1
|
Chan XHS, Haeusler IL, Choy BJK, Hassan MZ, Takata J, Hurst TP, Jones LM, Loganathan S, Harriss E, Dunning J, Tarning J, Carroll MW, Horby PW, Olliaro PL. Therapeutics for Nipah virus disease: a systematic review to support prioritisation of drug candidates for clinical trials. THE LANCET. MICROBE 2025; 6:101002. [PMID: 39549708 PMCID: PMC12062192 DOI: 10.1016/j.lanmic.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024]
Abstract
Nipah virus disease is a bat-borne zoonosis with person-to-person transmission, a case-fatality rate of 38-75%, and well recognised potential to cause a pandemic. The first reported outbreak of Nipah virus disease occurred in Malaysia and Singapore in 1998, which has since been followed by multiple outbreaks in Bangladesh and India. To date, no therapeutics or vaccines have been approved to treat Nipah virus disease, and only few such candidates are in development. In this Review, we aim to assess the safety and efficacy of the therapeutic options (monoclonal antibodies and small molecules) for Nipah virus disease and other henipaviral diseases to support prioritisation of drug candidates for further evaluation in clinical trials. At present, sufficient evidence exists to suggest trialling 1F5, m102.4, and remdesivir (alone or in combination) for prophylaxis and early treatment of Nipah virus disease. In addition to well designed clinical efficacy trials, in-vivo pharmacokinetic-pharmacodynamic studies are needed to optimise the selection and dosing of therapeutic candidates in animal challenge and natural human infection.
Collapse
Affiliation(s)
- Xin Hui S Chan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Ilsa L Haeusler
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bennett J K Choy
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Md Zakiul Hassan
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Programme for Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Junko Takata
- Department of Clinical Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tara P Hurst
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luke M Jones
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Elinor Harriss
- Bodleian Health Care Libraries University of Oxford, Oxford, UK
| | - Jake Dunning
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK; Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Miles W Carroll
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; Centre for Human Genetics Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter W Horby
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| | - Piero L Olliaro
- Pandemic Sciences Institute Nuffield Department of Medicine, University of Oxford, Oxford, UK; International Severe Acute Respiratory and Emerging Infection Consortium University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Prasanchaimontri I, Manosuthi W, Pertinez H, Owen A, Niyomnaitham S, Sirijatuphat R, Charoenpong L, Cressey T, Copeland K, Mokmued P, Chokephaibulkit K. Favipiravir pharmacokinetics in Thai adults with mild COVID-19: A sub-study of interpatient variability and ethnic differences in exposure. Pharmacol Res Perspect 2024; 12:e1233. [PMID: 39509583 PMCID: PMC11542727 DOI: 10.1002/prp2.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 11/15/2024] Open
Abstract
This sub-study sought to characterize the pharmacokinetics (PK) of favipiravir (FPV) within Thai adults and quantitatively assess differences in exposure to those previously reported in other populations as a basis to understand putative differences in efficacy between studies conducted in different regions. It was nested within a prospective trial of adults with symptomatic COVID-19 infection without pneumonia receiving 1800 mg FPV twice-daily on day 1 and 800 mg twice-daily thereafter. Individual PK profiles were fitted with a one-compartment disposition model (first-order absorption). Eight adults (seven female) with a median age of 39 years and BMI of 27.9 kg/m2 were included. Seven adults achieved plasma concentrations above the EC90 in vitro target (25 mg/L), with minimum-maximum concentrations decreasing with repeat dosing. The mean FPV apparent clearance observed in this study was 1.1 L/h (coefficient of variation [CV]: 60%), apparent volume of distribution 20.6 L (CV: 40%), absorption rate constant 6.1 h (CV: 100%), and 2.4 daily % change in apparent clearance (CV: 315%). Higher exposures were observed in these Thai adults compared with data from previous studies in Chinese, Japanese, and Turkish populations, respectively. Current FPV doses recommended in Thailand achieved target plasma concentrations with higher exposures than those described previously in other populations. The limited sample size prohibits firm conclusions from being drawn but the presented data warrants confirmation with a view to interrogate the appropriateness of doses used in randomized clinical trials that failed to demonstrate efficacy.
Collapse
Affiliation(s)
- Ing‐orn Prasanchaimontri
- Bureau of Drug and Narcotic, Department of Medical SciencesMinistry of Public HealthNonthaburiThailand
| | - Weerawat Manosuthi
- Bamrasnaradura Infectious Diseases Institute, Department of Disease ControlMinistry of Public HealthNonthaburiThailand
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long‐acting Therapeutics (CELT)University of LiverpoolLiverpoolUK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long‐acting Therapeutics (CELT)University of LiverpoolLiverpoolUK
| | - Suvimol Niyomnaitham
- Department of Pharmacology, Faculty of Medicine Siriraj HospitalMahidol UniversityNakhon PathomThailand
- Siriraj Institute of Clinical Research (SICRES)Mahidol UniversityNakhon PathomThailand
| | - Rujipas Sirijatuphat
- Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityNakhon PathomThailand
| | - Lantharita Charoenpong
- Bamrasnaradura Infectious Diseases Institute, Department of Disease ControlMinistry of Public HealthNonthaburiThailand
| | - Tim R. Cressey
- AMS‐PHPT Research Collaboration, Department of Medical Technology, Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
- Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Katherine Copeland
- Siriraj Institute of Clinical Research (SICRES)Mahidol UniversityNakhon PathomThailand
| | - Phongpan Mokmued
- Medical Life Sciences Institute, Department of Medical SciencesMinistry of Public HealthNonthaburiThailand
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research (SICRES)Mahidol UniversityNakhon PathomThailand
- Department of Pediatrics, Faculty of Medicine Siriraj HospitalMahidol UniversityNakhon PathomThailand
| |
Collapse
|
3
|
Hayden FG, Lenk RP, Epstein C, Kang LL. Oral Favipiravir Exposure and Pharmacodynamic Effects in Adult Outpatients With Acute Influenza. J Infect Dis 2024; 230:e395-e404. [PMID: 37739792 PMCID: PMC11326817 DOI: 10.1093/infdis/jiad409] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The pharmacokinetics of oral favipiravir and the relationships of plasma concentrations to antiviral effects are incompletely studied in influenza. METHODS Serial plasma samples were collected from adults with uncomplicated influenza who were randomized to favipiravir (1800 mg twice a day on day 1, 800 mg twice a day on days 2 to 5; n = 827) or placebo (n = 419) in 2 phase 3 trials. Post hoc analyses assessed the frequency of reaching an average minimum concentration (Cmin) ≥20 µg/mL, its association with antiviral efficacy, and factors associated with reduced favipiravir exposure. RESULTS Wide interindividual variability existed in favipiravir concentrations, and this regimen failed to reach an average Cmin>20 µg/mL in 41%-43% of participants. Those attaining this threshold showed greater reductions in nasopharyngeal infectious virus titers on treatment days 2 and 3 and lower viral titer area under the curve compared to those who did not. Those with average Cmin <20 µg/mL had over 2-fold higher mean ratios of the metabolite T-705M1 to favipiravir, consistent with greater metabolism, and were more likely to weigh >80 kg (61.5%-64%). CONCLUSIONS Higher favipiravir levels with average Cmin>20 µg/mL were associated with larger antiviral effects and more rapid illness alleviation compared to placebo and to favipiravir recipients with lower average Cmin values in uncomplicated influenza. Clinical Trials Registration . NCT1068912 and NCT01728753.
