1
|
Zhang C, Zhang YQ, Liu RB, Ma YT, Zhao LK, Yin FQ, Tu J, Yao YY. Growing attention of immunogenicity among patients with autoimmune diseases post-SARS-CoV-2 vaccination: meta-analysis and systematic reviews of the current studies. Ann Med 2025; 57:2478319. [PMID: 40135763 PMCID: PMC11948354 DOI: 10.1080/07853890.2025.2478319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE This study aimed to identify the optimal strategy for patients with autoimmune diseases by comparing the immunoreaction and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines between healthy individuals and patients. METHODS The PubMed, Embase, and Cochrane Library were searched for eligible studies on effectiveness and immunoreaction to SARS-CoV-2 vaccines in patients with autoimmune diseases published until October 07, 2022. The quality of each included study was evaluated by independent reviewers using National Institutes of Health study quality assessment tool, and the STATA 15.0 software was used for all statistical analyses. RESULTS A total of 84 publications were included and analyzed in this meta-analysis, favoring healthy controls regarding serological response (risk ratio, RR=0.88, 95% CI (confidence interval): 0.86-0.91), antibody response (RR=0.90, 95%CI: 0.87-0.94), and incidence of seropositive immunoglobulin G (IgG) (RR=0.74, 95%CI: 0.69-0.80) than patients post-vaccination. Patients with autoimmune diseases developed lower IgG (standard mean difference, SMD=-0.64 95%CI: -0.84 to -0.43) and antibody titer level (SMD=-1.39, 95%CI: -2.30 to -0.49) than healthy individuals in AU/ml. Stratified analyses were conducted further according to various potential factors in full-text studies. CONCLUSION Patients who are immunocompromised and received more vaccines demonstrated poorer humoral responses and seropositive incidence after SARS-CoV-2 vaccination than healthy individuals. Despite the lack of observable favor for patients with autoimmune diseases, the trend of effectiveness of SARS-CoV-2 vaccines is close to that for healthy populations. Patients who are immunocompromised should be provided a better SARS-CoV-2 vaccination schedule, considering various vaccine subtypes, dose(s), variants of concern, and immunoassays.
Collapse
Affiliation(s)
- Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Qiang Zhang
- Department of Neurosurgery, Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Run-Ben Liu
- Center for Evidence-Based Medicine and Clinical Research, Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Tong Ma
- Center for Evidence-Based Medicine and Clinical Research, Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lin-Kang Zhao
- Center for Evidence-Based Medicine and Clinical Research, Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fu-Qiang Yin
- Center for Evidence-Based Medicine and Clinical Research, Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Tu
- Center for Evidence-Based Medicine and Clinical Research, Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yang-Yang Yao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Olivieri G, Amodio D, Manno EC, Santilli V, Cotugno N, Palma P. Shielding the immunocompromised: COVID-19 prevention strategies for patients with primary and secondary immunodeficiencies. Vaccine 2025; 51:126853. [PMID: 39946827 DOI: 10.1016/j.vaccine.2025.126853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The COVID-19 pandemic has significantly impacted immunocompromised patients, particularly those with inborn errors of immunity (IEI), transplant recipients, hematologic malignancies, and those undergoing treatment with immunosuppressive biologics and medications. These patients face an elevated risk of experiencing severe or even fatal consequences following SARS-CoV-2 infections. Vaccination is the primary defense against COVID-19; however, immune responses following immunization are often suboptimal in these patients, with variable specific humoral response rates. Despite the expedited regulatory approval and the widespread implementation of COVID-19 vaccines, the efficacy and safety for immunocompromised populations require thorough investigation. In future pandemics, including vulnerable populations (VPs) in vaccine and monoclonal antibody (mAb) trials is crucial to develop safe, effective immunization strategies, address gaps in vaccine efficacy and safety data, and create tailored guidelines for at-risk groups. This review provides a comprehensive examination of the efficacy of COVID-19 vaccines and mAbs in patients with primary and secondary immunodeficiency, with a specific focus on individuals with IEI, considering previous regulatory aspects and the necessity of including VPs in vaccine trials to enhance the quality of patient care and promote equitable health outcomes in future pandemics.
Collapse
Affiliation(s)
- Giulio Olivieri
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Donato Amodio
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emma Concetta Manno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica Santilli
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Centre for the Evaluation of Vaccination and Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Li Y, Meagher RB, Lin X. Tailoring mRNA lipid nanoparticles for antifungal vaccines. PLoS Pathog 2025; 21:e1013091. [PMID: 40293964 PMCID: PMC12036839 DOI: 10.1371/journal.ppat.1013091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Vaccination is one of the most effective public health measures for preventing and managing infectious diseases. Despite intensive efforts from the relatively small medical mycology community, developing effective vaccines against invasive fungal infections remains a scientific challenge. This is predominantly due to large antigenic repertoires, complicated life cycles, and the capacity of fungal pathogens to evade the host immune system. Additionally, antifungal vaccines often need to work for at-risk individuals who are immunodeficient. We anticipate that the success of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its exploration for various infectious diseases and cancers will usher a new wave of antifungal vaccine research. Herein, we discuss recent advancements and key scientific areas that need to be explored to actualize the development of effective antifungal mRNA vaccines.
Collapse
Affiliation(s)
- Yeqi Li
- Department of Microbiology, University of Georgia, Athens, GeorgiaUnited States of America
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, GeorgiaUnited States of America
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GeorgiaUnited States of America
| |
Collapse
|
4
|
Santos CDJSE, Fonseca RRDS, Lima SS, Carvalho TMDS, das Mercês LF, Avelino MEDS, de Araújo DO, Freitas FB, Brasil-Costa I, Oliveira-Filho AB, Rosário Vallinoto AC, Machado LFA. Efficacy of COVID-19 Vaccination in People Living with HIV/AIDS in a Northern Brazil: Cross-Sectional Study. Vaccines (Basel) 2025; 13:283. [PMID: 40266154 PMCID: PMC11945875 DOI: 10.3390/vaccines13030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES The evaluation of the efficacy of COVID-19 vaccination in immunocompromised individuals, such as people living with HIV/AIDS (PLWH), still is of great global importance. The present study aimed to describe the presence of anti-SARS-CoV-2 IgG antibodies in PLWH vaccinated and unvaccinated against COVID-19 in the city of Belém, northern Brazil. METHODS A cross-sectional study involving 510 PLWH was conducted from December 2021 to May 2022. Participants answered a sociodemographic questionnaire and subsequently underwent an anti-SARS-CoV-2 enzyme immunoassay for the detection of IgG antibodies, as well as quantification of CD4+ T lymphocytes and HIV-1 plasma viral load. RESULTS Most participants were male (70%), aged 25-50 years (72%), single (71.4%), and low-income (50.4%). The prevalence of anti-SARS-CoV-2 IgG antibodies was 94.3% (481/510), with most vaccinated individuals having received at least two doses of a COVID-19 vaccine. An association was observed between antibody levels and the number of vaccine doses, CD4+ T lymphocyte count, CD4+/CD8+ T lymphocyte ratio, and HIV-1 viral load. CONCLUSIONS PLWH developed high levels of antibodies against SARS-CoV-2 after receiving the vaccine, demonstrating that COVID-19 vaccination is of fundamental importance for the protection against severe COVID-19 in this specific group of immunocompromised individuals.
Collapse
Affiliation(s)
- Carolinne de Jesus Santos e Santos
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil; (C.d.J.S.e.S.); (A.C.R.V.)
| | - Ricardo Roberto de Souza Fonseca
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| | - Sandra Souza Lima
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| | - Thais Mayara da Silva Carvalho
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| | - Letícia França das Mercês
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| | - Maria Eduarda de Sousa Avelino
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| | - Diogo Oliveira de Araújo
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| | - Felipe Bonfim Freitas
- Evandro Chagas Institute, Health Ministry of Brazil, Ananindeua 67030-000, PA, Brazil;
| | - Igor Brasil-Costa
- Immunology Laboratory, Evandro Chagas Institute, Health Ministry of Brazil, Ananindeua 67030-000, PA, Brazil;
| | - Aldemir Branco Oliveira-Filho
- Study and Research Group on Vulnerable Populations, Institute for Coastal Studies, Federal University of Pará, Bragança 68600-000, PA, Brazil;
| | - Antonio Carlos Rosário Vallinoto
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil; (C.d.J.S.e.S.); (A.C.R.V.)
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| | - Luiz Fernando Almeida Machado
- Biology of Infectious and Parasitic Agents Post-Graduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil; (C.d.J.S.e.S.); (A.C.R.V.)
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.R.d.S.F.); (S.S.L.); (T.M.d.S.C.); (L.F.d.M.); (M.E.d.S.A.); (D.O.d.A.)
| |
Collapse
|
5
|
Kasai T, Yamada M, Funaki T, Tao C, Myojin S, Aiba H, Matsui T, Ogimi C, Miyake K, Ueno S, Miyairi I, Kato H, Shoji K. Antibody titer trends after SARS-CoV-2 vaccination in patients aged 12-25 years with underlying diseases. J Infect Chemother 2025; 31:102579. [PMID: 39647700 DOI: 10.1016/j.jiac.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Whereas declines in antibody titers after SARS-CoV-2 vaccination have been reported, most reports are predominantly from adults. Long-term trends in SARS-CoV-2 antibody titers after the first BNT162b2 vaccination series in children and young adults with underlying diseases remain less studied. METHODS This prospective single-center observational cohort study enrolled patients aged 12-25 years with underlying diseases who received the first BNT162b2 vaccination series. At least three longitudinal antibody titers were evaluated during the first year following vaccination. RESULTS Among 429 study subjects, 61 patients with at least three subsequent antibody titer measurements were included. The median (interquartile range [IQR]) time intervals from the vaccination to the first, second, and third antibody measurements were 43 (30-56), 126 (110-155), and 224 (207-256) days, and antibody titers declined with median (IQR) values of 2310 (1440-3515), 2010 (1165-3055), and 1410 (904-2195) U/mL, respectively. In 35 immunocompetent patients, the antibody titers decreased consistently in each measurement. In contrast, the antibody titers in immunocompromised patients remained stable between the first and second measurements, but declined by the third. A two-way ANOVA revealed that time was a more significant factor than immunocompromised status for the declines in antibody titers. CONCLUSIONS In patients aged 12-25 years with underlying diseases, antibody titers in immunocompromised patients after SARS-CoV-2 vaccination were lower than in immunocompetent patients in the early post-vaccination period, but they maintained titers similar to the immunocompetent counterpart during the long-term follow-up.
Collapse
Affiliation(s)
- Taketo Kasai
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masaki Yamada
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Takanori Funaki
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Chiaki Tao
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Shota Myojin
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Hiroyuki Aiba
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Toshihiro Matsui
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Chikara Ogimi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kozue Miyake
- Clinical Research Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Saki Ueno
- Clinical Research Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan; Department of Pediatrics, Hamamatsu University, School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hitoshi Kato
- National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
6
|
Erskine F, Spensley K, Prendecki M, Santos E, Anand A, Altmann D, Willicombe M. The Effect of HLA Polymorphism on Immune Response to SARS-CoV-2 Vaccination Within an Infection-Naïve, Vulnerable Population With End-Stage Renal Disease. HLA 2025; 105:e70076. [PMID: 39991976 PMCID: PMC11848999 DOI: 10.1111/tan.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
HLA genes exhibit a high degree of polymorphism, contributing to genetic variability known to influence immune responses to infection. Here we investigate associations between HLA polymorphism and serological and T-lymphocyte responses to the BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines within a population receiving maintenance haemodialysis (HD) for End-Stage Renal Disease (ESRD). Our primary objective was to identify HLA alleles associated with diminished serological and T-cellular responsiveness to vaccination. As a secondary objective, the associations between HLA type and COVID-19 disease outcomes were investigated using an independent ESRD cohort (n = 327). This aimed to determine if the alleles associated with poor vaccine response were also linked to unfavourable infection outcomes. In the main study, serum from 225 SARS-CoV-2 infection-naïve patients was HLA-typed using high-resolution Next Generation Sequencing, and serological titres were analysed for the presence of SARS-CoV-2 spike glycoprotein-specific antibodies after two doses of vaccination. A subset of patients (n = 33) was also tested for a T-lymphocyte response. Overall, 89% (n = 200) of patients seroconverted, but only 18% (n = 6) of the cellular response subgroup had a positive T-lymphocyte response. The HLA class II alleles DPB1*104:01, DRB1*04:03 and DRB1*14:04 and HLA class I alleles B*08:01 and B*18:01 were found to significantly correlate with seronegativity, and DQB1*06:01 correlated with serological responsiveness. We were unable to analyse the effect of HLA on disease outcome and T-lymphocyte response due to sample size limitations. Our results suggest pathways for further research and begin to elucidate the relationship between HLA polymorphism and immune responses in the vulnerable ESRD population.
Collapse
Affiliation(s)
- Fiona Erskine
- Imperial College London Department of Surgery and CancerLondonUK
| | - Katrina Spensley
- Imperial College London Department of Surgery and CancerLondonUK
| | - Maria Prendecki
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | | | | | - Danny Altmann
- Imperial College London Department of Surgery and CancerLondonUK
| | - Michelle Willicombe
- Imperial College London Department of Surgery and CancerLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
7
|
Hedberg P, Blixt L, Granath F, Bergman P, Carlander C, Aleman S, Hansson L. Uptake of the first to fifth doses of coronavirus disease 2019 vaccine in individuals with chronic lymphocytic leukaemia: A nationwide cohort study in Sweden. EJHAEM 2025; 6:e1077. [PMID: 39866941 PMCID: PMC11756972 DOI: 10.1002/jha2.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Abstract
Objectives Patients with chronic lymphocytic leukaemia (CLL) have an increased risk of severe coronavirus disease 2019 (COVID-19) as well as impaired responses to COVID-19 vaccination, which may be overcome by repeated booster vaccinations. Our objective was to explore the uptake of the COVID-19 vaccine in this population since records of this are scarce. Methods In this nationwide cohort study, we used multiple population-based health and sociodemographic registries to study COVID-19 vaccine uptake in individuals with CLL in Sweden, from 27 December 2020 to 28 February 2023. Results A total of 6304 individuals were included. The cumulative incidence (95% confidence interval) at the end of the study period was 95%, 94%, 88%, 78% and 56% for the first, second, third, fourth and fifth doses, respectively. The uptake was significantly higher compared with the age-standardized nationwide uptake. However, there were large disparities, especially for the fourth and fifth doses, across different age groups, birth regions, and income quartiles. These differences were especially pronounced in intersectional analyses, where individuals born abroad in the lowest income quartile had a vaccine uptake of only 49% and 24% for the fourth and fifth doses, respectively. Conclusions Even though uptake was generally high in individuals with CLL, it seems to be declining from dose three and onwards, and there are significant sociodemographic disparities in vaccine uptake.
