1
|
Amjad M, Kousar R, Naeem MA, Imran M, Nadeem M, Abbas G, Khalid MS, Qaisrani SA, Azhar S, Murtaza B. An interplay of salt and Ni stress on contrasting tomato ( Solanum lycopersicum L.) genotypes: a physiological and biochemical insight. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:711-723. [PMID: 39670648 DOI: 10.1080/15226514.2024.2438772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The concurrently occurring multiple abiotic stresses like salinity and heavy metals (Nickel) pose a serious threat to plant survival and food security worldwide, especially in the face of climate change. Therefore, it is imperative to continuously test and study the plant's physiological changes under combinations of abiotic stresses to ensure sustainability and food security. An experiment was conducted to study the interactive effects of salinity (0, 7.5, and 15 dS m-1) and Ni toxicity (0, 10, 20, and 40 mg kg-1) on a tolerant (Naqeeb) and a sensitive (Nadir) Solanum lycopersicum L. physiology and fruit quality in the soil. At maturity (50% fruit ripening), the plant growth and physiological characteristics were measured, revealing that the tolerant genotype exhibited the higher values for plant height, dry weight, potassium, membrane stability index (MSI), and antioxidant enzymes (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APX, and glutathione reductase; GR). Additionally, it showed enhancement in fruit yield, size, and quality. Conversely, the tolerant genotypes showed a lower reduction in terms of plant height (25.4%) and plant dry weight (41.9%) compared to sensitive genotype (30.1 and 51.4%, respectively). Additionally, the tolerant genotype demonstrated lower values of Ni and Na+ concentration and MDA accumulation under the combined stress of salt and Ni, compared to the sensitive genotype. Furthermore, the study indicated that Ni at a concentration of 10 mg kg-1 significantly influenced tomato plant growth by enhancing its nutritional efficiency and competing with Na+. However, Ni at concentrations of 20 and 40 mg kg-1 had toxic effects on the plants, leading to a decrease in plant growth and physiological processes. Moreover, a negative relationship was observed between Ni uptake and Na+ uptake, while a positive relationship was observed between Ni and K+ uptake. Overall, this study provides valuable insights into the interaction between salinity, heavy metal toxicity, and tomato plant physiology, contributing to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Rukhshinda Kousar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Nadeem
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Sajida Azhar
- Pesticide Quality Control Laboratory, Ayyub Agricultural Research Institute, Faisalabad, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| |
Collapse
|
2
|
Khan K, Khan R, Liu Z, Ali S, Naseer MA, Shah MA, Ahmad H, Zhou XB. Melatonin mitigates nickel oxide nanoparticles induced phytotoxicity in soybean by reducing metal accumulation, enhancing antioxidant defense and promoting nitrogen assimilation. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136861. [PMID: 39700943 DOI: 10.1016/j.jhazmat.2024.136861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Heavy metals like nickel (Ni) from anthropogenic activities damage plant growth, posing challenges to agriculture. Melatonin (ME), a potent bio-regulator, has shown promise in alleviating stress induced by heavy metals. However, the mechanisms through which ME alleviates NiO-NPs phytotoxicity remain unclear. Our results showed that NiO-NPs reduced root and shoot length as well as biomass by 14 %, 12 %, 21 %, and 14 %, respectively, compared to control. However, the combined effect of ME (75 µM) and NiO-NPs (100 mg kg-1) significantly increased these parameters by 12-28 % compared to NiO-NPs. Moreover, co-exposure of ME (75 µM) and NiO-NPs notably decreased the Ni contents in root and shoot compared to NiO-NPs treatment. This reduction was associated with enhanced levels of phytohormones (ABA, JA, SA, and GA4) and secondary metabolite production, showing a 12-32 % improvement compared to NiO-NPs alone. ME further enhanced SOD, POD, CAT, and APX activities by 14-21 % while reducing oxidative enzymes (MDA, H2O2) by 17-21 %. Similarly, ME (75 µM) upregulated POD, CAT, and APX gene expression by 1.33-1.6-fold, while SOD was downregulated. Additionally, ME improved nodule formation (14 %), N2 content (19-21 %), N2-assimilation enzymes (UE, NR, GS, GOGAT, GDH) by 19-29 %, and nutrient balance in roots (16-24 %) and shoots (19-25 %). These findings provide insights into ME's role in mitigating NiO-NPs toxicity and enhancing N2-acquisition in soybeans, offering strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Kashif Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Rayyan Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Zhuo Liu
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Shahid Ali
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad Asad Naseer
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad Ali Shah
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Haseeb Ahmad
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China.
