1
|
Schreck E, Le Goff L, Calas A, Fleming ZL, Bosch C, Yettou A, Mesas M, Martínez-Lladó X, Vallejos-Romero A, Blot F, Baritaud C, Peltier A. An interdisciplinary approach for air quality assessment: biomonitoring using Tillandsia bergeri and risk perceptions in the environmentally sacrificed province of Chacabuco, Chile. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:99. [PMID: 40035923 DOI: 10.1007/s10653-024-02348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/22/2024] [Indexed: 03/06/2025]
Abstract
Awareness of air pollution and the associated environmental and health risks is growing worldwide. In order to answer the socio-environmental challenges posed by climate change, natural resource degradation and industrialization, scientists are advocating more holistic research linking environmental quality and public health. However, few studies have managed to integrate local communities' concerns and knowledge with easy-to-use biomonitoring systems to produce science that contextualises their environment risk. This case study was carried out in an "environmental sacrifice zone" located in the Chacabuco province (Chile), where there have been no prior air quality studies or monitoring despite local populations suspecting metallic contamination. An interdisciplinary approach was proposed to create an innovative air quality assessment, combining both social and geographical data for risk perception and biomonitoring experiments with epiphyte plants (T. bergeri) in strategic sites. The cross-analysis of inhabitant interviews and cognitive maps shows that air pollution is perceived to be of greater risk in the northern and central part of the province. Microscopic and spectroscopic techniques highlight different origins of metal(loid)s in the air. Epiphyte plants reveal a site-dependent accumulation of pollutants (As, Cu, Cr, Mn, Pb, Ni, Zn). The collection of dust in Owen gauges and subsequent health risk assessment do not show evidence of hazard quotient or cancer risk. But enrichment factors and pollution indexes highlight that three sites can be classified as impacted, suggesting that more attention should be paid to chronic exposure and long-term environmental effects in this area. The social perception of air pollution appears to be correlated to the geochemical identification of some existing sources of metal(loid)s.
Collapse
Affiliation(s)
- Eva Schreck
- Laboratoire Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 14 Avenue E. Belin, 31400, Toulouse, France.
| | - Lucie Le Goff
- Laboratoire Géographie de l'Environnement (GEODE), Maison de la Recherche, CNRS, Université de Toulouse Jean Jaurès, 5 Allées A. Machado, 31058, Toulouse, France
- Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nucleus On Citizen Technoscience for Socioenvironmental Transformation (CITEC), Santiago, Chile
- Instituto de Geografía, Pontifcia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Aude Calas
- Laboratoire Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Zoë Louise Fleming
- Millennium Nucleus On Citizen Technoscience for Socioenvironmental Transformation (CITEC), Santiago, Chile
- Centro de Investigación en Tecnologías para la Sociedad, Universidad Del Desarrollo, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | - Carme Bosch
- Centre Tecnològic de Catalunya, EURECAT, Plaça de la Ciència 2, 08243, Manresa, Spain
| | - Aubin Yettou
- Laboratoire Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Mireia Mesas
- Centre Tecnològic de Catalunya, EURECAT, Plaça de la Ciència 2, 08243, Manresa, Spain
| | - Xavier Martínez-Lladó
- Centre Tecnològic de Catalunya, EURECAT, Plaça de la Ciència 2, 08243, Manresa, Spain
| | - Arturo Vallejos-Romero
- Departamento de Ciencias Sociales, Universidad de La Frontera, Av. Francisco Salazar, 01145, Temuco, Chile
| | - Frédérique Blot
- Laboratoire Géographie de l'Environnement (GEODE), Maison de la Recherche, CNRS, Université de Toulouse Jean Jaurès, 5 Allées A. Machado, 31058, Toulouse, France
| | - Carine Baritaud
- Laboratoire Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 14 Avenue E. Belin, 31400, Toulouse, France
| | - Anne Peltier
- Laboratoire Géographie de l'Environnement (GEODE), Maison de la Recherche, CNRS, Université de Toulouse Jean Jaurès, 5 Allées A. Machado, 31058, Toulouse, France
| |
Collapse
|
2
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Selenoproteins: Zoom-In to Their Metal-Binding Properties in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1305. [PMID: 39941073 PMCID: PMC11818150 DOI: 10.3390/ijms26031305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Selenoproteins contain selenium (Se), which is included in the 21st proteinogenic amino acid selenocysteine (Sec). Selenium (Se) is an essential trace element that exerts its biological actions mainly through selenoproteins. Selenoproteins have crucial roles in maintaining healthy brain activity. At the same time, brain-function-associated selenoproteins may also be involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The selenoproteins GPx4 (glutathione peroxidase 4), GPx1 (glutathione peroxidase 1), SELENOP (selenoprotein P), SELENOK (selenoprotein K), SELENOS (selenoprotein S), SELENOW (selenoprotein W), and SELENOT (selenoprotein T) are highly expressed, specifically in AD-related brain regions being closely correlated to brain function. Only a few selenoproteins, mentioned above (especially SELENOP), can bind transition and heavy metals. Metal ion homeostasis accomplishes the vital physiological function of the brain. Dyshomeostasis of these metals induces and entertains neurodegenerative diseases. In this review, we described some of the proposed and established mechanisms underlying the actions and properties of the above-mentioned selenoproteins having the characteristic feature of binding transition or heavy metals.
Collapse
Affiliation(s)
| | | | - Carmen Beatrice Dogaru
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.M.); (I.S.)
| | | |
Collapse
|
4
|
Hudson LG, Dashner-Titus EJ, MacKenzie D. Zinc as a Mechanism-Based Strategy for Mitigation of Metals Toxicity. Curr Environ Health Rep 2025; 12:5. [PMID: 39827326 PMCID: PMC11742765 DOI: 10.1007/s40572-025-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE OF REVIEW Zinc is an essential micronutrient with a myriad of key roles in human health. This review summarizes mechanistic data supporting the protective effects of zinc on metal toxicity and discusses the framework for an interventional clinical trial of zinc supplementation within a metal exposed Native American community. RECENT FINDINGS Many metals have common underlying mechanisms of toxicity that contribute to adverse human health effects. Studies demonstrate that multiple aspects of metal toxicity can be attributed to disruption of essential zinc-dependent functions. Multiple lines of evidence suggest that zinc may confer protection against metal toxicity in human populations with mixed-metal exposures. Thinking Zinc is a mechanism-informed intervention study of zinc supplementation to test the potential benefits of zinc while maintaining a culturally responsive research approach. The current knowledge of diverse metal and zinc interactions, coupled with strong mechanistic evidence for zinc benefits in the context of toxic metal exposures, supports the hypothesis that zinc supplementation may mitigate the impact of toxic metals exposures in populations with chronic mixed metal exposures and in populations with low zinc status.
Collapse
Affiliation(s)
- Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, USA
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, USA
| | - Debra MacKenzie
- Community Environmental Health Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Dron J, Wafo E, Chaspoul F, Boissery P, Dhermain F, Bouchoucha M, Chamaret P, Lafitte D. Long-term trends (2002-2016) reveal an increase of mercury levels along with the decline of several metal elements in striped dolphins (Stenella coeruleoalba) stranded in the North-West Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177741. [PMID: 39615176 DOI: 10.1016/j.scitotenv.2024.177741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
The determination of 18 metals and metalloids was realized in 4 tissues of 62 Stenella coeruleoalba specimens stranded along the French Mediterranean coastline from 2010 to 2016. While most concentrations were comparable to mean worldwide levels, Hg levels were alarming (1190 μg g-1 dw, in average). The results were discussed together with previous measurements in the same area, from 2002 to 2009. The elements Ni and Pb (-81 % and -88 % in liver in 2010-16 compared to 2002-09), and Cd (-40 % in kidney in 2010-16 compared to 2002-09) as well as V (-79 % in liver in 2013-16 compared to 2010-12), showed promising decreasing trends, and the decrease of Zn and Cu levels below baseline values could indicate a global decreasing burden of metal contaminants. In contrary, Hg dramatically increased in dolphins since 2007 (+135 % in liver in 2010-16 compared to 2002-09), regardless of total length. On the other hand, Se levels increased only slightly since 2012, potentially not offering anymore an efficient protection against Hg, with mean Se-to-Hg molar ratios below unity in most tissues (0.26, 0.56, 1.81, and 0.57 in liver, kidney, lung and muscle, respectively).
Collapse
Affiliation(s)
- Julien Dron
- Institut Écocitoyen pour la Connaissance des Pollutions, Fos-sur-Mer, France.
| | - Emmanuel Wafo
- Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| | - Florence Chaspoul
- Aix Marseille Université, Avignon Université, CNRS UMR-7263, IRD-237, IMBE, Marseille, France
| | - Pierre Boissery
- Agence de l'Eau, Rhône Méditerranée Corse, Agence de Marseille, France
| | - Frank Dhermain
- Miraceti - Connaissance et Conservation des Cétacés, Martigues, France
| | | | - Philippe Chamaret
- Institut Écocitoyen pour la Connaissance des Pollutions, Fos-sur-Mer, France
| | - Daniel Lafitte
- Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
6
|
Mouti I, Perrais M, Marques-Vidal P, Thomas A, Vaucher J. Investigation of the impact of exposure to trace elements on health and disease from the ToxiLaus study. Sci Rep 2024; 14:29725. [PMID: 39614087 DOI: 10.1038/s41598-024-81544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
The ToxiLaus study aims at evaluating the impact of environmental toxic species on health and diseases' onset and development. Specifically, the ubiquitous presence of trace elements (TEs) in the environment urges for a better characterization of their influence on human organism. In its primary phase, the ToxiLaus study focused on measuring the urinary concentrations of 23 TEs in the baseline samples from the CoLaus|PsyCoLaus population-based cohort, using inductively coupled plasma mass spectrometry (ICP-MS). Statistical analyses were carried out on 5866 participants, investigating links between TEs concentrations and smoking status, metabolic syndrome and body mass index (BMI). Smoking status was associated with Cd, Zn, Pb, Mo and Hg (respectively OR = 3.64, 1.42, 1.20, 0.69 and 0.58) while metabolic syndrome was associated with Zn and Cd (OR = 1.81 and 1.24 respectively). Concentrations of Zn, Hg, Co, Ni, Cu, Mo, As, Sn, Tl, Fe where significantly different (p < 0.0001) between BMI groups (Normal, Overweight, Obese). Finally, this study provides an overview of the distribution of trace elements in a cohort large sample of the general population, as well as their main associations with cardiovascular risk factors. Theses relations will be further analysed in subsequent phases of the study.