Collapse
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
4
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Kreins AY, Roux E, Pang J, Cheng I, Charles O, Roy S, Mohammed R, Owens S, Lowe DM, Brugha R, Williams R, Howley E, Best T, Davies EG, Worth A, Solas C, Standing JF, Goldstein RA, Rocha-Pereira J, Breuer J. Favipiravir induces HuNoV viral mutagenesis and infectivity loss with clinical improvement in immunocompromised patients. Clin Immunol 2024; 259:109901. [PMID: 38218209 PMCID: PMC11933534 DOI: 10.1016/j.clim.2024.109901] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Emma Roux
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Juanita Pang
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Iek Cheng
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Oscar Charles
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sunando Roy
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Reem Mohammed
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Stephen Owens
- Department of Paediatric Allergy, Immunology and Infectious Diseases, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - David M Lowe
- Immunology Department, Royal Free Hospital NHS Foundation Trust, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK
| | - Rossa Brugha
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Rachel Williams
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Timothy Best
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - E Graham Davies
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Caroline Solas
- Unité des Virus Émergents IRD 190, INSERM 1207, Aix-Marseille Université, Marseille, France; APHM, Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, Marseille, France
| | - Joseph F Standing
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Joana Rocha-Pereira
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Judith Breuer
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
6
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Chang YS, Li SY, Pertinez H, Betoudji F, Lee J, Rannard SP, Owen A, Nuermberger EL, Ammerman NC. Using Dynamic Oral Dosing of Rifapentine and Rifabutin to Simulate Exposure Profiles of Long-Acting Formulations in a Mouse Model of Tuberculosis Preventive Therapy. Antimicrob Agents Chemother 2023; 67:e0048123. [PMID: 37338374 PMCID: PMC10353356 DOI: 10.1128/aac.00481-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have antituberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We used a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that have utility beyond latent tuberculosis infection.
Collapse
Affiliation(s)
- Yong S. Chang
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Si-Yang Li
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Henry Pertinez
- Centre of Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Fabrice Betoudji
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Lee
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven P. Rannard
- Centre of Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Owen
- Centre of Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole C. Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infectious Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Chang YS, Li SY, Pertinez H, Betoudji F, Lee J, Rannard SP, Owen A, Nuermberger EL, Ammerman NC. Using dynamic oral dosing of rifapentine and rifabutin to simulate exposure profiles of long-acting formulations in a mouse model of tuberculosis preventive therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536604. [PMID: 37090528 PMCID: PMC10120629 DOI: 10.1101/2023.04.12.536604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have anti-tuberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We utilized a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally-determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that has utility beyond latent tuberculosis infection.
Collapse
Affiliation(s)
- Yong S. Chang
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Touro College of Osteopathic Medicine-Middletown, Middletown, New York, USA (current address)
| | - Si-Yang Li
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Henry Pertinez
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Fabrice Betoudji
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Veterinary Medicine Division, USAMRIID, Fort Detrick, Frederick, Maryland, USA (current address)
| | - Jin Lee
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven P. Rannard
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole C. Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infectious Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Jones JC, Yen HL, Adams P, Armstrong K, Govorkova EA. Influenza antivirals and their role in pandemic preparedness. Antiviral Res 2023; 210:105499. [PMID: 36567025 PMCID: PMC9852030 DOI: 10.1016/j.antiviral.2022.105499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Effective antivirals provide crucial benefits during the early phase of an influenza pandemic, when vaccines are still being developed and manufactured. Currently, two classes of viral protein-targeting drugs, neuraminidase inhibitors and polymerase inhibitors, are approved for influenza treatment and post-exposure prophylaxis. Resistance to both classes has been documented, highlighting the need to develop novel antiviral options that may include both viral and host-targeted inhibitors. Such efforts will form the basis of management of seasonal influenza infections and of strategic planning for future influenza pandemics. This review focuses on the two classes of approved antivirals, their drawbacks, and ongoing work to characterize novel agents or combination therapy approaches to address these shortcomings. The importance of these topics in the ongoing process of influenza pandemic planning is also discussed.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Peter Adams
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Kimberly Armstrong
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Holubar M, Subramanian A, Purington N, Hedlin H, Bunning B, Walter KS, Bonilla H, Boumis A, Chen M, Clinton K, Dewhurst L, Epstein C, Jagannathan P, Kaszynski RH, Panu L, Parsonnet J, Ponder EL, Quintero O, Sefton E, Singh U, Soberanis L, Truong H, Andrews JR, Desai M, Khosla C, Maldonado Y. Favipiravir for Treatment of Outpatients With Asymptomatic or Uncomplicated Coronavirus Disease 2019: A Double-Blind, Randomized, Placebo-Controlled, Phase 2 Trial. Clin Infect Dis 2022; 75:1883-1892. [PMID: 35446944 PMCID: PMC9047233 DOI: 10.1093/cid/ciac312] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Favipiravir, an oral, RNA-dependent RNA polymerase inhibitor, has in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite limited data, favipiravir is administered to patients with coronavirus disease 2019 (COVID-19) in several countries. METHODS We conducted a phase 2, double-blind, randomized controlled outpatient trial of favipiravir in asymptomatic or mildly symptomatic adults with a positive SARS-CoV-2 reverse-transcription polymerase chain reaction assay (RT-PCR) within 72 hours of enrollment. Participants were randomized to receive placebo or favipiravir (1800 mg twice daily [BID] day 1, 800 mg BID days 2-10). The primary outcome was SARS-CoV-2 shedding cessation in a modified intention-to-treat (mITT) cohort of participants with positive enrollment RT-PCRs. Using SARS-CoV-2 amplicon-based sequencing, we assessed favipiravir's impact on mutagenesis. RESULTS We randomized 149 participants with 116 included in the mITT cohort. The participants' mean age was 43 years (standard deviation, 12.5 years) and 57 (49%) were women. We found no difference in time to shedding cessation overall (hazard ratio [HR], 0.76 favoring placebo [95% confidence interval {CI}, .48-1.20]) or in subgroups (age, sex, high-risk comorbidities, seropositivity, or symptom duration at enrollment). We detected no difference in time to symptom resolution (initial: HR, 0.84 [95% CI, .54-1.29]; sustained: HR, 0.87 [95% CI, .52-1.45]) and no difference in transition mutation accumulation in the viral genome during treatment. CONCLUSIONS Our data do not support favipiravir at commonly used doses in outpatients with uncomplicated COVID-19. Further research is needed to ascertain if higher favipiravir doses are effective and safe for patients with COVID-19. CLINICAL TRIALS REGISTRATION NCT04346628.
