1
|
Belhadjer Z, Pontailler M, Hily M, Gaudin R, Raisky O, Bonnet D, Houyel L. The particular anatomy of atrioventricular septal defect with a common valvar orifice in patients with Down syndrome: an echocardiographic study. Int J Cardiol 2025; 423:133003. [PMID: 39892564 DOI: 10.1016/j.ijcard.2025.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES Atrioventricular septal defect with a common valvar orifice is associated with Down syndrome in almost half of cases. Clinical studies have shown that associated tetralogy of Fallot is more frequent in Down patients. The aim of this study was to compare the anatomy of the ventricles and of the ventricular component of the atrioventricular septal defect, looking for an outlet septum malalignment like in tetralogy of Fallot, in patients with and without Down syndrome. METHODS We reviewed retrospectively the echocardiographic examinations of all consecutive patients hospitalized with atrioventricular septal defect with a common orifice between 01/01/2016 and 01/09/2023. Anatomic and functional characteristics were compared between Down and non-Down patients. RESULTS A total of 310 patients were included (Down syndrome 210, 67.7 %). Outlet extension of the ventricular component of the defect with outlet septum anterior malalignment was found in 90.6 % of Down vs 12.8 % of non-Down patients (p < 0.001). Hypoplasia and apical filling of the right ventricle were more frequent in Down patients (p < 0.001). Associated tetralogy of Fallot was found in 16 Down vs 1 non-Down patients (p = 0.04). Atrioventricular septal malalignment was observed only in Down patients. CONCLUSION Outlet extension of the ventricular component of the defect is the rule in atrioventricular septal defect with a common orifice in Down patients, which could influence surgical repair. Hypoplastic right ventricle occurs only in Down patients. The presence of these characteristics in a fetus with atrioventricular septal defect with a common orifice should raise awareness of the high risk of associated Down syndrome.
Collapse
Affiliation(s)
- Zahra Belhadjer
- Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants malades, Centre de référence des Malformations Cardiaques Congénitales Complexes, M3C, Paris, France; Université Paris Cité, Paris, France.
| | - Margaux Pontailler
- Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants malades, Centre de référence des Malformations Cardiaques Congénitales Complexes, M3C, Paris, France; Université Paris Cité, Paris, France
| | - Manon Hily
- Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants malades, Centre de référence des Malformations Cardiaques Congénitales Complexes, M3C, Paris, France
| | - Régis Gaudin
- Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants malades, Centre de référence des Malformations Cardiaques Congénitales Complexes, M3C, Paris, France
| | - Olivier Raisky
- Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants malades, Centre de référence des Malformations Cardiaques Congénitales Complexes, M3C, Paris, France; Université Paris Cité, Paris, France
| | - Damien Bonnet
- Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants malades, Centre de référence des Malformations Cardiaques Congénitales Complexes, M3C, Paris, France; Université Paris Cité, Paris, France
| | - Lucile Houyel
- Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants malades, Centre de référence des Malformations Cardiaques Congénitales Complexes, M3C, Paris, France; Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Grieshaber P, Jaschinski C, Farag M, Fonseca-Escalante E, Gorenflo M, Karck M, Loukanov T. Surgical Treatment of Atrial Septal Defects. Rev Cardiovasc Med 2024; 25:350. [PMID: 39484126 PMCID: PMC11522766 DOI: 10.31083/j.rcm2510350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 11/03/2024] Open
Abstract
Atrial septal defects (ASDs) are among the most prevalent congenital cardiac malformations. Closure of the defect and repair of associated cardiac malformations are typically indicated if an ASD is hemodynamically significant or symptomatic. This narrative review aims to summarize key aspects of surgical ASD closures. A non-systematic literature review was conducted to cover surgically relevant aspects of (developmental) anatomy, morphology, and treatment. ASDs result from diverse developmental alterations, leading to subtype-specific associated cardiac malformations, meaning surgical therapy varies accordingly. Presently, surgical repair yields excellent outcomes for all ASD subtypes, with minimally invasive approaches, especially in adults, increasingly employed for ASD closure. Surgical ASD repair is safe with excellent results. However, familiarity with ASD subtypes and typically associated lesions is crucial for optimal patient management.
Collapse
Affiliation(s)
- Philippe Grieshaber
- Division of Congenital Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Jaschinski
- Division of Congenital Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Mina Farag
- Division of Congenital Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Elizabeth Fonseca-Escalante
- Division of Congenital Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology and Congenital Heart Disease, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tsvetomir Loukanov
- Division of Congenital Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
4
|
Guijarro C, Kelly RG. On the involvement of the second heart field in congenital heart defects. C R Biol 2024; 347:9-18. [PMID: 38488639 DOI: 10.5802/crbiol.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.
Collapse
|
5
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Wessels A. Molecular Pathways and Animal Models of Atrioventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:573-583. [PMID: 38884733 DOI: 10.1007/978-3-031-44087-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The development of a fully functional four-chambered heart is critically dependent on the correct formation of the structures that separate the atrial and ventricular chambers. Perturbation of this process typically results in defects that allow mixing of oxygenated and deoxygenated blood. Atrioventricular septal defects (AVSD) form a class of congenital heart malformations that are characterized by the presence of a primary atrial septal defect (pASD), a common atrioventricular valve (cAVV), and frequently also a ventricular septal defect (VSD). While AVSD were historically considered to result from failure of the endocardial atrioventricular cushions to properly develop and fuse, more recent studies have determined that inhibition of the development of other components of the atrioventricular mesenchymal complex can lead to AVSDs as well. The role of the dorsal mesenchymal protrusion (DMP) in AVSD pathogenesis has been well-documented in studies using animal models for AVSDs, and in addition, preliminary data suggest that the mesenchymal cap situated on the leading edge of the primary atrial septum may be involved in certain situations as well. In this chapter, we review what is currently known about the molecular mechanisms and animal models that are associated with the pathogenesis of AVSD.
Collapse
Affiliation(s)
- Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
7
|
Kelly RG. Cardiac Development and Animal Models of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:77-85. [PMID: 38884705 DOI: 10.1007/978-3-031-44087-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, and conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects (CHDs).
Collapse
Affiliation(s)
- Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
8
|
Jensen B, Moorman AFM. Evolutionary Aspects of Chamber Formation and Septation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:227-238. [PMID: 38884714 DOI: 10.1007/978-3-031-44087-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The formed hearts of vertebrates are widely different in anatomy and performance, yet their embryonic hearts are surprisingly similar. Developmental and molecular biology are making great advances in reconciling these differences by revealing an evolutionarily conserved building plan to the vertebrate heart. This suggests that perspectives from evolution may improve our understanding of the formation of the human heart. Here, we exemplify this approach by discussing atrial and ventricular septation and the associated processes of remodeling of the atrioventricular junction and formation of the atrioventricular insulating plane.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Antoon F M Moorman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wilsdon A, Loughna S. Human Genetics of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:57-75. [PMID: 38884704 DOI: 10.1007/978-3-031-44087-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart diseases (or congenital heart defects/disorders; CHDs) are structural abnormalities of the heart and/or great vessels that are present at birth. CHDs include an extensive range of defects that may be minor and require no intervention or may be life-limiting and require complex surgery shortly after birth. This chapter reviews the current knowledge on the genetic causes of CHD.