Collapse
Affiliation(s)
- Idriss Mouti
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Department of Medicine and Specialties, Internal Medicine, Fribourg Hospital and University of Fribourg, Ch. des Pensionnats 2-6, 1708, Fribourg, Switzerland
| | - Maïwenn Perrais
- Unit of Forensic Chemistry and Toxicology, University Centre of Legal Medicine Lausanne-Geneva, Geneva University Hospital and University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Faculty Unit of Toxicology, University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Chemin de la Vulliette 4, 1000, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Chemistry and Toxicology, University Centre of Legal Medicine Lausanne-Geneva, Geneva University Hospital and University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
- Faculty Unit of Toxicology, University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Chemin de la Vulliette 4, 1000, Lausanne, Switzerland.
| | - Julien Vaucher
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
- Department of Medicine and Specialties, Internal Medicine, Fribourg Hospital and University of Fribourg, Ch. des Pensionnats 2-6, 1708, Fribourg, Switzerland.
| |
Collapse
|
7
|
Al-Huqail AA, Alghanem SMS, Alhaithloul HAS, Abbas ZK, Al-Balawi SM, Darwish DBE, Ali B, Malik T, Javed S. Selenium mitigates vanadium toxicity through enhanced nutrition, photosynthesis, and antioxidant defense in rice (Oryza sativa L.) seedlings. BMC PLANT BIOLOGY 2024; 24:1071. [PMID: 39538138 PMCID: PMC11559158 DOI: 10.1186/s12870-024-05790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In the current industrial scenario, vanadium (V) as a metal is of great importance but poses a major threat to the ecosystem. In the present study, the effect of a toxic concentration of V, i.e., 10 µM in the soil on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidants machinery (enzymatic and non-enzymatic antioxidants), ions uptake, proline metabolism, and V uptake in different parts of the plant was investigated with and without the exogenous application of selenium (Se) i.e., 5 µM in V-stressed rice (Oryza sativa L.). Our results depicted that V addition to the soil significantly (P < 0.05) decreased plant growth and biomass, gas exchange attributes, and minerals uptake by O. sativa as compared to the plants grown without the addition of V. However, V toxicity boosted the production of reactive oxygen species (ROS) by increasing the contents of malondialdehyde (MDA), which is the indication of oxidative stress in O. sativa and was also manifested by hydrogen peroxide (H2O2) contents to the membrane-bounded organelles. Although activities of various antioxidative enzymes like superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and their gene expression Fe-SOD, POD, CAT, and APX and also non-enzymatic antioxidants like phenolic, flavonoid, and ascorbic acid, anthocyanin contents and also the proline metabolism i.e., proline, pyrroline5-carboxylate, pyrroline-5-carboxylate reductase, and pyrroline-5-carboxylate dehydrogenase were increased due to V stress. Although results also illustrated that the application of Se also decreased V toxicity in O. sativa seedlings by increasing antioxidant capacity and, thus, improved the plant growth and biomass, photosynthetic pigments, gas exchange characteristics, and decreased oxidative stress in the O. sativa seedlings, compared to those plants which were not artificially supplied by Se. Research findings, therefore, suggested that the Se application can ameliorate V toxicity in O. sativa seedlings and result in improved plant growth and composition under metal stress as depicted by balanced exudation of nutrient effluxes. This study provides novel insights into the role of selenium in mitigating vanadium-induced oxidative stress in rice, thereby offering a promising approach to enhancing crop resilience in metal-contaminated soils and advancing sustainable agricultural practices.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Siham M Al-Balawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511, Egypt
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
8
|
Jiang Z, Wang Z, Zhao Y, Peng M. Unveiling the vital role of soil microorganisms in selenium cycling: a review. Front Microbiol 2024; 15:1448539. [PMID: 39323878 PMCID: PMC11422209 DOI: 10.3389/fmicb.2024.1448539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Selenium (Se) is a vital trace element integral to numerous biological processes in both plants and animals, with significant impacts on soil health and ecosystem stability. This review explores how soil microorganisms facilitate Se transformations through reduction, oxidation, methylation, and demethylation processes, thereby influencing the bioavailability and ecological functions of Se. The microbial reduction of Se compounds, particularly the conversion of selenate and selenite to elemental Se nanoparticles (SeNPs), enhances Se assimilation by plants and impacts soil productivity. Key microbial taxa, including bacteria such as Pseudomonas and Bacillus, exhibit diverse mechanisms for Se reduction and play a substantial role in the global Se cycle. Understanding these microbial processes is essential for advancing soil management practices and improving ecosystem health. This review underscores the intricate interactions between Se and soil microorganisms, emphasizing their significance in maintaining ecological balance and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhihui Jiang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Yong Zhao
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| |
Collapse
|
9
|
Elwej A, Ghorbel I, Chaabane M, Chelly S, Boudawara T, Zeghal N. Mitigating effects of selenium and zinc on oxidative stress and biochemical and histopathological changes in lung during prenatal and lactational exposure rats to barium chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50892-50904. [PMID: 39107636 DOI: 10.1007/s11356-024-34483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Selenium (Se) and zinc (Zn) are essential trace elements with antioxidant properties, and their supplementation has been shown to be protective against the toxicity of various environmental and dietary substances. The aim of this study was to investigate the potential protective effect of selenium and zinc as adjuvants against barium (Ba) toxicity in lactating rats and their offspring. The pregnant rats were divided into six groups: the first as control; group 2 received barium (67 ppm) in the drinking water; group 3 had combined Ba + Se (0.5 mg/kg) in the diet; group 4 received Zn (50 mg/kg bw) by gavage together with Ba; groups 5 and 6, positive controls, were treated with selenium (0.5 mg/kg) and zinc (50 mg/kg bw), respectively. MDA, H2O2, AOPP, CAT, GPx, and SOD levels were measured and lung histopathology was performed. Our results showed that barium administration caused lung damage as evidenced by an increase in MDA, H2O2, and AOPP levels and a decrease in the activities of CAT, GPx, and SOD in mothers and their offspring. A decrease in lung GSH, NPSH, and MT levels was also observed. Supplementation of Ba-treated rats with Se and/or Zn significantly improved the pulmonary antioxidant status of mothers and their offspring. Histopathological examinations were also consistent with the results of biochemical parameters, suggesting the beneficial role of Se and Zn supplementation, as evidenced by less accumulation of collagen fibers as studied by hematoxylin and eosin (H&E) and Masson's trichrome staining. In conclusion, we demonstrate the adverse effects of maternal barium exposure during pregnancy and on neonatal lung health and the protective effects of selenium and zinc in preventing the adverse effects of barium exposure.
Collapse
Affiliation(s)
- Awatef Elwej
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia.
| | - Imen Ghorbel
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Mariem Chaabane
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Sabrine Chelly
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, 3029, Sfax, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
10
|
Ferreira NDS, Costa PHD, de Sá ÍP, Bernardo VS, Torres FF, Figueiredo JG, do Amaral CDB, Nogueira ARA, Humberto da Silva DG, Gonzalez MH. Arsenic bioaccumulation and biotransformation in different tissues of Nile tilapia (Oreochromis niloticus): A comparative study between As(III) and As(V) exposure and evaluation of antagonistic effects of selenium. CHEMOSPHERE 2024; 359:142289. [PMID: 38723690 DOI: 10.1016/j.chemosphere.2024.142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
The speciation of arsenic in fish has been widely investigated, but bioaccumulation and biotransformation of inorganic As in different tissues of Nile tilapia (Oreochromis niloticus) are not fully understood. The present study aimed to investigate the bioaccumulation of As in Nile tilapia, as well as to evaluate the distribution of the main arsenic species (As(III), As(V), MMA, DMA, and AsB) in liver, stomach, gill, and muscle, after controlled exposures to As(III) and As(V) at concentrations of 5.0 and 10.0 mg L-1 during periods of 1 and 7 days. Total As was determined by inductively coupled plasma mass spectroscopy (ICP-MS). For both exposures (As(III) and As(V)), the total As levels after 7-day exposure were highest in the liver and lowest in the muscle. Overall, the Nile tilapia exposed to As(III) showed higher tissue levels of As after the treatments, compared to As(V) exposure. Speciation of arsenic present in the tissues employed liquid chromatography coupled to ICP-MS (LC-ICP-MS), revealing that the biotransformation of As included As(V) reduction to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to nontoxic arsenobetaine (AsB), which was the predominant arsenic form. Finally, the interactions and antagonistic effects of selenium in the bioaccumulation processes were tested by the combined exposure to As(III), the most toxic species of As, together with tetravalent selenium (Se(IV)). The results indicated a 4-6 times reduction of arsenic toxicity in the tilapia.
Collapse
Affiliation(s)
- Nathalia Dos Santos Ferreira
- São Paulo State University (UNESP), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Department of Chemistry and Environmental Science, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, SP, 15054-000, Brazil
| | - Pedro Henrique da Costa
- São Paulo State University (UNESP), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Department of Chemistry and Environmental Science, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, SP, 15054-000, Brazil
| | - Ívero Pita de Sá
- Embrapa Pecuária Sudeste, Applied Instrumental Analysis Group, São Carlos, SP, 13560-970, Brazil
| | - Victoria Simões Bernardo
- São Paulo State University (UNESP), Department of Biological Sciences, São José do Rio Preto, SP, 15054-000, Brazil
| | - Flaviene Felix Torres
- São Paulo State University (UNESP), Department of Biological Sciences, São José do Rio Preto, SP, 15054-000, Brazil
| | | | | | - Ana Rita Araujo Nogueira
- Embrapa Pecuária Sudeste, Applied Instrumental Analysis Group, São Carlos, SP, 13560-970, Brazil
| | - Danilo Grünig Humberto da Silva
- São Paulo State University (UNESP), Department of Biological Sciences, São José do Rio Preto, SP, 15054-000, Brazil; Federal University of Mato Grosso Do Sul (CPTL/UFMS), Department of Biological Sciences, Três Lagoas, MS, 79600-080, Brazil
| | - Mario Henrique Gonzalez
- São Paulo State University (UNESP), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Department of Chemistry and Environmental Science, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
11
|
Medjedded H, Nemiche S, Nemmiche S. Individual and combined effects of cadmium and lead exposure in rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2649-2660. [PMID: 37797207 DOI: 10.1080/09603123.2023.2265310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
The exposure of humans and animals to environmental compounds is rarely restricted to a single chemical. Cadmium (Cd) and lead (Pb) are two heavy metals known to be the most toxic. Deleterious effects of each metal alone are well documented. Unfortunately, very few studies were conducted to determine their combined effect. Four groups of Wistar rats were treated intravenously for 15 days. The control group received physiological saline solution; groups 2 and 3 were treated with Cd chloride and lead acetate, respectively ; and the treatment group 4 received a combined treatment of Cd and Pb . A significant decrease was recorded for hematological parameters , with an increase in white blood cells and an inhibition in δ-ALAD level. Cell injury in the livers and kidneys was clearly shown by the significant elevation of the biochemical markers. Cd and Pb induced oxidative stress and had adverse health effects at lower exposure levels than previously thought.