Collapse
Affiliation(s)
- Marisa Holubar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aruna Subramanian
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Natasha Purington
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Haley Hedlin
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Bryan Bunning
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Katharine S Walter
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Athanasia Boumis
- Stanford Center for Clinical Research, Stanford University, Stanford, California, USA
| | - Michael Chen
- Stanford Solutions, Stanford University School of Medicine, Stanford, California, USA
| | - Kimberly Clinton
- Stanford Center for Clinical Research, Stanford University, Stanford, California, USA
| | - Liisa Dewhurst
- Stanford Center for Clinical Research, Stanford University, Stanford, California, USA
| | - Carol Epstein
- Carol L. Epstein MD Consulting LLC, Wellington, Florida, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Richard H Kaszynski
- Stanford Solutions, Stanford University School of Medicine, Stanford, California, USA
| | - Lori Panu
- Stanford Center for Clinical Research, Stanford University, Stanford, California, USA
| | - Julie Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | | | - Orlando Quintero
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | - Upinder Singh
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Luke Soberanis
- Stanford Center for Clinical Research, Stanford University, Stanford, California, USA
| | - Henry Truong
- Mariner Advanced Pharmacy Corporation, San Mateo, California, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Manisha Desai
- Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Chaitan Khosla
- Stanford ChEM-H, Stanford University, Stanford, California, USA.,Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California, USA
| | - Yvonne Maldonado
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Hayden FG, Lenk RP, Stonis L, Oldham-Creamer C, Kang LL, Epstein C. Favipiravir Treatment of Uncomplicated Influenza in Adults: Results of Two Phase 3, Randomized, Double-Blind, Placebo-Controlled Trials. J Infect Dis 2022; 226:1790-1799. [PMID: 35639525 PMCID: PMC9650493 DOI: 10.1093/infdis/jiac135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/07/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND We conducted double-blind, placebo-controlled trials assessing the efficacy and tolerability of favipiravir in acute influenza. METHODS Otherwise healthy adults with influenza-like symptoms and fever of ≤48 hours were randomized to favipiravir (1800 mg twice daily [BID] on day 1, 800 mg BID on days 2-5) or placebo tablets (1:1 in US316; 3:1 in US317). The primary efficacy endpoint was the time to illness alleviation when 6 influenza symptoms were self-rated as absent or mild and fever was absent in the intention-to-treat, influenza-infected participants. RESULTS In US316 (301 favipiravir, 322 placebo), favipiravir was associated with a 14.4-hour reduction (median, 84.2 vs 98.6 hours; P = .004) in time to illness alleviation vs placebo. In US317 (526 favipiravir, 169 placebo), favipiravir did not significantly reduce time to alleviation (median, 77.8 vs 83.9 hours). In both trials favipiravir was associated with reduced viral titers, RNA load area under the curve over days 1-5, and median times to cessation of virus detection (P < .001). Aside from asymptomatic hyperuricemia, no important differences in adverse events were found. CONCLUSIONS This favipiravir dosing regimen demonstrated significant antiviral efficacy but inconsistent illness alleviation in uncomplicated influenza. Studies of higher doses and antiviral combinations for treating serious influenza and other RNA viral infections are warranted. Clinical Trials Registration. NCT02026349; NCT02008344.
Collapse
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lowe DM, Brown LAK, Chowdhury K, Davey S, Yee P, Ikeji F, Ndoutoumou A, Shah D, Lennon A, Rai A, Agyeman AA, Checkley A, Longley N, Dehbi HM, Freemantle N, Breuer J, Standing JF, FLARE Investigators. Favipiravir, lopinavir-ritonavir, or combination therapy (FLARE): A randomised, double-blind, 2 × 2 factorial placebo-controlled trial of early antiviral therapy in COVID-19. PLoS Med 2022; 19:e1004120. [PMID: 36260627 PMCID: PMC9629589 DOI: 10.1371/journal.pmed.1004120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/02/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Early antiviral treatment is effective for Coronavirus Disease 2019 (COVID-19) but currently available agents are expensive. Favipiravir is routinely used in many countries, but efficacy is unproven. Antiviral combinations have not been systematically studied. We aimed to evaluate the effect of favipiravir, lopinavir-ritonavir or the combination of both agents on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral load trajectory when administered early. METHODS AND FINDINGS We conducted a Phase 2, proof of principle, randomised, placebo-controlled, 2 × 2 factorial, double-blind trial of ambulatory outpatients with early COVID-19 (within 7 days of symptom onset) at 2 sites in the United Kingdom. Participants were randomised using a centralised online process to receive: favipiravir (1,800 mg twice daily on Day 1 followed by 400 mg 4 times daily on Days 2 to 7) plus lopinavir-ritonavir (400 mg/100 mg twice daily on Day 1, followed by 200 mg/50 mg 4 times daily on Days 2 to 7), favipiravir plus lopinavir-ritonavir placebo, lopinavir-ritonavir plus favipiravir placebo, or both placebos. The primary outcome was SARS-CoV-2 viral load at Day 5, accounting for baseline viral load. Between 6 October 2020 and 4 November 2021, we recruited 240 participants. For the favipiravir+lopinavir-ritonavir, favipiravir+placebo, lopinavir-ritonavir+placebo, and placebo-only arms, we recruited 61, 59, 60, and 60 participants and analysed 55, 56, 55, and 58 participants, respectively, who provided viral load measures at Day 1 and Day 5. In the primary analysis, the mean viral load in the favipiravir+placebo arm had changed by -0.57 log10 (95% CI -1.21 to 0.07, p = 0.08) and in the lopinavir-ritonavir+placebo arm by -0.18 log10 (95% CI -0.82 to 0.46, p = 0.58) compared to the placebo arm at Day 5. There was no significant interaction between favipiravir and lopinavir-ritonavir (interaction coefficient term: 0.59 log10, 95% CI -0.32 to 1.50, p = 0.20). More participants had undetectable virus at Day 5 in the favipiravir+placebo arm compared to placebo only (46.3% versus 26.9%, odds ratio (OR): 2.47, 95% CI 1.08 to 5.65; p = 0.03). Adverse events were observed more frequently with lopinavir-ritonavir, mainly gastrointestinal disturbance. Favipiravir drug levels were lower in the combination arm than the favipiravir monotherapy arm, possibly due to poor absorption. The major limitation was that the study population was relatively young and healthy compared to those most affected by the COVID-19 pandemic. CONCLUSIONS At the current doses, no treatment significantly reduced viral load in the primary analysis. Favipiravir requires further evaluation with consideration of dose escalation. Lopinavir-ritonavir administration was associated with lower plasma favipiravir concentrations. TRIAL REGISTRATION Clinicaltrials.gov NCT04499677 EudraCT: 2020-002106-68.