| |
Collapse
|
3
|
Khan MN, Islam S, Siddiqui MH. Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109522. [PMID: 39854787 DOI: 10.1016/j.plaphy.2025.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H+-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.7%), pyruvate kinase (79.2%), phosphoenolpyruvate carboxylase (38.9%) pyruvate dehydrogenase (41.5%), malate dehydrogenase (49.2%), citrate synthase (37.7%), isocitrate dehydrogenase (33.1%), ATP synthase (63.6%), and ATPase (38.6%). Incubation of Cd-stressed seedlings with Mel also improved the activity of nitrate reductase by 89.4%, nitrite reductase by 78.2%, and glutamine synthetase by 35.3% that resulted in higher level of ammonium and their subsequent assimilation to amino acids and proteins. Activation of these enzymes was strongly associated with Mel-induced regulation of H+-ATPase activity that improved K+ retention and N assimilation capacity of the Cd-stressed seedlings of mung bean. The coordinated mechanism of action of tricarboxylic acid (TCA) cycle, N metabolism, and higher K+ levels were helpful in providing protection against detrimental effects of Cd toxicity through improving the defense system and energy level of the plants. However, inclusion of sodium orthovanadate (PM H+-ATPase inhibitor) to the incubation medium reversed the positive effect of Mel and suppressed the performance of plants under Cd-stress. The findings of the study indicate that under Cd stress, the regulatory mechanisms of anaplerotic enzymes and antioxidant defense are mediated by Mel, and this process is facilitated by the retention of K+ induced by H+-ATPase.
Collapse
Affiliation(s)
- M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shaistul Islam
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Singh AD, Sharma N, Devi K, Kour J, Gandhi SG, Bhardwaj R, Alsahli AA, Ahmad P. Efficacy of salicylic acid (SA) in modulating the dynamics of pesticide-thiamethoxam-induced stress responses in Brassica juncea L. insights from biochemical and molecular dissection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125616. [PMID: 39746633 DOI: 10.1016/j.envpol.2024.125616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The present study uncovers the impacts of pesticide-thiamethoxam (TMX- 750 mg L-1) and salicylic acid (SA- 0.01, 0.1 and 1 mM) in Brassica juncea L. TMX poisoning exacerbates the nuclear and membrane damage, whereas an increment in the oxidative stress markers like hydrogen peroxide (H2O2), superoxide anions (O2-) and malondialdehyde (MDA) contents has been observed. The significance of phytohormone SA in mitigating TMX toxicity by enhancing the growth, and antioxidant capacities of B. juncea seedlings is not well documented. Salicylic acid priming to these TMX-exposed seedlings maximizes the germination potential by 34%, and root, shoot length by 86.9% and 41.5%, whereas, minimizing the levels of oxidative stress indicators such as H2O2 by 34.8%, O2- by 26.9% and amounts of MDA by 45.6% and EL (electrolyte leakage) contents by 22.7% under 1 mM of SA. Also, an increment in the activity of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), peroxidase (POD), and catalase (CAT) by 122.1%, 186%, 39%, 82.61%, 40.02%, 75.6% and 59.5% was observed when TMX exposed seeds were supplemented with the highest SA (1 mM) concentration. Whereas, an upregulation in the gene expressions of enzymatic antioxidants was assessed as well as a swift decrease in the RBOH1 (respiratory burst oxidase1) gene expression was observed under the subsequent SA supplementation. Thus, the results effectively address the ameliorative potentials of exogenously applied SA in order to maximize the growth and development, by mediating osmotic adjustments, and antioxidant potentials in B. juncea L.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Nancy Sharma
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, 180001, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, 180001, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India; Research and Development Cell, Lovely Professional University Punjab-144411, India.