Collapse
Affiliation(s)
- Housna Medjedded
- Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem, Mostaganem, Algeria
| | - Souhila Nemiche
- Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1, Oran, Algeria
| | - Saïd Nemmiche
- Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem, Mostaganem, Algeria
| |
Collapse
|
12
|
Zhao Y, Zhang C, Ma L, Yu S, Li J, Tan P, Fang Q, Luo G, Yao H, Chen G. Comprehensive effect of increased calcium content in coal on the selenium emission from coal-fired power plants: Combined laboratory and field experiments. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134141. [PMID: 38583201 DOI: 10.1016/j.jhazmat.2024.134141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Coal combustion is the major contributor to global toxic selenium (Se) emissions. Inorganic elements in coals significantly affect Se partitioning during combustion. This work confirmed that the calcium (Ca) in ash had a stronger relationship with Se retention at 1300 °C than other major elements. Ca oxide chemically reacted with gaseous Se, and its sintering densification slightly affected Se adsorption capacities (44.45 -1840.71→35.17 -1540.15 mg/kg) at 300 - 1300 °C. Therefore, Ca in coals was identified as having potential for hindering gaseous Se emissions, and coals with increased Ca contents (2.74→5.19 wt%) were used in a 350 MW unit. The decreased Se mass distribution (3.54%→2.63%) in flue gas at air preheater inlet (320 -362 °C) confirmed the effectiveness of increased Ca content on gaseous Se emission reduction. More gaseous Se further condensed and was chemically adsorbed by fly ash when passed through an electrostatic precipitator, resulting in a significant increase in the Se content of fly ash. Additionally, the corresponding Se leaching ratio decreased from 4.88 - 35.74% to 1.87 - 26.31%, indicating enhanced stability of Se enriched in fly ash. This research confirmed the feasibility and environmental safety of sequestration of gaseous Se from flue gas to fly ash by increasing the Ca content in coals.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Lun Ma
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Shenghui Yu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Junchen Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Guangqian Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
13
|
Grundeken M, Gustin K, Vahter M, Delaval M, Barman M, Sandin A, Sandberg AS, Wold AE, Broberg K, Kippler M. Toxic metals and essential trace elements in placenta and their relation to placental function. ENVIRONMENTAL RESEARCH 2024; 248:118355. [PMID: 38295973 DOI: 10.1016/j.envres.2024.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Placental function is essential for fetal development, but it may be susceptible to malnutrition and environmental stressors. OBJECTIVE To assess the impact of toxic and essential trace elements in placenta on placental function. METHODS Toxic metals (cadmium, lead, mercury, cobalt) and essential elements (copper, manganese, zinc, selenium) were measured in placenta of 406 pregnant women in northern Sweden using ICP-MS. Placental weight and birth weight were obtained from hospital records and fetoplacental weight ratio was used to estimate placental efficiency. Placental relative telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were determined by quantitative PCR (n = 285). Single exposure-outcome associations were evaluated using linear or spline regression, and joint associations and interactions with Bayesian kernel machine regression (BKMR), all adjusted for sex, maternal smoking, and age or BMI. RESULTS Median cadmium, mercury, lead, cobalt, copper, manganese, zinc, and selenium concentrations in placenta were 3.2, 1.8, 4.3, 2.3, 1058, 66, 10626, and 166 μg/kg, respectively. In the adjusted regression, selenium (>147 μg/kg) was inversely associated with placental weight (B: -158; 95 % CI: -246, -71, per doubling), as was lead at low selenium (B: -23.6; 95 % CI: -43.2, -4.0, per doubling). Manganese was positively associated with placental weight (B: 41; 95 % CI: 5.9, 77, per doubling) and inversely associated with placental efficiency (B: -0.01; 95 % CI: -0.019, -0.004, per doubling). Cobalt was inversely associated with mtDNAcn (B: -11; 95 % CI: -20, -0.018, per doubling), whereas all essential elements were positively associated with mtDNAcn, individually and joint. CONCLUSION Among the toxic metals, lead appeared to negatively impact placental weight and cobalt decreased placental mtDNAcn. Joint essential element concentrations increased placental mtDNAcn. Manganese also appeared to increase placental weight, but not birth weight. The inverse association of selenium with placental weight may reflect increased transport of selenium to the fetus in late gestation.
Collapse
Affiliation(s)
- Marijke Grundeken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Gustin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Malin Barman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Dept, Of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Lemaire J, Mangione R, Caut S, Bustamante P. Mercury biomagnification in the food web of Agami Pond, Kaw-Roura Nature Reserve, French Guiana. Heliyon 2024; 10:e28859. [PMID: 38596056 PMCID: PMC11002669 DOI: 10.1016/j.heliyon.2024.e28859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Freshwater ecosystems are among the most important ecosystems worldwide, however, over the last centuries, anthropogenic pressures have had catastrophic effects on them. Mercury (Hg) is one of the main environmental contaminants which globally affect ecosystems and particularly freshwater wildlife. While Hg originates from natural sources, anthropogenic activities such as agriculture, biomass combustion, and gold mining increase its concentrations. Gold mining activities are the main drivers of Hg emission in tropical ecosystems and are responsible for up to 38% of global emissions. Once in its methylated form (MeHg), mercury biomagnifies through the trophic chain and accumulates in top predators. Due to the toxicity of MeHg, long-lived predators are even more subjected to chronic effects as they accumulate Hg over time. In the present study we quantified Hg contamination in two top predators, the Black caiman Melanosuchus niger and the Agami heron Agamia agami, and in their prey in the Kaw-Roura Nature Reserve in French Guiana and evaluated the biomagnification rate in the trophic chain. Our results show that despite a TMF in the range of others in the region (4.38 in our study), top predators of the ecosystem present elevated concentrations of Hg. We have found elevated Hg concentrations in the blood of adult Black caiman (2.10 ± 0.652 μg g-1 dw) and chicks of Agami heron (1.089 ± 0.406 μg g-1 dw). These findings highlight the need to better evaluate the potential impact of Hg in freshwater top predators, especially regarding reprotoxic effects.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Rosanna Mangione
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Stéphane Caut
- Consejo Superior de Investigaciones Cientificas (CSIC), Departamento de Etologia y Conservacion de la Biodiversidad, Estacion Biologica de Doñana, C/ Americo Vespucio, s/n (Isla de la Cartuja), E-41092, Sevilla, Spain
- ANIMAVEG Conservation, 58 avenue du Président Salvador Allende, F-94800, Villejuif, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
15
|
Zhang H, Yan J, Nie G, Xie D, Zhu X, Niu J, Li X. Association and mediation analyses among multiple metal exposure, mineralocorticoid levels, and serum ion balance in residents of northwest China. Sci Rep 2024; 14:8023. [PMID: 38580805 PMCID: PMC10997635 DOI: 10.1038/s41598-024-58607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xingwang Zhu
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jingping Niu
- School of Public Health, Institute of Occupational and Environmental Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
16
|
Zhang H, Sun K, Gao M, Xu S. Zinc Inhibits Lead-Induced Oxidative Stress and Apoptosis of ST Cells Through ROS/PTEN/PI3K/AKT Axis. Biol Trace Elem Res 2024; 202:980-989. [PMID: 37269454 DOI: 10.1007/s12011-023-03721-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Lead (Pb) is a widely distributed toxic heavy metal element known to have strong male reproductive toxicity, which can result in issues such as abnormal count and morphology of sperm. Zinc (Zn) is an essential trace element for the human body that can antagonize the activity of Pb in some physiological environments, and it also possesses antioxidant and anti-inflammatory effects. However, the specific mechanism of Zn's antagonism against Pb remains largely unclear. In our study, we conducted research using swine testis cells (ST cells) and confirmed that the half maximal inhibitory concentration of Pb on ST cells was 994.4 μM, and the optimal antagonistic concentration of Zn was 10 μM. Based on this information, we treated ST cells with Pb and Zn and detected related indices such as apoptosis, oxidative stress, and the PTEN/PI3K/AKT pathway using flow cytometry, DCFH-DA staining, RT-PCR, and Western blot. Our results demonstrated that Pb exposure can generate excessive reactive oxygen species (ROS), disrupt the antioxidant system, upregulate PTEN expression, and inhibit the PI3K/AKT pathway in ST cells. In contrast, Zn significantly inhibited the overproduction of ROS, improved oxidative stress, and decreased PTEN expression, thus protecting the PI3K/AKT pathway compared to Pb-exposed ST cells. Furthermore, we found that Pb exposure exacerbated the expression of genes related to the apoptosis pathway and reduced the expression of anti-apoptotic genes. Furthermore, this situation was significantly improved when co-cultured with Pb and Zn. In summary, our study demonstrated that Zn alleviated Pb-induced oxidative stress and apoptosis through the ROS/PTEN/PI3K/AKT axis in ST cells.