Collapse
Affiliation(s)
- Pontus Hedberg
- Department of Medicine HuddingeKarolinska InstitutetStockholmSweden
| | - Lisa Blixt
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of HaematologyKarolinska University HospitalStockholmSweden
| | - Fredrik Granath
- Department of Medicine SolnaClinical Epidemiology DivisionKarolinska InstitutetStockholmSweden
| | - Peter Bergman
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
| | - Christina Carlander
- Department of Medicine HuddingeKarolinska InstitutetStockholmSweden
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Soo Aleman
- Department of Medicine HuddingeKarolinska InstitutetStockholmSweden
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
| | - Lotta Hansson
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of HaematologyKarolinska University HospitalStockholmSweden
| | | |
Collapse
|
8
|
Lindahl H, Kahn F, Nilsdotter-Augustinsson Å, Fredrikson M, Hedberg P, Killander Möller I, Hansson L, Blixt L, Eketorp Sylvan S, Österborg A, Aleman S, Carlander C, Nyström S, Bergman P. Inborn errors of immunity are associated with increased COVID-19-related hospitalization and intensive care compared to the general population. J Allergy Clin Immunol 2025; 155:387-397.e6. [PMID: 39447887 DOI: 10.1016/j.jaci.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND It is thought that patients with inborn errors of immunity (IEI) are more susceptible to severe coronavirus disease 2019 (COVID-19) than the general population, but a quantification of this potential risk is largely missing. OBJECTIVE We assessed the impact of COVID-19 on patients with IEI. METHODS A nationwide cohort study was performed to estimate the relative risk (RR) for hospitalization, intensive care, and death within 30 days after a positive severe acute respiratory syndrome coronavirus 2 test result in an IEI population (n = 2392) compared to the general population (n = 8,270,705) using data from Swedish national registries. Three time periods were studied: the prevaccination period, and the Alpha/Delta and Omicron periods. Adjustment was made for demographics, income, comorbidities, and vaccination status. RESULTS During the prevaccination period, 25.2% of the IEI population was hospitalized, compared to 17.5% and 5.2% during the Alpha/Delta and Omicron periods, respectively. For the 3 time periods, the adjusted RR [95% confidence interval] for hospitalization in the IEI population compared to the general population was 3.1 [2.1-4.2], 3.5 [2.4-4.8], and 4.3 [2.5-6.7], respectively. The respective values for intensive care after COVID-19 were 5.6 [2.6-10.8], 4.7 [1.7-10.1], and 4.7 [1.7-10.1] for the 3 periods. Five patients (0.6%) in the IEI population died within 30 days of a positive PCR test result compared to 18,773 (0.2%) in the general population during the 3 study periods. CONCLUSION Patients with IEI had a 3 to 4 times higher risk for hospitalization and a 5 times higher risk for intensive care during COVID-19 compared to the general population.
Collapse
Affiliation(s)
- Hannes Lindahl
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Kahn
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Lund, Sweden; Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mats Fredrikson
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Pontus Hedberg
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Blixt
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Soo Aleman
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Carlander
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Bergman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Kern M, Hamm SR, Pedersen CR, Møller DL, Loft JA, Hasselbalch RB, Heftdal LD, Pries-Heje MM, Perch M, Sørensen SS, Rasmussen A, Garred P, Iversen KK, Bundgaard H, Sabin CA, Nielsen SD. Leukocyte Count in Solid Organ Transplant Recipients After SARS-CoV-2 mRNA Vaccination and Infection. Vaccines (Basel) 2025; 13:103. [PMID: 40006650 PMCID: PMC11860179 DOI: 10.3390/vaccines13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Solid organ transplant (SOT) recipients are at risk of severe COVID-19. Vaccination is an important preventive measure but may have side effects, including decreased leukocyte counts. We aimed to describe the prevalence and relative incidence of decreased leukocyte counts and changes in leukocyte counts before and after SARS-CoV-2 mRNA vaccination and SARS-CoV-2 infection in SOT recipients. METHODS Changes in leukocyte counts from before to after each vaccine dose were investigated using linear mixed models. We determined the prevalence of decreased leukocyte counts before and after each vaccine dose and before and after SARS-CoV-2 infection. Self-controlled case series analysis was used to investigate whether the period after either vaccination or infection was associated with risk of decreased leukocyte count. RESULTS We included 228 adult kidney, lung, and liver transplant recipients. Prior to the first vaccine dose, the mean leukocyte count was 7.3 × 109 cells/L (95% CI 6.9-7.6). Both the leukocyte counts, and the prevalence of decreased leukocyte counts remained unchanged from before to after vaccination regardless of the number of vaccine doses provided. There was no association between vaccination and decreased leukocyte counts (incidence rate ratio (IRR): 0.6; 95% CI: 0.2-2.1; p = 0.461). In contrast, SARS-CoV-2 infection was associated with increased risk of a decreased leukocyte count (IRR: 7.1; 95% CI: 2.8-18.1; p < 0.001). CONCLUSIONS SARS-CoV-2 mRNA vaccination was not associated with risk of decreased leukocyte count and did not affect the prevalence of decreased leukocyte counts in SOT recipients. In contrast, SARS-CoV-2 infection was associated with a higher risk of a decreased leukocyte count.
Collapse
Affiliation(s)
- Marita Kern
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (S.R.H.)
| | - Sebastian Rask Hamm
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (S.R.H.)
| | - Christian Ross Pedersen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Dina Leth Møller
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (S.R.H.)
| | - Josefine Amalie Loft
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (S.R.H.)
| | - Rasmus Bo Hasselbalch
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Line Dam Heftdal
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (S.R.H.)
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Schwartz Sørensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Peter Garred
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Laboratory of Molecular medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Kasper Karmark Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Caroline A. Sabin
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, UCL, Royal Free Campus, Rowland Hill St., London NW3 2PF, UK
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (S.R.H.)
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Huang Y, Wang W, Liu Y, Wang Z, Cao B. COVID-19 vaccine updates for people under different conditions. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2323-2343. [PMID: 39083202 DOI: 10.1007/s11427-024-2643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 10/22/2024]
Abstract
SARS-CoV-2 has caused global waves of infection since December 2019 and continues to persist today. The emergence of SARS-CoV-2 variants with strong immune evasion capabilities has compromised the effectiveness of existing vaccines against breakthrough infections. Therefore, it is important to determine the best utilization strategies for different demographic groups given the variety of vaccine options available. In this review, we will discuss the protective efficacy of vaccines during different stages of the epidemic and emphasize the importance of timely updates to target prevalent variants, which can significantly improve immune protection. While it is recognized that vaccine effectiveness may be lower in certain populations such as the elderly, individuals with chronic comorbidities (e.g., diabetes with poor blood glucose control, those on maintenance dialysis), or those who are immunocompromised compared to the general population, administering multiple doses can result in a strong protective immune response that outweighs potential risks. However, caution should be exercised when considering vaccines that might trigger an intense immune response in populations prone to inflammatory flare or other complications. In conclusion, individuals with special conditions require enhanced and more effective immunization strategies to prevent infection or reinfection, as well as to avoid the potential development of long COVID.
Collapse
Affiliation(s)
- Yijiao Huang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiyang Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Changping Laboratory, Beijing, 102200, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
11
|
Ljungman P. Viral infection after hematopoietic stem cell transplantation. Curr Opin Hematol 2024; 31:270-274. [PMID: 39324900 DOI: 10.1097/moh.0000000000000833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Viral infections are important complications after allogeneic hematopoietic stem cell transplantation. New infections develop such as SARS-CoV-2 with the potential for severe consequences. In this review, newly published information regarding management of viral infections is discussed. RECENT FINDINGS Letermovir and maribavir are antiviral agents that have positively impacted the management of cytomegalovirus infections. These should today be included in treatment algorithms. The first antiviral cellular therapy for anti-CD20 refractory EBV-associated lymphoproliferative disease is now licensed and available. Vaccination as well as introduction of antiviral agents, mAbs and possibly the development of different viral strains have reduced mortality in COVID-19 in this patient population. Well designed studies have shown the improved immunogenicity of high-dose influenza vaccines. There is still an unmet medical need for patients infected with human metapneumovirus and parainfluenza viruses. SUMMARY Although improvements in patient management for several important posttransplantation viral infections have been reported, an unmet medical need still exists for other viruses occurring in this high-risk population.
Collapse
Affiliation(s)
- Per Ljungman
- Division of Hematology, Department of Medicine Huddinge, Karolinska Institutet, Department of Cellular Therapy and allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| |
Collapse
|
12
|
Chen P, Bergman P, Blennow O, Hansson L, Mielke S, Nowak P, Gao Y, Söderdahl G, Österborg A, Smith CIE, Vesterbacka J, Wullimann D, Cuapio A, Akber M, Bogdanovic G, Muschiol S, Åberg M, Loré K, Chen MS, Ljungman P, Buggert M, Aleman S, Ljunggren HG. Real-world assessment of immunogenicity in immunocompromised individuals following SARS-CoV-2 mRNA vaccination: a two-year follow-up of the prospective clinical trial COVAXID. EBioMedicine 2024; 109:105385. [PMID: 39395230 DOI: 10.1016/j.ebiom.2024.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Immunocompromised patients with primary and secondary immunodeficiencies have shown impaired responses to SARS-CoV-2 mRNA vaccines, necessitating recommendations for additional booster doses. However, longitudinal data reflecting the real-world impact of such recommendations remains limited. METHODS This study represents a two-year follow-up of the COVAXID clinical trial, where 364 of the original 539 subjects consented to participate. 355 individuals provided blood samples for evaluation of binding antibody (Ab) titers and pseudo-neutralisation capacity against both the ancestral SARS-CoV-2 strain and prevalent Omicron variants. T cell responses were assessed in a subset of these individuals. A multivariate analysis determined the correlation between Ab responses and the number of vaccine doses received, documented infection events, immunoglobulin replacement therapy (IGRT), and specific immunosuppressive drugs. The original COVAXID clinical trial was registered in EudraCT (2021-000175-37) and clinicaltrials.gov (NCT04780659). FINDINGS Several of the patient groups that responded poorly to the initial primary vaccine schedule and early booster doses presented with stronger immunogenicity-related responses including binding Ab titres and pseudo-neutralisation at the 18- and 24-month sampling time point. Responses correlated positively with the number of vaccine doses and infection. The vaccine response was blunted by an immunosuppressive state due to the underlying specific disease and/or to specific immunosuppressive treatment. INTERPRETATION The study results highlight the importance of continuous SARS-CoV-2 vaccine booster doses in building up and sustaining Ab responses in specific immunocompromised patient populations. FUNDING The present studies were supported by the European Research Council, Karolinska Institutet, Knut and Alice Wallenberg Foundation, Nordstjernan AB, Region Stockholm, and the Swedish Research Council.
Collapse
Affiliation(s)
- Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Mielke
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Söderdahl
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - David Wullimann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gordana Bogdanovic
- Dept of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Muschiol
- Dept of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Sällberg Chen
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Medicine Huddinge, Division of Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Yang X, Zhang J, Chen S, Liu Z, Poland GA, Olatosi B, Weissman S, Li X. COVID-19 Breakthrough Infections Among People With HIV: A Statewide Cohort Analysis. J Acquir Immune Defic Syndr 2024; 97:107-116. [PMID: 39250644 PMCID: PMC11386905 DOI: 10.1097/qai.0000000000003475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/23/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES This study aims to identify COVID-19 breakthrough infections among people with HIV (PWH) across different phases of the pandemic and explore whether differential immune dysfunctions are associated with breakthrough infections. DESIGN AND METHODS This retrospective population-based cohort study used data from an integrated electronic health record (EHR) database in South Carolina (SC). Breakthrough infection was defined as the first COVID-19 diagnosis documented in the state agency after the date an individual was fully vaccinated (ie, 2 doses of Pfizer/BNT162b2 or Moderna/mRNA-1273, or 1 dose of Janssen/Ad26.COV2.S) through June 14, 2022. We analyzed the risk and associated factors of the outcome using Cox proportional hazards models. RESULTS Among 7596 fully vaccinated PWH, the overall rate of breakthrough infections was 118.95 cases per 1000 person-years. When compared with the alpha-dominant period, the breakthrough infection rate was higher during both delta-dominant (HR: 1.50; 95% CI: 1.25 to 1.81) and omicron-dominant (HR: 2.86; 95% CI: 1.73 to 4.73) periods. Individuals who received a booster dose had a lower likelihood of breakthrough infections (HR: 0.19; 95% CI: 0.15 to 0.24). There was no association of breakthrough infections with degree of HIV viral suppression, but a higher CD4 count was significantly associated with fewer breakthroughs among PWH (>500 vs <200 cells/mm3: HR: 0.68; 95% CI: 0.49 to 0.94). CONCLUSIONS In our PWH population, the incidence of breakthrough infections was high (during both delta-dominant and omicron-dominant periods) and mainly associated with the absence of a booster dose in patients older than 50 years, with comorbidities and low CD4 count.