Collapse
Affiliation(s)
- Anna Wilsdon
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Clinical Geneticist at Nottingham Clinical Genetics Department, Nottingham University Hospitals, City Hospital, Nottingham, UK.
| | - Siobhan Loughna
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Wessels A. Inflow Tract Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:145-153. [PMID: 38884709 DOI: 10.1007/978-3-031-44087-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The development of the inflow tract is undoubtedly one of the most complex remodeling events in the formation of the four-chambered heart. It involves the creation of two separate atrial chambers, the formation of an atrial/atrioventricular (AV) septal complex, the incorporation of the caval veins and coronary sinus into the right atrium, and the remodeling events that result in pulmonary venous return draining into the left atrium. In these processes, the atrioventricular mesenchymal complex, consisting of the major atrioventricular (AV) cushions, the mesenchymal cap on the primary atrial septum (pAS), and the dorsal mesenchymal protrusion (DMP), plays a crucial role.
Collapse
Affiliation(s)
- Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
11
|
Ling S, Blackburn BJ, Jenkins MW, Watanabe M, Ford SM, Lapierre-Landry M, Rollins AM. Segmentation of beating embryonic heart structures from 4-D OCT images using deep learning. BIOMEDICAL OPTICS EXPRESS 2023; 14:1945-1958. [PMID: 37206115 PMCID: PMC10191668 DOI: 10.1364/boe.481657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Optical coherence tomography (OCT) has been used to investigate heart development because of its capability to image both structure and function of beating embryonic hearts. Cardiac structure segmentation is a prerequisite for the quantification of embryonic heart motion and function using OCT. Since manual segmentation is time-consuming and labor-intensive, an automatic method is needed to facilitate high-throughput studies. The purpose of this study is to develop an image-processing pipeline to facilitate the segmentation of beating embryonic heart structures from a 4-D OCT dataset. Sequential OCT images were obtained at multiple planes of a beating quail embryonic heart and reassembled to a 4-D dataset using image-based retrospective gating. Multiple image volumes at different time points were selected as key-volumes, and their cardiac structures including myocardium, cardiac jelly, and lumen, were manually labeled. Registration-based data augmentation was used to synthesize additional labeled image volumes by learning transformations between key-volumes and other unlabeled volumes. The synthesized labeled images were then used to train a fully convolutional network (U-Net) for heart structure segmentation. The proposed deep learning-based pipeline achieved high segmentation accuracy with only two labeled image volumes and reduced the time cost of segmenting one 4-D OCT dataset from a week to two hours. Using this method, one could carry out cohort studies that quantify complex cardiac motion and function in developing hearts.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brecken J. Blackburn
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Stephanie M. Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Kelly RG. The heart field transcriptional landscape at single-cell resolution. Dev Cell 2023; 58:257-266. [PMID: 36809764 DOI: 10.1016/j.devcel.2023.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
Organogenesis requires the orchestrated development of multiple cell lineages that converge, interact, and specialize to generate coherent functional structures, exemplified by transformation of the cardiac crescent into a four-chambered heart. Cardiomyocytes originate from the first and second heart fields, which make different regional contributions to the definitive heart. In this review, a series of recent single-cell transcriptomic analyses, together with genetic tracing experiments, are discussed, providing a detailed panorama of the cardiac progenitor cell landscape. These studies reveal that first heart field cells originate in a juxtacardiac field adjacent to extraembryonic mesoderm and contribute to the ventrolateral side of the cardiac primordium. In contrast, second heart field cells are deployed dorsomedially from a multilineage-primed progenitor population via arterial and venous pole pathways. Refining our knowledge of the origin and developmental trajectories of cells that build the heart is essential to address outstanding challenges in cardiac biology and disease.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
13
|
Gąsior JS, Zamunér AR, Madeyska M, Tomik A, Niszczota C, Williams CA, Werner B. Heart Rate Variability in Individuals with Down Syndrome: A Scoping Review with Methodological Considerations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:941. [PMID: 36673696 PMCID: PMC9859252 DOI: 10.3390/ijerph20020941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Individuals with Down syndrome (DS) present similar heart rate variability (HRV) parameters at rest but different responses to selected movement maneuvers in comparison to individuals without DS, which indicates reduced vagal regulation. The present study undertakes a scoping review of research on HRV in individuals with DS, with special attention paid to the compliance of the studies with standards and methodological paper guidelines for HRV assessment and interpretation. A review was performed using PubMed, Web of Science and CINAHL databases to search for English language publications from 1996 to 2020 with the MESH terms "heart rate variability" and "down syndrome", with the additional inclusion criteria of including only human participants and empirical investigations. From 74 studies, 15 were included in the review. None of the reviewed studies met the recommendations laid out by the standards and guidelines for providing the acquisition of RR intervals and necessary details on HRV analysis. Since authors publishing papers on this research topic do not adhere to the prescribed standards and guidelines when constructing the methodology, results of the research papers on the topic are not directly comparable. Authors need to design the study methodology more robustly by following the aforementioned standards, guidelines and recommendations.
