages in the recovering intestine, contributing to its regeneration. Furthermore, we observed overexpression of insulin-like growth factor binding protein 1a (igfbp1a) during intestinal damage. Morpholino-mediated knockdown of igfbp1a exacerbated intestinal damage and impaired subsequent regeneration. In summary, we introduced a novel zebrafish model of intestinal damage that enables in vivo high-throughput screening for identifying and validating novel modulators of mucosal healing and intestinal regeneration.
Collapse
Affiliation(s)
- Rodrigo A Morales Castro
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden; Division of Clinical Immunology, Department of Laboratory Medicine (Labmed), Karolinska Institute, SE-141 52 Huddinge, Sweden.
| | - Bianca C Kern
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Angélica Díaz-Basabe
- Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden; Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Eveline R Meinen
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Danxia Zhao
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Yuqing Zhou
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Francisca Castillo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Vlad Farcas
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Myra N Chávez
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Jennifer Fransson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden.
| |
Collapse
|
5
|
Zhang S, Cao Y, Huang Y, Zhang X, Mou C, Qin T, Chen Z, Bao W. Abortive PDCoV infection triggers Wnt/β-catenin pathway activation, enhancing intestinal stem cell self-renewal and promoting chicken resistance. J Virol 2025; 99:e0013725. [PMID: 40135895 PMCID: PMC11998530 DOI: 10.1128/jvi.00137-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus causing economic losses to swine industries worldwide. PDCoV can infect chickens under laboratory conditions, usually with no symptoms or mild symptoms, and may cause outbreaks in backyard poultry and wildfowl, posing a potential risk of significant economic loss to the commercial poultry industry. However, the reasons for such a subdued reaction after infection are not known. Here, using chicken intestinal organoid monolayers, we found that although PDCoV infects them nearly as well as porcine intestinal organoid monolayers, infection did not result in detectable amounts of progeny virus. In ex vivo and in vivo experiments using chickens, PDCoV infection failed to initiate interferon and inflammatory responses. Additionally, infection did not result in a disrupted intestinal barrier nor a reduced number of goblet cells and mucus secretion, as in pigs. In fact, the number of goblet cells increased as did the secreted mucus, thereby providing an enhanced protective barrier. Ex vivo PDCoV infection in chicken triggered activation of the Wnt/β-catenin pathway with the upregulation of Wnt/β-catenin pathway genes (Wnt3a, Lrp5, β-catenin, and TCF4) and Wnt target genes (Lgr5, cyclin D1, and C-myc). This activation stimulates the self-renewal of intestinal stem cells (ISCs), accelerating ISC-mediated epithelial regeneration by significant up-regulation of PCNA (transiently amplifying cells), BMI1 (ISCs), and Lyz (Paneth cells). Our data demonstrate that abortive infection of PDCoV in chicken cells activates the Wnt/β-catenin pathway, which facilitates the self-renewal and proliferation of ISCs, contributing to chickens' resistance to PDCoV infection.IMPORTANCEThe intestinal epithelium is the main target of PDCoV infection and serves as a physical barrier against pathogens. Additionally, ISCs are charged with tissue repair after injury, and promoting rapid self-renewal of intestinal epithelium will help to re-establish the physical barrier and maintain intestinal health. We found that PDCoV infection in chicken intestinal organoid monolayers resulted in abortive infection and failed to produce infectious virions, disrupt the intestinal barrier, reduce the number of goblet cells and mucus secretion, and induce innate immunity, but rather increased goblet cell numbers and mucus secretion. Abortive PDCoV infection activated the Wnt/β-catenin pathway, enhancing ISC renewal and accelerating the renewal and replenishment of shed PDCoV-infected intestinal epithelial cells, thereby enhancing chicken resistance to PDCoV infection. This study provides novel insights into the mechanisms underlying the mild or asymptomatic response to PDCoV infection in chickens, which is critical for understanding the virus's potential risks to the poultry industry.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xueli Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Su Y, Ju J, Shen C, Li Y, Yang W, Luo X, Wang Z, Zeng J, Liu L. In situ 3D bioprinted GDMA/Prussian blue nanozyme hydrogel with wet adhesion promotes macrophage phenotype modulation and intestinal defect repair. Mater Today Bio 2025; 31:101636. [PMID: 40161927 PMCID: PMC11950758 DOI: 10.1016/j.mtbio.2025.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Developing hydrogels with wet-adhesion, immunomodulation and regenerative repair capabilities in intestinal repair remains a formidable challenge. In the present study, the development of an anti-inflammatory, wet-adhesive, decellularized extracellular matrix hydrogel produced using three-dimensional (3D) -printing technology is presented. This hydrogel, which integrates gelatin and dopamine, was demonstrated to display excellent wet-adhesion properties, fully harnessing the outstanding regenerative potential of the decellularized small-intestine matrix. Furthermore, the integration of Prussian Blue nanozymes imparted significant anti-inflammatory and antioxidant properties. Through modulating macrophage polarization, the hydrogel was not only found to enhance tissue repair, but also to substantially mitigate inflammation. In vivo experiments (namely, histopathological analyses using a rat model) demonstrated that this hydrogel was able to effectively enhance tissue regeneration and healing in models of intestinal damage. In conclusion, through the utilization of 3D-printing technology, the present study has shown that the precise manufacturing and customization of the hydrogel to various shapes and sizes of intestinal defects may be executed, thereby providing an innovative strategy for intestinal repair. This advanced hydrogel has therefore been shown to hold significant promise as a bioadhesive for both emergency repair and regenerative therapy.
Collapse
Affiliation(s)
- Yang Su
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingyi Ju
- Department of Plastic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chentao Shen
- Department of Plastic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqi Li
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wangshuo Yang
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuelai Luo
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenxing Wang
- Department of Plastic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lu Liu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Molecular Medicine center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
7
|
Fang F, Li G, Li X, Wu J, Liu Y, Xin H, Wang Z, Fang J, Jiang Y, Qian W, Hou X, Song J. Piezo1 regulates colon stem cells to maintain epithelial homeostasis through SCD1-Wnt-β-catenin and programming fatty acid metabolism. Cell Rep 2025; 44:115400. [PMID: 40080500 DOI: 10.1016/j.celrep.2025.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
Piezo1, which maintains the integrity and function of the intestinal epithelial barrier, is essential for colonic epithelial homeostasis. However, whether and how Piezo1 regulates colon stem cell fate remains unclear. Here, we show that Piezo1 inhibition promotes colon stem cell proliferation. Mechanistically, stearoyl-CoA 9-desaturase 1 (SCD1) is downstream of Piezo1 to affect colon stem cell stemness by acting on the Wnt-β-catenin pathway. For mice, the altered colon stem cell stemness after Piezo1 knockdown and activation was accompanied by a reprogrammed fatty acid (FA) metabolism in colon crypts. Notably, we found that GsMTX4 protects injured colon stem cell stemness in mouse and human colitis organoids. Our results elucidated the role of Piezo1 in regulating normal and postinjury colon stem cell fates through SCD1-Wnt-β-catenin and the SCD1-mediated FA desaturation process. These results provide fresh perspectives on the mechanical factors regulating colon stem cell fate and therapeutic strategies for related intestinal diseases.
Collapse
Affiliation(s)
- Feifei Fang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gangping Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyan Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiandi Wu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haoren Xin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianhua Fang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yudong Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Chen C, Fu Q, Wang L, Tanaka S, Imajo M. Establishment of a novel mouse model of colorectal cancer by orthotopic transplantation. BMC Cancer 2025; 25:405. [PMID: 40050746 PMCID: PMC11884030 DOI: 10.1186/s12885-025-13834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) represents a major malignancy that poses a significant threat to human health worldwide. The establishment of a reliable and pathologically relevant orthotopic model of CRC is crucial for gaining a deeper understanding of its molecular mechanisms and for developing more effective therapies. Nonetheless, the development of such models is fraught with challenges primarily owing to the technical complexities associated with the transplantation of CRC cells into the intestinal epithelium. METHODS The luminal surface of the cecum was externalized to visualize the entire process involved in the transplantation of CRC cells into the cecal epithelium of BALB/c athymic nude mice. The cecal epithelium was mechanically removed, preserving the integrity of the submucosal layer. Caco-2 CRC cells were subsequently inoculated onto the epithelium-depleted surface of the cecum to reproduce the development of CRC within the epithelial layer. The successful removal of the epithelium and transplantation of Caco-2 cells were verified through the use of appropriate fluorescent labeling techniques and examination with a fluorescence stereoscopic microscope. RESULTS Following orthotopic transplantation, Caco-2 cells formed tumors in the cecum, where tumors progressed from a flat monolayer epithelium to thickened aberrant crypt foci, and then to protruding polyps, aided by mesenchymal cells infiltrating the tumors to form a stalk region, and eventually to large tumors invading the submucosa. Throughout this process, Caco-2 cells retained stem cell and fetal intestinal signatures, regardless of their location within the tumors or their proliferative status. Histopathological analysis further suggested that interactions between the transplanted Caco-2 cells and the surrounding normal epithelial and mesenchymal cells play critical roles in tumor development and in the elimination of normal epithelial cells from the tumor in this model. CONCLUSIONS This study established a novel orthotopic model of CRC within the mouse cecum. Tumor development and progression in this model include sequential morphological changes from a flat monolayer to large invasive tumors. The establishment of this orthotopic CRC model, which mimics tumor development in a more natural microenvironment, provides new opportunities to investigate the molecular mechanisms underlying CRC and to evaluate novel anticancer therapies in pathologically relevant contexts.