| |
Collapse
|
5
|
Song X, Chen J, Xu C, Cai X, Song W, Chang A, Zhang Y, Luo C. Physiological and molecular mechanisms of exogenous salicylic acid in enhancing salt tolerance in tobacco seedlings by regulating antioxidant defence system and gene expression. FRONTIERS IN PLANT SCIENCE 2025; 16:1545865. [PMID: 39959351 PMCID: PMC11825763 DOI: 10.3389/fpls.2025.1545865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Introduction Salt stress has emerged as a predominant abiotic factor that jeopardizes global crop growth and yield. The plant hormone salicylic acid (SA) has notable potential in mitigating salt toxicity, yet its mechanism in enhancing the salinity tolerance of tobacco plants is not well explored. Methods This study aimed to assess the potential benefits of exogenous SA application (1.0 mM) on tobacco seedlings subjected to saline soil conditions. Results The foliar spray of SA partially mitigated these salt-induced effects, as evidenced by a reduction of malondialdehyde content, and improvements of leaf K+/Na+ ratios, pigment biosynthesis, and electron transport efficiency under NaCl stress. Additionally, SA increased the contents of total phenolic compound and soluble protein by 16.2% and 28.7% to alleviate NaCl-induced oxidative damage. Under salt stressed conditions, the activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase increased by 4.2%~14.4% in SA sprayed tobacco seedlings. Exogenous SA also increased ascorbate and glutathione levels and reduced their reduced forms by increasing the activities of glutathione reductase, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase. qRT-PCR analysis revealed that the key genes regulating SA biosynthesis, carbon assimilation, the antioxidant system and the ascorbate-glutathione cycle were activated by SA under conditions of salt stress. Discussion Our study elucidates the physiological and molecular mechanisms of exogenous SA in enhancing plant salt tolerance and provides a practical basis for crop improvement in saline environments.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jian Chen
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Can Xu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xianjie Cai
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Wenjing Song
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Aixia Chang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Chenggang Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| |
Collapse
|
6
|
Gajewska E, Witusińska A, Kornaś A, Wielanek M. Phenolics Profile and Phenol-Related Enzyme Activities in Cucumber Plants Under Ni Stress. Int J Mol Sci 2025; 26:1237. [PMID: 39941006 PMCID: PMC11818151 DOI: 10.3390/ijms26031237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Ni phytotoxicity has been attributed to its multidirectional detrimental effects on plant cell structure and function. However, relatively little is known about Ni's impact on phenolic metabolism in plants. The objective of our study was to obtain insight into the effect of Ni treatment on phenolic compound composition, phenol-related enzyme activities, and lignin accumulation in cucumber plants. Besides growth reduction, the chlorophyll a and carotenoid contents as well as the chlorophyll a fluorescence parameters, namely, the maximum photochemical efficiency of PS II and non-photochemical quenching, were significantly decreased in the Ni-treated cucumber plants. Application of Ni resulted in changes in the phenolic acid and flavonoid profiles; however, the total content of the detected phenolic compounds remained unchanged in the leaf and slightly decreased in the root. The Ni-induced release of free phenolic acids from their conjugates was found in the leaf. Ni treatment led to a marked increase in leaf peroxidase activities assayed with various phenolic substrates, while it did not influence phenyl ammonia lyase and polyphenol oxidase activities. Increased lignin deposition was observed in the leaf blade of Ni-exposed plants. Neither lignin accumulation nor induction of peroxidase activities were found in the root. Our results indicate that the Ni effect on phenolic compound composition and related enzyme activities is organ-specific. The observed changes in the content of individual compounds might result rather from the metal-triggered conversions of the compounds constitutively present in the cucumber tissues than from de novo synthesis.
Collapse
Affiliation(s)
- Ewa Gajewska
- Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (A.W.); (M.W.)
| | - Aleksandra Witusińska
- Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (A.W.); (M.W.)
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland;
| | - Marzena Wielanek
- Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (A.W.); (M.W.)
| |
Collapse
|
7
|
Wang X, Qiu G, Yang J. Improving Ni 2+ Tolerance of Arabidopsis by Overexpressing Bacterial rcnA Gene Encoding a Membrane-Bound Exporter of Ni 2. Int J Mol Sci 2024; 26:227. [PMID: 39796083 PMCID: PMC11719643 DOI: 10.3390/ijms26010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, rcnA from Escherichia coli encoding an exporter of Ni and cobalt was overexpressed constitutively in Arabidopsis thaliana, and the performance of transgenic plants was assayed under Ni stress. The subcellular localization of rcnA in plant cells was found to be the plasma membrane. Constitutive overexpression of rcnA in Arabidopsis rendered better growth of either seedlings on agar medium containing 85, 100, and 120 μM NiCl2 or adult plants in a nutrient solution with 5 mM NiCl2 added. Compared to the wildtype, rcnA-OE transgenic plants under Ni stress accumulated lower levels of reactive oxygen species (i.e., superoxide and hydrogen peroxide) in leaves and exhibited less oxidative damage in shoots, as demonstrated by less electrolyte leakage and the lower malondialdehyde content. Notably, rcnA-OE transgenic plants retained a higher content of Ni in roots and had a lower content of Ni in shoots. Therefore, our findings indicated that the bacterial rcnA gene may be utilized to improve plant Ni tolerance through genetic transformation.