Collapse
Affiliation(s)
- Xueying Yang
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Jiajia Zhang
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Shujie Chen
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Ziang Liu
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN
| | - Bankole Olatosi
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, SC; and
| | - Sharon Weissman
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC
| | - Xiaoming Li
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
14
|
Narayanan A, Kieri O, Vesterbacka J, Manoharan L, Chen P, Ghorbani M, Ljunggren HG, Sällberg Chen M, Aleman S, Sönnerborg A, Ray S, Nowak P. Exploring the interplay between antiretroviral therapy and the gut-oral microbiome axis in people living with HIV. Sci Rep 2024; 14:17820. [PMID: 39090139 PMCID: PMC11294597 DOI: 10.1038/s41598-024-68479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut and oral microbiome is altered in people living with HIV (PLWH). While antiretroviral treatment (ART) is pivotal in restoring immune function in PLWH, several studies have identified an association between specific antiretrovirals, particularly integrase inhibitors (INSTI), and weight gain. In our study, we explored the differences in the oral and gut microbiota of PLWH under different ART regimens, and its correlation to Body Mass Index (BMI). Fecal and salivary samples were collected from PLWH (n = 69) and healthy controls (HC, n = 80). We performed taxonomy analysis to determine the microbial composition and relationship between microbial abundance and ART regimens, BMI, CD4+T-cell count, CD4/CD8 ratio, and ART duration. PLWH showed significantly lower richness compared to HC in both the oral and gut environment. The gut microbiome composition of INSTI-treated individuals was enriched with Faecalibacterium and Bifidobacterium, whereas non-nucleotide reverse transcriptase inhibitor (NNRTI)-treated individuals were enriched with Gordonibacter, Megasphaera, and Staphylococcus. In the oral microenvironment, Veillonella was significantly more abundant in INSTI-treated individuals and Fusobacterium and Alloprevotella in the NNRTI-treated individuals. Furthermore, Bifidobacterium and Dorea were enriched in gut milieu of PLWH with high BMI. Collectively, our findings identify distinct microbial profiles, which are associated with different ART regimens and BMI in PLWH on successful ART, thereby highlighting significant effects of specific antiretrovirals on the microbiome.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Oscar Kieri
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lokeshwaran Manoharan
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden (NBIS), SciLife, Lund University, Lund, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mahin Ghorbani
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, ANA Futura, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, ANA Futura, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Soo Aleman
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Sönnerborg
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Shilpa Ray
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Konuma T, Hamatani-Asakura M, Nagai E, Adachi E, Kato S, Isobe M, Monna-Oiwa M, Takahashi S, Yotsuyanagi H, Nannya Y. Cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T- and B-lymphocytes in adult allogeneic hematopoietic cell transplant recipients. Int J Hematol 2024; 120:229-240. [PMID: 38842630 PMCID: PMC11284193 DOI: 10.1007/s12185-024-03802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
We conducted a cross-sectional study to evaluate cellular and humoral immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination or infection and examine how lymphocyte subpopulations in peripheral blood correlate with cellular and humoral immunogenicity in adult allogeneic hematopoietic cell transplantation (HCT) recipients. The median period from SARS-CoV-2 vaccination or infection to sample collection was 110.5 days (range, 6-345 days). The median SARS-CoV-2 spike-specific antibody level was 1761 binding antibody units (BAU)/ml (range, 0 to > 11,360 BAU/ml). Enzyme-linked immunosorbent spot (ELISpot) assay of T cells stimulated with SARS-CoV-2 spike antigens showed that interferon-gamma (IFN-γ)-, interleukin-2 (IL-2)-, and IFN-γ + IL-2-producing T cells were present in 68.9%, 62.0%, and 56.8% of patients, respectively. The antibody level was significantly correlated with frequency of IL-2-producing T cells (P = 0.001) and IFN-γ + IL-2-producing T cells (P = 0.006) but not IFN-γ-producing T cells (P = 0.970). Absolute counts of CD8+ and CD4+ central memory T cells were higher in both IL-2- and IFN-γ + IL-2-producing cellular responders compared with non-responders. These data suggest that cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T cells and B cells in adult allogeneic HCT recipients.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan.
| | - Megumi Hamatani-Asakura
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
16
|
Simone S, Pronzo V, Pesce F, Bavaro DF, Infante B, Mercuri S, Schirinzi A, Panaro A, Conte E, Belati A, Troise D, Pontrelli P, Conserva F, Gallo P, Panico M, Spilotros M, Lucarelli G, Saracino A, Stallone G, Di Serio F, Ditonno P, Gesualdo L. Safety and efficacy of tixagevimab/cilgavimab for pre-exposure prophylaxis in kidney transplant recipients: a multicenter retrospective cohort study. J Nephrol 2024; 37:1539-1550. [PMID: 38780697 PMCID: PMC11473652 DOI: 10.1007/s40620-024-01889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/05/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Immunocompromised patients show an impaired vaccine response and remain at high risk of severe COVID-19, despite vaccination. Neutralizing monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed for prophylaxis and treatment. The combination tixagevimab/cilgavimab (AZD7442) has been authorized for emergency use as pre-exposure prophylaxis for COVID-19, but data on safety and efficacy in kidney transplant recipients during the Omicron period are limited. METHODS We conducted a multicenter retrospective cohort study including 253 kidney transplant recipients, of whom 98 were treated with tixagevimab/cilgavimab 150 mg/150 mg and 155 who received only four doses of the BNT162b2 mRNA vaccine. RESULTS Only 13.3% of patients developed SARS-CoV-2 infection after the administration of tixagevimab/cilgavimab; in comparison, 34.2% of patients had been infected after the fourth dose of vaccine (p = 0.00013). Most infected patients in the AZD7442 group remained asymptomatic (92.3% vs 54.7%), 7.7% had mild symptoms and none had severe disease, need for hospitalization or died, while in the control group, 9.4% of patients had moderate or severe disease (p = 0.04). Using Kaplan-Meier curves we demonstrated that the controls presented early infection compared to the AZD7442 group (p = 0.000014). No changes in eGFR or proteinuria, assessed before and after the administration, were observed. CONCLUSIONS In conclusion, our study showed that tixagevimab/cilgavimab 150/150 mg is effective and safe in preventing infection and severe disease when administered to patients with weak or no response to COVID-19 vaccine.
Collapse
Affiliation(s)
- Simona Simone
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Virginia Pronzo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Davide Fiore Bavaro
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Infante
- Renal Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Mercuri
- Renal Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Antonella Panaro
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Conte
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Belati
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Dario Troise
- Renal Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Conserva
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Gallo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Maddalena Panico
- Renal Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Marco Spilotros
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Renal Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
17
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
18
|
Ruta S, Popescu CP, Matei L, Grancea C, Paun AM, Oprea C, Sultana C. SARS-CoV-2 Humoral and Cellular Immune Responses in People Living with HIV. Vaccines (Basel) 2024; 12:663. [PMID: 38932392 PMCID: PMC11209143 DOI: 10.3390/vaccines12060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Immunosuppressed individuals, such as people living with HIV (PLWH), remain vulnerable to severe COVID-19. We analyzed the persistence of specific SARS-CoV-2 humoral and cellular immune responses in a retrospective, cross-sectional study in PLWH on antiretroviral therapy. Among 104 participants, 70.2% had anti-S IgG antibodies, and 55.8% had significant neutralizing activity against the Omicron variant in a surrogate virus neutralization test. Only 38.5% were vaccinated (8.76 ± 4.1 months prior), all displaying anti-S IgG, 75% with neutralizing antibodies and anti-S IgA. Overall, 29.8% of PLWH had no SARS-CoV-2 serologic markers; they displayed significantly lower CD4 counts and higher HIV viral load. Severe immunosuppression (present in 12.5% of participants) was linked to lower levels of detectable anti-S IgG (p = 0.0003), anti-S IgA (p < 0.0001) and lack of neutralizing activity against the Omicron variant (p < 0.0001). T-cell responses were present in 86.7% of tested participants, even in those lacking serological markers. In PLWH without severe immunosuppression, neutralizing antibodies and T-cell responses persisted for up to 9 months post-infection or vaccination. Advanced immunosuppression led to diminished humoral immune responses but retained specific cellular immunity.
Collapse
Affiliation(s)
- Simona Ruta
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Corneliu Petru Popescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Camelia Grancea
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Adrian Marius Paun
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Cristiana Oprea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Camelia Sultana
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| |
Collapse
|
19
|
Kamboj M, Bohlke K, Baptiste DM, Dunleavy K, Fueger A, Jones L, Kelkar AH, Law LY, LeFebvre KB, Ljungman P, Miller ED, Meyer LA, Moore HN, Soares HP, Taplitz RA, Woldetsadik ES, Kohn EC. Vaccination of Adults With Cancer: ASCO Guideline. J Clin Oncol 2024; 42:1699-1721. [PMID: 38498792 PMCID: PMC11095883 DOI: 10.1200/jco.24.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE To guide the vaccination of adults with solid tumors or hematologic malignancies. METHODS A systematic literature review identified systematic reviews, randomized controlled trials (RCTs), and nonrandomized studies on the efficacy and safety of vaccines used by adults with cancer or their household contacts. This review builds on a 2013 guideline by the Infectious Disease Society of America. PubMed and the Cochrane Library were searched from January 1, 2013, to February 16, 2023. ASCO convened an Expert Panel to review the evidence and formulate recommendations. RESULTS A total of 102 publications were included in the systematic review: 24 systematic reviews, 14 RCTs, and 64 nonrandomized studies. The largest body of evidence addressed COVID-19 vaccines. RECOMMENDATIONS The goal of vaccination is to limit the severity of infection and prevent infection where feasible. Optimizing vaccination status should be considered a key element in the care of patients with cancer. This approach includes the documentation of vaccination status at the time of the first patient visit; timely provision of recommended vaccines; and appropriate revaccination after hematopoietic stem-cell transplantation, chimeric antigen receptor T-cell therapy, or B-cell-depleting therapy. Active interaction and coordination among healthcare providers, including primary care practitioners, pharmacists, and nursing team members, are needed. Vaccination of household contacts will enhance protection for patients with cancer. Some vaccination and revaccination plans for patients with cancer may be affected by the underlying immune status and the anticancer therapy received. As a result, vaccine strategies may differ from the vaccine recommendations for the general healthy adult population vaccine.Additional information is available at www.asco.org/supportive-care-guidelines.
Collapse
Affiliation(s)
- Mini Kamboj
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Kari Bohlke
- American Society of Clinical Oncology, Alexandria, VA
| | | | - Kieron Dunleavy
- MedStar Georgetown University Hospital, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Abbey Fueger
- The Leukemia and Lymphoma Society, Rye Brook, NY
| | - Lee Jones
- Fight Colorectal Cancer, Arlington, VA
| | - Amar H Kelkar
- Harvard Medical School, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Per Ljungman
- Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eric D Miller
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Larissa A Meyer
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Heloisa P Soares
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | | | | | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD
| |
Collapse
|
20
|
Zhou JJ, Jin C, Leang ZX, Chatelier J, Godsell J, Tsang S, Douglass JA, Yong MK, Slavin M, Bryant VL, Slade CA, Chan S. A single-center experience of COVID-19 infection in patients with primary immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100241. [PMID: 38585448 PMCID: PMC10997894 DOI: 10.1016/j.jacig.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/22/2023] [Accepted: 01/08/2024] [Indexed: 04/09/2024]
Abstract
Background Reported outcomes in patients with primary immunodeficiency (PID) infected by coronavirus disease 2019 (COVID-19) have been variable owing to a combination of viral strain heterogeneity, differences in patient populations and health systems, and local availability of vaccination and specific COVID-19 therapies. There are few reports on the experience of Australian patients with PID during the pandemic. Objectives In this retrospective study, we describe the baseline characteristics and short-term outcomes of patients with PID who were infected by COVID-19 and known to the Royal Melbourne Hospital, a major tertiary center in Victoria, Australia. Methods Between April 2021 and April 2022, a total of 31 of 138 patients with PID were affected by COVID-19. More than half of them had 3 vaccine doses at the time of infection (which at the time was considered being fully vaccinated) and received COVID-19-targeted treatment. Results All of the infected patients had ambulatory disease, with no cases of morbidity or mortality. In line with the current literature, the PID subtypes described did not appear to independently predict worse outcomes. Conclusions Some protective factors include this cohort's relatively younger average age and its high uptake of vaccination and COVID-19 therapies.
Collapse
Affiliation(s)
- Jessie J. Zhou
- Department of Clinical Immunology and Allergy, Melbourne, Australia
| | - Celina Jin
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Zhi Xiang Leang
- Department of Clinical Immunology and Allergy, Melbourne, Australia
| | - Josh Chatelier
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Jack Godsell
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Melbourne, Australia
| | - Sylvia Tsang
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Jo A. Douglass
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Michelle K. Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Monica Slavin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Vanessa L. Bryant
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Charlotte A. Slade
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Samantha Chan
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Hedin W, Bergman P, Akhirunessa M, Söderholm S, Buggert M, Granberg T, Gredmark-Russ S, Smith CIE, Pettke A, Wahren Borgström E. Severe Tick-Borne Encephalitis (TBE) in a Patient with X-Linked Agammaglobulinemia; Treatment with TBE Virus IgG Positive Plasma, Clinical Outcome and T Cell Responses. J Clin Immunol 2024; 44:116. [PMID: 38676861 PMCID: PMC11055791 DOI: 10.1007/s10875-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.
Collapse
Affiliation(s)
- Wilhelm Hedin
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunessa
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Söderholm
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Pettke
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Emilie Wahren Borgström
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden.
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
22
|
Livieratos A, Gogos C, Akinosoglou K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024; 16:685. [PMID: 38793566 PMCID: PMC11125779 DOI: 10.3390/v16050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular and humoral immunity exhibit dynamic adaptation to the mutating SARS-CoV-2 virus. It is noteworthy that immune responses differ significantly, influenced by whether a patient has received vaccination or whether there is co-occurrence of naturally acquired and vaccine-induced immunity, known as hybrid immunity. The different immune reactions, conditional on vaccination status and the viral variant involved, bear implications for inflammatory responses, patient outcomes, pathogen transmission rates, and lingering post-COVID conditions. Considering these developments, we have performed a review of recently published literature, aiming to disentangle the intricate relationships among immunological profiles, transmission, the long-term health effects post-COVID infection poses, and the resultant clinical manifestations. This investigation is directed toward understanding the variability in the longevity and potency of cellular and humoral immune responses elicited by immunization and hybrid infection.