Collapse
Affiliation(s)
- Cewen Chen
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Qiaochu Fu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7 Kita-Ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10 Kita-Ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
9
|
Xu C, Xu H, Dai X, Gui S, Chen J. Effects and mechanism of combination of Platycodon grandiflorum polysaccharides and Platycodon saponins in the treatment of chronic obstructive pulmonary disease rats through the gut-lung axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119305. [PMID: 39736349 DOI: 10.1016/j.jep.2024.119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorum (Jacq.) A. DC. (PG), a traditional Chinese medicine that has pharmaceutical and edible value, widely used to alleviate symptoms such as cough, sputum, sore throat, and respiratory diseases in clinical practice. The small molecular compounds, Platycodon saponins (PGS), and the macromolecular Platycodon grandiflorum polysaccharides (PGP) commonly coexist in the decoctions and leaching solutions of PG. However, the therapeutic effect of combination of PGP and PGS in ameliorating lung damage in chronic obstructive pulmonary disease (COPD) remains largely unexplored. AIM OF THE STUDY The objective of our study was to confirm the synergistic effect of PGP and PGS on the treatment of COPD rats, further examining the associated mechanisms pertaining to the gut-lung axis and microbial metabolism. METHODS In a COPD rat model induced by cigarette smoke and sawdust, efficacy was assessed through various assays encompassing lung index and histomorphology of the colon, small intestine, and lungs. The number of white blood cells in BALF was quantified using Swiss-Giemsa staining to investigate inflammatory cells infiltration in the lungs. Techniques such as immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay, and western blotting were performed to evaluate the relevant expression of proteins in lung and intestine tissues. This aided in unveiling the protective mechanisms of co-administration of PGP and PGS in COPD rats. Additionally, bacterial genomic DNA was isolated and sequenced for intestinal microbiota analysis. Lastly, an in vitro anaerobic culture system was developed to co-incubate PGP and PGS with the objective of exploring the metabolic mechanisms mediated by gut microorganisms. RESULTS Our findings indicated that co-administration of PGP and PGS significantly mitigated the infiltration of inflammatory cells and suppressed the lung damage phenotypes in COPD rats, as evidenced by reductions in Hyp, NO, MUC2, and Ly6G. Furthermore, the combination of PGP and PGS notably ameliorated intestinal barrier damage by elevating the expression of MUC2, ZO-1, and ki67, while diminishing inflammatory markers such as CCL20, IFN-γ, and TNF-α. Remarkably, PGP amplified the protective efficacy of PGS against lung inflammatory damage by modulating the mucosal immune interaction between lung and small intestine, reducing intestinal mucosa permeability, and inhibiting the activation of microbial LPS-induced TLR4/NF-κB signaling pathways. Microbiome assays further revealed that PGP combined with PGS displayed the reversal change of gut microbiota in the COPD model. HPLC analysis of PGS and its transformation products in an anaerobic culture system showed that PGP effectively enhanced the microbial metabolism of Platycodin D and Platycodin D3 in vitro. CONCLUSIONS The synergistic combination of PGP and PGS might alleviate the pulmonary inflammation by mending intestinal barrier damage, modulating the co-immune mechanism of gut-lung axis in COPD rats, and fostering gut microbiota-mediated biotransformation. This innovative approach will contribute to an enhanced understanding of the intricate interactions within the multi-component system characteristic of traditional Chinese medicines. Consequently, it enriches our comprehension of the role of P. grandiflorus in human health care.
Collapse
Affiliation(s)
- Cong Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Huiling Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xinyue Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
| | - Juan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China.
| |
Collapse
|
10
|
Liang SJ, Wang K, Mao DB, Xie LW, Zhu DJ. Inhibition of the Wnt/β‑catenin signaling pathway and SOX9 by XAV939 did not alleviate inflammation in a dextran sulfate sodium‑induced ulcerative colitis model. Exp Ther Med 2025; 29:24. [PMID: 39650775 PMCID: PMC11619566 DOI: 10.3892/etm.2024.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 12/11/2024] Open
Abstract
The Wnt/β-catenin signaling pathway has been reported to be hyperactivated during the pathogenesis of ulcerative colitis (UC). The present study aimed to explore the therapeutic efficacy of the Wnt/β-catenin signaling inhibitor XAV939 in mitigating UC symptoms. Utilizing a dextran sulfate sodium (DSS)-induced UC mouse model, the present study aimed to evaluate the impact of XAV939 on intestinal morphology through hematoxylin and eosin staining and to measure the expression levels of critical proteins in the Wnt/β-catenin signaling cascade. XAV939 did not exert a significant influence on the morphological features and inflammatory status of the intestinal epithelium. However, XAV939 was found to effectively suppress the Wnt/β-catenin signaling pathway and its downstream target SOX9. This suppression implied a reduction in the differentiation of intestinal stem cells into secretory cell progenitor cells. Additionally, XAV939 was ineffective at reversing the DSS-induced decrease in expression levels of Villin and peroxisome proliferator-activated receptor γ, which suggested that it did not facilitate the differentiation of intestinal absorptive cells. The present findings indicated that the Wnt/β-catenin signaling pathway may not be the predominant mechanism in the pathogenesis of DSS-induced UC.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Da-Bin Mao
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510075, P.R. China
| | - Da-Jian Zhu
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| |
Collapse
|
11
|
Nayak A, Streiff H, Gonzalez I, Adekoya OO, Silva I, Shenoy AK. Wnt Pathway-Targeted Therapy in Gastrointestinal Cancers: Integrating Benchside Insights with Bedside Applications. Cells 2025; 14:178. [PMID: 39936971 PMCID: PMC11816596 DOI: 10.3390/cells14030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
The Wnt signaling pathway is critical in the onset and progression of gastrointestinal (GI) cancers. Anomalies in this pathway, often stemming from mutations in critical components such as adenomatous polyposis coli (APC) or β-catenin, lead to uncontrolled cell proliferation and survival. In the case of colorectal cancer, dysregulation of the Wnt pathway drives tumor initiation and growth. Similarly, aberrant Wnt signaling contributes to tumor development, metastasis, and resistance to therapy in other GI cancers, such as gastric, pancreatic, and hepatocellular carcinomas. Targeting the Wnt pathway or its downstream effectors has emerged as a promising therapeutic strategy for combating these highly aggressive GI malignancies. Here, we review the dysregulation of the Wnt signaling pathway in the pathogenesis of GI cancers and further explore the therapeutic potential of targeting the various components of the Wnt pathway. Furthermore, we summarize and integrate the preclinical evidence supporting the therapeutic efficacy of potent Wnt pathway inhibitors with completed and ongoing clinical trials in GI cancers. Additionally, we discuss the challenges of Wnt pathway-targeted therapies in GI cancers to overcome these concerns for effective clinical translation.
Collapse
|
12
|
Kim H, Lee SH, Yang JY. Mechanobiological Approach for Intestinal Mucosal Immunology. BIOLOGY 2025; 14:110. [PMID: 40001878 PMCID: PMC11852114 DOI: 10.3390/biology14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
The intestinal area is composed of diverse cell types that harmonize gut homeostasis, which is influenced by both endogenous and exogenous factors. Notably, the environment of the intestine is exposed to several types of mechanical forces, including shear stress generated by fluid flow, compression and stretch generated by luminal contents and peristaltic waves of the intestine, and stiffness attributed to the extracellular matrix. These forces play critical roles in the regulation of cell proliferation, differentiation, and migration. Many efforts have been made to simulate the actual intestinal environment in vitro. The three-dimensional organoid culture system has emerged as a powerful tool for studying the mechanism of the intestinal epithelial barrier, mimicking rapidly renewing epithelium from intestinal stem cells (ISCs) in vivo. However, many aspects of how mechanical forces, such as shear stress, stiffness, compression, and stretch forces, influence the intestinal area remain unresolved. Here, we review the recent studies elucidating the impact of mechanical forces on intestinal immunity, interaction with the gut microbiome, and intestinal diseases.