Collapse
Affiliation(s)
- Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | - Margaret Madeyska
- Pediatric Cardiology and General Pediatrics Clinic, Jan Polikarp Brudziński Pediatric Hospital, 02-091 Warsaw, Poland
| | - Anna Tomik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Cezary Niszczota
- Pediatric Cardiology and General Pediatrics Clinic, Jan Polikarp Brudziński Pediatric Hospital, 02-091 Warsaw, Poland
| | - Craig A. Williams
- Children’s Health & Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
14
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
15
|
Deepe RN, Drummond JR, Wolters RA, Fitzgerald EA, Tarolli HG, Harvey AB, Wessels A. Sox9 Expression in the Second Heart Field; A Morphological Assessment of the Importance to Cardiac Development with Emphasis on Atrioventricular Septation. J Cardiovasc Dev Dis 2022; 9:376. [PMID: 36354775 PMCID: PMC9699451 DOI: 10.3390/jcdd9110376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Failure to form the septal structures that separate the left and right cardiac chambers results in defects that allow shunting of blood from one side of the heart to the other, leading to the mixing of oxygenated and de-oxygenated blood. The atrioventricular (AV) mesenchymal complex, consisting of the AV cushions, the Dorsal Mesenchymal Protrusion (DMP), and the mesenchymal cap, plays a crucial role in AV septation. Cells found in these structures derive from different cell lineages. In this study we have investigated the role of the transcription factor Sox9 in the Second Heart Field (SHF) with the emphasis on the formation of the atrioventricular septal complex. Using a mouse model in which Sox9 is conditionally deleted from the SHF we demonstrate that in this model virtually all mouse embryos develop septal abnormalities, including complete atrioventricular septal defects (cAVSDs) and isolated ventricular septal defects. Our morphological analyses indicate that perturbation of the development of the mesenchymal cap appears to play a crucial role in the pathogenesis of the atrial septal defects observed in the AVSDs and suggests that this component of the AV mesenchymal complex might play a more important role in AV septation than previously appreciated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Ling S, Chen J, Lapierre-Landry M, Suh J, Liu Y, Jenkins MW, Watanabe M, Ford SM, Rollins AM. Automated endocardial cushion segmentation and cellularization quantification in developing hearts using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5599-5615. [PMID: 36733755 PMCID: PMC9872882 DOI: 10.1364/boe.467629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/18/2023]
Abstract
Of all congenital heart defects (CHDs), anomalies in heart valves and septa are among the most common and contribute about fifty percent to the total burden of CHDs. Progenitors to heart valves and septa are endocardial cushions formed in looping hearts through a multi-step process that includes localized expansion of cardiac jelly, endothelial-to-mesenchymal transition, cell migration and proliferation. To characterize the development of endocardial cushions, previous studies manually measured cushion size or cushion cell density from images obtained using histology, immunohistochemistry, or optical coherence tomography (OCT). Manual methods are time-consuming and labor-intensive, impeding their applications in cohort studies that require large sample sizes. This study presents an automated strategy to rapidly characterize the anatomy of endocardial cushions from OCT images. A two-step deep learning technique was used to detect the location of the heart and segment endocardial cushions. The acellular and cellular cushion regions were then segregated by K-means clustering. The proposed method can quantify cushion development by measuring the cushion volume and cellularized fraction, and also map 3D spatial organization of the acellular and cellular cushion regions. The application of this method to study the developing looping hearts allowed us to discover a spatial asymmetry of the acellular cardiac jelly in endocardial cushions during these critical stages, which has not been reported before.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiawei Chen
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junwoo Suh
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yehe Liu
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Stephanie M. Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
18
|
Rowton M, Perez-Cervantes C, Hur S, Jacobs-Li J, Lu E, Deng N, Guzzetta A, Hoffmann AD, Stocker M, Steimle JD, Lazarevic S, Oubaha S, Yang XH, Kim C, Yu S, Eckart H, Koska M, Hanson E, Chan SSK, Garry DJ, Kyba M, Basu A, Ikegami K, Pott S, Moskowitz IP. Hedgehog signaling activates a mammalian heterochronic gene regulatory network controlling differentiation timing across lineages. Dev Cell 2022; 57:2181-2203.e9. [PMID: 36108627 PMCID: PMC10506397 DOI: 10.1016/j.devcel.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Many developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro. GLI1 directly activated a de novo progenitor-specific network in vitro, akin to that of SHF progenitors in vivo, which prevented the onset of the cardiac differentiation program. A Hedgehog signaling-dependent active-to-repressive GLI transition functioned as a differentiation timer, restricting the progenitor network to the SHF. GLI1 expression was associated with progenitor status across germ layers, and it delayed the differentiation of neural progenitors in vitro, suggesting a broad role for Hedgehog signaling as a heterochronic pathway.
Collapse
Affiliation(s)
- Megan Rowton
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzy Hur
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jessica Jacobs-Li
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Emery Lu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Nikita Deng
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander Guzzetta
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sophie Oubaha
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Shuhan Yu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather Eckart
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Mervenaz Koska
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sunny S K Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anindita Basu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Predisposition to atrioventricular septal defects may be caused by SOX7 variants that impair interaction with GATA4. Mol Genet Genomics 2022; 297:671-687. [PMID: 35260939 DOI: 10.1007/s00438-022-01859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
Atrioventricular septal defects (AVSD) are a complicated subtype of congenital heart defects for which the genetic basis is poorly understood. Many studies have demonstrated that the transcription factor SOX7 plays a pivotal role in cardiovascular development. However, whether SOX7 single nucleotide variants are involved in AVSD pathogenesis is unclear. To explore the potential pathogenic role of SOX7 variants, we recruited a total of 100 sporadic non-syndromic AVSD Chinese Han patients and screened SOX7 variants in the patient cohort by targeted sequencing. Functional assays were performed to evaluate pathogenicity of nonsynonymous variants of SOX7. We identified three rare SOX7 variants, c.40C > G, c.542G > A, and c.743C > T, in the patient cohort, all of which were found to be highly conserved in mammals. Compared to the wild type, these SOX7 variants had increased mRNA expression and decreased protein expression. In developing hearts, SOX7 and GATA4 were highly expressed in the region of atrioventricular cushions. Moreover, SOX7 overexpression promoted the expression of GATA4 in human umbilical vein endothelial cells. A chromatin immunoprecipitation assay revealed that SOX7 could directly bind to the GATA4 promoter and luciferase assays demonstrated that SOX7 activated the GATA4 promoter. The SOX7 variants had impaired transcriptional activity relative to wild-type SOX7. Furthermore, the SOX7 variants altered the ability of GATA4 to regulate its target genes. In conclusion, our findings showed that deleterious SOX7 variants potentially contribute to human AVSD by impairing its interaction with GATA4. This study provides novel insights into the etiology of AVSD and contributes new strategies to the prenatal diagnosis of AVSD.
Collapse
|
20
|
Cortes C, De Bono C, Thellier C, Francou A, Kelly RG. Protocols for Investigating the Epithelial Properties of Cardiac Progenitor Cells in the Mouse Embryo. Methods Mol Biol 2022; 2438:231-250. [PMID: 35147946 DOI: 10.1007/978-1-0716-2035-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epithelial cardiac progenitor cells of the second heart field (SHF) contribute to growth of the vertebrate heart tube by progressive addition of cells from the dorsal pericardial wall to the cardiac poles. Perturbation of SHF development, including defects in apicobasal or planar polarity, results in shortening of the heart tube and a spectrum of congenital heart defects. Here, we provide detailed protocols for fixed section and wholemount immunofluorescence and live imaging approaches to studying the epithelial properties of cardiac progenitors in the dorsal pericardial wall during mouse heart development. Whole-embryo culture and electroporation methods are also presented, allowing for pharmacological and genetic perturbation of SHF development, as well as image analysis approaches to quantify cell features across the progenitor cell epithelium. These protocols are broadly applicable to the study of epithelia in the early embryo.