Collapse
Affiliation(s)
| | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
23
|
Ibrahim KY, Moreira RM, dos Santos CF, Strabelli TMV, Belizário JDC, Pinto MIDM, Marinho AKBB, Pereira JM, de Mello LS, Ando MC, da Silva VGL, Sato PK, de Lima MA, França JID, Loch AP, Miyaji KT, Infante V, Precioso AR, Sartori AMC. Immunogenicity of COVID-19 adsorbed inactivated vaccine (CoronaVac) and additional doses of mRNA BNT162b2 vaccine in immunocompromised adults compared with immunocompetent persons. Rev Inst Med Trop Sao Paulo 2024; 66:e24. [PMID: 38656040 PMCID: PMC11027488 DOI: 10.1590/s1678-9946202466024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 04/26/2024] Open
Abstract
Inactivated COVID-19 vaccines data in immunocompromised individuals are scarce. This trial assessed the immunogenicity of two CoronaVac doses and additional BNT162b2 mRNA vaccine doses in immunocompromised (IC) and immunocompetent (H) individuals. Adults with solid organ transplant (SOT), hematopoietic stem cell transplant, cancer, inborn immunity errors or rheumatic diseases were included in the IC group. Immunocompetent adults were used as control group for comparison. Participants received two CoronaVac doses within a 28-day interval. IC received two additional BNT162b2 doses and H received a third BNT162b2 dose (booster). Blood samples were collected at baseline, 28 days after each dose, pre-booster and at the trial end. We used three serological tests to detect antibodies to SARS-CoV-2 nucleocapsid (N), trimeric spike (S), and receptor binding domain (RBD). Outcomes included seroconversion rates (SCR), geometric mean titers (GMT) and GMT ratio (GMTR). A total of 241 IC and 100 H adults participated in the study. After two CoronaVac doses, IC had lower SCR than H: anti-N, 33.3% vs 79%; anti-S, 33.8% vs 86%, and anti-RBD, 48.5% vs 85%, respectively. IC also showed lower GMT than H: anti-N, 2.3 vs 15.1; anti-S, 58.8 vs 213.2 BAU/mL; and anti-RBD, 22.4 vs 168.0 U/mL, respectively. After the 3rd and 4th BNT162b2 doses, IC had significant anti-S and anti-RBD seroconversion, but still lower than H after the 3rd dose. After boosting, GMT increased in IC, but remained lower than in the H group. CoronaVac two-dose schedule immunogenicity was lower in IC than in H. BNT162b2 heterologous booster enhanced immune response in both groups.
Collapse
Affiliation(s)
- Karim Yaqub Ibrahim
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Moléstias Infecciosas e Parasitarias, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Instituto do Câncer do Estado de São Paulo, Serviço de Controle de Infecção Hospitalar, São Paulo, São Paulo, Brazil
| | - Raquel Megale Moreira
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Serviço de Transplante Renal, São Paulo, São Paulo, Brazil
| | - Carolina Ferreira dos Santos
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Divisão de Clínica de Médica, Serviço de Hematologia, Hemoterapia e Terapia Celular, São Paulo, São Paulo, Brazil
| | - Tânia Mara Varejão Strabelli
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Instituto do Coração, Subcomissão de Controle de Infecção Hospitalar, São Paulo, São Paulo, Brazil
| | - Juliana de Cássia Belizário
- Universidade de São Paulo, Faculdade de Medicina, Instituto do Câncer do Estado de São Paulo, Serviço de Controle de Infecção Hospitalar, São Paulo, São Paulo, Brazil
| | - Maria Isabel de Moraes Pinto
- Universidade Federal de São Paulo, Departamento de Pediatria, Disciplina de Alergia, Imunologia Clínica e Reumatologia, São Paulo, São Paulo, Brazil
| | - Ana Karolina Barreto Berselli Marinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Departamento de Clínica Médica, Divisão de Imunologia Clínica, São Paulo, São Paulo, Brazil
| | - Juliana Marquezi Pereira
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Divisão de Transplante de Fígado e Órgãos do Aparelho Digestivo, São Paulo, São Paulo, Brazil
| | - Liliane Saraiva de Mello
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Instituto do Coração, Serviço de Pneumologia Unidade de Transplante de Pulmão, São Paulo, São Paulo, Brazil
| | - Mauricio Cesar Ando
- Instituto Butantan, Divisão de Ensaios Clínicos e Farmacovigilância, Laboratório Estratégico de Diagnóstico Molecular- Sorologia, São Paulo, São Paulo, Brazil
| | - Vitor Gabriel Lopes da Silva
- Universidade Federal de São Paulo, Disciplina de Infectologia Pediátrica, Laboratório de Pesquisas, São Paulo, São Paulo, Brazil
| | - Paula Keiko Sato
- Universidade de São Paulo, Faculdade de Medicina, Laboratório de Investigação Médica-Imunologia da Divisão de Clínica de Moléstias Infecciosas e Parasitárias (LIM-48), São Paulo, São Paulo, Brazil
| | - Marcos Alves de Lima
- Instituto Butantan, Divisão de Ensaios Clínicos e Farmacovigilância, Centro de Farmacovigilância, Segurança Clínica e Gestão de Risco, São Paulo, São Paulo, Brazil
| | - João Italo Dias França
- Instituto Butantan, Divisão de Ensaios Clínicos e Farmacovigilância, Centro de Farmacovigilância, Segurança Clínica e Gestão de Risco, São Paulo, São Paulo, Brazil
| | - Ana Paula Loch
- Instituto Butantan, Divisão de Ensaios Clínicos e Farmacovigilância, Centro de Farmacovigilância, Segurança Clínica e Gestão de Risco, São Paulo, São Paulo, Brazil
| | - Karina Takesaki Miyaji
- Instituto Butantan, Divisão de Ensaios Clínicos e Farmacovigilância, Centro de Farmacovigilância, Segurança Clínica e Gestão de Risco, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Centro de Referência para Imunobiológicos Especiais, São Paulo, São Paulo, Brazil
| | - Vanessa Infante
- Instituto Butantan, Divisão de Ensaios Clínicos e Farmacovigilância, Centro de Farmacovigilância, Segurança Clínica e Gestão de Risco, São Paulo, São Paulo, Brazil
| | - Alexander Roberto Precioso
- Instituto Butantan, Divisão de Ensaios Clínicos e Farmacovigilância, Centro de Farmacovigilância, Segurança Clínica e Gestão de Risco, São Paulo, São Paulo, Brazil
| | - Ana Marli Christovam Sartori
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Centro de Referência para Imunobiológicos Especiais, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitarias, São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
McDonnell J, Cousins K, Younger MEM, Lane A, Abolhassani H, Abraham RS, Al-Tamemi S, Aldave-Becerra JC, Al-Faris EH, Alfaro-Murillo A, AlKhater SA, Alsaati N, Doss AMA, Anderson M, Angarola E, Ariue B, Arnold DE, Assa'ad AH, Aytekin C, Bank M, Bergerson JRE, Bleesing J, Boesing J, Bouso C, Brodszki N, Cabanillas D, Cady C, Callahan MA, Caorsi R, Carbone J, Carrabba M, Castagnoli R, Catanzaro JR, Chan S, Chandra S, Chapdelaine H, Chavoshzadeh Z, Chong HJ, Connors L, Consonni F, Correa-Jimenez O, Cunningham-Rundles C, D'Astous-Gauthier K, Delmonte OM, Demirdag YY, Deshpande DR, Diaz-Cabrera NM, Dimitriades VR, El-Owaidy R, ElGhazali G, Al-Hammadi S, Fabio G, Faure AS, Feng J, Fernandez JM, Fill L, Franco GR, Frenck RW, Fuleihan RL, Giardino G, Galant-Swafford J, Gambineri E, Garabedian EK, Geerlinks AV, Goudouris E, Grecco O, Pan-Hammarström Q, Khani HHK, Hammarström L, Hartog NL, Heimall J, Hernandez-Molina G, Horner CC, Hostoffer RW, Hristova N, Hsiao KC, Ivankovich-Escoto G, Jaber F, Jalil M, Jamee M, Jean T, Jeong S, Jhaveri D, Jordan MB, Joshi AY, Kalkat A, Kanarek HJ, Kellner ES, Khojah A, Khoury R, Kokron CM, Kumar A, Lecerf K, Lehman HK, Leiding JW, Lesmana H, Lim XR, Lopes JP, López AL, Tarquini L, et alMcDonnell J, Cousins K, Younger MEM, Lane A, Abolhassani H, Abraham RS, Al-Tamemi S, Aldave-Becerra JC, Al-Faris EH, Alfaro-Murillo A, AlKhater SA, Alsaati N, Doss AMA, Anderson M, Angarola E, Ariue B, Arnold DE, Assa'ad AH, Aytekin C, Bank M, Bergerson JRE, Bleesing J, Boesing J, Bouso C, Brodszki N, Cabanillas D, Cady C, Callahan MA, Caorsi R, Carbone J, Carrabba M, Castagnoli R, Catanzaro JR, Chan S, Chandra S, Chapdelaine H, Chavoshzadeh Z, Chong HJ, Connors L, Consonni F, Correa-Jimenez O, Cunningham-Rundles C, D'Astous-Gauthier K, Delmonte OM, Demirdag YY, Deshpande DR, Diaz-Cabrera NM, Dimitriades VR, El-Owaidy R, ElGhazali G, Al-Hammadi S, Fabio G, Faure AS, Feng J, Fernandez JM, Fill L, Franco GR, Frenck RW, Fuleihan RL, Giardino G, Galant-Swafford J, Gambineri E, Garabedian EK, Geerlinks AV, Goudouris E, Grecco O, Pan-Hammarström Q, Khani HHK, Hammarström L, Hartog NL, Heimall J, Hernandez-Molina G, Horner CC, Hostoffer RW, Hristova N, Hsiao KC, Ivankovich-Escoto G, Jaber F, Jalil M, Jamee M, Jean T, Jeong S, Jhaveri D, Jordan MB, Joshi AY, Kalkat A, Kanarek HJ, Kellner ES, Khojah A, Khoury R, Kokron CM, Kumar A, Lecerf K, Lehman HK, Leiding JW, Lesmana H, Lim XR, Lopes JP, López AL, Tarquini L, Lundgren IS, Magnusson J, Marinho AKBB, Marseglia GL, Martone GM, Mechtler AG, Mendonca L, Milner JD, Mustillo PJ, Naderi AG, Naviglio S, Nell J, Niebur HB, Notarangelo L, Oleastro M, Ortega-López MC, Patel NR, Petrovic G, Pignata C, Porras O, Prince BT, Puck JM, Qamar N, Rabusin M, Raje N, Regairaz L, Risma KA, Ristagno EH, Routes J, Roxo-Junior P, Salemi N, Scalchunes C, Schuval SJ, Seneviratne SL, Shankar A, Sherkat R, Shin JJ, Siddiqi A, Signa S, Sobh A, Lima FMS, Stenehjem KK, Tam JS, Tang M, Barros MT, Verbsky J, Vergadi E, Voelker DH, Volpi S, Wall LA, Wang C, Williams KW, Wu EY, Wu SS, Zhou JJ, Cook A, Sullivan KE, Marsh R. COVID-19 Vaccination in Patients with Inborn Errors of Immunity Reduces Hospitalization and Critical Care Needs Related to COVID-19: a USIDNET Report. J Clin Immunol 2024; 44:86. [PMID: 38578389 PMCID: PMC10997719 DOI: 10.1007/s10875-023-01613-5] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/08/2023] [Indexed: 04/06/2024]
Abstract
BACKGROUND The CDC and ACIP recommend COVID-19 vaccination for patients with inborn errors of immunity (IEI). Not much is known about vaccine safety in IEI, and whether vaccination attenuates infection severity in IEI. OBJECTIVE To estimate COVID-19 vaccination safety and examine effect on outcomes in patients with IEI. METHODS We built a secure registry database in conjunction with the US Immunodeficiency Network to examine vaccination frequency and indicators of safety and effectiveness in IEI patients. The registry opened on January 1, 2022, and closed on August 19, 2022. RESULTS Physicians entered data on 1245 patients from 24 countries. The most common diagnoses were antibody deficiencies (63.7%). At least one COVID-19 vaccine was administered to 806 patients (64.7%), and 216 patients received vaccination prior to the development of COVID-19. The most common vaccines administered were mRNA-based (84.0%). Seventeen patients were reported to seek outpatient clinic or emergency room care for a vaccine-related complication, and one patient was hospitalized for symptomatic anemia. Eight hundred twenty-three patients (66.1%) experienced COVID-19 infection. Of these, 156 patients required hospitalization (19.0%), 47 required ICU care (5.7%), and 28 died (3.4%). Rates of hospitalization (9.3% versus 24.4%, p < 0.001), ICU admission (2.8% versus 7.6%, p = 0.013), and death (2.3% versus 4.3%, p = 0.202) in patients who had COVID-19 were lower in patients who received vaccination prior to infection. In adjusted logistic regression analysis, not having at least one COVID-19 vaccine significantly increased the odds of hospitalization and ICU admission. CONCLUSION Vaccination for COVID-19 in the IEI population appears safe and attenuates COVID-19 severity.