Collapse
Affiliation(s)
- Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Nakayama M, Saito H, Murakami K, Oshima H, Oshima M. Missense Mutant p53 Transactivates Wnt/β-Catenin Signaling in Neighboring p53-Destabilized Cells through the COX-2/PGE2 Pathway. CANCER RESEARCH COMMUNICATIONS 2025; 5:13-23. [PMID: 39641656 PMCID: PMC11695814 DOI: 10.1158/2767-9764.crc-24-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
SIGNIFICANCE There is intratumor heterogeneity in the stabilization of missense mutant p53, and it has been thought that only cells with nuclear accumulation of mutant p53 have oncogenic function. However, using mouse intestinal tumor-derived organoids, we show that mutant p53-stabilized cells transactivate Wnt/β-catenin signaling in neighboring p53-destabilized cells through activating the COX-2/PGE2 pathway. These results suggest that both p53-stabilized cells and p53-destabilized cells contribute to malignant progression through interaction within the intratumor microenvironment.
Collapse
Affiliation(s)
- Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiroshi Saito
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Murakami
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Laborde N, Barusseaud A, Quaranta M, Rolland C, Arrouy A, Bonnet D, Kirzin S, Sola‐Tapias N, Hamel D, Barange K, Duffas J, Gratacap M, Guillermet‐Guibert J, Breton A, Vergnolle N, Alric L, Ferrand A, Barreau F, Racaud‐Sultan C, Mas E. Human colonic organoids for understanding early events of familial adenomatous polyposis pathogenesis. J Pathol 2025; 265:26-40. [PMID: 39641466 PMCID: PMC11638664 DOI: 10.1002/path.6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Patients with familial adenomatous polyposis (FAP) harbor mutations in the APC gene and will develop adenoma and early colorectal cancer. There is no validated treatment, and animal models are not sufficient to study FAP. Our aim was to investigate the early events associated with FAP using the intestinal organoid model in a single-center study using biopsies from nonadenomatous and adenomatous colonic mucosa of FAP patients and from healthy controls (HCs). We analyzed intestinal stem cell (ISC) activity and regulation through organoid development and expression of mRNA and proteins, as well as within colonic crypts. We used several compounds to regulate the signaling pathways controlling ISCs, such as WNT, EGFR, PI3K-AKT, TGF-β, yes-associated protein (YAP), and protease-activated receptors. In addition to their high proliferative capacity, nonadenomatous and adenomatous organoids were characterized by cysts and cysts with buds, respectively, suggesting abnormal maturation. Adenomatous organoids were enriched in the stem cell marker LGR5 and dependent on EGF and TGF-β for their growth. Downstream of EGFR, AKT, β-catenin, and YAP were found to be activated in the adenomatous organoids. While the p110β isoform of PI3K was predominant in adenomatous organoids and essential for their growth, p110α was associated with the immature state of nonadenomatous organoids. We conclude that organoids offer a relevant model for studying FAP, and this work highlights abnormal behaviors of immature cells in both nonadenomatous and adenomatous mucosa of FAP patients, which could be targeted therapeutically. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nolwenn Laborde
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
- Service de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme et Centre de Référence des Maladies Rares DigestivesHôpital des Enfants, CHU de ToulouseToulouseFrance
- Centre d'Investigation Clinique 1436CHU de ToulouseToulouseFrance
| | - Alexandre Barusseaud
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Muriel Quaranta
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Corinne Rolland
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Amélie Arrouy
- Service de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme et Centre de Référence des Maladies Rares DigestivesHôpital des Enfants, CHU de ToulouseToulouseFrance
| | - Delphine Bonnet
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
- Pôle DigestifCHU de ToulouseToulouseFrance
- Université de Toulouse, UPSToulouseFrance
| | - Sylvain Kirzin
- Pôle DigestifCHU de ToulouseToulouseFrance
- Université de Toulouse, UPSToulouseFrance
| | - Nuria Sola‐Tapias
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Dimitri Hamel
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Karl Barange
- Pôle DigestifCHU de ToulouseToulouseFrance
- Université de Toulouse, UPSToulouseFrance
| | - Jean‐Pierre Duffas
- Pôle DigestifCHU de ToulouseToulouseFrance
- Université de Toulouse, UPSToulouseFrance
| | - Marie‐Pierre Gratacap
- INSERM U1297 and Université Toulouse III Paul SabatierInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC)ToulouseFrance
| | - Julie Guillermet‐Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT)Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre National de la Recherche Scientifique (CNRS) U5071ToulouseFrance
- TouCAN (Laboratoire d'Excellence Toulouse Cancer)ToulouseFrance
| | - Anne Breton
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
- Service de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme et Centre de Référence des Maladies Rares DigestivesHôpital des Enfants, CHU de ToulouseToulouseFrance
| | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Laurent Alric
- Pôle DigestifCHU de ToulouseToulouseFrance
- Université de Toulouse, UPSToulouseFrance
| | - Audrey Ferrand
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Frédérick Barreau
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Claire Racaud‐Sultan
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| | - Emmanuel Mas
- Institut de Recherche en Santé Digestive (IRSD)Université de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
- Service de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme et Centre de Référence des Maladies Rares DigestivesHôpital des Enfants, CHU de ToulouseToulouseFrance
- Centre d'Investigation Clinique 1436CHU de ToulouseToulouseFrance
| |
Collapse
|
15
|
Micati D, Hlavca S, Chan WH, Abud HE. Harnessing 3D models to uncover the mechanisms driving infectious and inflammatory disease in the intestine. BMC Biol 2024; 22:300. [PMID: 39736603 DOI: 10.1186/s12915-024-02092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Representative models of intestinal diseases are transforming our knowledge of the molecular mechanisms of disease, facilitating effective drug screening and avenues for personalised medicine. Despite the emergence of 3D in vitro intestinal organoid culture systems that replicate the genetic and functional characteristics of the epithelial tissue of origin, there are still challenges in reproducing the human physiological tissue environment in a format that enables functional readouts. Here, we describe the latest platforms engineered to investigate environmental tissue impacts, host-microbe interactions and enable drug discovery. This highlights the potential to revolutionise knowledge on the impact of intestinal infection and inflammation and enable personalised disease modelling and clinical translation.
Collapse
Affiliation(s)
- Diana Micati
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Hlavca
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
16
|
Lebrusant-Fernandez M, Ap Rees T, Jimeno R, Angelis N, Ng JC, Fraternali F, Li VSW, Barral P. IFN-γ-dependent regulation of intestinal epithelial homeostasis by NKT cells. Cell Rep 2024; 43:114948. [PMID: 39580798 PMCID: PMC11876105 DOI: 10.1016/j.celrep.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Intestinal homeostasis is maintained through the combined functions of epithelial and immune cells that collaborate to preserve the integrity of the intestinal barrier. However, the mechanisms by which immune cell populations regulate intestinal epithelial cell (IEC) homeostasis remain unclear. Here, we use a multi-omics approach to study the immune-epithelial crosstalk and identify CD1d-restricted natural killer T (NKT) cells as key regulators of IEC biology. We find that NKT cells are abundant in the proximal small intestine and show hallmarks of activation at steady state. Subsequently, NKT cells regulate the survival and the transcriptional and cellular composition landscapes of IECs in intestinal organoids, through interferon-γ (IFN-γ) and interleukin-4 secretion. In vivo, lack of NKT cells results in an increase in IEC turnover, while NKT cell activation leads to IFN-γ-dependent epithelial apoptosis. Our findings propose NKT cells as potent producers of cytokines that contribute to the regulation of IEC homeostasis.