Collapse
Affiliation(s)
- Haoyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
17
|
Stajnko A, Palir N, Snoj Tratnik J, Mazej D, Sešek Briški A, Runkel AA, Horvat M, Falnoga I. Genetic susceptibility to low-level lead exposure in men: Insights from ALAD polymorphisms. Int J Hyg Environ Health 2024; 256:114315. [PMID: 38168581 DOI: 10.1016/j.ijheh.2023.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The genetic susceptibility to low-level lead (Pb) exposure in general populations has been poorly investigated and is limited to the single nucleotide polymorphism (SNP) rs1800435 in the delta-aminolevulinic acid dehydratase gene (ALAD). This study explored associations between ten selected ALAD SNPs with Pb concentrations in blood (BPb) and urine (UPb) among 281 men aged 18-49 years from Slovenia, including 20 individuals residing in a Pb-contaminated area. The geometric mean (range) of BPb and UPb were 19.6 (3.86-84.7) μg/L and 0.69 (0.09-3.82) μg/L SG, respectively. The possible genetic influence was assessed by examining SNP haplotypes, individual SNPs, and the combination of two SNPs using multiple linear regression analyses. While no significant associations were found for haplotypes, the presence of variant alleles of rs1800435 and rs1805312 resulted in an 11% and 13% decrease in BPb, respectively, while the presence of variant allele of rs1139488 (homozygous only) exhibited significant 20% increase in BPb, respectively. Additionally, variant allele of rs1800435 resulted in lower UPb. Individual SNPs in the model explained only around 1 additional percentage point of BPb variability. In contrast, combination analyses identified six combinations of two SNPs, which significantly explained 3-22 additional percentage points of BPb variability, with the highest explanatory power observed for the rs1800435-rs1139488 and rs1139488-rs1805313 combinations. Moreover, excluding participants from the Pb-contaminated area indicated that exposure level influenced SNPs-Pb associations. Our results confirm the importance of the ALAD gene in Pb kinetics even at low exposure levels. Additionally, we demonstrated that identifying individuals with specific combinations of ALAD SNPs explained a larger part of Pb variability, suggesting that these combinations, pending confirmation in other populations and further evaluation through mechanistic studies, may serve as superior susceptibility biomarker in Pb exposure compared to individual SNPs.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Neža Palir
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Alenka Sešek Briški
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| |
Collapse
|
18
|
Vicente-Zurdo D, Rosales-Conrado N, León-González ME. Unravelling the in vitro and in vivo potential of selenium nanoparticles in Alzheimer's disease: A bioanalytical review. Talanta 2024; 269:125519. [PMID: 38086100 DOI: 10.1016/j.talanta.2023.125519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and the accumulation of beta-amyloid plaques and tau tangles in the brain. Current therapies have limited efficacy, prompting the search for novel treatments. Selenium nanoparticles (SeNPs) have emerged as promising candidates for AD therapy due to their unique physicochemical properties and potential therapeutic effects. This review provides an overview of SeNPs and their potential application in AD treatment, as well as the main bioanalytical techniques applied in this field. SeNPs possess antioxidant and anti-inflammatory properties, making them potential candidates to combat the oxidative stress and neuroinflammation associated with AD. Moreover, SeNPs have shown the ability to cross the blood-brain barrier (BBB), allowing them to target brain regions affected by AD pathology. Various methods for synthesizing SeNPs are explored, including chemical, physical and biological synthesis approaches. Based on the employment of algae, yeast, fungi, and plants, green methods offer a promising and biocompatible alternative for SeNPs production. In vitro studies have demonstrated the potential of SeNPs in reducing beta-amyloid aggregation and inhibiting tau hyperphosphorylation, providing evidence of their neuroprotective effects on neuronal cells. In vivo studies using transgenic mouse models and AD-induced symptoms have shown promising results, with SeNPs treatment leading to cognitive improvements and reduced amyloid plaque burden in the hippocampus. Looking ahead, future trends in SeNPs research involve developing innovative brain delivery strategies to enhance their therapeutic potential, exploring alternative animal models to complement traditional mouse studies, and investigating multi-targeted SeNPs formulations to address multiple aspects of AD pathology. Overall, SeNPs represent a promising avenue for AD treatment, and further research in this field may pave the way for effective and much-needed therapeutic interventions for individuals affected by this debilitating disease.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Dpto. Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain; Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| | - Noelia Rosales-Conrado
- Dpto. Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Eugenia León-González
- Dpto. Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Antia M, Ezejiofor AN, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Selenium and zinc supplementation mitigates metals-(loids) mixture- mediated cardiopulmonary toxicity via attenuation of antioxidant, anti-inflammatory and antiapoptotic mechanisms in female Sprague Dawley rats. Toxicol Res (Camb) 2024; 13:tfad119. [PMID: 38179003 PMCID: PMC10762678 DOI: 10.1093/toxres/tfad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
This study evaluated the cardiopulmonary protective effects of essential elements (Zn and Se) against heavy metals mixture (HMM) exposure. Twenty five female Sprague Dawley albino rats, divided in to five groups: controls were orally treated only with distilled water; next, group 2 was exposed to HMM with the following concentrations: 20 mg/kg of Pb body weight, 0.40 mg/kg of Hg, 0.56 mg/kg of Mn, and 35 mg/kg of Al. Groups 3, 4 and 5 were exposed to HMM and co-treated with zinc chloride (ZnCl2; 0.80 mg/kg), sodium selenite (Na2SeO3;1.50 mg/kg) and both zinc chloride and sodium selenite, respectively. The experiment lasted for 60 days. Afterwards animals were sacrificed, and we conduced biochemical and histopathological examination of the heart and lungs. HMM only exposed animals had an increased levels of malondialdehyde (MDA) and nitric oxide (NO), increased IL-6 and TNF-α, attenuated SOD, GPx, CAT and GSH and caspase 3 in the heart and lungs. HMM affected NF-kB and Nrf2 in the heart muscle with histomorphological alterations. Zn and Se attenuated adverse effects of HMM exposure. Essential element supplementation ameliorated heavy metal cardiopulmonary intoxication in rats.
Collapse
Affiliation(s)
- Mfoniso Antia
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, The Institute of Anatomy, University of Belgrade, East West Road, Choba, Port Harcourt, Rivers State Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, The Institute of Anatomy, University of Belgrade, East West Road, Choba, Port Harcourt, Rivers State Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| |
Collapse
|
20
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
21
|
Tinkov AA, Aschner M, Santamaria A, Bogdanov AR, Tizabi Y, Virgolini MB, Zhou JC, Skalny AV. Dissecting the role of cadmium, lead, arsenic, and mercury in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. ENVIRONMENTAL RESEARCH 2023; 238:117134. [PMID: 37714366 DOI: 10.1016/j.envres.2023.117134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid β-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alfred R Bogdanov
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Russian State Social University, 129226, Moscow, Russia; Municipal State Hospital No. 13 of the Moscow City Health Department, 115280, Moscow, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Miriam B Virgolini
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| |
Collapse
|
22
|
Li K, Wu J, Mei Y, Zhao J, Zhou Q, Li Y, Yang M, Xu J, Zhao M, Xu Q. Metallomics analysis of metal exposure and cognitive function in older adults: A combined epidemiological and bioinformatics study. CHEMOSPHERE 2023; 341:140049. [PMID: 37660799 DOI: 10.1016/j.chemosphere.2023.140049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Dementia is a significant cause of elderly disability and Alzheimer's disease (AD) is the most prevalent form of dementia. As an early stage of AD, the mechanism related to mild cognitive impairment (MCI) and heavy metals is still unclear. This study utilized a cross-sectional design and enrolled 514 older adults in Bejing, China. Cognitive function was assessed by the Mini-Mental State Examination (MMSE) and fourteen blood metals were measured by inductively coupled plasma mass spectrometry (ICP-MS). In the adjusted single-metal models, we observed that copper [Cu, β (95% CI): 3.73 (-6.42, -1.03)] and lead [Pb, β (95% CI): 0.79 (-1.26, -0.32)] demonstrated negative associations with cognitive function, while selenium [Se, β (95% CI): 2.97 (1.23, 4.70)] was beneficial to cognition. Our findings were robust in secondary analysis using multi-metal models, which included generalized linear models (GLM), Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp). Moreover, the toxic metal mixture (Cu and Pb) exhibited a significant negative association with MMSE scores and the inclusion of Se in the metal mixture attenuated the neurotoxicity of Cu-Pb mixture. The in silico analysis was used to examine the potential molecular mechanisms (genes, biological processes, pathways, and illnesses) of interaction among metal mixtures. We identified 20 cognition-related genes that are associated with both Cu-Pb and Se. Among these genes, eight (APOE, APP, BAX, BDNF, CASP3, HMOX1, TF, and TPP1) exhibited opposite effects on protein activity, mRNA expression, or protein expression in response to Se and Cu/Pb exposure, which could be the key genes accounting for the anti-neurotoxic effects of Se. Our findings support that Se can attenuate the neurotoxicity of exposure to single Cu or Pb, and Cu-Pb mixture. More research is needed to confirm our findings and gain knowledge about the molecular mechanisms of combined metal exposure on cognitive function.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
23
|
Lv X, Ren M, Xu T, Gao M, Liu H, Lin H. Selenium alleviates lead-induced CIK cells pyroptosis and inflammation through IRAK1/TAK1/IKK pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109101. [PMID: 37758100 DOI: 10.1016/j.fsi.2023.109101] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The toxic heavy metal lead is widely found in rivers and soils as an environmental pollutant, posing a threat to the health of aquatic organisms. Selenium is an essential trace element and a powerful antioxidant that has been shown to have anti-inflammatory and antioxidant properties as well as alleviating heavy metal poisoning. Many studies have shown that lead poisoning produces inflammatory responses and damage to the kidneys of a wide range of animals, but the effects on cellular pyroptosis and immune function and selenium antagonism in CIK cells are not clear. In this study, 500 μM Pb and 20 nM Se were applied to grass carp kidney cells, and the results showed that Pb exposure to CIK cells resulted in oxidative stress, activation of the IRAK1/TAK1/IKK pathway, up-regulation of the expression of cellular pyroptosis markers GSDMD and NLRP3, and cellular pyroptosis of CIK cells, as well as up-regulation of IL-1β and IL-18, and the generation of cellular inflammatory response. In contrast, Se treatment significantly reduced the ROS level, the expression of cellular pyroptosis markers GSDMD, NLRP3 and inflammatory element IL-1β and IL-18. Taken together, Se alleviated cellular pyroptosis and immune dysfunction caused by Pb exposure through oxidative stress and activation of the IRAK1/TAK1/IKK pathway. This study complements the harmful effects of the heavy metal Pb on fish and the real-life application of selenium in the healthy culture of fish as a reference will be provided.
Collapse
Affiliation(s)
- Xiunan Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
24
|
Zhang T, Wang X, Luo ZC, Liu J, Chen Y, Fan P, Ma R, Ma J, Luo K, Yan CH, Zhang J, Ouyang F. Maternal blood concentrations of toxic metal(loid)s and trace elements from preconception to pregnancy and transplacental passage to fetuses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115394. [PMID: 37625333 DOI: 10.1016/j.ecoenv.2023.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Intrauterine exposure to heavy metals may adversely affect the developing fetus and health later in life, while certain trace elements may be protective. There is limited data on their dynamic fluctuation in circulating concentration of women from preconception to pregnancy and the degree of transplacental passage to fetus. Such information is critically needed for an optimal design of research studies and intervention strategies. In the present study, we profiled the longitudinal patterns and trajectories of metal(loid)s and trace elements from preconception to late pregnancy and in newborns. We measured whole blood metal(loid)s in women at preconception, 16, 24 and 32 weeks of gestation and in cord blood in 100 mother-newborn pairs. Our data showed that the mean concentrations of mercury (Hg), lead (Pb), rubidium (Rb), manganese (Mn), and iron (Fe) were lower during early-, mid-, and late-pregnancy than at preconception. Copper (Cu), and calcium (Ca) concentrations increased after pregnancy (Cu 798 versus 1353, 1488, and 1464 μg/L). Concentrations at preconception were correlated with those during pregnancy for all examined metal(loid)s. Maternal Hg, Pb, and Se concentrations at late-pregnancy were correlated with those in newborn cord blood in various degrees (correlation coefficients: Hg 0.66, Pb 0.29, Se 0.39). The estimated placental transfer ratio for toxic metal(loid)s ranging from 1.68 (Hg) to 0.18 (Cd). Two trajectory groups were identified for Hg, Pb, Cd, Se concentrations. Hg concentrations may be correlated with maternal education levels. The study is the first to present longitudinal circulating concentration trajectories of toxic metal(loid)s and trace elements from preconception to pregnancy stages. A high degree of transplacental passage was observed in toxic metals Pb and Hg which may pose hazards to the developing fetus.