Collapse
Affiliation(s)
- John McDonnell
- Pediatric Allergy and Immunology, Cleveland Clinic Children's Hospital, 9500 Euclid Ave/R3, Cleveland, OH, 44195, USA.
| | - Kimberley Cousins
- Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, USA
- Dept of Pathology, The Ohio State Univ Wexner College of Medicine, Columbus, USA
| | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Eman Hesham Al-Faris
- Department of Internal Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Alberto Alfaro-Murillo
- Department of Internal Medicine and Clinical Immunology, Hospital San Juan de Dios, San José, Costa Rica
| | - Suzan A AlKhater
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- King Fahd Hospital of University, Al-Khobar, Saudi Arabia
| | - Nouf Alsaati
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexa Michelle Altman Doss
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Melissa Anderson
- Division of Allergy Immunology Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Ernestina Angarola
- Immunology and Histocompatibility Unit, Hospital C. G. Durand, Buenos Aires, Argentina
| | - Barbara Ariue
- Department of Pediatrics, Division of Allergy and Immunology, Loma Linda Children's Hospital, Loma Linda, CA, USA
| | - Danielle E Arnold
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amal H Assa'ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Meaghan Bank
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Rockville, MD, USA
| | - Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Boesing
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carolina Bouso
- Immunology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Nicholas Brodszki
- Department of Pediatric Immunology, Children's Hospital, Lund University Hospital, Lund, Sweden
| | - Diana Cabanillas
- Immunology Unit-Hospital Sor María Ludovica, La Plata, Argentina
| | - Carol Cady
- Community Medical Center, Missoula, MT, USA
| | | | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Javier Carbone
- Immunology Department, Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - Maria Carrabba
- Department of Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jason R Catanzaro
- Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Samantha Chan
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hugo Chapdelaine
- Clinical Immunology, Montreal Clinical Research Institute, Université de Montréal, Montreal, Canada
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hey Jin Chong
- Division of Allergy and Immunology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori Connors
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Filippo Consonni
- Centre of Excellence, Division of Pediatric Oncology and Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Oscar Correa-Jimenez
- Pediatric Pulmonology and Immunology Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Charlotte Cunningham-Rundles
- Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA, USA
| | - Deepti R Deshpande
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Natalie M Diaz-Cabrera
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Victoria R Dimitriades
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| | - Rasha El-Owaidy
- Pediatric Allergy, Immunology and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Gehad ElGhazali
- Abu Dhabi and College of Medicine and Health Sciences, Sheikh Khalifa Medical City, Union71 - Purehealth, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suleiman Al-Hammadi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Giovanna Fabio
- Department of Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Jin Feng
- Clinical Immunology, Department of Medicine at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James M Fernandez
- Department of Allergy & Clinical Immunology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lauren Fill
- University Hospitals, Cleveland Medical Centers, Cleveland, OH, USA
| | - Guacira R Franco
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Robert W Frenck
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ramsay L Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY, USA
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Science, Federico II University, Naples, Italy
| | | | - Eleonora Gambineri
- Centre of Excellence, Division of Pediatric Oncology and Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elizabeth K Garabedian
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley V Geerlinks
- Pediatric Hematology and Oncology, Children's Hospital, Western University, London, ON, Canada
| | - Ekaterini Goudouris
- Division of Allergy and Clinical Immunology - IPPMG, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Octavio Grecco
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Hedieh Haji Khodaverdi Khani
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Nicholas L Hartog
- Helen DeVos Children's Hospital Division of Allergy and Immunology, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Jennifer Heimall
- Division of Allergy and Immunology, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gabriela Hernandez-Molina
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Caroline C Horner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Nataliya Hristova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital Álexandrovska, Sofia, Bulgaria
| | - Kuang-Chih Hsiao
- Starship Child Health, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Clinical Immunogenomics Research Consortium Australasia, Sydney, Australia
| | - Gabriela Ivankovich-Escoto
- Department of Pediatrics, Caja Costarricense de Seguro Social, Hospital Nacional de Niños, San José, Costa Rica
| | - Faris Jaber
- Clinical Immunology, Department of Medicine at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maaz Jalil
- Advanced ENT & Allergy, Medford, NJ, USA
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tiffany Jean
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA, USA
| | - Stephanie Jeong
- Clinical Immunology, Department of Medicine at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Devi Jhaveri
- Allergy Immunology Associates Inc., Allergy Immunology Fellowship Associate Program Director University Hospitals of Cleveland Medical Center, Cleveland, USA
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avni Y Joshi
- Mayo Clinic Children's Center, Pediatric and Adult Allergy and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Amanpreet Kalkat
- University Hospitals, Cleveland Medical Centers, Cleveland, OH, USA
| | | | - Erinn S Kellner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cristina M Kokron
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelsey Lecerf
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heather K Lehman
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Harry Lesmana
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Xin Rong Lim
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Joao Pedro Lopes
- UH Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Ana Laura López
- Unidad de Inmunología E Histocompatibilidad, Hospital Dr. Carlos G. Durand, Buenos Aires, Argentina
| | - Lucia Tarquini
- Section of Pathological Anatomy and Histopathology, Polytechnic University of the Marche Region, 60020, Ancona, Italy
| | - Ingrid S Lundgren
- Pediatric Infectious Diseases, St. Luke's Children's Hospital, Boise, ID, USA
| | | | - Ana Karolina B B Marinho
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Giulia M Martone
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Annamaria G Mechtler
- University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Leonardo Mendonca
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Center for Rare and Immunological Diseases, Hospital 9 de Julho - Rede DASA, São Paulo, Brazil
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter J Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Asal Gharib Naderi
- Allergy & Immunology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Samuele Naviglio
- Pediatric Hematology-Oncology, Institute for Maternal and Child Health IRCCS "Burlo Garofolo,", Trieste, Italy
| | - Jeremy Nell
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Hana B Niebur
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, USA
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Rockville, MD, USA
| | - Matias Oleastro
- Immunology Department, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - María Claudia Ortega-López
- Division of Pediatrics, Allergy and Clinical Immunology, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Neil R Patel
- Department of Pediatrics, Children's National Hospital, Washington, D.C., USA
| | - Gordana Petrovic
- Department of Clinical Immunology and Allergology, Institute of Mother and Child Health, Belgrade, Serbia
| | - Claudio Pignata
- Pediatrics, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Oscar Porras
- Pediatric Immunology and Rheumatology Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera,", San José, Costa Rica
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Jennifer M Puck
- Division of Allergy and Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Nashmia Qamar
- Division of Allergy and Immunology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marco Rabusin
- Pediatric Hematology-Oncology, Institute for Maternal and Child Health IRCCS "Burlo Garofolo,", Trieste, Italy
| | - Nikita Raje
- Division of Allergy Immunology Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lorena Regairaz
- Chief of Immunology Unit, Children's Hospital "Sor María Ludovica, Buenos Aires, Argentina
| | - Kimberly A Risma
- Division of Allergy Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - John Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Persio Roxo-Junior
- Division of Immunology and Allergy, Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Negin Salemi
- Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Susan J Schuval
- Division of Allergy and Immunology, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | | | - Ashwin Shankar
- University Hospitals, Cleveland Medical Centers, Cleveland, OH, USA
| | - Roya Sherkat
- Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Junghee Jenny Shin
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Sara Signa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Ali Sobh
- Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura University, Mansoura, Egypt
| | - Fabiana Mascarenhas Souza Lima
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Kristen K Stenehjem
- Department of Pediatrics, Children's National Hospital, Washington, D.C., USA
| | | | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, San Francisco, USA
| | - Myrthes Toledo Barros
- Division of Clinical Immunology and Allergy, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - James Verbsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eleni Vergadi
- Department of Paediatrics, Medical School, University of Crete, Rethymno, Greece
| | - Dayne H Voelker
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- Dipartimento Di NeuroscienzeRiabilitazioneOftalmologiaGenetica e Scienze Materno Infantili, University of Genoa, 16132, Genoa, Italy
| | - Luke A Wall
- Section of Allergy Immunology, Department of Pediatrics, Louisiana State University Health and Children's Hospital New Orleans, New Orleans, LA, USA
| | - Christine Wang
- Section of Rheumatology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Eveline Y Wu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shan Shan Wu
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Allergy and Immunology Associates Inc., Mayfield Heights, OH, USA
| | - Jessie J Zhou
- Department of Clinical Immunology & Allergy, The Royal Melbourne Hospital, Melbourne, Australia
| | - Alexandria Cook
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
25
|
Müller TR, Buggert M. Boosting SARS-CoV-2 immunity in immunocompromised individuals. Genes Immun 2024; 25:168-169. [PMID: 38114640 PMCID: PMC11023933 DOI: 10.1038/s41435-023-00219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Thomas R Müller
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
27
|
Müller TR, Gao Y, Wu J, Ribeiro O, Chen P, Bergman P, Blennow O, Hansson L, Mielke S, Nowak P, Vesterbacka J, Akber M, Söderdahl G, Smith CIE, Loré K, Chen MS, Ljungman P, Ingelman-Sundberg HM, Ljunggren HG, Österborg A, Sette A, Grifoni A, Aleman S, Buggert M. Memory T cells effectively recognize the SARS-CoV-2 hypermutated BA.2.86 variant. Cell Host Microbe 2024; 32:156-161.e3. [PMID: 38211584 DOI: 10.1016/j.chom.2023.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
T cells are critical in mediating the early control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection. However, it remains unknown whether memory T cells can effectively cross-recognize new SARS-CoV-2 variants with a broad array of mutations, such as the emergent hypermutated BA.2.86 variant. Here, we report in two separate cohorts, including healthy controls and individuals with chronic lymphocytic leukemia, that SARS-CoV-2 spike-specific CD4+ and CD8+ T cells induced by prior infection or vaccination demonstrate resilient immune recognition of BA.2.86. In both cohorts, we found largely preserved SARS-CoV-2 spike-specific CD4+ and CD8+ T cell magnitudes against mutated spike epitopes of BA.2.86. Functional analysis confirmed that both cytokine expression and proliferative capacity of SARS-CoV-2 spike-specific T cells to BA.2.86-mutated spike epitopes are similarly sustained. In summary, our findings indicate that memory CD4+ and CD8+ T cells continue to provide cell-mediated immune recognition to highly mutated emerging variants such as BA.2.86.
Collapse
Affiliation(s)
- Thomas R Müller
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinghua Wu
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Oriana Ribeiro
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Mielke
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå, Sweden
| | - Jan Vesterbacka
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Söderdahl
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna M Ingelman-Sundberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Yang X, Zhang J, Liu Z, Chen S, Olatosi B, Poland GA, Weissman S, Li X. COVID-19 breakthrough infections among people living with and without HIV: A statewide cohort analysis. Int J Infect Dis 2024; 139:21-27. [PMID: 38013151 PMCID: PMC10842358 DOI: 10.1016/j.ijid.2023.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES This study aims to characterize and compare COVID-19 breakthrough infections between people living with and without HIV across different phases of the pandemic. METHODS Using statewide HIV cohort data, the study population included adult residents in South Carolina (SC) (>18 years old) who were fully vaccinated between January 02, 2021 and April 14, 2022 when Alpha, Delta, and Omicron variants were circulating in SC. We used the Cox proportional hazard model to investigate the association between HIV infection and breakthrough infection, adjusting for relevant covariates. RESULTS Among 2,144,415 vaccinated individuals, 8,335 were people living with HIV (PLWH) and 2,136,080 were people without HIV (PWoH). After propensity score matching, HIV infection was not significantly associated with breakthrough infection rate. However, when comparing breakthrough infections among individuals without any booster dose, PLWH had a higher risk of breakthrough infections (adjusted Hazard Ration: 1.19; 95% confidence interval: 1.03-1.39). Compared to PWoH, PLWH with high levels of clusters of differentiation 4 (CD4) count or viral suppression were not associated with breakthrough infections. CONCLUSIONS Our findings do not support a broad conclusion that COVID-19 vaccine effectiveness is lower among PLWH, while we did find that PLWH had a higher risk of breakthrough infection compared to PWoH if they did not receive a booster dose.
Collapse
Affiliation(s)
- Xueying Yang
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, USA; South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA.
| | - Jiajia Zhang
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Ziang Liu
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Shujie Chen
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Bankole Olatosi
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, USA
| | - Sharon Weissman
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, USA
| | - Xiaoming Li
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, USA; South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA
| |
Collapse
|
29
|
Özdemiral C, Cevik NN, Yavuz G, Gormez O, Zengin AB, Esenboga S, Karabulut E, Cagdas D. The spectrum of side effects associated with COVID-19 vaccines in patients with inborn errors of immunity. Clin Immunol 2024; 259:109878. [PMID: 38122840 DOI: 10.1016/j.clim.2023.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE COVID-19 immunization was implemented with emergency-use authorization. We had concerns/lack of information on mRNA vaccine side effects in different inborn errors of immunity (IEI) types. METHODS We enrolled 141 patients (IEIP) and 151 healthy controls(HC) who received SARS-CoV-2 vaccine/s(Sinovac and/or Pfizer-BioNTech(mRNA vaccine), one to five doses), questioned them for side-effects, evaluated in three groups according to the vaccine/s they received; only Sinovac, only Pfizer-BioNTech, and both vaccines. RESULTS Arm pain, generalized weakness, myalgia, and fever were common side effects in IEI-P and HC groups. Generalized weakness/fatigue, fever, and palpitation were significantly frequent in IEI-P who experienced COVID-19 compared to those who did not (p = 0.021, p = 0.047, and p = 0.024, respectively). Severe symptoms after vaccination, new-onset splenomegaly and pancytopenia, urticaria, herpes simplex virus (HSV), and varicella zoster virus (VZV) reactivation were seen in four IEI-P (2.8%). CONCLUSION IEI-P mRNA vaccination is relatively safe compared to the conventional vaccine. Individuals who experience uncommon side effects should undergo immunological screening.
Collapse
Affiliation(s)
- Cansu Özdemiral
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Immunology, Ankara, Turkey
| | - Nadira Nabiyeva Cevik
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Immunology, Ankara, Turkey
| | - Gizem Yavuz
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Ankara, Turkey
| | - Onuralp Gormez
- Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Saliha Esenboga
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Immunology, Ankara, Turkey
| | - Erdem Karabulut
- Hacettepe University Faculty of Medicine, Basic Medical Sciences, Department of Biostatistics, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Immunology, Ankara, Turkey.
| |
Collapse
|
30
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Höft MA, Burgers WA, Riou C. The immune response to SARS-CoV-2 in people with HIV. Cell Mol Immunol 2024; 21:184-196. [PMID: 37821620 PMCID: PMC10806256 DOI: 10.1038/s41423-023-01087-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.