Collapse
Affiliation(s)
- Claudio Cortes
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Christopher De Bono
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Alexandre Francou
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
- Memorial Sloan Kettering Cancer Center, SKI, Developmental Biology Department, NY, USA
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
21
|
Congenital heart disease: pathology, natural history, and interventions. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Kim NJ, Lee KH, Son Y, Nam AR, Moon EH, Pyun JH, Park J, Kang JS, Lee YJ, Cho JY. Spatiotemporal expression of long noncoding RNA Moshe modulates heart cell lineage commitment. RNA Biol 2021; 18:640-654. [PMID: 34755591 PMCID: PMC8782178 DOI: 10.1080/15476286.2021.1976549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The roles of long non-coding RNA (LncRNA) have been highlighted in various development processes including congenital heart defects (CHD). Here, we characterized the molecular function of LncRNA, Moshe (1010001N08ik-203), one of the Gata6 antisense transcripts located upstream of Gata6, which is involved in both heart development and the most common type of congenital heart defect, atrial septal defect (ASD). During mouse embryonic development, Moshe was first detected during the cardiac mesoderm stage (E8.5 to E9.5) where Gata6 is expressed and continues to increase at the atrioventricular septum (E12.5), which is involved in ASD. Functionally, the knock-down of Moshe during cardiogenesis caused significant repression of Nkx2.5 in cardiac progenitor stages and resulted in the increase in major SHF lineage genes, such as cardiac transcriptional factors (Isl1, Hand2, Tbx2), endothelial-specific genes (Cd31, Flk1, Tie1, vWF), a smooth muscle actin (a-Sma) and sinoatrial node-specific genes (Shox2, Tbx18). Chromatin Isolation by RNA Purification showed Moshe activates Nkx2.5 gene expression via direct binding to its promoter region. Of note, Moshe was conserved across species, including human, pig and mouse. Altogether, this study suggests that Moshe is a heart-enriched lncRNA that controls a sophisticated network of cardiogenesis by repressing genes in SHF via Nkx2.5 during cardiac development and may play an important role in ASD.
Collapse
Affiliation(s)
- Na-Jung Kim
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - YeonSung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - A-Reum Nam
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Eun-Hye Moon
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University, Yeonsu-gu, Republic of Korea
| | - Jung-Hoon Pyun
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jinyoung Park
- Department of Biochemistry, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University, Yeonsu-gu, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Congenital heart defects among Down’s syndrome cases: an updated review from basic research to an emerging diagnostics technology and genetic counselling. J Genet 2021. [DOI: 10.1007/s12041-021-01296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Abstract
Congenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
Collapse
Affiliation(s)
- Lucile Houyel
- Unité de Cardiologie Pédiatrique et Congénitale and Centre de Référence des Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Université de Paris, 75015 Paris, France
| | - Sigolène M Meilhac
- Université de Paris, 75015 Paris, France.,Imagine-Institut Pasteur Unit of Heart Morphogenesis, INSERM UMR 1163, 75015 Paris, France;
| |
Collapse
|
26
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
27
|
Nayak S, Kanakriyeh M, Varadarajan P. Echocardiographic assessment of atrioventricular canal defects. Echocardiography 2020; 37:2199-2210. [DOI: 10.1111/echo.14961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Srishti Nayak
- Loma Linda University Medical Center Loma Linda CA USA
| | | | | |
Collapse
|
28
|
Deepe R, Fitzgerald E, Wolters R, Drummond J, Guzman KD, van den Hoff MJ, Wessels A. The Mesenchymal Cap of the Atrial Septum and Atrial and Atrioventricular Septation. J Cardiovasc Dev Dis 2020; 7:jcdd7040050. [PMID: 33158164 PMCID: PMC7712865 DOI: 10.3390/jcdd7040050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
In this publication, dedicated to Professor Robert H. Anderson and his contributions to the field of cardiac development, anatomy, and congenital heart disease, we will review some of our earlier collaborative studies. The focus of this paper is on our work on the development of the atrioventricular mesenchymal complex, studies in which Professor Anderson has played a significant role. We will revisit a number of events relevant to atrial and atrioventricular septation and present new data on the development of the mesenchymal cap of the atrial septum, a component of the atrioventricular mesenchymal complex which, thus far, has received only moderate attention.
Collapse
Affiliation(s)
- Ray Deepe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Emily Fitzgerald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Renélyn Wolters
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Jenna Drummond
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Karen De Guzman
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Maurice J.B. van den Hoff
- Amsterdam UMC, Academic Medical Center, Department of Medical Biology, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands;
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
- Correspondence: ; Tel.: +1-843-792-8183
| |
Collapse
|
29
|
Christoffels V, Jensen B. Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037143. [PMID: 31932321 DOI: 10.1101/cshperspect.a037143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early heart morphogenesis involves a process in which embryonic precursor cells are instructed to form a cyclic contracting muscle tube connected to blood vessels, pumping fluid. Subsequently, the heart becomes structurally complex and its size increases several orders of magnitude to functionally keep up with the demands of the growing organism. Programmed transcriptional regulatory networks control the early steps of cardiac development. However, already during the early stages of its assembly, the heart tube starts to produce electrochemical potentials, contractions, and flow, which are transduced into signals that feed back into the process of morphogenesis itself. Heart morphogenesis, thus, involves the interplay between progressively changing genetic networks, function, and shape. Morphogenesis is evolutionarily conserved, but species-specific differences occur and in mouse, for instance, distinct phases of development become overlapping and compounded in an extremely fast gestation. Here, we review the early morphogenesis of the chambered heart that maintains a circulation supporting development of an organism rapidly growing in size and requirements.
Collapse
Affiliation(s)
- Vincent Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
30
|
Stefanovic S, Laforest B, Desvignes JP, Lescroart F, Argiro L, Maurel-Zaffran C, Salgado D, Plaindoux E, De Bono C, Pazur K, Théveniau-Ruissy M, Béroud C, Puceat M, Gavalas A, Kelly RG, Zaffran S. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. eLife 2020; 9:55124. [PMID: 32804075 PMCID: PMC7462617 DOI: 10.7554/elife.55124] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Brigitte Laforest
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Fabienne Lescroart
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Laurent Argiro
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - David Salgado
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Elise Plaindoux
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Kristijan Pazur
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Magali Théveniau-Ruissy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Christophe Béroud
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Michel Puceat
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Robert G Kelly
- Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Stephane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| |
Collapse
|
31
|
Pugnaloni F, Digilio MC, Putotto C, De Luca E, Marino B, Versacci P. Genetics of atrioventricular canal defects. Ital J Pediatr 2020; 46:61. [PMID: 32404184 PMCID: PMC7222302 DOI: 10.1186/s13052-020-00825-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Atrioventricular canal defect (AVCD) represents a quite common congenital heart defect (CHD) accounting for 7.4% of all cardiac malformations. AVCD is a very heterogeneous malformation that can occur as a phenotypical cardiac aspect in the context of different genetic syndromes but also as an isolated, non-syndromic cardiac defect. AVCD has also been described in several pedigrees suggesting a pattern of familiar recurrence. Targeted Next Generation Sequencing (NGS) techniques are proved to be a powerful tool to establish the molecular heterogeneity of AVCD. Given the complexity of cardiac embryology, it is not surprising that multiple genes deeply implicated in cardiogenesis have been described mutated in patients with AVCD. This review attempts to examine the recent advances in understanding the molecular basis of this complex CHD in the setting of genetic syndromes or in non-syndromic patients.