Collapse
Affiliation(s)
- Ting Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhong-Cheng Luo
- Department of Obstetrics and Gynecology, Lunenfeld-Tanenbaum Research Institute, Prosserman Center for Population Health Research, Mount Sinai Hospital, Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, Faculty of Medicine, University of Toronto, Toronto M5G 1×5, Canada
| | - Junxia Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinqian Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Chong-Huai Yan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Calao-Ramos CR, Marrugo Negrete JL, Urango Cárdenas I, Díez S. Genotoxicity and mutagenicity in blood and drinking water induced by arsenic in an impacted gold mining region in Colombia. ENVIRONMENTAL RESEARCH 2023; 233:116229. [PMID: 37236386 DOI: 10.1016/j.envres.2023.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Arsenic (As) is one of the most dangerous substances that can affect human health and long-term exposure to As in drinking water can even cause cancer. The objective of this study was to investigate the concentrations of total As in the blood of inhabitants of a Colombian region impacted by gold mining and to evaluate its genotoxic effect through DNA damage by means of the comet assay. Additionally, the concentration of As in the water consumed by the population as well as the mutagenic activity of drinking water (n = 34) in individuals were determined by hydride generator atomic absorption spectrometry and the Ames test, respectively. In the monitoring, the study population was made up of a group of 112 people, including inhabitants of four municipalities: Guaranda, Sucre, Majagual, and San Marcos from the Mojana region as the exposed group, and Montería as a control group. The results showed DNA damage related to the presence of As in blood (p < 0.05) in the exposed population, and blood As concentrations were above the maximum allowable limit of 1 μg/L established by the ATSDR. A mutagenic activity of the drinking water was observed, and regarding the concentrations of As in water, only one sample exceeded the maximum permissible value of 10 μg/L established by the WHO. The intake of water and/or food containing As is potentially generating DNA damage in the inhabitants of the Mojana region, which requires surveillance and control by health entities to mitigate these effects.
Collapse
Affiliation(s)
- Clelia Rosa Calao-Ramos
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia; Universidad de Córdoba, Carrera 6 No. 76-103, Montería, College of Health Sciences, Bacteriology Department, Córdoba, Colombia
| | - Jose Luis Marrugo Negrete
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia.
| | - Iván Urango Cárdenas
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
26
|
Lin CJ, Shih HM, Wu PC, Pan CF, Lin YH, Wu CJ. Plasma selenium and zinc alter associations between nephrotoxic metals and chronic kidney disease: Results from NHANES database 2011-2018. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:398-410. [PMID: 38920171 DOI: 10.47102/annals-acadmedsg.202357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Introduction Chronic kidney disease (CKD) is a condition defined as a persistent change in kidney structure or function, or both, that compromises human health. Environmental exposure to heavy metals (e.g. cadmium, lead, arsenic and mercury) is common, and high exposure levels are known to cause nephrotoxicity. Micronutrients such as selenium and zinc are positively associated with better kidney function and renal outcomes. This study determined the associations between CKD and heavy metal exposures measured in blood or urine within a community-dwelling population, and assessed whether and how selenium and zinc modified the associations. Method Data were extracted from 4 cycles of the US National Health and Nutrition Examination Survey (NHANES) database (2011-2012, 2013-2014, 2015-2016 and 2017-2018). Results Univariate analysis showed that higher quartiles of plasma lead and cadmium concentration were more likely associated with CKD than the lowest quartile, and along with folate, were linked to greater odds of CKD. Conversely, as plasma selenium and serum zinc increased, the odds of CKD decreased. Multivariate analysis had similar results after adjusting for relevant confounders. Higher plasma cadmium quartiles were associated with higher odds of CKD. Associations between higher quartiles of plasma selenium and serum zinc were significantly associated with lower odds of CKD. Conclusion Elevated blood levels of heavy metals increase CKD, whereas elevated concentrations of plasma selenium and serum zinc decrease CKD. A high serum zinc concentration appears to interact with low-toxicity heavy metals to reduce CKD risk. This study suggests that increased selenium and zinc in the body along with avoidance of heavy metal exposures could protect against CKD.
Collapse
Affiliation(s)
- Cheng-Jui Lin
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Hong-Mou Shih
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Chen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Feng Pan
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun Hsi Lin
- Department of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. The Role of Selenium in Atherosclerosis Development, Progression, Prevention and Treatment. Biomedicines 2023; 11:2010. [PMID: 37509649 PMCID: PMC10377679 DOI: 10.3390/biomedicines11072010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Selenium is an essential trace element that is essential for various metabolic processes, protection from oxidative stress and proper functioning of the cardiovascular system. Se deficiency has long been associated with multiple cardiovascular diseases, including endemic Keshan's disease, common heart failure, coronary heart disease, myocardial infarction and atherosclerosis. Through selenoenzymes and selenoproteins, Se is involved in numerous crucial processes, such as redox homeostasis regulation, oxidative stress, calcium flux and thyroid hormone metabolism; an unbalanced Se supply may disrupt these processes. In this review, we focus on the importance of Se in cardiovascular health and provide updated information on the role of Se in specific processes involved in the development and pathogenesis of atherosclerosis (oxidative stress, inflammation, endothelial dysfunction, vascular calcification and vascular cell apoptosis). We also discuss recent randomised trials investigating Se supplementation as a potential therapeutic and preventive agent for atherosclerosis treatment.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| |
Collapse
|
28
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Zinc and selenium attenuate quaternary heavy metal mixture-induced testicular damage via amplification of the antioxidant system, reduction in metal accumulation, inflammatory and apoptotic biomarkers. Toxicol Res 2023; 39:497-515. [PMID: 37398573 PMCID: PMC10313602 DOI: 10.1007/s43188-023-00187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Heavy metals (HMs) such as cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) are highly toxic elements. They are often found together in nature as a heavy metal mixture (HMM) and are known to contribute to subfertility/infertility as environmental pollutants. This study aims to evaluate the potential benefits of treating HMM-induced testicular pathophysiology with zinc (Zn) and/or selenium (Se). Six-week-old male Sprague Dawley rats were grouped into 5 (n = 7). The control group received deionized water, while the other groups were treated with PbCl2 (20 mg kg-1), CdCl2 (1.61 mg kg-1), HgCl2 (0.40 mg kg-1), and Na2AsO3 (10 mg kg-1) in deionized water for 60 days. Additionally, groups III to V received Zn, Se, and Zn/Se, respectively, for 60 days. The study evaluated testis weight, metal accumulation, sperm analysis, FSH, LH, testosterone, prolactin, oxidative stress, antioxidants, pro-inflammatory and apoptotic markers, and presented structural changes in the testis as micrographs. HMM caused a significant increase in testis weight, metal accumulation, prolactin, oxidative stress, and pro-inflammatory and apoptotic markers, while significantly decreasing semen analysis, FSH, LH, and testosterone. Histology showed decreased spermatogenesis and spermiogenesis, as evidenced by the structure of the germ cells and spermatids. However, Zn, Se, or both ameliorated and reversed some of the observed damages. This study provides further evidence for the mitigative potential of Zn, Se, or both in reversing the damage inflicted by HMM in the testis, and as a countermeasure towards improving HM-induced decrease in public health fecundity. Graphical abstract
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Science and Technology, Nsukka, Enugu State Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
| | - Kenneth O. Okolo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Science and Technology, Nsukka, Enugu State Nigeria
| | - Chinna N. Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba Nigeria
- Provictoire Research Institute, Port Harcourt, Rivers State Nigeria
| |
Collapse
|
29
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
30
|
Adebayo VA, Adewale OB, Anadozie SO, Osukoya OA, Obafemi TO, Adewumi DF, Idowu OT, Onasanya A, Ojo AA. GC-MS analysis of aqueous extract of Nymphaea lotus and ameliorative potential of its biosynthesized gold nanoparticles against cadmium-induced kidney damage in rats. Heliyon 2023; 9:e17124. [PMID: 37484424 PMCID: PMC10361308 DOI: 10.1016/j.heliyon.2023.e17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Plants possess compounds serving as reducing agents for green synthesis of gold nanoparticles (AuNPs), which is currently considered for biomedical application. Exposure to cadmium (Cd) can affect the functional integrity of the several organs such as kidney and liver. Nymphaea lotus (NL) is known for its several medicinal properties, including its protective role against tissue damages. This study investigated the bioactive compounds in NL using gas chromatography-mass spectroscopy (GC-MS) and ameliorative potential of its biosynthesized AuNPs (NL-AuNPs) against Cd-induced nephrotoxicity in rats. The presence of bioactive compounds in N. lotus was investigated by GC-MS in aqueous extract of NL. Gold nanoparticles were synthesized using aqueous extract of NL. Thirty rats were grouped into six (n = 5). Group 1 served as control, while group 2, 3, 4 and 5 received CdCl2 (10 mg/kg) orally for five days. Thereafter, groups 3, 4, and 5, respectively, received silymarin (75 mg/kg), 5 and 10 mg/kg NL-AuNPs, orally for 14 days, while group 6 received 10 mg/kg NL-AuNPs only. Rats were sacrificed after treatment, and biochemical parameters and kidney histopathology were evaluated. Bioactive compounds of pharmacological importance identified include pyrogallol, oxacyclohexadecan-2-one, 22-Desoxycarpesterol, 7,22-Ergostadienol, β-sitosterol and Dihydro-β-agarofuran. Cadmium caused nephrotoxicity in rats, as evidenced by significant (p < 0.05) increase in the levels of kidney function markers (serum urea and creatinine) and inflammatory markers (Interleukin-6 (IL-6) and Nuclear Factor-κB (NF-κB)) when compared with control. These changes were significantly (p < 0.05) ameliorated by the spherically-synthesized NL-AuNPs (25-30 nm) with the 5 mg/kg NL-AuNPs more potent against kidney damage induced by Cd in rats but high doses of NL-AuNPs (≥10 mg/kg) could be suggested toxic. NL possess phytochemicals capable of reducing gold salts to nanoparticle form, and doses up to 5 mg/kg could be considered safe for the treatment of renal damage occasioned by cadmium.