Collapse
Affiliation(s)
- Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
32
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Howard DS, Ibrahim U, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T cell therapy: A prospective, multicenter, observational study (BMT CTN 2101). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301058. [PMID: 38343800 PMCID: PMC10854344 DOI: 10.1101/2024.01.24.24301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design Multicenter prospective observational study. Setting 34 centers in the United States. Participants 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions SARS-CoV-2 vaccination as part of routine care. Measurements We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations The majority of participants were adults and received mRNA vaccines. Conclusions These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A Toor
- Lehigh Valley Health Network, Allentown, PA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
33
|
Kim SR, Waghmare A, Hijano DR. Approach to hematopoietic cell transplant candidates with respiratory viral detection. Front Pediatr 2024; 11:1339239. [PMID: 38304442 PMCID: PMC10830789 DOI: 10.3389/fped.2023.1339239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
The management of respiratory viruses prior to hematopoietic cell transplant (HCT) can be controversial and requires special consideration of host factors, transplant parameters, and the specific respiratory virus (RV). In the setting of adenovirus (ADV), human metapneumovirus (HMPV), influenza, parainfluenza virus (PIV), and respiratory syncytial virus (RSV) detection prior to hematopoietic cell transplant (HCT), clinical practice guidelines recommend transplant delay when possible; however, there is much more ambiguity when other respiratory viruses, such as seasonal coronaviruses (CoVs), human rhinovirus (HRV), and SARS-CoV-2, are detected. Our aims for this review include detailing clinical practical guidelines and reviewing current literature on pre-transplant respiratory viral infections (RVIs), including antiviral therapies and prevention strategies, when available. We will center our discussion on three representative clinical scenarios, with the goal of providing practical guidance to clinicians.
Collapse
Affiliation(s)
- Sara R. Kim
- Division of Pediatric Infectious Diseases, Seattle Children’s Hospital, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alpana Waghmare
- Division of Pediatric Infectious Diseases, Seattle Children’s Hospital, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Diego R. Hijano
- Departments of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
34
|
Søndergaard MH, Thavarajah JJ, Churchill Henson H, Wejse CM. SARS-CoV-2 vaccine immunogenicity for people living with HIV: A systematic review and meta-analysis. HIV Med 2024; 25:16-37. [PMID: 37731375 DOI: 10.1111/hiv.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Previous publications on the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with HIV (PLWH) have reported inconsistent results. Additionally, a meta-analysis investigating the immunogenicity in PLWH after the third SARS-CoV-2 vaccine dose is lacking. In this article we aim to provide a systematic review and a meta-analysis studying the immunogenicity of SARS-CoV-2 vaccines in PLWH and to identify potential drivers for antibody response in PLWH. METHODS We used three databases (PubMed, Embase and Web of Science) to conduct our review. Studies with information on numbers of PLWH producing immunoglobulin G (IgG) antibodies or neutralizing antibodies were included. RESULTS The meta-analysis included 59 studies and illustrated a pooled serological response of 87.09% in the 10 343 PLWH after they received a SARS-CoV-2 vaccine. High CD4 T-cell counts and low viral load indicated that the study populations had HIV that was well treated, despite varying in location. The pooled effect increased to 91.62% for 8053 PLWH when excluding studies that used inactivated vaccines (BBIBP-CorV and CoronaVac). For the third vaccine dose, the pooled effect was 92.35% for 1974 PLWH. Additionally, weighted linear regression models demonstrated weak relationships between CD4 T-cell count, percentages of people with undetectable HIV load, and age compared with the percentages of PLWH producing a serological response. However, more research is needed to determine the effect of those factors on SARS-CoV-2 vaccine immunogenicity in PLWH. CONCLUSION SARS-CoV-2 vaccines show a favourable effect on immunogenicity in PLWH. However, the results are not ideal. This meta-analysis suggests that a third SARS-CoV-2 vaccine dose and good HIV treatment procedures are vital to induce a good immunogenicity in PLWH.
Collapse
Affiliation(s)
| | | | | | - Christian Morberg Wejse
- GloHAU, Center for Global Health, Department of Public Health, Aarhus University, Aarhus C, Region Midtjylland, Denmark
- Department of Infectious Diseases, Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
35
|
Ray S, Narayanan A, Vesterbacka J, Blennow O, Chen P, Gao Y, Gabarrini G, Ljunggren HG, Buggert M, Manoharan L, Chen MS, Aleman S, Sönnerborg A, Nowak P. Impact of the gut microbiome on immunological responses to COVID-19 vaccination in healthy controls and people living with HIV. NPJ Biofilms Microbiomes 2023; 9:104. [PMID: 38123600 PMCID: PMC10733305 DOI: 10.1038/s41522-023-00461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Although mRNA SARS-CoV-2 vaccines are generally safe and effective, in certain immunocompromised individuals they can elicit poor immunogenic responses. Among these individuals, people living with HIV (PLWH) have poor immunogenicity to several oral and parenteral vaccines. As the gut microbiome is known to affect vaccine immunogenicity, we investigated whether baseline gut microbiota predicts immune responses to the BNT162b2 mRNA SARS-CoV-2 vaccine in healthy controls and PLWH after two doses of BNT162b2. Individuals with high spike IgG titers and high spike-specific CD4+ T-cell responses against SARS-CoV-2 showed low α-diversity in the gut. Here, we investigated and presented initial evidence that the gut microbial composition influences the response to BNT162b2 in PLWH. From our predictive models, Bifidobacterium and Faecalibacterium appeared to be microbial markers of individuals with higher spike IgG titers, while Cloacibacillus was associated with low spike IgG titers. We therefore propose that microbiome modulation could optimize immunogenicity of SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Shilpa Ray
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Aswathy Narayanan
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Soo Aleman
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Sönnerborg
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm, 141 52, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Cai C, Gao Y, Adamo S, Rivera-Ballesteros O, Hansson L, Österborg A, Bergman P, Sandberg JK, Ljunggren HG, Björkström NK, Strålin K, Llewellyn-Lacey S, Price DA, Qin C, Grifoni A, Weiskopf D, Wherry EJ, Sette A, Aleman S, Buggert M. SARS-CoV-2 vaccination enhances the effector qualities of spike-specific T cells induced by COVID-19. Sci Immunol 2023; 8:eadh0687. [PMID: 38064569 PMCID: PMC7615587 DOI: 10.1126/sciimmunol.adh0687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
T cells are critical for immune protection against severe COVID-19, but it has remained unclear whether repeated exposure to SARS-CoV-2 antigens delivered in the context of vaccination fuels T cell exhaustion or reshapes T cell functionality. Here, we sampled convalescent donors with a history of mild or severe COVID-19 before and after SARS-CoV-2 vaccination to profile the functional spectrum of hybrid T cell immunity. Using combined single-cell technologies and high-dimensional flow cytometry, we found that the frequencies and functional capabilities of spike-specific CD4+ and CD8+ T cells in previously infected individuals were enhanced by vaccination, despite concomitant increases in the expression of inhibitory receptors such as PD-1 and TIM3. In contrast, CD4+ and CD8+ T cells targeting non-spike proteins remained functionally static and waned over time, and only minimal effects were observed in healthy vaccinated donors experiencing breakthrough infections with SARS-CoV-2. Moreover, hybrid immunity was characterized by elevated expression of IFN-γ, which was linked with clonotype specificity in the CD8+ T cell lineage. Collectively, these findings identify a molecular hallmark of hybrid immunity and suggest that vaccination after infection is associated with cumulative immunological benefits over time, potentially conferring enhanced protection against subsequent episodes of COVID-19.
Collapse
Affiliation(s)
- Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah Adamo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Alessandro Sette
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Neemann KA, Sato AI. Vaccinations in children with hematologic malignancies and those receiving hematopoietic stem cell transplants or cellular therapies. Transpl Infect Dis 2023; 25 Suppl 1:e14100. [PMID: 37436808 DOI: 10.1111/tid.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Children who are immune compromised are uniquely threatened by a higher risk of infections, including vaccine-preventable diseases (VPDs). Children who undergo chemotherapy or cellular therapies may not have preexisting immunity to VPDs at the time of their treatment including not yet receiving their primary vaccine series, and additionally they have higher risk of exposures (e.g., due to family structures, daycare and school setting) with decreased capacity to protect themselves using nonpharmaceutic measures (e.g., masking). In the past, efforts to revaccinate these children have often been delayed or incomplete. Treatment with chemotherapy, stem cell transplants, and/or cellular therapies impair the ability of the immune system to mount a robust vaccine response. Ideally, protection would be provided as soon as both safe and effective, which will vary by vaccine type (e.g., replicating versus nonreplicating; conjugated versus polysaccharide). While a single approach revaccination schedule following these therapies would be convenient for providers, it would not account for patient specific factors that influence the timing of immune reconstitution (IR). Evidence suggests that many of these children would mount a meaningful vaccine response as early as 3 months following completion of treatment. Here within, we provide updated guidance on how to approach vaccination both during and following completion of these therapies.
Collapse
Affiliation(s)
- Kari A Neemann
- Division of Infectious Diseases, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Children's Hospital & Medical Center, Omaha, Nebraska, USA
| | - Alice I Sato
- Division of Infectious Diseases, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Children's Hospital & Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
38
|
Kampouri E, Hill JA, Dioverti V. COVID-19 after hematopoietic cell transplantation and chimeric antigen receptor (CAR)-T-cell therapy. Transpl Infect Dis 2023; 25 Suppl 1:e14144. [PMID: 37767643 DOI: 10.1111/tid.14144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
More than 3 years have passed since Coronavirus disease 2019 (COVID-19) was declared a global pandemic, yet COVID-19 still severely impacts immunocompromised individuals including those treated with hematopoietic cell transplantation (HCT) and chimeric antigen receptor-T-cell therapies who remain at high risk for severe COVID-19 and mortality. Despite vaccination efforts, these patients have inadequate responses due to immunosuppression, which underscores the need for additional preventive approaches. The optimal timing, schedule of vaccination, and immunological correlates for protective immunity remain unknown. Antiviral therapies used early during disease can reduce mortality and severity due to COVID-19. The combination or sequential use of antivirals could be beneficial to control replication and prevent the development of treatment-related mutations in protracted COVID-19. Despite conflicting data, COVID-19 convalescent plasma remains an option in immunocompromised patients with mild-to-moderate disease to prevent progression. Protracted COVID-19 has been increasingly recognized among these patients and has been implicated in intra-host emergence of SARS-CoV-2 variants. Finally, novel SARS-CoV2-specific T-cells and natural killer cell-boosting (or -containing) products may be active against multiple variants and are promising therapies in immunocompromised patients.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Pulvirenti F, Garzi G, Milito C, Sculco E, Sciannamea M, Napoli A, Cinti L, Roberto P, Punziano A, Carrabba M, Piano Mortari E, Carsetti R, Antonelli G, Quinti I. SARS-CoV-2 pre-exposure prophylaxis with tixagevimab/cilgavimab (AZD7442) provides protection in inborn errors of immunity with antibody defects: a real-world experience. Front Immunol 2023; 14:1249462. [PMID: 37954618 PMCID: PMC10639167 DOI: 10.3389/fimmu.2023.1249462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background Preventive strategies against severe COVID-19 in Inborn Errors of Immunity (IEI) include bivalent vaccines, treatment with SARS-CoV-2 monoclonal antibodies (mAbs), early antiviral therapies, and pre-exposure prophylaxis (PrEP). Objective To assess the effectiveness of the PrEP with tixagevimab/cilgavimab (AZD7442) in IEI with primary antibody defects during the COVID-19 Omicron wave. Methods A six-month prospective study evaluated the SARS-CoV-2 infection rate and the COVID-19 severity in the AZD7442 group, in the no-AZD7442 group, and in a group of patients with a recent SARS-CoV-2 infection (< three months). Spike-specific IgG levels were measured at regular intervals. Results Six out of thirty-three patients (18%) and 54/170 patients (32%) became infected in the AZD7442 group and in the no-AZD7442 group, respectively. Within 90 days post-administration, the AZD7442 group was 85% less likely to be infected and 82% less likely to have a symptomatic disease than the no-AZD7442 group. This effect was lost thereafter. In the entire cohort, no mortality/hospitalisation was observed. The control group of 35 recently infected patients was 88% and 92% less likely to be infected than the AZD7442 and no-AZD7442 groups. Serum anti-Spike IgG reached the highest peak seven days post-AZD7442 PrEP then decreased, remaining over 1000 BAU/mL 180 days thereafter. Conclusion In patients with IEI and antibody defects, AZD7442 prophylaxis had a transient protective effect, possibly lost possibly because of the appearance of new variants. However, PrEP with newer mAbs might still represent a feasible preventive strategy in the future in this population.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Anna Napoli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Lilia Cinti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Piergiorgio Roberto
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Piano Mortari
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Isabella Quinti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
40
|
Hammer Q, Cuapio A, Bister J, Björkström NK, Ljunggren HG. NK cells in COVID-19-from disease to vaccination. J Leukoc Biol 2023; 114:507-512. [PMID: 36976012 DOI: 10.1093/jleuko/qiad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Natural killer cells participate in the host innate immune response to viral infection. Conversely, natural killer cell dysfunction and hyperactivation can contribute to tissue damage and immunopathology. Here, we review recent studies with respect to natural killer cell activity during infection with SARS-CoV-2. Discussed are initial reports of patients hospitalized with COVID-19, which revealed prompt natural killer cell activation during the acute disease state. Another hallmark of COVID-19, early on observed, was a decrease in numbers of natural killer cells in the circulation. Data from patients with acute SARS-CoV-2 infection as well as from in vitro models demonstrated strong anti-SARS-CoV-2 activity by natural killer cells, likely through direct cytotoxicity as well as indirectly by secreting cytokines. Additionally, we describe the molecular mechanisms underlying natural killer cell recognition of SARS-CoV-2-infected cells, which involve triggering of multiple activating receptors, including NKG2D, as well as loss of inhibition through NKG2A. Discussed is also the ability of natural killer cells to respond to SARS-CoV-2 infection via antibody-dependent cellular cytotoxicity. With respect to natural killer cells in the pathogenesis of COVID-19, we review studies demonstrating how hyperactivation and misdirected NK cell responses could contribute to disease course. Finally, while knowledge is still rather limited, we discuss current insights suggesting a contribution of an early natural killer cell activation response in the generation of immunity against SARS-CoV-2 following vaccination with anti-SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Angelica Cuapio
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| |
Collapse
|
41
|
Lucane Z, Kursite M, Sablinskis K, Gailite L, Kurjane N. COVID-19 Vaccination Coverage and Factors Influencing Vaccine Hesitancy among Patients with Inborn Errors of Immunity in Latvia: A Mixed-Methods Study. Vaccines (Basel) 2023; 11:1637. [PMID: 38005969 PMCID: PMC10675738 DOI: 10.3390/vaccines11111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The European Society for Immunodeficiencies recommends that all patients with inborn errors of immunity (IEI) without contraindications should receive SARS-CoV-2 vaccination. The aim of this study was to investigate the reasons that discourage IEI patients from receiving the recommended vaccination and to assess vaccination coverage among IEI patients in Latvia. METHODS In this multicenter mixed-methods study, the vaccination status of all patients with IEI within two tertiary centers in Latvia was reviewed using electronic health records. Semi-structured interviews were conducted with 16 IEI patients who did not undergo vaccination, and a thematic analysis was performed. RESULTS A total of 341 patients (49.3% female; median age 19.7 years (IQR:17)) were included in the quantitative part. The proportion of fully vaccinated individuals aged ≥ 12 years was 66.8%-70.9% with patients with selective IgA deficiency and 58.8% with other IEI (χ² = 14.12, p < 0.001). The proportion of fully vaccinated individuals aged 5-11 years was 11.1%. Age was associated with vaccination status: younger patients were found to have a significantly lower likelihood of receiving vaccination (U = 8585, p < 0.001). The five main themes identified were as follows: (1) fear and uncertainty; (2) risk and benefit assessment: COVID-19 vaccine-is it worth it? (3) external influences: the dark horse of the decision-making-people around us; (4) individuals against the system; and (5) beliefs about vaccination and COVID-19. Under-representation of certain IEI groups and recall bias are possible limitations of this study. CONCLUSIONS While most reasons for hesitancy were similar to those previously described in the general population, disease-specific concerns were also identified.