Collapse
Affiliation(s)
- Flaminia Pugnaloni
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Maria Cristina Digilio
- Medical Genetics Unit, Bambino Gesù Children's Hospital and Research Institute, 00165, Rome, Italy
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Enrica De Luca
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Policlinico Umberto I, Viale Regina Elena, 324, 00161, Rome, Italy.
| |
Collapse
|
32
|
Jensen B, Joyce W, Gregorovicova M, Sedmera D, Wang T, Christoffels VM. Low incidence of atrial septal defects in nonmammalian vertebrates. Evol Dev 2020; 22:241-256. [PMID: 31597012 PMCID: PMC9285691 DOI: 10.1111/ede.12322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The atrial septum enables efficient oxygen transport by separating the systemic and pulmonary venous blood returning to the heart. Only in placental mammals will the atrial septum form by the coming-together of the septum primum and the septum secundum. In up to one of four placental mammals, this complex morphogenesis is incomplete and yields patent foramen ovale. The incidence of incomplete atrial septum is unknown for groups with the septum primum only, such as birds and reptiles. We found a low incidence of incomplete atrial septum in 11 species of bird (0% of specimens) and 13 species of reptiles (3% of specimens). In reptiles, there was a trabecular interface between the atrial septum and the atrial epicardium which was without a clear boundary between left and right atrial cavities. In developing reptiles (four squamates and one crocodylian), the septum primum initiated as a sheet that acquired perforations and the trabecular interface developed late. We conclude that atrial septation from the septum primum only results in a low incidence of incompleteness. In reptiles, the atrial septum and atrial wall develop a trabecular interface, but previous studies on atrial hemodynamics suggest this interface has a very limited capacity for shunting.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - William Joyce
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Martina Gregorovicova
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - David Sedmera
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - Tobias Wang
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
33
|
Hsieh A, Morton SU, Willcox JAL, Gorham JM, Tai AC, Qi H, DePalma S, McKean D, Griffin E, Manheimer KB, Bernstein D, Kim RW, Newburger JW, Porter GA, Srivastava D, Tristani-Firouzi M, Brueckner M, Lifton RP, Goldmuntz E, Gelb BD, Chung WK, Seidman CE, Seidman JG, Shen Y. EM-mosaic detects mosaic point mutations that contribute to congenital heart disease. Genome Med 2020; 12:42. [PMID: 32349777 PMCID: PMC7189690 DOI: 10.1186/s13073-020-00738-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The contribution of somatic mosaicism, or genetic mutations arising after oocyte fertilization, to congenital heart disease (CHD) is not well understood. Further, the relationship between mosaicism in blood and cardiovascular tissue has not been determined. METHODS We developed a new computational method, EM-mosaic (Expectation-Maximization-based detection of mosaicism), to analyze mosaicism in exome sequences derived primarily from blood DNA of 2530 CHD proband-parent trios. To optimize this method, we measured mosaic detection power as a function of sequencing depth. In parallel, we analyzed our cohort using MosaicHunter, a Bayesian genotyping algorithm-based mosaic detection tool, and compared the two methods. The accuracy of these mosaic variant detection algorithms was assessed using an independent resequencing method. We then applied both methods to detect mosaicism in cardiac tissue-derived exome sequences of 66 participants for which matched blood and heart tissue was available. RESULTS EM-mosaic detected 326 mosaic mutations in blood and/or cardiac tissue DNA. Of the 309 detected in blood DNA, 85/97 (88%) tested were independently confirmed, while 7/17 (41%) candidates of 17 detected in cardiac tissue were confirmed. MosaicHunter detected an additional 64 mosaics, of which 23/46 (50%) among 58 candidates from blood and 4/6 (67%) of 6 candidates from cardiac tissue confirmed. Twenty-five mosaic variants altered CHD-risk genes, affecting 1% of our cohort. Of these 25, 22/22 candidates tested were confirmed. Variants predicted as damaging had higher variant allele fraction than benign variants, suggesting a role in CHD. The estimated true frequency of mosaic variants above 10% mosaicism was 0.14/person in blood and 0.21/person in cardiac tissue. Analysis of 66 individuals with matched cardiac tissue available revealed both tissue-specific and shared mosaicism, with shared mosaics generally having higher allele fraction. CONCLUSIONS We estimate that ~ 1% of CHD probands have a mosaic variant detectable in blood that could contribute to cardiac malformations, particularly those damaging variants with relatively higher allele fraction. Although blood is a readily available DNA source, cardiac tissues analyzed contributed ~ 5% of somatic mosaic variants identified, indicating the value of tissue mosaicism analyses.
Collapse
Affiliation(s)
- Alexander Hsieh
- Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032 USA
| | - Sarah U. Morton
- Boston Children’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | | | | | | | - Hongjian Qi
- Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032 USA
| | | | | | - Emily Griffin
- Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032 USA
| | | | | | | | | | | | - Deepak Srivastava
- Gladstone Institutes and University of California San Francisco, San Francisco, CA USA
| | | | | | | | | | - Bruce D. Gelb
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Wendy K. Chung
- Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032 USA
| | - Christine E. Seidman
- Harvard Medical School, Boston, MA USA
- Brigham and Women’s Hospital, Boston, MA USA
- Howard Hughes Medical Institute, Harvard University, Boston, MA USA
| | | | - Yufeng Shen
- Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032 USA
| |
Collapse
|
34
|
Bozkaya VÖ, Oskovi-Kaplan ZA, Engin-Ustun Y. Atrial septal aneurysm in pregnancy: echocardiography and obstetric outcomes. J Perinat Med 2020; 48:/j/jpme.ahead-of-print/jpm-2019-0351/jpm-2019-0351.xml. [PMID: 32134736 DOI: 10.1515/jpm-2019-0351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/28/2020] [Indexed: 11/15/2022]
Abstract
Background Atrial septal aneurysm (ASA) is an uncommon cardiac anomaly that increases maternal morbidity during pregnancy. ASA is related to atrial arrhythmia thromboembolism and it may accompany congenital anomalies such as an atrial septal defect (ASD) or patent foramen ovale (PFO). There are no studies examining pregnancy outcomes in pregnant women with ASA. We aimed to investigate the cardiologic parameters and obstetric outcomes of pregnant women diagnosed with ASA. Methods This prospective cohort study analyzed 45 pregnant women diagnosed with ASA, who continued their follow-ups in an obstetric tertiary care center. Results A total of 45 pregnant women were recruited; seven pregnancies ended before the 20th gestational week (six spontaneous abortion, one fetal anomaly), 38 women gave birth. In total, there were 32 term births (≥37 weeks), six preterm births (<37 weeks), two extremely preterm births <28 weeks). Among 38 babies delivered, several obstetrical complications such as oligohydramnios, spontaneous preterm labor, intrauterine growth restriction (IUGR), preeclampsia and gestational diabetes mellitus (GDM) developed in 16 patients, while 22 women ended with term pregnancy without any complications. Deep venous thrombosis (DVT) developed in one patient. Conclusion ASA may have an increased risk for cardiac complications during pregnancy and may also be associated with poor pregnancy outcomes. Increased attention to these entities with more studies is needed in order to determine a potential risk for pregnant women.