Collapse
Affiliation(s)
- David M. Lowe
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
- * E-mail:
| | - Li-An K. Brown
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Kashfia Chowdhury
- Comprehensive Clinical Trials Unit, University College London, London, United Kingdom
| | - Stephanie Davey
- Department of Rheumatology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Philip Yee
- Department of Rheumatology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Felicia Ikeji
- Comprehensive Clinical Trials Unit, University College London, London, United Kingdom
| | - Amalia Ndoutoumou
- Comprehensive Clinical Trials Unit, University College London, London, United Kingdom
| | - Divya Shah
- Department of Virology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Alexander Lennon
- Department of Virology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Abhulya Rai
- Department of Virology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Akosua A. Agyeman
- Infection, Immunity and Inflammation Research and Teaching Department, Institute of Child Health, University College London, London, United Kingdom
| | - Anna Checkley
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nicola Longley
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Hakim-Moulay Dehbi
- Comprehensive Clinical Trials Unit, University College London, London, United Kingdom
| | - Nick Freemantle
- Comprehensive Clinical Trials Unit, University College London, London, United Kingdom
| | - Judith Breuer
- Department of Virology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Infection, Immunity and Inflammation Research and Teaching Department, Institute of Child Health, University College London, London, United Kingdom
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Research and Teaching Department, Institute of Child Health, University College London, London, United Kingdom
- Department of Pharmacy, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
13
|
Assmus F, Driouich JS, Abdelnabi R, Vangeel L, Touret F, Adehin A, Chotsiri P, Cochin M, Foo CS, Jochmans D, Kim S, Luciani L, Moureau G, Park S, Pétit PR, Shum D, Wattanakul T, Weynand B, Fraisse L, Ioset JR, Mowbray CE, Owen A, Hoglund RM, Tarning J, de Lamballerie X, Nougairède A, Neyts J, Sjö P, Escudié F, Scandale I, Chatelain E. Need for a Standardized Translational Drug Development Platform: Lessons Learned from the Repurposing of Drugs for COVID-19. Microorganisms 2022; 10:1639. [PMID: 36014057 PMCID: PMC9460261 DOI: 10.3390/microorganisms10081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.
Collapse
Affiliation(s)
- Frauke Assmus
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Touret
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Ayorinde Adehin
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maxime Cochin
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Caroline S. Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Seungtaek Kim
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Léa Luciani
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Grégory Moureau
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Soonju Park
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Paul-Rémi Pétit
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - David Shum
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Birgit Weynand
- Departmet of Imaging and Pathology, Katholieke Universiteit Leuven, Translational Cell and Tissue Research, 3000 Leuven, Belgium
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Jean-Robert Ioset
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Charles E. Mowbray
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Andrew Owen
- Centre for Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 7ZX, UK
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| |
Collapse
|
14
|
Wattanakul T, Chotsiri P, Scandale I, Hoglund RM, Tarning J. A pharmacometric approach to evaluate drugs for potential repurposing as COVID-19 therapeutics. Expert Rev Clin Pharmacol 2022; 15:945-958. [PMID: 36017624 DOI: 10.1080/17512433.2022.2113388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Developing and evaluating novel compounds for treatment or prophylaxis of emerging infectious diseases is costly and time-consuming. Repurposing of already available marketed compounds is an appealing option as they already have an established safety profile. This approach could substantially reduce cost and time required to make effective treatments available to fight the COVID-19 pandemic. However, this approach is challenging since many drug candidates show efficacy in in vitro experiments, but fail to deliver effect when evaluated in clinical trials. Better approaches to evaluate in vitro data are needed, in order to prioritize drugs for repurposing. AREAS COVERED This article evaluates potential drugs that might be of interest for repurposing in the treatment of patients with COVID-19 disease. A pharmacometric simulation-based approach was developed to evaluate in vitro activity data in combination with expected clinical drug exposure, in order to evaluate the likelihood of achieving effective concentrations in patients. EXPERT OPINION The presented pharmacometric approach bridges in vitro activity data to clinically expected drug exposures, and could therefore be a useful compliment to other methods in order to prioritize repurposed drugs for evaluation in prospective randomized controlled clinical trials.
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Abstract
Antiviral drugs are an important measure of control for influenza in the population, particularly for those that are severely ill or hospitalised. The neuraminidase inhibitor (NAI) class of drugs, including oseltamivir, have been the standard of care (SOC) for severe influenza illness for many years. The approval of drugs with novel mechanisms of action, such as baloxavir marboxil, is important and broadens potential treatment options for combination therapy. The use of antiviral treatments in combination for influenza is of interest; one potential benefit of this treatment strategy is that the combination of drugs with different mechanisms of action may lower the selection of resistance due to treatment. In addition, combination therapy may become an important treatment option to improve patient outcomes in those with severe illness due to influenza or those that are immunocompromised. Clinical trials increasingly evaluate drug combinations in a range of patient cohorts. Here, we summarise preclinical and clinical advances in combination therapy for the treatment of influenza with reference to immunocompromised animal models and clinical data in hospitalised patient cohorts where available. There is a wide array of drug categories in development that have also been tested in combination. Therefore, in this review, we have included polymerase inhibitors, monoclonal antibodies (mAbs), host-targeted therapies, and adjunctive therapies. Combination treatment regimens should be carefully evaluated to determine whether they provide an added benefit relative to effectiveness of monotherapy and in a variety of patient cohorts, particularly, if there is a greater chance of an adverse outcome. Safe and effective treatment of influenza is important not only for seasonal influenza infection, but also if a pandemic strain was to emerge.
Collapse
|
16
|
Cooreman A, Caufriez A, Tabernilla A, Van Campenhout R, Leroy K, Kadam P, Sanz Serrano J, dos Santos Rodrigues B, Annaert P, Vinken M. Effects of Drugs Formerly Proposed for COVID-19 Treatment on Connexin43 Hemichannels. Int J Mol Sci 2022; 23:5018. [PMID: 35563409 PMCID: PMC9103705 DOI: 10.3390/ijms23095018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43) hemichannels form a pathway for cellular communication between the cell and its extracellular environment. Under pathological conditions, Cx43 hemichannels release adenosine triphosphate (ATP), which triggers inflammation. Over the past two years, azithromycin, chloroquine, dexamethasone, favipiravir, hydroxychloroquine, lopinavir, remdesivir, ribavirin, and ritonavir have been proposed as drugs for the treatment of the coronavirus disease 2019 (COVID-19), which is associated with prominent systemic inflammation. The current study aimed to investigate if Cx43 hemichannels, being key players in inflammation, could be affected by these drugs which were formerly designated as COVID-19 drugs. For this purpose, Cx43-transduced cells were exposed to these drugs. The effects on Cx43 hemichannel activity were assessed by measuring extracellular ATP release, while the effects at the transcriptional and translational levels were monitored by means of real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblot analysis, respectively. Exposure to lopinavir and ritonavir combined (4:1 ratio), as well as to remdesivir, reduced Cx43 mRNA levels. None of the tested drugs affected Cx43 protein expression.