Collapse
Affiliation(s)
- Zane Lucane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Mirdza Kursite
- Department of Public Health and Epidemiology, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Kristaps Sablinskis
- Department of Internal Diseases, Riga Stradins University, LV-1007 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Outpatient Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Outpatient Clinic, Children’s Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
42
|
İSKENDER G, MERT D, YAPAR TOROS G, YILMAZ F, BOZAN E, TUNÇBİLEK S, ÇAKMAK ÖKSÜZOĞLU ÖB, ALTUNTAŞ F, ERTEK M. COVID-19 in cancer patients: patient characteristics and outcomes in the post-COVID-19 vaccination period. Turk J Med Sci 2023; 53:1744-1755. [PMID: 38813483 PMCID: PMC10760596 DOI: 10.55730/1300-0144.5744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/12/2023] [Accepted: 10/12/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim It wasaimed herein to investigate coronavirus disease (COVID-19) in cancer patients and compare hematological and solid organ cancer patients in terms of the course and outcome of this disease. Materials and methods Data from cancer patients with laboratory-confirmed COVID-19 infection were analyzed retrospectively. Risk factors for poor prognosis and the effect of vaccination on the clinical outcomes of the patients were evaluated. Results A total of 403 cancer patients who were diagnosed with COVID-19 between March 1st, 2021, and November 30th, 2022, were included, of whom 329 (81.6%) had solid and 74 (18.4%) had hematological cancers. Hospitalization and intensive care unit (ICU) admission rates were significantly higher in the hematological cancer patients compared to the solid organ cancer patients (73.0% vs. 35.9%, p< 0.001 and 25.7% vs. 14.0%, p= 0.013, respectively). The COVID-19-related case fatality rate (CFR) was defined as 15.4%, and it was higher in the hematologicalcancer patientsthan inthe solid organ cancer patients (23.0% vs. 13.7%, p= 0.045) and was higher in patients with metastatic/advanced disease compared to the other cancer stages (p< 0.001). In the solid organ cancergroup, hospitalization, ICU admission, and the COVID-19 CFR were higher in patients with respiratory and genitourinary cancers (p< 0.001). A total of 288 (71.8%) patients had receivedCOVID-19 vaccination; 164 (56.94%) had≤2 doses and 124 (43.06%) had≥3 doses. The hospitalization rate was higher in patients with ≤2 doses of vaccine compared to those with ≥3 doses (48.2% vs. 29.8%,p= 0.002). Patients with COVID-19-related death had higher levels of leucocyte, neutrophil, D-dimer, troponin, C-reactive protein (CRP), procalcitonin, and ferritin and lower levels of lymphocyte than the survivors. In the logistic regression analysis,the risk of COVID-19-related mortality was higher in the hematological cancer patients(OR:1.726), those who were male (OR:1.757), and with the Pre-Delta/Delta variants (OR:1.817). Conclusion This study revealed that there is an increased risk of COVID-19-related serious events (hospitalization, ICU admission, or death) in patients with hematological cancerscompared with those who have solid organ cancers. It wasalso shown that receiving ≥3 doses of COVID-19 vaccine is more protective against severe illness and the need for hospitalization than ≤2 doses.
Collapse
Affiliation(s)
- Gülşen İSKENDER
- Department, of Infectious Diseases and Clinical Microbiology, Ankara Oncology Training and Research Hospital, University of Health Sciences, Ankara,
Turkiye
| | - Duygu MERT
- Department, of Infectious Diseases and Clinical Microbiology, Ankara Oncology Training and Research Hospital, University of Health Sciences, Ankara,
Turkiye
| | - Göknur YAPAR TOROS
- Department of Infectious Diseases and Clinical microbiology, Ankara Etlik City Hospital, Ankara,
Turkiye
| | - Funda YILMAZ
- Division of Medical Oncology, Erzurum City Hospital, Erzurum,
Turkiye
| | - Ersin BOZAN
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Oncology Training and Research Hospital, Ankara,
Turkiye
| | - Semra TUNÇBİLEK
- Department, of Infectious Diseases and Clinical Microbiology, Ankara Oncology Training and Research Hospital, University of Health Sciences, Ankara,
Turkiye
| | | | - Fevzi ALTUNTAŞ
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Oncology Training and Research Hospital, University of Health Sciences, Ankara,
Turkiye
| | - Mustafa ERTEK
- Department, of Infectious Diseases and Clinical Microbiology, Ankara Oncology Training and Research Hospital, University of Health Sciences, Ankara,
Turkiye
| |
Collapse
|
43
|
Harel R, Itchaki G. COVID-19 in Patients with Chronic Lymphocytic Leukemia: What Have We Learned? Acta Haematol 2023; 147:60-72. [PMID: 37820599 PMCID: PMC11251671 DOI: 10.1159/000534540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a prevalent hematological malignancy (HM) characterized by inherent immunodeficiency, which is further pronounced by disease-directed therapy. The COVID-19 pandemic has had devastating outcomes, and although its impact has diminished over time, it continues to be a cause of significant morbidity and mortality, particularly among immunodeficient patients. SUMMARY In this review, we describe mechanisms of immune dysfunction in CLL in relation to COVID-19, provide an overview of the clinical outcomes of the disease in this patient population, and identify risk factors associated with severe morbidity and mortality. Additionally, we acknowledge the influence of the rapidly evolving landscape of new disease variants. The review further delineates the humoral and cellular responses to vaccination and their clinical efficacy in preventing COVID-19 in CLL patients. Moreover, we explore potential approaches to enhance these immune responses. Pre- and post-exposure prophylaxis strategies are discussed, along with description of common agents in the treatment of the disease in both outpatient and inpatient setting. Throughout the review, we emphasize the interplay between novel therapies for CLL and COVID-19 outcomes, prevention, and treatment and describe the impact of COVID-19 on the utilization of these novel agents. This information has the potential to guide clinical decision making in the management CLL patients. KEY MESSAGES CLL patients are at risk for severe COVID-19 infection. Vaccinations and COVID-19 directed therapy have improved outcomes in patients with CLL, yet clinical challenges persist.
Collapse
Affiliation(s)
- Reut Harel
- Department of Hematology, Emek Medical Center, Afula, Israel
| | - Gilad Itchaki
- Hematology, Meir Medical Center, Kefar Sava, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
44
|
Doukas PG, St. Pierre F, Karmali R, Mi X, Boyer J, Nieves M, Ison MG, Winter JN, Gordon LI, Ma S. Humoral Immunity After COVID-19 Vaccination in Chronic Lymphocytic Leukemia and Other Indolent Lymphomas: A Single-Center Observational Study. Oncologist 2023; 28:e930-e941. [PMID: 37141401 PMCID: PMC10546828 DOI: 10.1093/oncolo/oyad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) and other non-Hodgkin's lymphomas (NHLs) lead to broad immunosuppression, conferring a greater risk for morbidity and mortality from SARS-CoV-2. Our study analyzed antibody (Ab) seropositivity from SARS-CoV-2 vaccination in patients with these cancers. METHODS In the final analysis, 240 patients were involved, and seropositivity was defined as a positive total or spike protein Ab. RESULTS Seropositivity was 50% in CLL, 68% in WM, and 70% in the remaining NHLs. Moderna vaccination led to higher seropositivity compared to Pfizer vaccination across all cancers (64% vs. 49%; P = .022) and specifically CLL patients (59% vs. 43%; P = .029). This difference was not explainable by differences in treatment status or prior anti-CD20 monoclonal Ab therapy. In CLL patients, current or prior cancer therapy led to lower seropositivity compared to treatment-naïve patients (36% vs. 68%; P = .000019). CLL patients treated with Bruton's tyrosine kinase (BTK) inhibitors had better seropositivity after receiving the Moderna vaccination compared to Pfizer (50% vs. 23%; P = .015). Across all cancers, anti-CD20 agents within 1 year led to a lower Ab response compared to greater than one year (13% vs. 40%; P = .022), a difference which persisted after booster vaccination. CONCLUSION Antibody response is lower in patients with indolent lymphomas compared to the general population. Lower Ab seropositivity was found in patients with a history of anti-leukemic agent therapy or those immunized with Pfizer vaccine. This data suggests that Moderna vaccination may confer a greater degree of immunity against SARS-CoV-2 in patients with indolent lymphomas.
Collapse
Affiliation(s)
- Peter G Doukas
- Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Frederique St. Pierre
- Division of Hematology and Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Reem Karmali
- Division of Hematology and Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Xinlei Mi
- Department of Preventive Medicine and Biostatistics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Boyer
- Division of Hematology and Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Mariana Nieves
- Division of Hematology and Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Jane N Winter
- Division of Hematology and Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Leo I Gordon
- Division of Hematology and Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Shuo Ma
- Division of Hematology and Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
45
|
Yoshikawa M, Natori Y, Oki R, Unagami K, Ohfuji S, Imamura R, Ishida H, Takahara S, Hirota Y, Egawa H. Comparison of BNT162b2 and mRNA1273 vaccines in solid organ transplant recipients: Post-Hoc analysis of a Japanese national prospective study. Scand J Immunol 2023; 98:e13308. [PMID: 38441221 DOI: 10.1111/sji.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease-19 (COVID-19) vaccine efficacy and immunogenicity in the immunocompetent population are well established. However, in solid organ transplant (SOT) recipients, because of their use of immunosuppressive medication, the immunogenicity of these severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines remains suboptimal. Both BNT162b2 and mRNA1273 have been used for some time, but their immunogenicity has not been directly compared in this immunocompromised patient group. We performed a post-hoc analysis of a previous prospective cohort study. The inclusion criteria were adult SOT recipients with active grafts at least 1 month after SOT. After giving consent, participants chose to receive either BNT162b2 or mRNA1273 vaccine. Anti-spike-protein-S antibody against SARS-CoV-2 was measured. Propensity scores were calculated via logistic regression to transform the probability of having received either BNT162b2 or mRNA1273 vaccine, and a model was developed. We enrolled 623 SOT recipients. In the propensity score-matched analysis, 100 recipients were selected for BNT162b2 and 100 for mRNA1273. SARS-CoV-2 anti-spike protein antibody positivity with BNT162b2 versus mRNA1273 at 3 weeks after the first dose, 1 month after the second dose, 3 months after the second dose, and 6 months after the second dose were 10% versus 19% (P = .07), 51% versus 58% (P = .30), 74% versus 88% (P = .01), and 78% versus 87% (P = .13), respectively. We conducted a propensity score-matched comparison of BNT162b2 and mRNA1273 vaccines as the primary series of COVID-19 vaccines in SOT recipients. We found significantly better immunogenicity with the mRNA1273 vaccine than with BNT162b2.