Collapse
Affiliation(s)
- Veciha Özlem Bozkaya
- Department of Cardiology, Keçiören Training and Research Hospital, Kavacık Subayevleri mah. Fethibey sok. No:49/8 06135 Kecioren, Ankara, Turkey
| | | | - Yaprak Engin-Ustun
- Obstetry and Gynecology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
35
|
Buijtendijk MF, Barnett P, van den Hoff MJ. Development of the human heart. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:7-22. [PMID: 32048790 PMCID: PMC7078965 DOI: 10.1002/ajmg.c.31778] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/01/2023]
Abstract
In 2014, an extensive review discussing the major steps of cardiac development focusing on growth, formation of primary and chamber myocardium and the development of the cardiac electrical system, was published. Molecular genetic lineage analyses have since furthered our insight in the developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Moreover, genetic, molecular and cell biological analyses have driven insights into the mechanisms underlying the development of the different cardiac components. Here, we build on our previous review and provide an insight into the molecular mechanistic revelations that have forwarded the field of cardiac development. Despite the enormous advances in our knowledge over the last decade, the development of congenital cardiac malformations remains poorly understood. The challenge for the next decade will be to evaluate the different developmental processes using newly developed molecular genetic techniques to further unveil the gene regulatory networks operational during normal and abnormal cardiac development.
Collapse
Affiliation(s)
| | - Phil Barnett
- Department of Medical BiologyAmsterdamUMC location AMCAmsterdamThe Netherlands
| | | |
Collapse
|
36
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
37
|
Li D, Angermeier A, Wang J. Planar cell polarity signaling regulates polarized second heart field morphogenesis to promote both arterial and venous pole septation. Development 2019; 146:dev181719. [PMID: 31488563 PMCID: PMC6826042 DOI: 10.1242/dev.181719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
The second heart field (SHF) harbors progenitors that are important for heart formation, but little is known about its morphogenesis. We show that SHF population in the mouse splanchnic mesoderm (SpM-SHF) undergoes polarized morphogenesis to preferentially elongate anteroposteriorly. Loss of Wnt5, a putative ligand of the planar cell polarity (PCP) pathway, causes the SpM-SHF to expand isotropically. Temporal tracking reveals that the Wnt5a lineage is a unique subpopulation specified as early as E7.5, and undergoes bi-directional deployment to form specifically the pulmonary trunk and the dorsal mesenchymal protrusion (DMP). In Wnt5a-/- mutants, Wnt5a lineage fails to extend into the arterial and venous poles, leading to both outflow tract and atrial septation defects that can be rescued by an activated form of PCP effector Daam1. We identify oriented actomyosin cables in the medial SpM-SHF as a potential Wnt5a-mediated mechanism that promotes SpM-SHF lengthening and restricts its widening. Finally, the Wnt5a lineage also contributes to the pulmonary mesenchyme, suggesting that Wnt5a/PCP is a molecular circuit recruited by the recently identified cardiopulmonary progenitors to coordinate morphogenesis of the pulmonary airways and the cardiac septations necessary for pulmonary circulation.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Ding Li
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Allyson Angermeier
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| |
Collapse
|
38
|
Zhang H, Liu L, Tian J. Molecular mechanisms of congenital heart disease in down syndrome. Genes Dis 2019; 6:372-377. [PMID: 31832516 PMCID: PMC6889238 DOI: 10.1016/j.gendis.2019.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS), as a typical genomic aneuploidy, is a common cause of various birth defects, among which is congenital heart disease (CHD). 40-60% neonates with DS have some kinds of CHD. However, the molecular pathogenic mechanisms of DS associated CHD are still not fully understood. This review summarizes available studies on DS associated CHD from seven aspects so as to provide a crucial and updated overview of what we known so far in this domain.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Lingjuan Liu
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Jie Tian
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
39
|
Abstract
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cortes
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Alexandre Francou
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Christopher De Bono
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Robert G Kelly
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France.
| |
Collapse
|
40
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
41
|
De Bono C, Thellier C, Bertrand N, Sturny R, Jullian E, Cortes C, Stefanovic S, Zaffran S, Théveniau-Ruissy M, Kelly RG. T-box genes and retinoic acid signaling regulate the segregation of arterial and venous pole progenitor cells in the murine second heart field. Hum Mol Genet 2019; 27:3747-3760. [PMID: 30016433 DOI: 10.1093/hmg/ddy266] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
The arterial and venous poles of the mammalian heart are hotspots of congenital heart defects (CHD) such as those observed in 22q11.2 deletion (or DiGeorge) and Holt-Oram syndromes. These regions of the heart are derived from late differentiating cardiac progenitor cells of the Second Heart Field (SHF) located in pharyngeal mesoderm contiguous with the elongating heart tube. The T-box transcription factor Tbx1, encoded by the major 22q11.2 deletion syndrome gene, regulates SHF addition to both cardiac poles from a common progenitor population. Despite the significance of this cellular addition the mechanisms regulating the deployment of common progenitor cells to alternate cardiac poles remain poorly understood. Here we demonstrate that Tbx5, mutated in Holt-Oram syndrome and essential for venous pole development, is activated in Tbx1 expressing cells in the posterior region of the SHF at early stages of heart tube elongation. A subset of the SHF transcriptional program, including Tbx1 expression, is subsequently downregulated in Tbx5 expressing cells, generating a transcriptional boundary between Tbx1-positive arterial pole and Tbx5-positive venous pole progenitor cell populations. We show that normal downregulation of the definitive arterial pole progenitor cell program in the posterior SHF is dependent on both Tbx1 and Tbx5. Furthermore, retinoic acid (RA) signaling is required for Tbx5 activation in Tbx1-positive cells and blocking RA signaling at the time of Tbx5 activation results in atrioventricular septal defects at fetal stages. Our results reveal sequential steps of cardiac progenitor cell patterning and provide mechanistic insights into the origin of common forms of CHD.
Collapse
Affiliation(s)
| | | | | | - Rachel Sturny
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | - Claudio Cortes
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | | | | | - Robert G Kelly
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| |
Collapse
|
42
|
A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A. Sci Rep 2019; 9:2959. [PMID: 30814609 PMCID: PMC6393482 DOI: 10.1038/s41598-019-39648-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The genetics of many congenital heart diseases (CHDs) can only unsatisfactorily be explained by known chromosomal or Mendelian syndromes. Here, we present sequencing data of a family with a potentially multigenic origin of CHD. Twelve of nineteen family members carry a familial mutation [NM_004329.2:c.1328 G > A (p.R443H)] which encodes a predicted deleterious variant of BMPR1A. This mutation co-segregates with a linkage region on chromosome 1 that associates with the emergence of severe CHDs including Ebstein's anomaly, atrioventricular septal defect, and others. We show that the continuous overexpression of the zebrafish homologous mutation bmpr1aap.R438H within endocardium causes a reduced AV valve area, a downregulation of Wnt/ß-catenin signalling at the AV canal, and growth of additional tissue mass in adult zebrafish hearts. This finding opens the possibility of testing genetic interactions between BMPR1A and other candidate genes within linkage region 1 which may provide a first step towards unravelling more complex genetic patterns in cardiovascular disease aetiology.