Collapse
Affiliation(s)
- Victor A. Adebayo
- Biochemistry Program, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Olusola Bolaji Adewale
- Biochemistry Program, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Scholastica Onyebuchi Anadozie
- Biochemistry Program, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Olukemi Adetutu Osukoya
- Biochemistry Program, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Tajudeen Olabisi Obafemi
- Biochemistry Program, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Deborah Funmilayo Adewumi
- Industrial Chemistry Programme, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Programme, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Amos Onasanya
- Biochemistry Program, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| | - Abiodun Ayodele Ojo
- Industrial Chemistry Programme, Department of Chemical Sciences, Afe Babalola University, Km 8.5, Afe Babalola Way, P.M.B 5454, Ado-Ekiti, 360001, Ado-Ekiti, Nigeria
| |
Collapse
|
31
|
Cheng BJ, Sheng J, Wang HL, Wang Y, Cao HJ, Li XD, Zhou TT, Meng XL, Nie HH, Wang SF, Zhang DM, Chen GM, Tao FB, Yang LS. Selenium attenuates the association of co-exposure to arsenic, cadmium, and lead with cognitive function among Chinese community-dwelling older adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36377-36391. [PMID: 36547832 DOI: 10.1007/s11356-022-24783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The effects of interactions between the toxic and essential metal mixtures on cognitive function are poorly understood. This study aims to identify the joint association of arsenic (As), cadmium (Cd), and lead (Pb) with cognitive function in older adults and the moderating role of selenium (Se), zinc (Zn), and copper (Cu) in this association. This study included 1000 community-dwelling older adults. Cognitive function was assessed by the Mini-Mental State Examination (MMSE). Blood concentrations of As, Cd, Pb, Se, Zn, and Cu were measured using inductively coupled plasma mass spectrometry. Linear regression and Bayesian kernel machine regression (BKMR) models were applied to assess the individual and joint associations of As, Cd, and Pb with cognitive function and to examine whether Se, Zn, and Cu (individually and as a mixture) modified these associations. In the adjusted single-metal models, both Cd (β = - 0.37, 95% CI: - 0.73 to - 0.01) and Pb (β = - 0.44, 95% CI: - 0.86 to - 0.02) were associated with MMSE scores, while Se (β = 0.71, 95% CI: 0.30 to 1.13) exhibited a positive relationship with MMSE scores. Univariate exposure-response functions from BKMR models showed similar results. Moreover, the toxic metal mixture (As, Cd, and Pb) exhibited a significant negative association with MMSE scores in a dose-response pattern, with Pb being the greatest contributor within the mixture. The negative association of Pb alone or the toxic metal mixture with MMSE scores became weaker at higher concentrations of Se within its normal range, especially when Se levels were greater than the median (89.18 μg/L). Our findings support that Se can attenuate the negative associations of exposure to single Pb or the As, Cd, and Pb mixtures with cognitive function. Future prospective studies are needed to replicate our findings.
Collapse
Affiliation(s)
- Bei-Jing Cheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Hong-Li Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuan Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hong-Juan Cao
- Lu'an Center for Disease Control and Prevention, Lu'an, 237008, Anhui, China
| | - Xiu-De Li
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Lu'an Center for Disease Control and Prevention, Lu'an, 237008, Anhui, China
| | - Ting-Ting Zhou
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Hefei Center for Disease Control and Prevention, Hefei, 230051, Anhui, China
| | - Xiang-Long Meng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huan-Huan Nie
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Su-Fang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dong-Mei Zhang
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Gui-Mei Chen
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Lin-Sheng Yang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
32
|
Shiek SS, Sajai ST, Dsouza HS. Arsenic-induced toxicity and the ameliorative role of antioxidants and natural compounds. J Biochem Mol Toxicol 2023; 37:e23281. [PMID: 36550698 DOI: 10.1002/jbt.23281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Arsenic (As) poisoning has proven to be a major threat worldwide because of its toxic effects on the human body. As toxicity through drinking water is a global health concern. The toxicity of As is known to affect the liver, kidney, lungs, muscles, cardiovascular system, and nervous system and can even induce diabetes. Further As can cause skin lesions leading to notable diseases in the skin like Bowen's disease. Chronic exposure to As has caused many tragedies in Eastern, and several Southeast Asian and Latin American countries. Long-term exposure to As makes it an immediate threat that should be dealt with as a priority, and one of the ways to handle it may be with the use of antioxidants. In this review, we have discussed the natural and anthropogenic sources of As, its metabolism, pathophysiology, and mechanism of toxicity. Besides, we have also discussed some of the synthetic chelators and the ameliorative role of antioxidants and natural compounds in reducing As toxicity.
Collapse
Affiliation(s)
- Sadiya S Shiek
- Department of Biology, College of Science, United Arab Emirates University, United Arab Emirates
| | - Sanai T Sajai
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
33
|
Peng RJ, Zheng C, Yang ZB, Xu XX, Wong MH, Man YB, Cheng Z. Selenium toxicity and bioaccumulation in selenium-enriched fly (Chrysomya megacephala) maggots. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01511-0. [PMID: 36828971 DOI: 10.1007/s10653-023-01511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) is an essential trace element for human health, and as a potential animal feed, the Chrysomya megacephala (Fabricius) fly is rich in protein and fat. By using different concentrations of sodium selenite (0, 30, 50, 70 mg kg-1), the possibility of biological Se enrichment in C. megacephala (Fabricius) maggots (CMMs) was investigated. The accumulation, Se speciation, enzymatic activity, and concentrations of copper (Cu), zinc (Zn), chromium (Cr), and cadmium (Cd) in the maggots were also determined. Transcriptomics was also used to investigate the mechanism of the Se response to CMM genes. The results showed that the CMMs had a survival rate of > 80% at Se exposure concentrations ranging from 0 to 100 mg kg-1. The optimal concentration of sodium selenite for CMM growth was 50 mg kg-1, and the weight, protein content, and total Se accumulation of the larvae (10.8 g, 53.5%, and 72.6 ± 3.36 mg kg-1 (DW), respectively) were considerably higher than the control and other exposure doses (p < 0.05). In addition, Se improved the ability of maggots to absorb Cu and Zn, decreased malondialdehyde (MDA) and lipid peroxidation, but improved the antioxidant activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX). Furthermore, Se negatively affected the absorption of Cd and Cr. According to the transcriptomic findings, Se supplementation can boost protein synthesis and control both antioxidant and non-antioxidant enzyme activity in CMMs. Therefore, our findings showed that Se-enriched CMMs may counteract the toxicity of Cd and Cr, and Se is an effective supplement for improving the consumption safety of cultured animals fed containing CMMs.
Collapse
Affiliation(s)
- Rui Jie Peng
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chao Zheng
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhan Biao Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Xun Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
34
|
Bertram J, Ramolla C, Esser A, Schettgen T, Fohn N, Steib J, Kraus T. Blood lead monitoring in a former mining area in Euskirchen, Germany: results of a representative random sample in 3- to 17-year-old children and minors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20995-21009. [PMID: 36264474 PMCID: PMC9584279 DOI: 10.1007/s11356-022-23632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal residues in former mining areas can pose a burden to the local environment and population even decades after closure of the mining sites. In the North Rhine-Westphalian (Germany) communities of Mechernich and Kall, both parts of the district of Euskirchen, lead residues are a source of health concerns for local residents. A statistically representative collective of both communities depending on sex, age, and area of residence was created, mirroring the local underage population. The blood lead levels (BLL) of 182 children and minors in the two adjacent communities were assessed via ICP-MSMS. The results were compared to German lead reference values, valid for the general underage population. In total, 32 (17.6%) of the subjects investigated exceeded the according reference values of 15 µg/L and 20 µg/L, respectively, depending on sex and age, thus pointing out an additional lead burden affecting children in the area. Potential lead sources contributing to the BLL were evaluated using a questionnaire. Factors that showed significant impact on the BLL were, other than age, sex, height, and weight, the factors occupancy, time spend in the garden, garden hand-to-mouth contact, consumption frequency of homegrown products, and lifestyle factors. The data presented enable both residents and the local authorities to further reduce lead exposure and to take appropriate personal and public action.
Collapse
Affiliation(s)
- Jens Bertram
- Institute for Occupational, Social and Environmental Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Aachen, Germany.
| | - Christian Ramolla
- Public Health Department Euskirchen, District of Euskirchen, Germany
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Aachen, Germany
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Aachen, Germany
| | - Nina Fohn
- Institute for Occupational, Social and Environmental Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Aachen, Germany
| | - Jasmina Steib
- Institute for Occupational, Social and Environmental Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Aachen, Germany
| |
Collapse
|
35
|
Powolny T, Scheifler R, Raoul F, Coeurdassier M, Fritsch C. Effects of chronic exposure to toxic metals on haematological parameters in free-ranging small mammals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120675. [PMID: 36395915 DOI: 10.1016/j.envpol.2022.120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Blood circulates through the vascular system to carry oxygen, nutrients and metabolites to and away from tissues, and as such is a key-component of animal physiology. The impacts of metal pollution on blood, however, are poorly documented in free-ranging vertebrates. While the counteracting effect of selenium on mercury toxicity is well known in marine mammals, its potential role against the toxicity of other metals is less studied, especially on terrestrial wildlife. We explored the consequences of chronic exposure to two non-essential metals (cadmium and lead) along a pollution gradient in Northern France, on eleven haematological parameters in two free ranging small mammals, the wood mouse Apodemus sylvaticus and the bank vole Myodes glareolus. We hypothesized that haematology was related to metal concentrations in tissues, and that selenium might exert modulating effects. Concentrations of cadmium and lead in the tissues indicated an increased chronic exposure to and accumulation of metals along the gradient. Some haematological parameters were not explained by any measured variables while some others varied only with gender or age. Red blood cells, red blood cells distribution width, and blood iron concentration, however, decreased with increasing cadmium in the tissues in wood mice. Red blood cells and haemoglobin decreased with increasing renal lead and hepatic cadmium, respectively, in bank voles. Red blood cells distribution width in wood mice increased with cadmium concentrations in the liver but this was counteracted by high selenium levels in the same organ. An interaction of selenium and lead on red blood cells was also observed in bank voles. Further, selenium concentrations were associated with an increase of monocytes in wood mice. The present results show that toxic metals were related to haematology changes, particularly erythrocyte indicators, and that some essential elements like selenium should be measured as well since they may counteract toxic effects.
Collapse
Affiliation(s)
- Thibaut Powolny
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Renaud Scheifler
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
| | - Francis Raoul
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Michaël Coeurdassier
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| |
Collapse
|
36
|
Zhao B, Zhao J, Zhou S, Wu X, Xu X, Yang R, Yuan Z. Selenium and toxic metals in human hair of the Dashan Region, China: Concentrations, sources, and antagonism effect. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114479. [PMID: 36603484 DOI: 10.1016/j.ecoenv.2022.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The Dashan Region was a Se-rich region of China. In this study, 131 residents' human hair samples were collected. The concentrations of Se and toxic metals were analyzed, and the health risk was estimated using the concentration data. Cd and As concentrations were significantly higher than in East China. Se and most toxic metal concentrations increased with age (except for the aged people). Furthermore, gender and smoking habits might have a significant impact on toxic metals and Se levels. Multivariable statistics analysis revealed that Se and toxic metals primarily originate in the environment and are then transferred to the human body via the food chain. Dietary habits had an effect on the Se and As concentrations in hair, according to the results of stable isotope analysis. To assess detoxification ability, the Se/ toxic metal molar ratio was used as an indicator. The results demonstrated that the antagonistic effect of Se and Cd, As, Cr, and Hg (molar ratio > 1) could effectively protect residents in the study area from Cd and As pollution in daily life.