Collapse
Affiliation(s)
- Marta Lebrusant-Fernandez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Tom Ap Rees
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Rebeca Jimeno
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | | | - Joseph C Ng
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Patricia Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
17
|
de Paulo CB, Miglino MA, Castelucci P. Perspectives on the extracellular matrix in inflammatory bowel disease and bowel decellularization protocols. World J Exp Med 2024; 14:97179. [PMID: 39713079 PMCID: PMC11551702 DOI: 10.5493/wjem.v14.i4.97179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 10/31/2024] Open
Abstract
The extracellular matrix (ECM) is a non-cellular three-dimensional structure present in all tissues that is essential for the intestinal maintenance, function and structure, as well as for providing physical support for tissue integrity and elasticity. ECM enables the regulation of various processes involved in tissue homeostasis, being vital for healing, growth, migration and cell differentiation. Structurally, ECM is composed of water, polysaccharides and proteins, such as collagen fibers and proteoglycans, which are specifically arranged for each tissue. In pathological scenarios, such as inflammatory bowel disease (IBD), the deposition and remodeling of the ECM can be altered in relation to the homeostatic composition. IBD, such as Ulcerative colitis and Crohn's disease, can be differentiated according to ECM alterations, such as circulating levels of collagen, laminin and vimentin neoepitopes. In this context, ECM presents particularities in both physiological and pathological processes, however, exploring methods of tissue decellularization is emerging as a promising frontier for new therapeutic interventions and clinical protocols, promoting the development of new approaches to intestinal diseases.
Collapse
Affiliation(s)
- Caroline Bures de Paulo
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, São Paulo, Brazil
| | - Maria Angelica Miglino
- Laboratório de Medicina Regenerativa, Universidade de Marilia, Marilia 00000, São Paulo, Brazil
| | | |
Collapse
|
18
|
Wang Z, Zhou L, Zhong X, Jiang Y, Zhang Z, Li W. Liquid-liquid separation in gut immunity. Front Immunol 2024; 15:1505123. [PMID: 39720729 PMCID: PMC11666445 DOI: 10.3389/fimmu.2024.1505123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Gut immunity is essential for maintaining intestinal health. Recent studies have identified that intracellular liquid-liquid phase separation (LLPS) may play a significant role in regulating gut immunity, however, the underlying mechanisms remain unclear. LLPS refers to droplet condensates formed through intracellular molecular interactions, which are crucial for the formation of membraneless organelles and biomolecules. LLPS can contribute to the formation of tight junctions between intestinal epithelial cells and influence the colonization of probiotics in the intestine, thereby protecting the intestinal immune system by maintaining the integrity of the intestinal barrier and the stability of the microbiota. Additionally, LLPS can affect the microclusters on the plasma membrane of T cells, resulting in increased density and reduced mobility, which in turn influences T cell functionality. The occurrence of intracellular LLPS is intricately associated with the initiation and progression of gut immunity. This review introduces the mechanism of LLPS in gut immunity and analyzes future research directions and potential applications of this phenomenon.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Department of Gastrointestinal Surgery, Huadu District People’s Hospital, Guangzhou, China
- Biology, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lili Zhou
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xiaolan Zhong
- Department of Gastroenterology, Huadu District People’s Hospital, Guangzhou, China
| | - Yiguo Jiang
- Biology, School of Public Health, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Zhentao Zhang
- Obstetrics and Gynecology Department, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wanglin Li
- Department of Gastrointestinal Surgery, Huadu District People’s Hospital, Guangzhou, China
- Department of Gastroenterology, Huadu District People’s Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Wang WL, Lian H, Liang Y, Ye Y, Tam PKH, Chen Y. Molecular Mechanisms of Fibrosis in Cholestatic Liver Diseases and Regenerative Medicine-Based Therapies. Cells 2024; 13:1997. [PMID: 39682745 PMCID: PMC11640075 DOI: 10.3390/cells13231997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this review is to explore the potential of new regenerative medicine approaches in the treatment of cholestatic liver fibrosis. Cholestatic liver diseases, such as primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and biliary atresia (BA), due to the accumulation of bile, often progress to liver fibrosis, cirrhosis, and liver failure. When the disease becomes severe enough to require liver transplantation. Deeply understanding the disease's progression and fibrosis formation is crucial for better diagnosis and treatment. Current liver fibrosis treatments mainly target the root causes and no direct treatment method in fibrosis itself. Recent advances in regenerative medicine offer a potential approach that may help find the ways to target fibrosis directly, offering hope for improved outcomes. We also summarize, analyze, and discuss the current state and benefits of regenerative medicine therapies such as mesenchymal stem cell (MSC) therapy, induced pluripotent stem cells (iPSCs), and organoid technology, which may help the treatment of cholestatic liver diseases. Focusing on the latest research may reveal new targets and enhance therapeutic efficacy, potentially leading to more effective management and even curative strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Wei-Lu Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Haoran Lian
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Yingyu Liang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Yongqin Ye
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
| | - Paul Kwong Hang Tam
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| | - Yan Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
20
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
21
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
22
|
Tardalkar K, Patil S, Chaudhari L, Kshersagar J, Damle M, Kawale A, Bhamare N, Desai V, Pathak N, Gaikwad V, Joshi MG. Decellularized small intestine scaffolds: a potential xenograft for restoration of intestinal perforation. Tissue Barriers 2024; 12:2290940. [PMID: 38053224 PMCID: PMC11583676 DOI: 10.1080/21688370.2023.2290940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023] Open
Abstract
Small intestine perforation is a serious medical condition that requires immediate medical attention. The traditional course of treatment entails resection followed by anastomosis; however, it has complications such as small bowel syndrome (SBS), anastomotic leakage, and fistula formation. Here, a novel strategy is demonstrated, that utilizes the xenogeneic, decellularized goat small intestine as a patch for small intestine regeneration in cases of intestinal perforation. The goat small intestine scaffold underwent sodium dodecyl sulfate decellularization, which revealed consistent, quick, and effective decellularization. Decellularization contributed the least amount of extracellular matrix degradation while maintaining the intestinal architecture. By implanting the decellularized goat small intestine scaffolds (DGSIS) on the chorioallantoic membrane (CAM), no discernible loss of angiogenesis was seen in the CAM region, and this enabled the DGSIS to be evaluated for biocompatibility in ovo. The DGSIS was then xeno-transplanted as a patch on a small intestine perforation rat model. After 30 days post transplant, barium salt used as contrast gastrointestinal X-ray imaging revealed no leakage or obstruction in the small intestine. Histology, scanning electron microscopy, and immunohistochemistry assisted in analyzing the engraftment of host cells into the xeno patch. The xeno-patch expressed high levels of E-cadherin, α-smooth muscle actin (α-SMA), Occludin, Zonnula occluden (ZO-1), Ki 67, and Na+/K+-ATPase. The xeno-patch was consequently recellularized and incorporated into the host without causing an inflammatory reaction. As an outcome, decellularized goat small intestine was employed as a xenograft and could be suitable for regeneration of the perforated small intestine.
Collapse
Affiliation(s)
- Kishor Tardalkar
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
| | | | - Leena Chaudhari
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
- Department of Surgery, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, India
- Stem Plus Biotech, Sangli, MS, India
| | - Jeevitaa Kshersagar
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
| | - Mrunal Damle
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
- Department of Surgery, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, India
- Stem Plus Biotech, Sangli, MS, India
| | - Akshay Kawale
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
- Department of Surgery, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, India
- Stem Plus Biotech, Sangli, MS, India
| | - Nilesh Bhamare
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
| | - Vaishnavi Desai
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
| | - Narayani Pathak
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
| | - Vaishali Gaikwad
- Department of Surgery, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India
- Stem Plus Biotech, Sangli, MS, India
| |
Collapse
|
23
|
Qin YC, Jin CL, Hu TC, Zhou JY, Wang XF, Wang XQ, Kong XF, Yan HC. Early Weaning Inhibits Intestinal Stem Cell Expansion to Disrupt the Intestinal Integrity of Duroc Piglets via Regulating the Keap1/Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1188. [PMID: 39456442 PMCID: PMC11505184 DOI: 10.3390/antiox13101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
There are different stress resistance among different breeds of pigs. Changes in intestinal stem cells (ISCs) are still unclear among various breeds of piglets after early weaning. In the current study, Taoyuan Black and Duroc piglets were slaughtered at 21 days of age (early weaning day) and 24 days of age (3 days after early weaning) for 10 piglets in each group. The results showed that the rate of ISC-driven epithelial renewal in local Taoyuan Black pigs hardly changed after weaning for 3 days. However, weaning stress significantly reduced the weight of the duodenum and jejunum in Duroc piglets. Meanwhile, the jejunal villus height, tight junction-related proteins (ZO-1, Occludin, and Claudin1), as well as the trans-epithelial electrical resistance (TEER) values, were down-regulated after weaning for 3 days in Duroc piglets. Moreover, compared with Unweaned Duroc piglets, the numbers of Olfm4+ ISC cells, PCNA+ mitotic cells, SOX9+ secretory progenitor cells, and Villin+ absorptive cells in the jejunum were reduced significantly 3 days after weaning. And ex vivo jejunal crypt-derived organoids exhibited growth disadvantages in weaned Duroc piglets. Notably, the Keap1/Nrf2 signaling activities and the expression of HO-1 were significantly depressed in weaned Duroc piglets compared to Unweaned Duroc piglets. Thus, we can conclude that ISCs of Duroc piglets were more sensitive to weaning stress injury than Taoyuan Black piglets, and Keap1/Nrf2 signaling is involved in this process.