Collapse
Affiliation(s)
- Axelle Cooreman
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Anne Caufriez
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Prashant Kadam
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Julen Sanz Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Bruna dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| |
Collapse
|
17
|
El Azab NF. A validated UHPLC-MS/MS method for simultaneous quantification of some repurposed COVID-19 drugs in rat plasma: Application to a pharmacokinetic study. Microchem J 2022; 178:107321. [PMID: 35261396 PMCID: PMC8891122 DOI: 10.1016/j.microc.2022.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Since the emergence of Corona virus disease (COVID-19) in 2019, a number of medications have been developed and tried to combat the pandemic. In the present study, we develop a LC-MS/MS approach to detect and quantify certain COVID-19 candidate drugs in rat plasma, including Hydroxychloroquine, Favipiravir, Oseltamivir, and Remdesivir. The analytes were separated using Ultra High-Pressure Liquid Chromatography (UHPLC) over a 13-minute run on a C18 column. The extraction solvent for the (QuEChERS) quick, easy, cheap, effective, rugged and safe method was methanol, while the clean-up phase was primary secondary amine (PSA). Satisfactory recoveries were achieved for all compounds ranging from 82.39 to 105.87 %, with standard deviations smaller than 15.7. In terms of precision, accuracy, linearity, matrix effect, and stability, the method was validated according to US FDA criteria. The Limit of Detection (LOD) was determined to be between 0.11 and 10 ppb. The approach was further developed for a modest pharmacokinetic research in laboratory rats, and thus can be suitable for therapeutic drug monitoring in clinical cases under the same treatment.
Collapse
Affiliation(s)
- Noha F El Azab
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
18
|
Wang Q, Cao R, Li L, Liu J, Yang J, Li W, Yan L, Wang Y, Yan Y, Li J, Deng F, Zhou Y, Wang M, Zhong W, Hu Z. In vitro and in vivo efficacy of a novel nucleoside analog H44 against Crimean–Congo hemorrhagic fever virus. Antiviral Res 2022; 199:105273. [DOI: 10.1016/j.antiviral.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
|
19
|
Fenton C, Keam SJ. Emerging small molecule antivirals may fit neatly into COVID-19 treatment. DRUGS & THERAPY PERSPECTIVES 2022; 38:112-126. [PMID: 35250258 PMCID: PMC8882464 DOI: 10.1007/s40267-022-00897-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Numerous treatments exist for COVID-19, the illness caused by SARS-CoV-2 virus, although most are not well established; among these are several small molecule antiviral agents. Intravenous remdesivir is an established treatment worldwide for inpatients and in some countries is also available for use in non-hospitalised high risk patients to prevent progression to severe disease and hospitalization. Oral molnupiravir and oral nirmatrelvir-ritonavir are also available in several countries to prevent progression to severe disease and hospitalization for high-risk outpatients. Many other antiviral small molecules that may have therapeutic potential are under investigation in clinical trials. This article provides a summary of key molecular targets, pharmacology and preliminary data on the efficacy and safety of small molecule antiviral agents being investigated for the treatment of COVID-19.
Collapse
Affiliation(s)
- Caroline Fenton
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754 New Zealand
| | - Susan J. Keam
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754 New Zealand
| |
Collapse
|
20
|
Wang X, Sacramento CQ, Jockusch S, Chaves OA, Tao C, Fintelman-Rodrigues N, Chien M, Temerozo JR, Li X, Kumar S, Xie W, Patel DJ, Meyer C, Garzia A, Tuschl T, Bozza PT, Russo JJ, Souza TML, Ju J. Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Commun Biol 2022; 5:154. [PMID: 35194144 PMCID: PMC8863796 DOI: 10.1038/s42003-022-03101-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- This work was supported by the Jack Ma Foundation, a gift from Columbia Engineering Member of the Board of Visitors Dr. Bing Zhao, and Fast Grants (to Jingyue Ju), the Maloris Foundation and the Memorial Sloan-Kettering Core Grant (P30CA008748) (to Dinshaw J. Patel), a grant from The JPB Foundation to Rockefeller University (to Thomas Tuschl). Funding was also provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 441019/2020-0, 307162/2017-6), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, E-26/210.182/2020, E-26/201.067/2021, E-26/210.112/2020) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (to Thiago Moreno L. Souza and Patricia T. Bozza). CNPq, CAPES and FAPERJ also support the National Institutes of Science and Technology Program (INCT-IDPN, 465313/2014-0). Oswaldo Cruz Foundation/FIOCRUZ supports this study under the auspices of the Inova Program (B3-Bovespa funding, VGPDI-032-ARVC-20) (to Thiago Moreno L. Souza). Dr. Andre Sampaio from Farmanguinhos, platform RPT11M, is acknowledged for kindly donating the Calu-3 cells. We thank Dr. Andrew Owen from the University of Liverpool for insightful discussions.
Collapse
Affiliation(s)
- Xuanting Wang
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Carolina Q Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology for Innovation on Diseases of Neglected Population (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Steffen Jockusch
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Otávio Augusto Chaves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology for Innovation on Diseases of Neglected Population (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology for Innovation on Diseases of Neglected Population (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Minchen Chien
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Wei Xie
- Laboratory of Structural Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Dinshaw J Patel
- Laboratory of Structural Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Thiago Moreno L Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
- National Institute for Science and Technology for Innovation on Diseases of Neglected Population (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Enhancing the Antiviral Potency of Nucleobases for Potential Broad-Spectrum Antiviral Therapies. Viruses 2021; 13:v13122508. [PMID: 34960780 PMCID: PMC8705664 DOI: 10.3390/v13122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Broad-spectrum antiviral therapies hold promise as a first-line defense against emerging viruses by blunting illness severity and spread until vaccines and virus-specific antivirals are developed. The nucleobase favipiravir, often discussed as a broad-spectrum inhibitor, was not effective in recent clinical trials involving patients infected with Ebola virus or SARS-CoV-2. A drawback of favipiravir use is its rapid clearance before conversion to its active nucleoside-5′-triphosphate form. In this work, we report a synergistic reduction of flavivirus (dengue, Zika), orthomyxovirus (influenza A), and coronavirus (HCoV-OC43 and SARS-CoV-2) replication when the nucleobases favipiravir or T-1105 were combined with the antimetabolite 6-methylmercaptopurine riboside (6MMPr). The 6MMPr/T-1105 combination increased the C-U and G-A mutation frequency compared to treatment with T-1105 or 6MMPr alone. A further analysis revealed that the 6MMPr/T-1105 co-treatment reduced cellular purine nucleotide triphosphate synthesis and increased conversion of the antiviral nucleobase to its nucleoside-5′-monophosphate, -diphosphate, and -triphosphate forms. The 6MMPr co-treatment specifically increased production of the active antiviral form of the nucleobases (but not corresponding nucleosides) while also reducing levels of competing cellular NTPs to produce the synergistic effect. This in-depth work establishes a foundation for development of small molecules as possible co-treatments with nucleobases like favipiravir in response to emerging RNA virus infections.