Collapse
|
43
|
Burns TA, Deepe RN, Bullard J, Phelps AL, Toomer KA, Hiriart E, Norris RA, Haycraft CJ, Wessels A. A Novel Mouse Model for Cilia-Associated Cardiovascular Anomalies with a High Penetrance of Total Anomalous Pulmonary Venous Return. Anat Rec (Hoboken) 2019; 302:136-145. [PMID: 30289203 PMCID: PMC6312498 DOI: 10.1002/ar.23909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/25/2018] [Accepted: 03/12/2018] [Indexed: 01/15/2023]
Abstract
Primary cilia are small organelles projecting from the cell surface of many cell types. They play a crucial role in the regulation of various signaling pathway. In this study, we investigated the importance of cilia for heart development by conditionally deleting intraflagellar transport protein Ift88 using the col3.6-cre mouse. Analysis of col3.6;Ift88 offspring showed a wide spectrum of cardiovascular defects including double outlet right ventricle and atrioventricular septal defects. In addition, we found that in the majority of specimens the pulmonary veins did not properly connect to the developing left atrium. The abnormal connections found resemble those seen in patients with total anomalous pulmonary venous return. Analysis of mutant hearts at early stages of development revealed abnormal development of the dorsal mesocardium, a second heart field-derived structure at the venous pole intrinsically related to the development of the pulmonary veins. Data presented support a crucial role for primary cilia in outflow tract development and atrioventricular septation and their significance for the formation of the second heart field-derived tissues at the venous pole including the dorsal mesocardium. Furthermore, the results of this study indicate that proper formation of the dorsal mesocardium is critically important for the development of the pulmonary veins. Anat Rec, 302:136-145, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tara A. Burns
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Raymond N. Deepe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - John Bullard
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Aimee L. Phelps
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Katelynn A. Toomer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Emilye Hiriart
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | - Courtney J. Haycraft
- Department of Biological Sciences, Mississippi College, 200 S Capitol St, Clinton, Mississippi 39058, USA
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| |
Collapse
|
44
|
Bhakta M, Padanad MS, Harris JP, Lubczyk C, Amatruda JF, Munshi NV. pouC Regulates Expression of bmp4 During Atrioventricular Canal Formation in Zebrafish. Dev Dyn 2018; 248:173-188. [PMID: 30444277 DOI: 10.1002/dvdy.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation. RESULTS Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. CONCLUSIONS Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minoti Bhakta
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Mahesh S Padanad
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - John P Harris
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Christina Lubczyk
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Nikhil V Munshi
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
45
|
Anderson RH, Spicer DE, Mohun TJ, Hikspoors JPJM, Lamers WH. Remodeling of the Embryonic Interventricular Communication in Regard to the Description and Classification of Ventricular Septal Defects. Anat Rec (Hoboken) 2018; 302:19-31. [PMID: 30408340 DOI: 10.1002/ar.24020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/07/2018] [Accepted: 01/19/2018] [Indexed: 11/08/2022]
Abstract
Ventricular septal defects are the commonest congenital cardiac malformations. Appropriate knowledge of the steps involved in completion of ventricular septation should provide clues as to the morphology of the different phenotypes. Currently, however, consensus is lacking regarding the components of the developing ventricular septum, and how best to describe the different phenotypes seen in postnatal life. We have reassessed the previous investigations devoted to closure of the embryonic interventricular communication. On this basis, we discuss how studies in the early part of the 20th century correctly identified the steps involved in the remodeling of the embryonic interventricular foramen subsequent to the stage at which the outflow tract arises entirely above the cavity of the developing right ventricle. There has, however, already been remodeling of the foramen from the stage at which the atrioventricular canal is supported exclusively by the developing left ventricle. We show how these temporal changes in morphology can provide explanations for the different ventricular septal defects seen in the clinical setting. Thus, muscular defects represent inappropriate coalescence of muscular ventricular septum. The channels that are perimembranous are due to failure of closure of the persisting embryonic interventricular foramen. Those that are doubly committed and juxta-arterial reflect failure of formation of the free-standing subpulmonary muscular infundibular sleeve. The findings also point to the importance of appropriate alignment, during development, between the developing atrial and ventricular septums, and between the apical component of the ventricular septum and the ventricular outlet components. Anat Rec, 302:19-31, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Diane E Spicer
- Department of Pediatric Cardiology, University of Florida, Gainesville, Florida
| | | | | | - Wouter H Lamers
- Department of Anatomy, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
46
|
Jensen B, Wang T, Moorman AFM. Evolution and Development of the Atrial Septum. Anat Rec (Hoboken) 2018; 302:32-48. [PMID: 30338646 PMCID: PMC6588001 DOI: 10.1002/ar.23914] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/27/2017] [Accepted: 01/09/2018] [Indexed: 02/05/2023]
Abstract
The complete division of the atrial cavity by a septum, resulting in a left and right atrium, is found in many amphibians and all amniotes (reptiles, birds, and mammals). Surprisingly, it is only in eutherian, or placental, mammals that full atrial septation necessitates addition from a second septum. The high incidence of incomplete closure of the atrial septum in human, so-called probe patency, suggests this manner of closure is inefficient. We review the evolution and development of the atrial septum to understand the peculiar means of forming the atrial septum in eutherian mammals. The most primitive atrial septum is found in lungfishes and comprises a myocardial component with a mesenchymal cap on its leading edge, reminiscent to the primary atrial septum of embryonic mammals before closure of the primary foramen. In reptiles, birds, and mammals, the primary foramen is closed by the mesenchymal tissues of the atrioventricular cushions, the dorsal mesenchymal protrusion, and the mesenchymal cap. These tissues are also found in lungfishes. The closure of the primary foramen is preceded by the development of secondary perforations in the septal myocardium. In all amniotes, with the exception of eutherian mammals, the secondary perforations do not coalesce to a secondary foramen. Instead, the secondary perforations persist and are sealed by myocardial and endocardial growth after birth or hatching. We suggest that the error-prone secondary foramen allows large volumes of oxygen-rich blood to reach the cardiac left side, needed to sustain the growth of the extraordinary large offspring that characterizes eutherian mammals. Anat Rec, 302:32-48, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Antoon F M Moorman
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
47
|
Jensen B, H Smit T. Examples of Weak, If Not Absent, Form-Function Relations in the Vertebrate Heart. J Cardiovasc Dev Dis 2018; 5:E46. [PMID: 30205545 PMCID: PMC6162483 DOI: 10.3390/jcdd5030046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