Collapse
Affiliation(s)
- Ying-Chao Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Cheng-Long Jin
- Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Ting-Cai Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiang-Feng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| |
Collapse
|
24
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Herath M, Speer AL. Bioengineering of Intestinal Grafts. Gastroenterol Clin North Am 2024; 53:461-472. [PMID: 39068007 PMCID: PMC11284275 DOI: 10.1016/j.gtc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal failure manifests as an impaired capacity of the intestine to sufficiently absorb vital nutrients and electrolytes essential for growth and well-being in pediatric and adult populations. Although parenteral nutrition remains the mainstay therapeutic approach, the pursuit of a definitive and curative strategy, such as regenerative medicine, is imperative. Substantial advancements in the field of engineered intestinal tissues present a promising avenue for addressing intestinal failure; nevertheless, extensive research is still necessary for effective translation from experimental benchwork to clinical bedside applications.
Collapse
Affiliation(s)
- Madushani Herath
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA
| | - Allison L Speer
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
27
|
Zong B, Wang J, Wang K, Hao J, Han JY, Jin R, Ge Q. Effects of Ginsenoside Rb1 on the Crosstalk between Intestinal Stem Cells and Microbiota in a Simulated Weightlessness Mouse Model. Int J Mol Sci 2024; 25:8769. [PMID: 39201456 PMCID: PMC11354315 DOI: 10.3390/ijms25168769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Exposure to the space microenvironment has been found to disrupt the homeostasis of intestinal epithelial cells and alter the composition of the microbiota. To investigate this in more detail and to examine the impact of ginsenoside Rb1, we utilized a mouse model of hindlimb unloading (HU) for four weeks to simulate the effects of microgravity. Our findings revealed that HU mice had ileum epithelial injury with a decrease in the number of intestinal stem cells (ISCs) and the level of cell proliferation. The niche functions for ISCs were also impaired in HU mice, including a reduction in Paneth cells and Wnt signaling, along with an increase in oxidative stress. The administration of Rb1 during the entire duration of HU alleviated the observed intestinal defects, suggesting its beneficial influence on epithelial cell homeostasis. Hindlimb unloading also resulted in gut dysbiosis. The supplementation of Rb1 in the HU mice or the addition of Rb1 derivative compound K in bacterial culture in vitro promoted the growth of beneficial probiotic species such as Akkermansia. The co-housing experiment further showed that Rb1 treatment in ground control mice alone could alleviate the defects in HU mice that were co-housed with Rb1-treated ground mice. Together, these results underscore a close relationship between dysbiosis and impaired ISC functions in the HU mouse model. It also highlights the beneficial effects of Rb1 in mitigating HU-induced epithelial injury by promoting the expansion of intestinal probiotics. These animal-based insights provide valuable knowledge for the development of improved approaches to maintaining ISC homeostasis in astronauts.
Collapse
Affiliation(s)
- Beibei Zong
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Qing Ge
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| |
Collapse
|
28
|
Garcia-Villatoro EL, Ufondu A, Callaway ES, Allred KF, Safe SH, Chapkin RS, Jayaraman A, Allred CD. Aryl hydrocarbon receptor activity in intestinal epithelial cells in the formation of colonic tertiary lymphoid tissues. Am J Physiol Gastrointest Liver Physiol 2024; 327:G154-G174. [PMID: 38563893 PMCID: PMC11427098 DOI: 10.1152/ajpgi.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the aryl hydrocarbon receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes or immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio were observed. These findings may represent an unfavorable prognosis when exposed to dextran sodium sulfate (DSS)-induced epithelial damage compared with females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.NEW & NOTEWORTHY This is the first research of its kind to demonstrate a clear connection between biological sex and the development of tertiary lymphoid tissues (TLT) in the colon. In addition, the research finds that in a preclinical model of inflammatory bowel disease, the expression of the aryl hydrocarbon receptor (AhR) influences the development of these structures in a sex-specific manner.
Collapse
Affiliation(s)
| | - A. Ufondu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - E. S. Callaway
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - K. F. Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| | - S. H. Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, United States
| | - R. S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, United States
| | - A. Jayaraman
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - C. D. Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| |
Collapse
|
29
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
30
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Zhu J, Wu Y, Ge X, Chen X, Mei Q. Discovery and Validation of Ferroptosis-Associated Genes of Ulcerative Colitis. J Inflamm Res 2024; 17:4467-4482. [PMID: 39006497 PMCID: PMC11246036 DOI: 10.2147/jir.s463042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Background Ulcerative colitis (UC) is a long-lasting idiopathic condition, but its precise mechanisms remain unclear. Meanwhile, evidence has demonstrated that ferroptosis seems to interlock with the progress of UC. This research sought to identify hub genes of UC related to ferroptosis. Methods First, the relevant profiles for this article were obtained from GEO database. From the FerrDb, 479 genes linked to ferroptosis were retrieved. Using analysis of the difference and WGCNA on colonic samples from GSE73661, the remaining six hub genes linked to ferroptosis and UC were discovered. Through logistic regression analyses, the diagnostic model was constructed and was then evaluated by external validation using dataset GSE92415. Afterwards, the correlation between immune cell filtration in UC and hub genes was examined. Finally, a mice model of colitis was established, and the results were verified using qRT-PCR. Results We acquired six hub genes linked to ferroptosis and UC. In order to create a diagnostic model for UC, we used logistic regression analysis to screen three of the six ferroptosis related genes (HIF1A, SLC7A11, and LPIN1). The ROC curve showed that the three hub genes had outstanding potential for disease diagnosis (AUC = 0.976), which was subsequently validated in samples from GSE92415 (AUC = 0.962) and blood samples from GSE3365 (AUC = 0.847) and GSE94648 (AUC = 0.769). These genes might be crucial for UC immunity based upon the results on the immune system. Furthermore, mouse samples examined using qRT-PCR also verified our findings. Conclusion In conclusion, the findings have important implications for ferroptosis and UC, and these hub genes may also offer fresh perspectives on the aetiology and therapeutic approaches of UC.