Collapse
|
22
|
Morikawa G, Kubota K, Kondo D, Takanashi Y, Minami S, Kinjo T, Moriiwa Y, Yanagida A, Okazawa K, Chiaki T. Elevated blood favipiravir levels are inversely associated with ferritin levels and induce the elevation of uric acid levels in COVID-19 treatment: A retrospective single-center study. J Infect Chemother 2021; 28:73-77. [PMID: 34711508 PMCID: PMC8523481 DOI: 10.1016/j.jiac.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
Introduction Measurement of blood Favipiravir (FPV) levels and accumulation of data in COVID-19 patients are critical for assessing FPV efficacy and safety. We performed a retrospective study based on measurements of blood levels of FPV and related factors in COVID-19 patients admitted to our hospital. Furthermore, we also investigated the association between blood FPV levels and uric acid level alterations before and after FPV administration. Methods We enrolled 27 COVID-19 patients who had received FPV treatment at Hokushin General Hospital from April 1 to December 31, 2020. Age, gender, COVID-19 severity, presence of comorbidities, and laboratory data for each subject were investigated to identify factors that correlate with blood FPV levels. Uric acid levels were measured before and after FPV administration and a difference between the levels (i.e., a change of uric acid level) was evaluated. Results When a significant univariate variable was input by the stepwise method and a combination of variables that maintained statistical superiority was searched, serum ferritin was the only factor that independently affected blood FPV level. Furthermore, in the high-FPV group (20 μg/mL or more), a significant increase in uric acid levels was observed after FPV administration. The increment value was significantly larger than that in the low-FPV group (less than 20 μg/mL). Conclusions Ferritin level was an important independent factor inversely affecting blood FPV level. Furthermore, a high blood FPV level induced the elevation of uric acid levels in COVID-19 treatment.
Collapse
Affiliation(s)
- Go Morikawa
- Department of Pharmacy, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan.
| | - Ken Kubota
- Department of Pharmacy, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| | - Daichi Kondo
- Department of Respiratory Medicine, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| | - Yasuhisa Takanashi
- Department of Respiratory Medicine, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| | - Satoshi Minami
- Department of Nephrology, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| | - Tsunemichi Kinjo
- Department of Arrhythmia, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| | - Yukiko Moriiwa
- Department of Biomedical Analysis, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akio Yanagida
- Department of Biomedical Analysis, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Katsuko Okazawa
- Department of Pharmacy, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| | - Tomoshige Chiaki
- Department of Respiratory Medicine, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| |
Collapse
|
23
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
24
|
Yuan Y, Lu QB, Yao WS, Zhao J, Zhang XA, Cui N, Yuan C, Yang T, Peng XF, Lv SM, Li JC, Song YB, Zhang DN, Fang LQ, Wang HQ, Li H, Liu W. Clinical efficacy and safety evaluation of favipiravir in treating patients with severe fever with thrombocytopenia syndrome. EBioMedicine 2021; 72:103591. [PMID: 34563924 PMCID: PMC8479638 DOI: 10.1016/j.ebiom.2021.103591] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high mortality, however with no effective therapy available. Methods The effect of favipiravir (FPV) in treating SFTS was evaluated by an integrated analysis on data collected from a single-arm study (n=428), a surveillance study (n=2350) and published data from a randomized controlled trial study (n=145). A 1:1 propensity score matching was performed to include 780 patients: 390 received FPV and 390 received supportive therapy only. Case fatality rates (CFRs), clinical progress, and adverse effects were compared. Findings FPV treatment had significantly reduced CFR from 20.0% to 9.0% (odds ratio 0.38, 95% confidence interval 0.23-0.65), however showing heterogeneity when patients were grouped by age, onset-to-admission interval, initial viral load and therapy duration. The effect of FPV was significant only among patients aged ≤70 years, with onset-to-admission interval ≤5 days, therapy duration ≥5 days or baseline viral load ≤1 × 106 copies/mL. Age-stratified analysis revealed no benefit in the aging group >70 years, regardless of their sex, onset-to-admission interval, therapy duration or baseline viral load. However, for both ≤60 and 60-70 years groups, therapy duration and baseline viral load differentially affected FPV therapy efficiency. Hyperuricemia and thrombocytopenia, as the major adverse response of FPV usage, were observed in >70 years patients. Interpretation FPV was safe in treating SFTS patients but showed no benefit for those aged >70 years. Instant FPV therapy could highly benefit SFTS patients aged 60-70 years. Funding China Natural Science Foundation (No. 81825019, 82073617 and 81722041) and China Mega-project for Infectious Diseases (2018ZX10713002 and 2015ZX09102022).
Collapse
Affiliation(s)
- Yang Yuan
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Wen-Si Yao
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan 464000, PR China
| | - Jing Zhao
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Xiao-Ai Zhang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Ning Cui
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan 464000, PR China
| | - Chun Yuan
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan 464000, PR China
| | - Tong Yang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Xue-Fang Peng
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Shou-Ming Lv
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China; Graduate School of Anhui Medical University, Hefei 230601, PR China
| | - Jia-Chen Li
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Ya-Bin Song
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Dong-Na Zhang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Li-Qun Fang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Hong-Quan Wang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China.
| | - Hao Li
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China; Graduate School of Anhui Medical University, Hefei 230601, PR China.
| | - Wei Liu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China; Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Graduate School of Anhui Medical University, Hefei 230601, PR China; Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing 100191, PR China.
| |
Collapse
|
25
|
Irie K, Nakagawa A, Fujita H, Tamura R, Eto M, Ikesue H, Muroi N, Fukushima S, Tomii K, Hashida T. Population pharmacokinetics of favipiravir in patients with COVID-19. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:1161-1170. [PMID: 34292670 PMCID: PMC8420316 DOI: 10.1002/psp4.12685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
The antiretroviral drug favipiravir (FPV) inhibits RNA‐dependent RNA polymerase. It has been developed for the treatment of the novel coronavirus (severe acute respiratory syndrome coronavirus 2) infection disease, coronavirus disease 2019 (COVID‐19). However, its pharmacokinetics in patients with COVID‐19 is poorly understood. In this study, we measured FPV serum concentration by liquid chromatography–tandem mass spectrometry and conducted population pharmacokinetic analysis. A total of 39 patients were enrolled in the study: 33 were administered FPV 1600 mg twice daily (b.i.d.) on the first day followed by 600 mg b.i.d., and 6 were administered FPV 1800 mg b.i.d. on the first day followed by 800 mg or 600 mg b.i.d. The median age was 68 years (range, 27–89 years), 31 (79.5%) patients were men, median body surface area (BSA) was 1.72 m2 (range, 1.11–2.2 m2), and 10 (25.6%) patients required invasive mechanical ventilation (IMV) at the start of FPV. A total of 204 serum concentrations were available for pharmacokinetic analysis. A one‐compartment model with first‐order elimination was used to describe the pharmacokinetics. The estimated mean clearance/bioavailability (CL/F) and distribution volume/bioavailability (V/F) were 5.11 L/h and 41.6 L, respectively. Covariate analysis revealed that CL/F was significantly related to dosage, IMV use, and BSA. A simulation study showed that the 1600 mg/600 mg b.i.d. regimen was insufficient for the treatment of COVID‐19 targeting the 50% effective concentration (9.7 µg/mL), especially in patients with larger BSA and/or IMV. A higher FPV dosage is required for COVID‐19, but dose‐dependent nonlinear pharmacokinetics may cause an unexpected significant pharmacokinetic change and drug toxicity. Further studies are warranted to explore the optimal FPV regimen.