That form and function are related is a maxim of anatomy and physiology. Yet, form-function relations can be difficult to prove. Human subjects with excessive trabeculated myocardium in the left ventricle, for example, are diagnosed with non-compaction cardiomyopathy, but the extent of trabeculations may be without relation to ejection fraction. Rather than rejecting a relation between form and function, we may ask whether the salient function is assessed. Is there a relation to electrical propagation, mean arterial blood pressure, or propensity to form blood clots? In addition, how should the extent of trabeculated muscle be assessed? While reviewing literature on trabeculated muscle, we applied Tinbergen's four types of causation-how does it work, why does it work, how is it made, and why did it evolve-to better parse what is meant by form and function. The paper is structured around cases that highlight advantages and pitfalls of applying Tinbergen's questions. It further uses the evolution of lunglessness in amphibians to argue that lung reduction impacts on chamber septation and it considers the evolution of an arterial outflow in fishes to argue that reductions in energy consumption may drive structural changes with little consequences to function. Concerning trabeculations, we argue they relate to pumping function in the embryo in the few weeks before the onset of coronary circulation. In human fetal and postnatal stages, a spectrum of trabeculated-to-compact myocardium makes no difference to cardiac function and in this period, form and function may appear unrelated.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Digilio MC, Pugnaloni F, De Luca A, Calcagni G, Baban A, Dentici ML, Versacci P, Dallapiccola B, Tartaglia M, Marino B. Atrioventricular canal defect and genetic syndromes: The unifying role of sonic hedgehog. Clin Genet 2018; 95:268-276. [PMID: 29722020 DOI: 10.1111/cge.13375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/29/2023]
Abstract
The atrioventricular canal defect (AVCD) is a congenital heart defect (CHD) frequently associated with extracardiac anomalies (75%). Previous observations from a personal series of patients with AVCD and "polydactyly syndromes" showed that the distinct morphology and combination of AVCD features in some of these syndromes is reminiscent of the cardiac phenotype found in heterotaxy, a malformation complex previously associated with functional cilia abnormalities and aberrant Hedgehog (Hh) signaling. Hh signaling coordinates multiple aspects of left-right lateralization and cardiovascular growth. Being active at the venous pole the secondary heart field (SHF) is essential for normal development of dorsal mesenchymal protrusion and AVCD formation and septation. Experimental data show that perturbations of different components of the Hh pathway can lead to developmental errors presenting with partially overlapping manifestations and AVCD as a common denominator. We review the potential role of Hh signaling in the pathogenesis of AVCD in different genetic disorders. AVCD can be viewed as part of a "developmental field," according to the concept that malformations can be due to defects in signal transduction cascades or pathways, as morphogenetic units which may be altered by Mendelian mutations, aneuploidies, and environmental causes.
Collapse
Affiliation(s)
- M C Digilio
- Medical Genetics, Pediatric Cardiology, Genetics and Rare Diseases Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - F Pugnaloni
- Department of Pediatrics, Sapienza University, Rome, Italy
| | - A De Luca
- Casa Sollievo della Sofferenza, IRCCS, Molecular Genetics Unit, San Giovanni Rotondo, Foggia, Italy
| | - G Calcagni
- Medical Genetics, Pediatric Cardiology, Genetics and Rare Diseases Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - A Baban
- Medical Genetics, Pediatric Cardiology, Genetics and Rare Diseases Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - M L Dentici
- Medical Genetics, Pediatric Cardiology, Genetics and Rare Diseases Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - P Versacci
- Department of Pediatrics, Sapienza University, Rome, Italy
| | - B Dallapiccola
- Medical Genetics, Pediatric Cardiology, Genetics and Rare Diseases Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - M Tartaglia
- Medical Genetics, Pediatric Cardiology, Genetics and Rare Diseases Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - B Marino
- Department of Pediatrics, Sapienza University, Rome, Italy
| |
Collapse
|
49
|
Hu J, Shi Y, Xia M, Liu Z, Zhang R, Luo H, Zhang T, Yang Z, Yuan B. WDR1-regulated actin dynamics is required for outflow tract and right ventricle development. Dev Biol 2018; 438:124-137. [PMID: 29654745 DOI: 10.1016/j.ydbio.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
Abstract
Outflow tract (OFT) anomalies account for about 30% of human congenital heart defects detected at birth. The second heart field (SHF) progenitors contribute to OFT and right ventricle (RV) development, but the process largely remains unknown. WDR1 (WD-repeat domain 1) is a major co-factor of actin depolymerizing factor (ADF)/cofilin that actively disassembles ADF/cofilin-bound actin filaments. Its function in embryonic heart development has been unknown. Using Wdr1 floxed mice and Nkx2.5-Cre, we deleted Wdr1 in embryonic heart (Wdr1F/F;Nkx2.5-Cre) and found that these mice exhibited embryonic lethality, and hypoplasia of OFT and RV. To investigate the role of WDR1 in OFT and RV development, we generated SHF progenitors-specific Wdr1 deletion mice (shfKO). shfKO mice began to die at embryonic day 11.5 (E11.5), and displayed decreased size of the proximal OFT and RV at E10.5. In shfKO embryos, neither the number of SHF cells deployment to OFT nor cell proliferation and the cell number were changed, whereas the cellular organization and myofibrillar assembly of cardiomyocytes were severely disrupted. In the proximal OFT and RV of both shfKO and Wdr1F/F;Nkx2.5-Cre embryos, cardiomyocytes were dissociated from the outer compact myocardial layer and loosely and disorderly arranged into multilayered myocardium. Our results demonstrate that WDR1 is indispensable for normal OFT and RV development, and suggest that WDR1-mediated actin dynamics functions in controlling the size of OFT and RV, which might through regulating the spatial arrangement of cardiomyocytes.
Collapse
Affiliation(s)
- Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Yingchao Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Meng Xia
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Hongmei Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.
| |
Collapse
|
50
|
Carmona R, Ariza L, Cañete A, Muñoz-Chápuli R. Comparative developmental biology of the cardiac inflow tract. J Mol Cell Cardiol 2018; 116:155-164. [PMID: 29452155 DOI: 10.1016/j.yjmcc.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 02/03/2023]
Abstract
The vertebrate heart receives the blood through the cardiac inflow tract. This area has experienced profound changes along the evolution of vertebrates; changes that have a reflection in the cardiac ontogeny. The development of the inflow tract involves dynamic changes due to the progressive addition of tissue derived from the secondary heart field. The inflow tract is the site where oxygenated blood coming from lungs is received separately from the systemic return, where the cardiac pacemaker is established and where the proepicardium develops. Differential cell migration towards the inflow tract breaks the symmetry of the primary heart tube and determines the direction of the cardiac looping. In air-breathing vertebrates, an inflow tract reorganization is essential to keep separate blood flows from systemic and pulmonary returns. Finally, the sinus venosus endocardium has recently been recognized as playing a role in the constitution of the coronary vasculature. Due to this developmental complexity, congenital anomalies of the inflow tract can cause severe cardiac diseases. We aimed to review the recent literature on the cellular and molecular mechanisms that regulate the morphogenesis of the cardiac inflow tract, together with comparative and evolutionary details, thus providing a basis for a better understanding of these mechanisms.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Laura Ariza
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain.
| |
Collapse
|