Collapse
Affiliation(s)
- Jiejie Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Yumei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Xiaoyuan Ge
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Xinwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
33
|
Liu Y, Wang X, Jin C, Qiao J, Wang C, Jiang L, Yu S, Pan D, Zhao D, Wang S, Liu M. Total ginsenosides extend healthspan of aging Drosophila by suppressing imbalances in intestinal stem cells and microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155650. [PMID: 38669971 DOI: 10.1016/j.phymed.2024.155650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Disruption of stem cell and microbial homeostasis accelerates the aging process. Hence, maintaining these balances effectively delays aging and alleviates the symptoms of age-related diseases. Recent research indicates that targeting endoplasmic reticulum (ER) stress and immune deficiency (IMD) signalling may play a positive role in maintaining homeostasis in aging intestinal stem cells (ISC) and microbial equilibrium. Previous research has suggested that total ginsenosides (TG) derived from Panax ginseng C. A. Meyer may exhibit potential anti-aging properties by mitigating ER stress and mediating the IMD pathway. Nevertheless, it remains unclear whether TG improve ISC and microbial homeostasis by modulating ER stress and the IMD pathway to promote healthy aging. PURPOSE To elucidate whether TG promotes healthspan in Drosophila and its underlying molecular mechanisms, focusing on its role in regulating ER stress and the IMD pathway to maintain ISC and intestinal microbiota homeostasis. METHODS High performance liquid chromatography was performed to detect the main saponin monomer in TG. Survival rate, gut length, barrier function, and feeding/excretion behaviour assays were used to evaluate the effects of TG on the lifespan and gut health of Drosophila. At the stem cell level, "esg-luciferase" reporter system, esg-GFP/delta stem cell fluorescent labelling, and phospho-histone H3+ mitotic activity assays were employed to determine whether TG prevented natural aging or oxidative stress-associated ISC over-proliferation in Drosophila. Immunofluorescence staining was used to detect the effects of TG on ER stress during aging. Overexpression or interference of ER stress target genes and their related c-Jun N-terminal kinase (JNK) gene was manipulated using gene editing technology to verify the molecular mechanism by which TG maintains age-related ISC proliferation homeostasis. Molecular docking and isothermal titration calorimetry were used to verify the direct interactions between TG and ER stress target genes. In addition, at the intestinal flora level, 16S rDNA sequencing was used to analyse the effect of TG on the diversity and abundance of Drosophila intestinal flora and the possible functional pathways involved. RT-qPCR was performed to determine whether TG mediated the expression of target genes in the IMD pathway. A dominant bacterial species-specific mono-association analysis were performed to verify whether the effects of TG on IMD target genes and ISC proliferation depended on the direct control of the dominant bacterial species. RESULTS Our results suggest that administration of TG delays the decline in gut morphology and function in aging Drosophila. TG prevents age-associated ISC hyperproliferation by inhibiting ER stress IRE1-mediated JNK signaling. Furthermore, oral TG prevented aging-associated ISC and gut microbiota dysbiosis by remodelling the gut microbiota and inhibiting Acetobacter-mediated activation of IMD target genes. CONCLUSION TG promotes healthy aging by inhibiting the excessive proliferation of ISC and alleviating intestinal microbial imbalance, thereby providing new insights for the research and development of anti-aging TG products.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daian Pan
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
34
|
Seidelin JB, Bronze M, Poulsen A, Attauabi M, Woetmann A, Mead BE, Karp JM, Riis LB, Bjerrum JT. Non-TGFβ profibrotic signaling in ulcerative colitis after in vivo experimental intestinal injury in humans. Am J Physiol Gastrointest Liver Physiol 2024; 327:G70-G79. [PMID: 38713614 DOI: 10.1152/ajpgi.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Although impaired regeneration is important in many gastrointestinal diseases including ulcerative colitis (UC), the dynamics of mucosal regeneration in humans are poorly investigated. We have developed a model to study these processes in vivo in humans. Epithelial restitution (ER) and extracellular matrix (ECM) regulation after an experimental injury of the sigmoid colonic mucosa was assessed by repeated high-resolution endoscopic imaging, histological assessment, RNA sequencing, deconvolution analysis, and 16S rDNA sequencing of the injury niche microbiome of 19 patients with UC in remission and 20 control subjects. Human ER had a 48-h lag before induction of regenerative epithelial cells [wound-associated epithelial (WAE) and transit amplifying (TA) cells] along with the increase of fibroblast-derived stem cell growth factor gremlin 1 mRNA (GREM1). However, UC deconvolution data showed rapid induction of inflammatory fibroblasts and upregulation of major structural ECM collagen mRNAs along with tissue inhibitor of metalloproteinase 1 (TIMP1), suggesting increased profibrotic ECM deposition. No change was seen in transforming growth factor β (TGFβ) mRNA, whereas the profibrotic cytokines interleukin 13 (IL13) and IL11 were upregulated in UC, suggesting that human postinjury responses could be TGFβ-independent. In conclusion, we found distinct regulatory layers of regeneration in the normal human colon and a potential targetable profibrotic dysregulation in UC that could lead to long-term end-organ failure, i.e., intestinal damage.NEW & NOTEWORTHY The study reveals the regulatory dynamics of epithelial regeneration and extracellular matrix remodeling after experimental injury of the human colon in vivo and shows that human intestinal regeneration is different from data obtained from animals. A lag phase in epithelial restitution is associated with induction of stromal cell-derived epithelial growth factors. Postinjury regeneration is transforming growth factor β-independent, and we find a profibrotic response in patients with ulcerative colitis despite being in remission.
Collapse
Affiliation(s)
- Jakob B Seidelin
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mariana Bronze
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anja Poulsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Attauabi
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin E Mead
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Department of Chemistry; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts, United States
| | - Jeffrey M Karp
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Anesthesiology, Perioperative and Pain Medicine,Brigham and Women's Hospital, Cambridge, Massachusetts, United States
| | - Lene B Riis
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jacob T Bjerrum
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Fey SK, Vaquero-Siguero N, Jackstadt R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43:114270. [PMID: 38787726 DOI: 10.1016/j.celrep.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Collapse
Affiliation(s)
- Sigrid K Fey
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Post Y, Lu C, Fletcher RB, Yeh WC, Nguyen H, Lee SJ, Li Y. Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience 2024; 27:109938. [PMID: 38832011 PMCID: PMC11145361 DOI: 10.1016/j.isci.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Wingless-related integration site or Wingless and Int-1 or Wingless-Int (WNT) signaling is crucial for embryonic development, and adult tissue homeostasis and regeneration, through its essential roles in cell fate, patterning, and stem cell regulation. The biophysical characteristics of WNT ligands have hindered efforts to interrogate ligand activity in vivo and prevented their development as therapeutics. Recent breakthroughs have enabled the generation of synthetic WNT signaling molecules that possess characteristics of natural ligands and potently activate the pathway, while also providing distinct advantages for therapeutic development and manufacturing. This review provides a detailed discussion of the protein engineering of these molecular platforms for WNT signaling agonism. We discuss the importance of WNT signaling in several organs and share insights from the initial application of these new classes of molecules in vitro and in vivo. These molecules offer a unique opportunity to enhance our understanding of how WNT signaling agonism promotes tissue repair, enabling targeted development of tailored therapeutics.
Collapse
Affiliation(s)
- Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Chenggang Lu
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Russell B. Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Huy Nguyen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Sung-Jin Lee
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| |
Collapse
|
37
|
Esmaeili J, Jalise SZ, Pisani S, Rochefort GY, Ghobadinezhad F, Mirzaei Z, Mohammed RUR, Fathi M, Tebyani A, Nejad ZM. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. Int J Biol Macromol 2024; 272:132941. [PMID: 38848842 DOI: 10.1016/j.ijbiomac.2024.132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran; Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12,27100 Pavia, Italy
| | - Gaël Y Rochefort
- Bioengineering Biomodulation and Imaging of the Orofacial Sphere, 2BIOS, faculty of dentistry, tours university, France; UMR 1253, iBrain, Tours University, France
| | | | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy e.V.INAM, Forchheim, Germany
| | | | - Mehdi Fathi
- Department of Esthetic and Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Tebyani
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Zohreh Mousavi Nejad
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland; Centre for medical engineering research, school of mechanical and manufacturing engineering, Dublin city university, D09 Y074 Dublin, Ireland
| |
Collapse
|
38
|
Vilardi A, Przyborski S, Mobbs C, Rufini A, Tufarelli C. Current understanding of the interplay between extracellular matrix remodelling and gut permeability in health and disease. Cell Death Discov 2024; 10:258. [PMID: 38802341 PMCID: PMC11130177 DOI: 10.1038/s41420-024-02015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The intestinal wall represents an interactive network regulated by the intestinal epithelium, extracellular matrix (ECM) and mesenchymal compartment. Under healthy physiological conditions, the epithelium undergoes constant renewal and forms an integral and selective barrier. Following damage, the healthy epithelium is restored via a series of signalling pathways that result in remodelling of the scaffolding tissue through finely-regulated proteolysis of the ECM by proteases such as matrix metalloproteinases (MMPs). However, chronic inflammation of the gastrointestinal tract, as occurs in Inflammatory Bowel Disease (IBD), is associated with prolonged disruption of the epithelial barrier and persistent damage to the intestinal mucosa. Increased barrier permeability exhibits distinctive signatures of inflammatory, immunological and ECM components, accompanied by increased ECM proteolytic activity. This narrative review aims to bring together the current knowledge of the interplay between gut barrier, immune and ECM features in health and disease, discussing the role of barrier permeability as a discriminant between homoeostasis and IBD.