Collapse
Affiliation(s)
- Mikiko Yoshikawa
- Department of Organ Transplantation and General Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Natori
- Miami Transplant Institute, Jackson Health System, Miami, Florida, USA
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rikako Oki
- Departments of Organ Transplant Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Departments of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kohei Unagami
- Departments of Organ Transplant Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Departments of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
- Yochomachi Clinic, Tokyo, Japan
| | - Satoko Ohfuji
- Department of Public Health, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Ishida
- Departments of Organ Transplant Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Shiro Takahara
- Department of Renal Transplantation, Kansai Medical Clinic, Osaka, Japan
| | - Yoshio Hirota
- Clinical Epidemiology Research Center, Medical Co. Ltd. (SOUSEIKAI), Fukuoka, Japan
| | - Hiroto Egawa
- Departments of Surgery, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
46
|
Costiniuk CT, Singer J, Lee T, Galipeau Y, McCluskie PS, Arnold C, Langlois MA, Needham J, Jenabian MA, Burchell AN, Samji H, Chambers C, Walmsley S, Ostrowski M, Kovacs C, Tan DH, Harris M, Hull M, Brumme ZL, Lapointe HR, Brockman MA, Margolese S, Mandarino E, Samarani S, Vulesevic B, Lebouché B, Angel JB, Routy JP, Cooper CL, Anis AH. Antibody neutralization capacity after coronavirus disease 2019 vaccination in people with HIV in Canada. AIDS 2023; 37:F25-F35. [PMID: 37534695 PMCID: PMC10481923 DOI: 10.1097/qad.0000000000003680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES Many vaccines require higher/additional doses or adjuvants to provide adequate protection for people with HIV (PWH). Here, we compare coronavirus disease 2019 (COVID-19) vaccine-induced antibody neutralization capacity in PWH vs. HIV-negative individuals following two vaccine doses. DESIGN In Canadian prospective observational cohorts, including a multicentre study of PWH receiving at least two COVID-19 vaccinations (mRNA or ChAdOx1-S), and a parallel study of HIV-negative controls (Stop the Spread Ottawa Cohort), we measured vaccine-induced neutralization capacity 3 months post dose 2 (±1 month). METHODS COVID-19 neutralization efficiency was measured by calculating the half maximal inhibitory dilution (ID50) using a high-throughput protein-based neutralization assay for Ancestral (Wuhan), Delta and Omicron (BA.1) spike variants. Univariable and multivariable quantile regression were used to compare COVID-19-specific antibody neutralization capacity by HIV status. RESULTS Neutralization assays were performed on 256 PWH and 256 controls based on specimen availability at the timepoint of interest, having received two vaccines and known date of vaccination. There was a significant interaction between HIV status and previous COVID-19 infection status in median ID50. There were no differences in median ID50 for HIV+ vs. HIV-negative persons without past COVID-19 infection. For participants with past COVID-19 infection, median ICD50 was significantly higher in controls than in PWH for ancestral SARS-CoV-2 and Omicron variants, with a trend for the Delta variant in the same direction. CONCLUSION Vaccine-induced SARS-CoV-2 neutralization capacity was similar between PWH vs. HIV-negative persons without past COVID-19 infection, demonstrating favourable humoral-mediated immunogenicity. Both HIV+ and HIV-negative persons demonstrated hybrid immunity. TRIAL REGISTRATION clinicaltrials.gov NCT04894448.
Collapse
Affiliation(s)
- Cecilia T. Costiniuk
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
- Infectious Diseases and Immunity in Global Health Research Program, Research Institute of McGill University Health Centre
- Department of Experimental Medicine, McGill University, Montreal, Québec
| | - Joel Singer
- School of Population and Public Health, University of British Columbia
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Judy Needham
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Québec
| | - Ann N. Burchell
- Department of Family and Community Medicine, St Michael's Hospital, Unity Health Toronto
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario
| | - Hasina Samji
- Faculty of Health Sciences, Simon Fraser University, Burnaby
- British Columbia Centre for Disease Control, Vancouver, British Columbia
| | - Catharine Chambers
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario
- MAP Centre for Urban Health Solutions, St Michael's Hospital
| | - Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University of Toronto
| | - Mario Ostrowski
- Clinical Sciences Division and Department of Immunology, University of Toronto, Li Ka Shing Knowledge Institute, St. Michael's Hospital
| | | | - Darrell H.S. Tan
- MAP Centre for Urban Health Solutions, St Michael's Hospital
- Division of Infectious Diseases, Department of Medicine, University of Toronto
- Institute of Public Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
| | - Mark Hull
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
| | | | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia
| | | | | | - Suzanne Samarani
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
| | - Branka Vulesevic
- CIHR Canadian HIV Trials Network (CTN)
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Bertrand Lebouché
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
- Infectious Diseases and Immunity in Global Health Research Program, Research Institute of McGill University Health Centre
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University
- Canadian Institutes of Health Research Strategy for Patient-Oriented Research Mentorship Chair in Innovative Clinical Trials
| | - Jonathan B. Angel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Jean-Pierre Routy
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
- Infectious Diseases and Immunity in Global Health Research Program, Research Institute of McGill University Health Centre
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montreal, Québec, Canada
| | - Curtis L. Cooper
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Aslam H. Anis
- School of Population and Public Health, University of British Columbia
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| |
Collapse
|
47
|
Meejun T, Srisurapanont K, Manothummetha K, Thongkam A, Mejun N, Chuleerarux N, Sanguankeo A, Phongkhun K, Leksuwankun S, Thanakitcharu J, Lerttiendamrong B, Langsiri N, Torvorapanit P, Worasilchai N, Plongla R, Hirankarn N, Nematollahi S, Permpalung N, Moonla C, Kates OS. Attenuated immunogenicity of SARS-CoV-2 vaccines and risk factors in stem cell transplant recipients: a meta-analysis. Blood Adv 2023; 7:5624-5636. [PMID: 37389818 PMCID: PMC10514108 DOI: 10.1182/bloodadvances.2023010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
Immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is diminished in hematopoietic stem cell transplant (HSCT) recipients. To summarize current evidence and identify risk factors for attenuated responses, 5 electronic databases were searched since database inceptions through 12 January 2023 for studies reporting humoral and/or cellular immunogenicity of SARS-CoV-2 vaccination in the HSCT population. Using descriptive statistics and random-effects models, extracted numbers of responders and pooled odds ratios (pORs) with 95% confidence intervals (CIs) for risk factors of negative immune responses were analyzed (PROSPERO: CRD42021277109). From 61 studies with 5906 HSCT recipients, after 1, 2, and 3 doses of messenger RNA (mRNA) SARS-CoV-2 vaccines, the mean antispike antibody seropositivity rates (95% CI) were 38% (19-62), 81% (77-84), and 80% (75-84); neutralizing antibody seropositivity rates were 52% (40-64), 71% (54-83), and 78% (61-89); and cellular immune response rates were 52% (39-64), 66% (51-79), and 72% (52-86). After 2 vaccine doses, risk factors (pOR; 95% CI) associated with antispike seronegativity were male recipients (0.63; 0.49-0.83), recent rituximab exposure (0.09; 0.03-0.21), haploidentical allografts (0.46; 0.22-0.95), <24 months from HSCT (0.25; 0.07-0.89), lymphopenia (0.18; 0.13-0.24), hypogammaglobulinemia (0.23; 0.10-0.55), concomitant chemotherapy (0.48; 0.29-0.78) and immunosuppression (0.18; 0.13-0.25). Complete remission of underlying hematologic malignancy (2.55; 1.05-6.17) and myeloablative conditioning (1.72; 1.30-2.28) compared with reduced-intensity conditioning were associated with antispike seropositivity. Ongoing immunosuppression (0.31; 0.10-0.99) was associated with poor cellular immunogenicity. In conclusion, attenuated humoral and cellular immune responses to mRNA SARS-CoV-2 vaccination are associated with several risk factors among HSCT recipients. Optimizing individualized vaccination and developing alternative COVID-19 prevention strategies are warranted.
Collapse
Affiliation(s)
- Tanaporn Meejun
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Achitpol Thongkam
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuthchaya Mejun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipat Chuleerarux
- Department of Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL
| | - Anawin Sanguankeo
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasidis Phongkhun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Surachai Leksuwankun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | - Nattapong Langsiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Olivia S. Kates
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
48
|
Zhao T, Yang Z, Wu Y, Yang J. Immunogenicity and safety of COVID-19 vaccines among people living with HIV: A systematic review and meta-analysis. Epidemiol Infect 2023; 151:e176. [PMID: 37704371 PMCID: PMC10600909 DOI: 10.1017/s095026882300153x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Available data suggest that the immunogenicity of COVID-19 vaccines might decrease in the immunocompromised population, but data on vaccine immunogenicity and safety among people living with HIV (PLWH) are still lacking. The purpose of this meta-analysis is to compare the immunogenicity and safety of COVID-19 vaccines in PLWH with healthy controls. We comprehensively searched the following databases: PubMed, Cochrane Library, and EMBASE. The risk ratio (RR) of seroconversion after the first and second doses of a COVID-19 vaccine was separately pooled using random-effects meta-analysis. Seroconversion rate was lower among PLWH compared with healthy individuals after the first (RR = 0.77, 95% confident interval (CI) 0.64-0.92) and second doses (RR = 0.97, 95%CI 0.95-0.99). The risk of total adverse reactions among PLWH is similar to the risk in the healthy group, after the first (RR = 0.87, 95%CI 0.70-1.10) and second (RR = 0.83, 95%CI 0.65-1.07) doses. This study demonstrates that the immunogenicity and safety of SARS-CoV-2 vaccine in fully vaccinated HIV-infected patients were generally satisfactory. A second dose was related to seroconversion enhancement. Therefore, we considered that a booster dose may provide better seroprotection for PLWH. On the basis of a conventional two-dose regimen for COVID-19 vaccines, the booster dose is very necessary.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
| | - Zongxing Yang
- The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxia Wu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
- Department of Translational Medicine Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
49
|
Liang EC, Onstad LE, Carpenter P, Pergam SA, Flowers ME, Lee SJ, Liu C. Association of Self-Reported COVID-19 Vaccination Status with COVID-19 Infection among Adult Long-Term Hematopoietic Cell Transplantation Survivors. Transplant Cell Ther 2023; 29:584.e1-584.e9. [PMID: 37394113 PMCID: PMC10528463 DOI: 10.1016/j.jtct.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Hematopoietic cell transplantation (HCT) recipients experience significant morbidity and mortality from coronavirus disease 19 (COVID-19) infection. Data are limited regarding long-term HCT survivors' uptake of and experiences with COVID-19 vaccination and infection. This study aimed to characterize COVID-19 vaccination uptake, use of other prevention measures, and COVID-19 infection outcomes in adult HCT recipients at our institution. Between July 1, 2021, and June 30, 2022, long-term adult HCT survivors were surveyed regarding overall health, chronic graft-versus-host (cGVHD) status, and experiences with COVID-19 vaccinations, prevention measures, and infections. Patients reported COVID-19 vaccination status, vaccine-related adverse effects, use of nonpharmaceutical prevention measures, and infections. Comparisons by response and vaccination status were performed using the chi-square test and Fisher exact test for categorical variables and the Kruskal-Wallis test for continuous variables. Of 4758 adult HCT survivors who underwent HCT between 1971 and 2021 and consented to participate in annual surveys, 1719 (36%) completed the COVID-19 module, and 1598 of 1705 (94%) reported receiving ≥1 dose of COVID-19 vaccine. Severe vaccine-related adverse effects were infrequent (5%). Among respondents receiving an mRNA vaccine, completion of doses according to the Centers for Disease Control and Prevention's vaccine recommendations at the time of survey return was 2 doses in 675 of 759 (89%), 3 doses in 610 of 778 (78%), and 4 doses in 26 of 55 (47%). Two hundred fifty respondents (15%) reported COVID-19 infection; 25 (10%) required hospitalization. Vaccinated respondents reported significantly higher uptake of household vaccination (1284 of 1404 [91%] versus 18 of 88 [20%]; P < .001) and the use of nonpharmaceutical interventions (P < .001). Vaccinated respondents were significantly less likely to have contracted COVID-19 (85 of 1480 [6%] versus 130 of 190 [68%]; P < .001), as were their household members (149 of 1451 [10%] versus 85 of 185 [46%]; P < .001). Receipt of additional COVID-19 vaccine doses beyond the first dose was associated with a reduced risk of COVID-19 infection (odds ratio, .63; 95% confidence interval, .47 to .85; P = .002). Vaccination was well tolerated and associated with a lower risk of COVID-19 infection among HCT survivors and their household contacts. Vaccination and booster doses should be encouraged as part of a multifaceted approach in this high-risk population.
Collapse
Affiliation(s)
- Emily C Liang
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Lynn E Onstad
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Paul Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington
| | - Steven A Pergam
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Mary E Flowers
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Catherine Liu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| |
Collapse
|
50
|
KARABİBER E, ATİK Ö, TEPETAM F, ERGAN B, İLKİ A, KARAKOÇ AYDINER E, ÖZEN A, ÖZYER F, BARIŞ S. Clinical and immunological outcomes of SARS-CoV-2 infection in patients with inborn errors of immunity receiving different brands and doses of COVID-19 vaccines. Tuberk Toraks 2023; 71:236-249. [PMID: 37740627 PMCID: PMC10912874 DOI: 10.5578/tt.20239705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023] Open
Abstract
Introduction Vaccines against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) provide successful control of the coronavirus-2019 (COVID-19) pandemic. The safety and immunogenicity studies are encouraging in patients with inborn errors of immunity (IEI); however, data about mortality outcomes and severe disease after vaccination still need to be fully addressed. Therefore, we aimed to determine the clinical and immunological outcomes of SARS-CoV-2 infection in patients with IEI who have received vaccination. Materials and Methods Eighty-eight patients with a broad range of molecular etiologies were studied; 45 experienced SARS-CoV-2 infection. Infection outcomes were analyzed in terms of genetic etiology, background clinical characteristics, and immunization history, including the type and number of doses received and the time elapsed since vaccination. In addition, anti-SARS-CoV-2 antibodies were quantified using electrochemiluminescent immunoassay. Results Patients were immunized using one of the three regimens: inactivated (Sinovac, Coronavac®), mRNA (BNT162b2, Comirnaty®, Pfizer-Biontech), and a combination. All three regimens induced comparable anti-SARS-CoV-2 IgG levels, with no differences in the adverse events. Among 45 patients with COVID-19, 26 received a full course of vaccination, while 19 were vaccine-naive or received incomplete dosing. No patients died due to COVID-19 infection. The fully immunized group had a lower hospitalization rate (23% vs. 31.5%) and a shorter symptomatic phase than the others. Among the fully vaccinated patients, serum IgM and E levels were significantly lower in hospitalized patients than non-hospitalized patients. Conclusion COVID-19 vaccines were well-tolerated by the IEI patients, and a full course of immunization was associated with lower hospitalization rates and a shorter duration of COVID-19 symptoms.
Collapse
Affiliation(s)
- E. KARABİBER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - Ö. ATİK
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - F.M. TEPETAM
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - B. ERGAN
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - A. İLKİ
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - E. KARAKOÇ AYDINER
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - A. ÖZEN
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - F. ÖZYER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
| | - S. BARIŞ
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| |
Collapse
|