Collapse
Affiliation(s)
| | | | - Jiading Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (X.W.); (G.Q.)
| |
Collapse
|
8
|
Khan K, Li ZW, Khan R, Ali S, Ahmad H, Shah MA, Zhou XB. Co-exposure impact of nickel oxide nanomaterials and Bacillus subtilis on soybean growth and nitrogen assimilation dynamics. PLANT PHYSIOLOGY 2024; 197:kiae638. [PMID: 39607727 DOI: 10.1093/plphys/kiae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Nickel oxide nanoparticles (NiO-NPs) pose potential threats to agricultural production. Bacillus subtilis has emerged as a stress-mitigating microbe that alleviates the phytotoxicity caused by NiO-NPs. However, the mechanisms underlying its effectiveness, particularly in root-nodule symbiosis and biological N2-fixation (BNF), remain unclear. Here, we tested the combined exposure of NiO-NPs (50 mg kg-1) and B. subtilis on soybean (Glycine max L.) growth and BNF. Combined exposure increased root length, shoot length, root biomass, and shoot biomass by 19% to 26%, while Ni (200 mg kg-1) reduced them by 38% to 53% compared to the control. NiO-NPs at 100 and 200 mg kg-1 significantly (P < 0.05) reduced nodule formation by 16% and 58% and Nitrogen assimilation enzyme activities levels (urease, nitrate reductase, glutamine synthetase, and glutamate synthetase) by 13% to 57%. However, co-exposure with B. subtilis improved nodule formation by 22% to 44%. Co-exposure of NiO-NPs (200 mg kg-1) with B. subtilis increased peroxidase, catalase, and glutathione peroxidase activity levels by 20%, 16%, and 14% while reducing malondialdehyde (14%) and hydrogen peroxide (12%) levels compared to NiO-NPs alone. Additionally, co-exposure of NiO-NPs (100 and 200 mg kg-1) with B. subtilis enhanced the relative abundance of Stenotrophomonas, Gemmatimonas, and B. subtilis, is associated with N2-cycling and N2-fixation potential. This study confirms that B. subtilis effectively mitigates NiO-NP toxicity in soybean, offering a sustainable method to enhance BNF and crop growth and contribute to addressing global food insecurity.
Collapse
Affiliation(s)
- Kashif Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhen Wei Li
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rayyan Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shahid Ali
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haseeb Ahmad
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muhammad Ali Shah
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Taj H, Noreen Z, Aslam M, Usman S, Shah AA, Rafique M, Raja V, El-Sheikh MA. Effects of SNP, MgSO 4, and MgO-NPs foliar application on Spinacia oleracea L. growth and physio-biochemical responses under cadmium stress. Sci Rep 2024; 14:26687. [PMID: 39496661 PMCID: PMC11535332 DOI: 10.1038/s41598-024-77221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
The effects of foliar application of sodium nitroprusside (SNP), magnesium sulfate (MgSO4) and magnesium oxide nanoparticles (MgO-NPs) on the growth, physiology, and gas exchange parameters of two varieties of spinach (Spinacia oleracea L.) under cadmium (Cd) stress were examined. The experiment was arranged in a completely randomized design with 72 pots. Two varieties of S. oleracea (Desi Palak & Lahori Palak) were used. Two concentrations of Cd (0 µM and 150 µM) in the form of cadmium chloride (CdCl2) were used. Two levels of SNP (0 ppm and 100 ppm) and two levels for each form of Mg i.e. MgSO4 and MgO-NPs (0 and 200 ppm) were foliar sprayed on plants in control and Cd stress. Both varieties behaved similarly under Cd stress and caused reductions in growth, physiology, gas exchange, water content parameters and inorganic ion uptake. However, the biochemical parameters like relative membrane permeability (RMP), malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents were increased. However, all foliar spray treatments increased growth, physiological and gas exchange parameters, water content and inorganic ion uptake. However, this reduced the MDA, RMP, and H2O2 contents. Desi Palak showed the more positive results under foliar application of MgO-NPs. However, Lahori palak showed more positive results under the SNP + MgO-NP treatment. It is concluded that foliar application of SNP, MgSO4 and MgO-NPs could be an innovative approach to alleviated the heavy metals (Cd) toxicity in crop plants.