Collapse
Affiliation(s)
- Bing Zhao
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jing Zhao
- Anhui Technical College of Mechanical and Electrical Engineering, Wuhu, Anhui 241002, PR China
| | - Shoubiao Zhou
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Xue Xu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Ruyi Yang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
37
|
Zhang YM, Lin CY, Li BZ, Dong WR, Shu MA. Bioaccumulation of Cd and comparative transcriptome analysis after the antagonism of Se in the hepatopancreas of estuary mud crab (Scylla paramamosain). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109474. [PMID: 36184038 DOI: 10.1016/j.cbpc.2022.109474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 04/17/2023]
Abstract
Cadmium (Cd) is a heavy metal contaminant and can be toxic to environment. What's more, Selenium (Se) protects organism as heavy metal antagonist. The present study aimed to investigate whether inorganic (Na2SeO3) or organic (L-SeMc) Se have an effect on the Cd bioaccumulation, antioxidant and immunity of the mud crab (Scylla paramamosain) under Cd exposure. The study showed that the concentration of Cd in hepatopancreas under Cd exposure was higher than the inorganic or organic Se group (P < 0.05), notably, Cd concentration of hepatopancreas in organic Se treatment is less than that in inorganic Se treatment (P < 0.05). Furthermore, this study analyzed 28 gene expression about antioxidant and immune from transcriptome, the result indicated that L-SeMc (organic Se) can reduced intracellular ROS production and oxidative damage. Furthermore, apoptosis was enhanced after Cd exposure, but Se could protect against apoptosis via expression of cathepsin B. Consequently, Organic Se may have a better effect than inorganic Se on reducing Cd toxicity. This study could provide the molecular basis that Se might alleviate Cd toxicity and increases the understanding of the environmental contaminant on crustaceans.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Zhang J, Lin J, Zhao X, Yao F, Feng C, He Z, Cao X, Gao Y, Khan NU, Chen M, Luo P, Shen L. Trace Element Changes in the Plasma of Autism Spectrum Disorder Children and the Positive Correlation Between Chromium and Vanadium. Biol Trace Elem Res 2022; 200:4924-4935. [PMID: 35006555 DOI: 10.1007/s12011-021-03082-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Existing data demonstrate a significant correlation between autism spectrum disorder (ASD) and the status of biologically essential and toxic trace elements. However, there is still a lack of data on the steady state of trace elements in ASD. We performed a case-control study to explore the association between the risk of ASD and 23 trace elements in plasma. The results showed that children with ASD had considerably decreased lithium (Li), manganese (Mn), selenium (Se), barium (Ba), mercury (Hg), and tin (Sn) levels when compared to their age- and sex-matched controls. Meanwhile, children with ASD had considerably increased plasma chromium (Cr) and vanadium (V) concentrations. We also divided each group into subgroups based on age and gender and created element-related networks for each subgroup. We detected significant element correlations within or between subgroups, as well as changes in correlations that included all elements examined. Finally, more element correlations were observed among males, which may open a new avenue for understanding the complicated process behind the sex ratio of children with ASD. Overall, our data revealed a novel relationship between elements and ASD, which may extend current understanding about ASD.
Collapse
Affiliation(s)
- Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Xiying Zhao
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518055, People's Republic of China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Zhijun He
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
39
|
Intensified Pb(II) adsorption using functionalized KCC-1 synthesized from rice husk ash in batch and column adsorption studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Lai X, Yuan Y, Liu M, Xiao Y, Ma L, Guo W, Fang Q, Yang H, Hou J, Yang L, Yang H, He MA, Guo H, Zhang X. Individual and joint associations of co-exposure to multiple plasma metals with telomere length among middle-aged and older Chinese in the Dongfeng-Tongji cohort. ENVIRONMENTAL RESEARCH 2022; 214:114031. [PMID: 35934145 DOI: 10.1016/j.envres.2022.114031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Studies on associations of metals with leucocyte telomere length (LTL) were mainly limited to several most common toxic metals and single-metal effect, but the impact of other common metals and especially the overall joint associations and interactions of metal mixture with LTL are largely unknown. We included 15 plasma metals and LTL among 4906 participants from Dongfeng-Tongji cohort. Multivariable linear regression was used to estimate associations of individual metals with LTL. We also applied Bayesian kernel machine regression (BKMR) and quantile g-computation regression (Q-g) to evaluate the overall association and interactions, and identified the major contributors as well as the potential modifications by major characteristics. Multivariable linear regression found vanadium, copper, arsenic, aluminum and nickel were negatively associated with LTL, and a 2-fold change was related to 1.9%-5.1% shorter LTL; while manganese and zinc showed 3.7% and 4.0% longer LTL (all P < 0.05) in multiple-metal models. BKMR confirmed above metals and revealed a linearly inverse joint association between 15 metals and LTL. Q-g regression further indicated each quantile increase in mixture was associated with 5.2% shorter LTL (95% CI: -8.1%, -2.3%). Furthermore, manganese counteracted against aluminum and vanadium respectively (Pint<0.05). In addition, associations of vanadium, aluminum and metal mixture with LTL were more prominent in overweight participants. Our results are among the first to provide a new comprehensive view of metal mixture exposure on LTL attrition in the general population, including identifying the major components, metals interactions and the overall effects.
Collapse
Affiliation(s)
- Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lin Ma
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qin Fang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Mei-An He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
41
|
Bergés-Tiznado ME, Bojórquez-Sánchez C, Acosta-Lizárraga LG, Zamora-García OG, Márquez-Farías JF, Páez-Osuna F. Tissue dynamics of potential toxic elements in the Pacific hake (Merluccius productus): distribution and the public health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77945-77957. [PMID: 35688982 DOI: 10.1007/s11356-022-21325-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to establish the distribution of As, Cd, Pb, Cu, and Zn in the main tissues (muscle, liver, gonads, and gills) of the Pacific hake (Merluccius productus) from the northern Gulf of California to establish baseline bioavailability levels in the northern stock. The results for Pb and Cd were the lowest in the studied tissues (Pb < 0.005 mg kg-1 in the liver and gonads and 1.43 mg kg-1 for Cd in the liver), followed by levels of Cu and As (muscle > liver > gonads > gills) and Zn with the most abundant levels in all the tissues. The sex of the organisms was not a factor that influenced the bioaccumulation and distribution of the potential toxic elements (PTEs) nor total length, except for As in gills and Cd in muscle and the liver. Important interactions among Zn and non-essential elements were established. The Pacific hake intake of PTEs was probably through the diet via bioaccumulation of the elements in their prey and less by pollution of the water column. In the muscle, a major distribution and storage of As, Zn, and Pb were observed, but in the liver, higher loads were from Cd and Cu. The maximum tolerable weekly intake must be very high to be at health risk for the essential elements and Cd. However, the population might be at risk for Pb and As consumption if more than 124 g of M. productus in adults and 35 g in children are consumed per week. Further investigations are required to understand the dynamics of PTEs in M. productus as it could be proposed as a biomonitor species.
Collapse
Affiliation(s)
- Magdalena Elizabeth Bergés-Tiznado
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán-Higueras km. 3, 82199, Mazatlán, Sinaloa, México.
| | - Carolina Bojórquez-Sánchez
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán-Higueras km. 3, 82199, Mazatlán, Sinaloa, México
| | - Linda Gilary Acosta-Lizárraga
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán-Higueras km. 3, 82199, Mazatlán, Sinaloa, México
| | - Oscar Guillermo Zamora-García
- Servicios Integrales de Recursos Biológicos, Acuáticos y Ambientales, Genaro Estrada 406 Centro, 82000, Mazatlán, Sinaloa, México
| | - Juan Fernando Márquez-Farías
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Centro, 82000, Mazatlán, Sinaloa, México
| | - Federico Páez-Osuna
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, 82000, Mazatlán, Sinaloa, México
- El Colegio de Sinaloa, Antonio Rosales 435 Pte, Culiacán, Sinaloa, México
| |
Collapse
|
42
|
The Beneficial Impact of Zinc Supplementation on the Vascular Tissue of the Abdominal Aorta under Repeated Intoxication with Cadmium: A Study in an In Vivo Experimental Model. Nutrients 2022; 14:nu14194080. [PMID: 36235732 PMCID: PMC9570965 DOI: 10.3390/nu14194080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
In an in vivo rat model of human exposure to cadmium (Cd; 5 and 50 mg/L, 6 months), whether the supplementation with zinc (Zn; 30 and 60 mg/L, increasing its daily intake by 79% and 151%, respectively) protects against the unfavourable impact of this xenobiotic on the vascular tissue of the abdominal aorta was investigated. The treatment with Cd led to oxidative stress and increased the concentrations of pro-inflammatory interleukin 1β (IL-1β), total cholesterol (TC), triglycerides (TG), and endothelial nitric oxide synthase (eNOS) and decreased the concentration of anti-inflammatory interleukin 10 (IL-10) in the vascular tissue. Cd decreased the expression of intercellular adhesion molecule-1 (ICAM-1), platelet endothelial cell adhesion molecule-1 (PECAM-1), and L-selectin on the endothelial cells. The administration of Zn prevented most of the Cd-induced alterations or at least weakened them (except for the expression of adhesive molecules). In conclusion, Zn supplementation may protect from the toxic impact of Cd on the blood vessels and thus exert a beneficial influence on the cardiovascular system. The increase in the intake of Zn by 79% may be sufficient to provide this protection and the effect is related to the antioxidative, anti-inflammatory, and antiatherogenic properties of this essential element.