Collapse
Affiliation(s)
- Kei Irie
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan.,Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Atsushi Nakagawa
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hirotoshi Fujita
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Ryo Tamura
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masaaki Eto
- Department of Clinical Laboratory, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroaki Ikesue
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuyuki Muroi
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shoji Fukushima
- Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tohru Hashida
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
26
|
Pertinez H, Rajoli RKR, Khoo SH, Owen A. Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5'-triphosphate exposure to support posology for SARS-CoV-2. J Antimicrob Chemother 2021; 76:2121-2128. [PMID: 34075418 PMCID: PMC8194902 DOI: 10.1093/jac/dkab135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Favipiravir has discrepant activity against SARS-CoV-2 in vitro, concerns about teratogenicity and pill burden, and an unknown optimal dose. This analysis used available data to simulate the intracellular pharmacokinetics of the favipiravir active metabolite [favipiravir ribofuranosyl-5′-triphosphate (FAVI-RTP)]. Methods Published in vitro data for intracellular production and elimination of FAVI-RTP in Madin–Darby canine kidney cells were fitted with a mathematical model describing the time course of intracellular FAVI-RTP as a function of favipiravir concentration. Parameter estimates were then combined with a published population pharmacokinetic model in Chinese patients to predict human intracellular FAVI-RTP. In vitro FAVI-RTP data were adequately described as a function of concentrations with an empirical model, noting simplification and consolidation of various processes and several assumptions. Results Parameter estimates from fittings to in vitro data predict a flatter dynamic range of peak to trough for intracellular FAVI-RTP (peak to trough ratio of ∼1 to 1) when driven by a predicted free plasma concentration profile, compared with the plasma profile of parent favipiravir (ratio of ∼2 to 1). This approach has important assumptions, but indicates that, despite rapid clearance of the parent from plasma, sufficient intracellular FAVI-RTP may be maintained across the dosing interval because of its long intracellular half-life. Conclusions Population mean intracellular FAVI-RTP concentrations are estimated to be maintained above the Km for the SARS-CoV-2 polymerase for 9 days with a 1200 mg twice-daily regimen (following a 1600 mg twice-daily loading dose on day 1). Further evaluation of favipiravir as part of antiviral combinations for SARS-CoV-2 is warranted.
Collapse
Affiliation(s)
- Henry Pertinez
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK.,Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Rajith K R Rajoli
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK.,Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Saye H Khoo
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK.,Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK.,Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
27
|
Al-Azzam S, Mhaidat NM, Banat HA, Alfaour M, Ahmad DS, Muller A, Al-Nuseirat A, Lattyak EA, Conway BR, Aldeyab MA. An Assessment of the Impact of Coronavirus Disease (COVID-19) Pandemic on National Antimicrobial Consumption in Jordan. Antibiotics (Basel) 2021; 10:690. [PMID: 34207567 PMCID: PMC8229725 DOI: 10.3390/antibiotics10060690] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has overlapping clinical characteristics with bacterial respiratory tract infection, leading to the prescription of potentially unnecessary antibiotics. This study aimed at measuring changes and patterns of national antimicrobial use for one year preceding and one year during the COVID-19 pandemic. Annual national antimicrobial consumption for 2019 and 2020 was obtained from the Jordan Food and Drug Administration (JFDA) following the WHO surveillance methods. The WHO Access, Watch, and Reserve (AWaRe) classification was used. Total antibiotic consumption in 2020 (26.8 DDD per 1000 inhabitants per day) decreased by 5.5% compared to 2019 (28.4 DDD per 1000 inhabitants per day). There was an increase in the use of several antibiotics during 2020 compared with 2019 (third generation cephalosporins (19%), carbapenems (52%), macrolides (57%), and lincosamides (106%)). In 2020, there was a marked reduction in amoxicillin use (-53%), while the use of azithromycin increased by 74%. National antimicrobial consumption of the Access group decreased by 18% from 2019 to 2020 (59.1% vs. 48.1% of total consumption). The use of the Watch group increased in 2020 by 26%. The study highlighted an increase in the use of certain antibiotics during the pandemic period that are known to be associated with increasing resistance. Efforts to enhance national antimicrobial stewardship are needed to ensure rational use of antimicrobials.
Collapse
Affiliation(s)
- Sayer Al-Azzam
- Clinical Pharmacy Department, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.A.-A.); (N.M.M.)
| | - Nizar Mahmoud Mhaidat
- Clinical Pharmacy Department, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.A.-A.); (N.M.M.)
| | - Hayaa A. Banat
- Jordan Food and Drug Administration (JFDA), Amman 11181, Jordan; (H.A.B.); (M.A.); (D.S.A.)
| | - Mohammad Alfaour
- Jordan Food and Drug Administration (JFDA), Amman 11181, Jordan; (H.A.B.); (M.A.); (D.S.A.)
| | - Dana Samih Ahmad
- Jordan Food and Drug Administration (JFDA), Amman 11181, Jordan; (H.A.B.); (M.A.); (D.S.A.)
| | - Arno Muller
- Antimicrobial Resistance Division, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland;
| | - Adi Al-Nuseirat
- World Health Organization Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt;
| | | | - Barbara R. Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Mamoon A. Aldeyab
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| |
Collapse
|
28
|
Turan Ç, Metin N, Utlu Z, Yıldız TT, Caferoğlu Sakat S. Evaluation of the frequency and intensity of favipiravir-associated yellow-green fluorescence in lunulae, hair, and face. J Cosmet Dermatol 2021; 21:1199-1207. [PMID: 33915020 DOI: 10.1111/jocd.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND We detected yellow-green fluorescence in the face, hair and lunulae of patients using favipiravir. AIM We evaluated the frequency and intensity of favipiravir-associated fluorescence. PATIENTS/METHODS The participants comprised patients who had taken at least a single dose of favipiravir and been examined no later than 30 days after the last dose. The gender, age, body mass index (BMI), Fitzpatrick's skin-type, hair color, N-acetylcysteine use, presence and the intensity of fluorescent reflection under Wood's light in the lunulae of the fingernails, hair, and the face were recorded. RESULTS There were 275 patients, 144 (52.4%) of whom were women. 165 (57.9%) had used treatment for a maximum of 5 days, 99 (34.7%) for 6-10 days, and 21 (7.4%) for more than ten days. Using more than 22 tablets of favipiravir increased the probability of detecting fluorescence in the lunulae by 6.72 (2.61-17.23) times. Using more than 28 tablets increased the risk of fluorescence in hair and the T-zone by 5.92 (2.43-14.71) and 2.88 (1.11-7.47) times, respectively. No relationship was found between the fluorescence intensity in any localization and the total dose. However, we determined a negative correlation between the elapsed time after the last dose and the fluorescence intensity in the lunulae and the T-zone (p=0.036; p=0.031; respectively). It was noted that BMI negatively correlated with the fluorescence intensity in the lunulae (p=0.001). Skin type was related to intensity for all localizations (p<0.001). Fluorescence was found in the lunulae with significantly less frequency in patients using N-acetylcysteine (p=0.040). CONCLUSIONS We must be aware of favipiravir-induced phototoxicity.