Collapse
Affiliation(s)
- Aurora Vilardi
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Claire Mobbs
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Alessandro Rufini
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
- Department of Biosciences, University of Milan, Milan, 20133, Italy.
| | - Cristina Tufarelli
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
| |
Collapse
|
39
|
Peng Z, Zhang J, Zhang M, Yin L, Zhou Z, Lv C, Wang Z, Tang J. Tryptophan metabolites relieve intestinal Candida albicans infection by altering the gut microbiota to reduce IL-22 release from group 3 innate lymphoid cells of the colon lamina propria. Food Funct 2024; 15:5364-5381. [PMID: 38639049 DOI: 10.1039/d4fo00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Invasive candidiasis may be caused by Candida albicans (C. albicans) colonization of the intestinal tract. Preventing intestinal damage caused by Candida albicans infection and protecting intestinal barrier function have become a critical issue. Integrated analyses of the microbiome with metabolome revealed a remarkable shift of the gut microbiota and tryptophan metabolites, kynurenic acid (KynA), and indolacrylic acid (IA) in mice infected with C. albicans. The transcriptome sequencing indicated that differentially expressed genes were significantly associated with innate immune responses and inflammatory responses. The results of this study suggest that KynA and IA (KI) can alleviate intestinal damage caused by Candida albicans infection in mice by reducing intestinal permeability, increasing intestinal firmness, alleviating intestinal inflammation, and reducing the secretion of interleukin-22 (IL-22) in the 3 groups of colon innate lymphoid cells (ILC3). We performed a fecal microbiota transplantation (FMT) experiment and found that the intestinal barrier function, inflammation, and IL-22 secretion of ILC3 in the colon lamina propria of the recipient mice subjected to C. albicans infection and KI treatment were consistent with the trends of the donor mice. Our results suggest that tryptophan metabolites may directly regulate colon lamina ILC3 to promote intestinal resistance to C. albicans invasion, or indirectly regulate the ILC3 secretion of IL-22 to play a protective role in the intestinal barrier by affecting intestinal microorganisms, which may become a potential target for alleviating intestine borne C. albicans infection.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jiali Zhang
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Liping Yin
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ziyang Zhou
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Cuiting Lv
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zetian Wang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Zhou JY, Xie WW, Hu TC, Wang XF, Yan HC, Wang XQ. Mulberry Leaf-Derived Morin Activates β-Catenin by Binding to Frizzled7 to Promote Intestinal Stem Cell Expansion upon Heat-Stable Enterotoxin b Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10366-10375. [PMID: 38651967 DOI: 10.1021/acs.jafc.3c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/β-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated β-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Wen-Wen Xie
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Ting-Cai Hu
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| |
Collapse
|
41
|
Naser AN, Xing T, Tatum R, Lu Q, Boyer PJ, Chen YH. Colonic crypt stem cell functions are controlled by tight junction protein claudin-7 through Notch/Hippo signaling. Ann N Y Acad Sci 2024; 1535:92-108. [PMID: 38598500 PMCID: PMC11111361 DOI: 10.1111/nyas.15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The tight junction protein claudin-7 is essential for tight junction function and intestinal homeostasis. Cldn7 deletion in mice leads to an inflammatory bowel disease-like phenotype exhibiting severe intestinal epithelial damage, weight loss, inflammation, mucosal ulcerations, and epithelial hyperplasia. Claudin-7 has also been shown to be involved in cancer metastasis and invasion. Here, we test our hypothesis that claudin-7 plays an important role in regulating colonic intestinal stem cell function. Conditional knockout of Cldn7 in the colon led to impaired epithelial cell differentiation, hyperproliferative epithelium, a decrease in active stem cells, and dramatically altered gene expression profiles. In 3D colonoid culture, claudin-7-deficient crypts were unable to survive and form spheroids, emphasizing the importance of claudin-7 in stem cell survival. Inhibition of the Hippo pathway or activation of Notch signaling partially rescued the defective stem cell behavior. Concurrent Notch activation and Hippo inhibition resulted in restored colonoid survival, growth, and differentiation to the level comparable to those of wild-type derived crypts. In this study, we highlight the essential role of claudin-7 in regulating Notch and Hippo signaling-dependent colonic stem cell functions, including survival, self-renewal, and differentiation. These new findings may shed light on potential avenues to explore for drug development in colorectal cancer.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Tiaosi Xing
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Neural and Behavioral Science Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Philip J. Boyer
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
42
|
Wang K, Liu Y, Li H, Liang X, Hao M, Yuan D, Ding L. Claudin-7 is essential for the maintenance of colonic stem cell homoeostasis via the modulation of Wnt/Notch signalling. Cell Death Dis 2024; 15:284. [PMID: 38654000 PMCID: PMC11039680 DOI: 10.1038/s41419-024-06658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Intestinal stem cells (ISCs) play a crucial role in the continuous self-renewal and recovery of the intestinal epithelium. In previous studies, we have revealed that the specific absence of Claudin-7 (Cldn-7) in intestinal epithelial cells (IECs) can lead to the development of spontaneous colitis. However, the mechanisms by which Cldn-7 maintains homeostasis in the colonic epithelium remain unclear. Therefore, in the present study, we used IEC- and ISC-specific Cldn-7 knockout mice to investigate the regulatory effects of Cldn-7 on colonic Lgr5+ stem cells in the mediation of colonic epithelial injury and repair under physiological and inflammatory conditions. Notably, our findings reveal that Cldn-7 deletion disrupts the self-renewal and differentiation of colonic stem cells alongside the formation of colonic organoids in vitro. Additionally, these Cldn-7 knockout models exhibited heightened susceptibility to experimental colitis, limited epithelial repair and regeneration, and increased differentiation toward the secretory lineage. Mechanistically, we also established that Cldn-7 facilitates the proliferation, differentiation, and organoid formation of Lgr5+ stem cells through the maintenance of Wnt and Notch signalling pathways in the colonic epithelium. Overall, our study provides new insights into the maintenance of ISC function and colonic epithelial homoeostasis.
Collapse
Affiliation(s)
- Kun Wang
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yin Liu
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqing Liang
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dajin Yuan
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Ding
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
43
|
Tucker SA, Hu SH, Vyas S, Park A, Joshi S, Inal A, Lam T, Tan E, Haigis KM, Haigis MC. SIRT4 loss reprograms intestinal nucleotide metabolism to support proliferation following perturbation of homeostasis. Cell Rep 2024; 43:113975. [PMID: 38507411 PMCID: PMC11639042 DOI: 10.1016/j.celrep.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.
Collapse
Affiliation(s)
- Sarah A Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sejal Vyas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aslihan Inal
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany Lam
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Tan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Li Y, Xu T, Zhao Y, Zhang H, Liu Z, Wang H, Huang C, Shu Z, Gao L, Xie R, Jiao T, Zhang D, Zhang D, Liang X, Zang Y, Sun Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Novel Nonbile Acid FXR Agonists as Preclinical Candidates for the Treatment of Inflammatory Bowel Disease. J Med Chem 2024; 67:5642-5661. [PMID: 38547240 DOI: 10.1021/acs.jmedchem.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingting Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zesheng Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chaoying Huang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhihao Shu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixin Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongrong Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tingying Jiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuewu Liang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zang
- Lingang laboratory, Shanghai, 201203, China
| | - Yili Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
45
|
Namoto K, Baader C, Orsini V, Landshammer A, Breuer E, Dinh KT, Ungricht R, Pikiolek M, Laurent S, Lu B, Aebi A, Schönberger K, Vangrevelinghe E, Evrova O, Sun T, Annunziato S, Lachal J, Redmond E, Wang L, Wetzel K, Capodieci P, Turner J, Schutzius G, Unterreiner V, Trunzer M, Buschmann N, Behnke D, Machauer R, Scheufler C, Parker CN, Ferro M, Grevot A, Beyerbach A, Lu WY, Forbes SJ, Wagner J, Bouwmeester T, Liu J, Sohal B, Sahambi S, Greenbaum LE, Lohmann F, Hoppe P, Cong F, Sailer AW, Ruffner H, Glatthar R, Humar B, Clavien PA, Dill MT, George E, Maibaum J, Liberali P, Tchorz JS. NIBR-LTSi is a selective LATS kinase inhibitor activating YAP signaling and expanding tissue stem cells in vitro and in vivo. Cell Stem Cell 2024; 31:554-569.e17. [PMID: 38579685 DOI: 10.1016/j.stem.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.