Collapse
|
43
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
44
|
Lu T, Peng H, Yao F, Nadine Ferrer AS, Xiong S, Niu G, Wu Z. Trace elements in public drinking water in Chinese cities: Insights from their health risks and mineral nutrition assessments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115540. [PMID: 35738127 DOI: 10.1016/j.jenvman.2022.115540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The trace elements in the public drinking water have a duality: on the one hand, trace elements play an important role in maintaining human metabolism; on the other hand, high trace elements levels lead to significant health risks. To determine the impacts of trace elements in the public drinking water on physical health in China, water samples were collected from 314 Chinese cities to analyze the concentrations and spatial distributions of trace elements on a national scale. On this basis, the non-carcinogenic health risk assessments and the nutrient-based scores of trace elements (NSTEs) were applied to evaluate the public drinking water quality in terms of safety and nutrition. Most of the water samples were weakly alkaline: pH values fell in the range of 6.62-8.54, with a mean of 7.80. The results indicated that Sr and F- had the highest concentrations in public drinking water, with averages of 0.3604 mg/L and 0.2351 mg/L, respectively. Moreover, hazard index (HI) values in different regions followed the order: northwest China (NWC) > northern China (NC) > Qinghai-Tibetan Plateau (QT) > southern China (SC). The percentages of water samples with HI > 1 in SC, NC, NWC, and QT were 5.49%, 16.82%, 25.81%, and 16.67%, respectively, indicating that the public drinking water in some cities had significant non-carcinogenic health risks. In addition, the intakes of Mn, Fe, Cu, and Rb through public drinking water made negligible contributions to their recommended nutrient intakes. In contrast, trace elements like Sr, F, B, Li, Mo, etc., contributed a lot. The NSTEs in NWC and most parts of NC were relatively high with averages of 8.0300 and 11.2082, respectively; however, the NSTEs in SC and the northeast part of NC were low with averages of 3.3284 and 5.2106, respectively. The results from this study provide a reference for establishing the public drinking water standards and improving drinking water quality.
Collapse
Affiliation(s)
- Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China; Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China; Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, 95440, Germany
| | - Hao Peng
- School of Environmental Studies, China University of Geoscience, Wuhan, 430078, China; Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China.
| | - Feifei Yao
- Qingdao Haier Smart Technology R&D Co., Ltd, Qingdao, 266101, China
| | - Aira Sacha Nadine Ferrer
- Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, 95440, Germany
| | - Shuang Xiong
- Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China
| | - Geng Niu
- Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China
| | - Zhonghua Wu
- Qingdao Haier Smart Technology R&D Co., Ltd, Qingdao, 266101, China
| |
Collapse
|
45
|
Lemaire J, Brischoux F, Marquis O, Mangione R, Caut S, Brault-Favrou M, Churlaud C, Bustamante P. Relationships between stable isotopes and trace element concentrations in the crocodilian community of French Guiana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155846. [PMID: 35561901 DOI: 10.1016/j.scitotenv.2022.155846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Trace elements in the blood of crocodilians and the factors that influence their concentrations are overall poorly documented. However, determination of influencing factors is crucial to assess the relevance of caimans as bioindicators of environmental contamination, and potential toxicological impact of trace elements on these reptiles. In the present study, we determined the concentrations of 14 trace elements (Ag, As, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Ni, Se, V, and Zn) in the blood of four French Guiana caiman species (the Spectacled Caiman Caiman crocodilus [n = 34], the Black Caiman Melanosuchus niger [n = 25], the Dwarf Caiman Paleosuchus palpebrosus [n = 5] and the Smooth-fronted Caiman Paleosuchus trigonatus [n = 20]) from 8 different sites, and further investigated the influence of individual body size and stable isotopes as proxies of foraging habitat and trophic position on trace element concentrations. Trophic position was identified to be an important factor influencing trace element concentrations in the four caiman species and explained interspecific variations. These findings highlight the need to consider trophic ecology when crocodilians are used as bioindicators of trace element contamination in environmental studies.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Oliver Marquis
- Muséum national d'Histoire naturelle, Parc Zoologique de Paris, 53 avenue de Saint Maurice, 75012 Paris, France
| | - Rosanna Mangione
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
| | - Stéphane Caut
- Consejo Superior de Investigaciones Cientificas (CSIC), Departamento de Etologia y Conservation de La Biodiversidad - Estacion Biologica de Doñana - C/Americo Vespucio, S/n (Isla de La Cartuja), E-41092 Sevilla, Spain; ANIMAVEG Conservation, 58 Avenue Du Président Salvador Allende, F-94800 Villejuif, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
46
|
Bjørklund G, Rahaman MS, Shanaida M, Lysiuk R, Oliynyk P, Lenchyk L, Chirumbolo S, Chasapis CT, Peana M. Natural Dietary Compounds in the Treatment of Arsenic Toxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154871. [PMID: 35956821 PMCID: PMC9370003 DOI: 10.3390/molecules27154871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022]
Abstract
Chronic exposure to arsenic (As) compounds leads to its accumulation in the body, with skin lesions and cancer being the most typical outcomes. Treating As-induced diseases continues to be challenging as there is no specific, safe, and efficacious therapeutic management. Therapeutic and preventive measures available to combat As toxicity refer to chelation therapy, antioxidant therapy, and the intake of natural dietary compounds. Although chelation therapy is the most commonly used method for detoxifying As, it has several side effects resulting in various toxicities such as hepatotoxicity, neurotoxicity, and other adverse consequences. Drugs of plant origin and natural dietary compounds show efficient and progressive relief from As-mediated toxicity without any particular side effects. These natural compounds have also been found to aid the elimination of As from the body and, therefore, can be more effective than conventional therapeutic agents in ameliorating As toxicity. This review provides an overview of the recently updated knowledge on treating As poisoning through natural dietary compounds. This updated information may serve as a basis for defining novel prophylactic and therapeutic formulations.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence: (G.B.); (M.P.)
| | - Md. Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan; or
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Petro Oliynyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61002 Kharkiv, Ukraine;
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- CONEM Scientific Secretary, strada Le Grazie 9, 37134 Verona, Italy
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
- Correspondence: (G.B.); (M.P.)
| |
Collapse
|
47
|
Du H, Zheng Y, Zhang W, Tang H, Jing B, Li H, Xu F, Lin J, Fu H, Chang L, Shu G. Nano-Selenium Alleviates Cadmium-Induced Acute Hepatic Toxicity by Decreasing Oxidative Stress and Activating the Nrf2 Pathway in Male Kunming Mice. Front Vet Sci 2022; 9:942189. [PMID: 35958302 PMCID: PMC9362431 DOI: 10.3389/fvets.2022.942189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 01/11/2023] Open
Abstract
Cadmium (Cd) is known as a highly toxic heavy metal and has been reported to induce hepatotoxicity in animals. Nano-selenium (NSe) is an antioxidant that plays many biological roles such as oxidative stress alleviation. The purpose of this study is to explore the mechanism of action by which NSe inhibits Cd-induced hepatic toxicity and oxidative stress. Sixty eight-week-old male Kunming mice were randomly divided into four groups (15 mice per group). The control group and cadmium groups received distilled water, whereas the sodium-selenite group received 0.2 mg/kg SSe and the NSe group received 0.2 mg/kg NSe intragastrically for 2 weeks. On the last day, all the other groups were treated with Cd (126 mg/kg) except for the control group. The results obtained in this study showed that NSe alleviated Cd-induced hepatic pathological changes. Furthermore, NSe reduced the activities of ALT and AST as well as the content of MDA, while elevated the activities of T-AOC, T-SOD and GSH (P < 0.05). In addition, the NSe group significantly increased mRNA expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GST, GSH-Px, CAT and SOD) compared to the Cd group (P < 0.05). In conclusion, NSe shows its potentiality to reduce Cd-induced liver injury by inhibiting oxidative stress and activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Hong Du
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilei Zheng
- College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijen Chang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
- *Correspondence: Lijen Chang
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Gang Shu
| |
Collapse
|
48
|
Toxic and essential trace element concentrations in Pacific walrus (Odobenus rosmarus divergens) skeletal muscle varies by location and reproductive status. Polar Biol 2022. [DOI: 10.1007/s00300-022-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
49
|
Ji Y, Hu Q, Ma G, Yu A, Zhao L, Zhang X, Zhao R. Selenium biofortification in Pleurotus eryngii and its effect on lead adsorption of gut microbiota via in vitro fermentation. Food Chem 2022; 396:133664. [PMID: 35841676 DOI: 10.1016/j.foodchem.2022.133664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
It is of great significance to develop safe and efficient dietary selenium sources to improve lead toxicity. In this study, selenate, selenite, SeMet and Se-yeast were supplied to investigate the Se biofortification and bioaccessibility in Pleurotus eryngii. The effects of Se-enriched P. eryngii on lead binding bacteria were investigated via in vitro fermentation. With 40 mg/kg Se in the substrate, the total Se contents of P. eryngii treated with selenite and Se-yeast were 145.22 ± 8.00 mg/kg and 90.01 ± 7.01 mg/kg, respectively. Compared with selenite, Se-yeast treatment significantly increased the organic Se proportion in P. eryngii (SeCys2 2.85 ± 0.17%, MeSeCys 2.33 ± 0.21% and SeMet 78.19 ± 1.58%), which led to higher bioaccessibility. With 1 mg/L lead treatment during in vitro fermentation, Se-enriched P. eryngii promoted the growth of Desulfovibrio, which contributed to the increase of gut microbiota lead adsorption. Se-enriched P. eryngii cultivated with Se-yeast could be used as dietary Se sources for lead toxicity improvement.
Collapse
Affiliation(s)
- Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Anqi Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xueli Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
50
|
Chu JH, Yan YX, Chen XW, Gao PC, Li LX, Fan RF. Aberrant Gene Expression of Selenoproteins in Chicken Spleen Lymphocytes Induced by Mercuric Chloride. Biol Trace Elem Res 2022; 200:2857-2865. [PMID: 34436752 DOI: 10.1007/s12011-021-02870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Mercury (Hg) is a heavy metal widely distributed in ecological environment, poisoning the immune system of humans and animals. Selenium (Se) is an essential microelement and selenoproteins involved in the procedure of Se antagonizing organ toxicity induced by heavy metals. The aim of this research was to investigate the changes of gene expression profile of selenoproteins induced by mercuric chloride (HgCl2) in chicken spleen lymphocytes. We established cytotoxicity model of chicken spleen lymphocytes by HgCl2 exposure, the messenger RNA (mRNA) expression levels of 25 selenoproteins in spleen lymphocytes were analyzed by real-time quantitative PCR (qPCR), and the gene expression pattern of selenoproteins was revealed by principal component analysis (PCA). The results showed that the mRNA expression levels of 13 selenoproteins (GPX3, GPX4, TXNRD2, TXNRD3, DIO2, SELENOS, SELENON, SELENOT, SELENOO, SELENOP, SELENOP2, MSRB1, and SEPHS2) were decreased in HgCl2 treatment group, and there was strong positive correlation between these selenoproteins and component 1 as well as component 2 of the PCA. At the same time, the protein expression levels of GPX4, TXNRD1, TXNRD2, SELENOM, SELENOS, and SELENON were detected by Western blotting, which were consistent with the changes of gene expression. The results showed that the expression levels of selenoproteins were aberrant in response to HgCl2 toxicity. The information presented in this study provided clues for further research on the interaction between HgCl2 and selenoproteins, and the possible mechanism of immune organ toxicity induced by HgCl2.
Collapse
Affiliation(s)
- Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Yu-Xue Yan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|