Collapse
Affiliation(s)
- Çağrı Turan
- Department of Dermatology and Venereology, The Republic of Turkey, Health Sciences University Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Nurcan Metin
- Department of Dermatology and Venereology, The Republic of Turkey, Health Sciences University Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Zeynep Utlu
- Department of Dermatology and Venereology, The Republic of Turkey, Health Sciences University Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Türkan Tuğba Yıldız
- Department of Dermatology and Venereology, The Republic of Turkey, Health Sciences University Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Selcen Caferoğlu Sakat
- Department of Dermatology and Venereology, The Republic of Turkey, Health Sciences University Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
29
|
Ison MG, Scheetz MH. Understanding the pharmacokinetics of Favipiravir: Implications for treatment of influenza and COVID-19. EBioMedicine 2021; 63:103204. [PMID: 33418497 PMCID: PMC7785424 DOI: 10.1016/j.ebiom.2020.103204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL USA.
| | - Marc H Scheetz
- Midwestern University, Colleges of Pharmacy and Graduate Studies, Departments of Pharmacy and Pharmacology, Pharmacometrics Center of Excellence, Downers Grove, IL USA; Northwestern Memorial Hospital, Chicago, IL, USA
| |
Collapse
|
30
|
Pertinez H, Rajoli RK, Khoo SH, Owen A. Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5'-triphosphate exposure to support posology for SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33442711 DOI: 10.1101/2021.01.03.21249159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background The role of favipiravir as a treatment for COVID-19 is unclear, with discrepant activity against SARS-CoV-2 in vitro , concerns about teratogenicity and pill burden, and an unknown optimal dose. In Vero-E6 cells, high concentrations are needed to inhibit SARS-CoV-2 replication. The purpose of this analysis was to use available data to simulate intracellular pharmacokinetics of favipiravir ribofuranosyl-5⍰-triphosphate (FAVI-RTP) to better understand the putative applicability as a COVID-19 intervention. Methods Previously published in vitro data for the intracellular production and elimination of FAVI- RTP in MDCK cells incubated with parent favipiravir was fitted with a mathematical model to describe the time course of intracellular FAVI-RTP concentrations as a function of incubation concentration of parent favipiravir. Parameter estimates from this model fitting were then combined with a previously published population PK model for the plasma exposure of parent favipiravir in Chinese patients with severe influenza (the modelled free plasma concentration of favipiravir substituting for in vitro incubation concentration) to predict the human intracellular FAVI-RTP pharmacokinetics. Results In vitro FAVI-RTP data was adequately described as a function of in vitro incubation media concentrations of parent favipiravir with an empirical model, noting that the model simplifies and consolidates various processes and is used under various assumptions and within certain limits. Parameter estimates from the fittings to in vitro data predict a flatter dynamic range of peak to trough for intracellular FAVI-RTP when driven by a predicted free plasma concentration profile. Conclusion This modelling approach has several important limitations that are discussed in the main text of the manuscript. However, the simulations indicate that despite rapid clearance of the parent drug from plasma, sufficient intracellular FAVI-RTP may be maintained across the dosing interval because of its long intracellular half-life. Population average intracellular FAVI-RTP concentrations are estimated to maintain the Km for the SARS-CoV-2 polymerase for 3 days following 800 mg BID dosing and 9 days following 1200 mg BID dosing after a 1600 mg BID loading dose on day 1. Further evaluation of favipiravir as part of antiviral combinations for SARS-CoV-2 is warranted.
Collapse
|
31
|
Peng F, Yuan H, Wu S, Zhou Y. Recent Advances on Drugs and Vaccines for COVID-19. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2021; 58:469580211055630. [PMID: 34818922 PMCID: PMC8673875 DOI: 10.1177/00469580211055630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current situation of Coronavirus Disease 2019 (COVID-19) worldwide is still very severe. Presently, many breakthroughs have been accomplished in the research and development of drugs for the treatment of COVID-19, especially vaccines; however, some of the so-called COVID-19-specific drugs highlighted in the early stage failed to achieve the expected curative effect. There is no antiviral therapy available, by stimulating protective immunity vaccine is the best choice for the future management of infection. Therefore, we aimed to identify the latest developments in the research and development of these drugs and vaccines and provide a reference for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Fang Peng
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Hao Yuan
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Sixian Wu
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Yifeng Zhou
- 87803The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
32
|
Srinivasan K, Rao M. Understanding the clinical utility of favipiravir (T-705) in coronavirus disease of 2019: a review. Ther Adv Infect Dis 2021; 8:20499361211063016. [PMID: 34881025 PMCID: PMC8646822 DOI: 10.1177/20499361211063016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease of 2019 (COVID-19) has caused significant morbidity and mortality among infected individuals across the world. High transmissibility rate of the causative virus - Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) - has led to immense strain and bottlenecking of the health care system. While noteworthy advances in vaccine development have been made amid the current global pandemic, most therapeutic agents are repurposed from use in other viral infections and are being evaluated for efficacy in COVID-19. Favipiravir, an orally administered drug originally developed in Japan against emerging influenza viral strains, has been shown to have widespread application and safety across multiple ribonucleic acid (RNA) viral infections. With a strong affinity toward the viral RNA-dependent RNA polymerase (RdRp), favipiravir could be a promising therapy against SARS-CoV-2, by targeting downstream viral RNA replication. Initial trials for usage in COVID-19 have suggested that favipiravir administration during initial infection stages, in individuals with mild to moderate infection, has a strong potential to improve clinical outcomes. However, additional well-designed clinical trials are required to closely examine ideal timing of drug administration, dosage, and duration, to assess the role of favipiravir in COVID-19 therapy. This review provides evidence-based insights and throws light on the current clinical trials examining the efficacy of favipiravir in tackling COVID-19, including its mechanism, pharmacodynamics, and pharmacokinetics.
Collapse
Affiliation(s)
- Kritika Srinivasan
- Department of Biomaterials and Pathology, Vilcek Institute, New York University School of Medicine, New York, NY, USA
| | - Mana Rao
- Essen Medical Associates, 2015 Grand Concourse, Bronx, NY 10453, USA
| |
Collapse
|