Collapse
Affiliation(s)
- Kenji Namoto
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Clara Baader
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Vanessa Orsini
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Eva Breuer
- University Hospital Zurich (USZ), Zurich, Switzerland
| | - Kieu Trinh Dinh
- German Cancer Research Center (DKFZ) Heidelberg, Research Group Experimental Hepatology, Inflammation and Cancer, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Bo Lu
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | - Alexandra Aebi
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Olivera Evrova
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland; Division of Liver Diseases, Institute for Regenerative Medicine, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julie Lachal
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Emily Redmond
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | - Louis Wang
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | - Kristie Wetzel
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | | | | | - Gabi Schutzius
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Markus Trunzer
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Dirk Behnke
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | - Magali Ferro
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Armelle Grevot
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Wei-Yu Lu
- University of Edinburgh, Center for Inflammation Research, Edinburgh, UK
| | - Stuart J Forbes
- University of Edinburgh, Center for Regenerative Medicine, Edinburgh, UK
| | - Jürgen Wagner
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Jun Liu
- Biomedical Research, Novartis Pharma AG, La Jolla, CA, USA
| | - Bindi Sohal
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Felix Lohmann
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Philipp Hoppe
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Feng Cong
- Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
| | | | - Heinz Ruffner
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ralf Glatthar
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Bostjan Humar
- University Hospital Zurich (USZ), Zurich, Switzerland
| | | | - Michael T Dill
- German Cancer Research Center (DKFZ) Heidelberg, Research Group Experimental Hepatology, Inflammation and Cancer, Heidelberg, Germany; Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jürgen Maibaum
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jan S Tchorz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
46
|
Xu Y, Mao S, Fan H, Wan J, Wang L, Zhang M, Zhu S, Yuan J, Lu Y, Wang Z, Yu B, Jiang Z, Huang Y. LINC MIR503HG Controls SC-β Cell Differentiation and Insulin Production by Targeting CDH1 and HES1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305631. [PMID: 38243869 PMCID: PMC10987150 DOI: 10.1002/advs.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Stem cell-derived pancreatic progenitors (SC-PPs), as an unlimited source of SC-derived β (SC-β) cells, offers a robust tool for diabetes treatment in stem cell-based transplantation, disease modeling, and drug screening. Whereas, PDX1+/NKX6.1+ PPs enhances the subsequent endocrine lineage specification and gives rise to glucose-responsive SC-β cells in vivo and in vitro. To identify the regulators that promote induction efficiency and cellular function maturation, single-cell RNA-sequencing is performed to decipher the transcriptional landscape during PPs differentiation. The comprehensive evaluation of functionality demonstrated that manipulating LINC MIR503HG using CRISPR in PP cell fate decision can improve insulin synthesis and secretion in mature SC-β cells, without effects on liver lineage specification. Importantly, transplantation of MIR503HG-/- SC-β cells in recipients significantly restored blood glucose homeostasis, accompanied by serum C-peptide release and an increase in body weight. Mechanistically, by releasing CtBP1 occupying the CDH1 and HES1 promoters, the decrease in MIR503HG expression levels provided an excellent extracellular niche and appropriate Notch signaling activation for PPs following differentiation. Furthermore, this exhibited higher crucial transcription factors and mature epithelial markers in CDH1High expressed clusters. Altogether, these findings highlighted MIR503HG as an essential and exclusive PP cell fate specification regulator with promising therapeutic potential for patients with diabetes.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Haowen Fan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Department of Graduate SchoolDalian Medical UniversityDalianLiaoning116000China
| | - Mingyu Zhang
- Department of Nuclear MedicineBeijing Friendship HospitalAffiliated to Capital Medical UniversityBeijing100050China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jin Yuan
- Department of Endocrinology and MetabolismAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Zhaoyan Jiang
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
47
|
Linke P, Munding N, Kimmle E, Kaufmann S, Hayashi K, Nakahata M, Takashima Y, Sano M, Bastmeyer M, Holstein T, Dietrich S, Müller‐Tidow C, Harada A, Ho AD, Tanaka M. Reversible Host-Guest Crosslinks in Supramolecular Hydrogels for On-Demand Mechanical Stimulation of Human Mesenchymal Stem Cells. Adv Healthc Mater 2024; 13:e2302607. [PMID: 38118064 PMCID: PMC11481031 DOI: 10.1002/adhm.202302607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Stem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated. The stiffness (Young's modulus E) of the hydrogels can be switched reversibly by altering the concentration of non-cytotoxic, free guest molecules dissolved in the culture medium. Fine-adjustment of substrate stiffness enables the authors to determine the critical stiffness level E* at which hMSCs turn the mechano-sensory machinery on or off. Next, the substrate stiffness across E* is switched and the dynamic adaptation characteristics such as morphology, traction force, and YAP/TAZ signaling of hMSCs are monitored. These data demonstrate the instantaneous switching of traction force, which is followed by YAP/TAZ signaling and morphological adaptation. Periodical switching of the substrate stiffness across E* proves that frequent applications of mechanical stimuli drastically suppress hMSC proliferation. Mechanical stimulation across E* level using dynamic hydrogels is a promising strategy for the on-demand control of hMSC transcription and proliferation.
Collapse
Affiliation(s)
- Philipp Linke
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Natalie Munding
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Esther Kimmle
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Stefan Kaufmann
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Kentaro Hayashi
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
| | - Masaki Nakahata
- Department of Macromolecular ScienceGraduate School of ScienceOsaka UniversityOsaka560‐0043Japan
| | - Yoshinori Takashima
- Department of Macromolecular ScienceGraduate School of ScienceOsaka UniversityOsaka560‐0043Japan
| | - Masaki Sano
- Institute of Natural SciencesShanghai Jiao Tong UniversityShanghai200240China
| | - Martin Bastmeyer
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Cell and NeurobiologyZoological InstituteKarlsruhe Institute of Technology76131KarlsruheGermany
- Institute for Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP)Karlsruhe Institute of Technology76334Eggenstein‐LeopoldshafenGermany
| | - Thomas Holstein
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Molecular Genetics and EvolutionCentre for Organismal StudiesHeidelberg University69221HeidelbergGermany
| | - Sascha Dietrich
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
- Department of Haematology, Oncology, and Clinical ImmunologyUniversitätsklinikum Düsseldorf40225DüsseldorfGermany
| | - Carsten Müller‐Tidow
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Akira Harada
- The Institute of Scientific and Industrial ResearchOsaka University8‐1 MihogaokaIbarakiOsaka567‐0047Japan
| | - Anthony D. Ho
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
- Molecular Medicine Partnership Unit HeidelbergEMBL and Heidelberg University69120HeidelbergGermany
| | - Motomu Tanaka
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
| |
Collapse
|
48
|
Xiao B, Xu Y, Edwards S, Balakumar L, Dong X. Sensing Mucus Physiological Property In Situ by Wireless Millimeter-Scale Soft Robots. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2307751. [PMID: 39990597 PMCID: PMC11845219 DOI: 10.1002/adfm.202307751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 02/25/2025]
Abstract
The physiological property of mucus is an important biomarker for monitoring the human health conditions and helping understand disease development, as mucus property such as viscosity is highly correlated with inflammation and other diseases. However, it remains challenging to sense mucus viscosity using pure medical imaging. Collecting and analyzing mucus sample in vitro using flexible endoscopes and capsule endoscope robots is also challenging due to their difficulty of accessing very confined, tortuous, and small spaces, and the sample may not reflect the real mucus property. Here a novel method is proposed to enable sensing mucus viscosity in situ by wireless miniature sensors actuated by magnetic fields and tracked by medical imaging. These miniature viscosity sensors can be delivered with minimal invasion using a novel sensor delivery mechanism by controlling a magnetically actuated millimeter-scale soft climbing robot. As the soft robot can access confined and narrow spaces, and reliably deploy the sensor on soft tissue surfaces, multiple sensors can be delivered on soft biological tissues to sense biofluid viscosity spatiotemporally. The proposed minimally invasive robotic delivery and viscosity sensing method thus paves the way toward sensing biofluid properties deep inside the body for future disease monitoring and early diagnosis functions.
Collapse
Affiliation(s)
- Boyang Xiao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN37240, USA
| | - Yilan Xu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN37240, USA
| | - Steven Edwards
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37240, USA
| | - Lohit Balakumar
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN37240, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37240, USA
| |
Collapse
|
49
|
Shoshkes-Carmel M. Telocytes in the Luminal GI Tract. Cell Mol Gastroenterol Hepatol 2024; 17:697-701. [PMID: 38342300 PMCID: PMC10958115 DOI: 10.1016/j.jcmgh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Telocytes are unique mesenchymal cells characterized by multiple remarkably long cytoplasmic extensions that extend hundreds of micron away from the cell body. Through these extensions, telocytes establish a 3-dimensional network by connecting with other telocytes and various cell types within the tissue. In the intestine, telocytes have emerged as an essential component of the stem cell niche, providing Wnt proteins that are critical for the proliferation of stem and progenitor cells. However, the analysis of single-cell RNA sequencing has revealed other stromal populations and mechanisms for niche organization, raising questions about the role of telocytes as a component of the stem cell niche. This review explores the current state-of-the-art, existing controversies, and potential future directions related to telocytes in the luminal gastrointestinal tract.
Collapse
Affiliation(s)
- Michal Shoshkes-Carmel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
50
|
Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W. Host-microbiota interaction in intestinal stem cell homeostasis. Gut Microbes 2024; 16:2353399. [PMID: 38757687 PMCID: PMC11110705 DOI: 10.1080/19490976.2024.2353399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|