Collapse
Affiliation(s)
- Hafsa Taj
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Maham Rafique
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Suljević D, Fočak M, Alijagic A. Assessing chromium toxicity across aquatic and terrestrial environments: a cross-species review. Drug Chem Toxicol 2024; 47:1312-1324. [PMID: 38727006 DOI: 10.1080/01480545.2024.2350660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/27/2024] [Indexed: 11/21/2024]
Abstract
Chromium (Cr) toxicity, even at low concentrations, poses a significant health threat to various environmental species. Cr is found in the environment in two oxidation states that differ in their bioavailability and toxicity. While Cr(III) is essential for glucose metabolism, the oxyanion chromate Cr(VI) is mostly of anthropogenic origin, toxic, and carcinogenic. The sources of Cr in the environment are multiple, including geochemical processes, disposal of industrial waste, and industrial wastewater. Cr pollution may consequently impact the health of numerous plant and animal species. Despite that, the number of published studies on Cr toxicity across environmental species remained mainly unchanged over the past two decades. The presence of Cr in the environment affects several plant physiological processes, including germination or photosynthesis, and consequently impacts growth, and lowers agricultural production and quality. Recent research has also reported the toxic effects of Cr in different aquatic and terrestrial organisms. Whereas some species showed sensitivity, others exhibited tolerance. Hence, this review discusses the understanding of the ecotoxicological effect of Cr on different plant and animal groups and serves as a concise source of consolidated information and a valuable reference for researchers and policymakers in an understanding of Cr toxicity. Future directions should focus on expanding research efforts to understand the mechanisms underlying species-specific responses to Cr pollution.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
11
|
Wang Y, Rong L, Wang T, Gao S, Zhang S, Wu Z. Transcriptome analysis reveals ozone treatment maintains ascorbic acid content in fresh-cut kiwifruit by regulating phytohormone signalling pathways. Food Res Int 2024; 191:114699. [PMID: 39059955 DOI: 10.1016/j.foodres.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Ascorbic acid (AsA) is an indicator of the nutritional value of freshly cut kiwifruit during storage at 4℃, and its degradation can be inhibited after ozone treatment (1 mg/L, 10 min). The aim of this study was to elucidate the regulatory mechanism affecting AsA metabolism in fresh-cut kiwifruit after ozone treatment. In this study, ozone treatment not only prevented the decrease in AsA/dehydroascorbic acid and delayed the accumulation of total soluble solids/titratable acidity, but also altered phytohormone levels differently. Transcriptomic profiling combined with cis-acting element and correlation analysis were performed to reveal that abscisic acid and salicylic acid synergistically delay AsA degradation under ozone-treatment conditions. Actinidia03760, encoding ascorbate peroxidase, could be specifically recognized by the bZIP transcription factor and is considered a key candidate gene for further research. Collectively, ozone treatment is a promising method for preserving AsA content and improving the nutrition of fresh-cut kiwifruit.
Collapse
Affiliation(s)
- Yajing Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Liyan Rong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Tianyu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Shiyu Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Shuyue Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
12
|
Rasouli F, Jalalian S, Hayati F, Hassanpouraghdam MB, Asadi M, Ebrahimzadeh A, Puglisi I, Baglieri A. Salicylic acid foliar application meliorates Portulaca oleraceae L. growth responses under Pb and Ni over-availability while keeping reliable phytoremediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1787-1801. [PMID: 38819100 DOI: 10.1080/15226514.2024.2357634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The efficacy of SA foliar use on Pb and Ni-induced stress tolerance and phytoremediation potential by Portulaca oleraceae L. were assayed as a factorial trial based on a completely randomized design with four repetitions. The factors included; SA foliar application (0 and 100 µM) and HMs application of Pb [0, 150, and 225 mg kg-1 soil Lead (II) nitrate] and Ni [0, 220, and 330 mg kg-1 soil Nickel (II) nitrate]. Plant height, stem diameter, shoot and root fresh and dry weight, photosynthetic pigments, total soluble proteins, palmitic acid, stearic acid, arachidic acid, and some macro- and micro-elements contents were reduced facing the HMs stress, but SA foliar application ameliorated these traits. HMs stress increased malondialdehyde content, total antioxidant activity, total flavonoids, phenolics, and linolenic acid content, while SA foliar application declined the mentioned parameters. Moreover, shoot and root Pb and Ni content enhanced in the purslane plants supplemented by SA under the HMs stress. The results propose SA foliar application as a reliable methodology to recover purslane growth characters and fatty acid profiles in the soil contaminated with the HMs. The idea is that SA would be potentially effective in alleviating HMs contamination while keeping reasonable phytoremediation potential.
Collapse
Affiliation(s)
- Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sahar Jalalian
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Faezeh Hayati
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Mohammad Asadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Asghar Ebrahimzadeh
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
13
|
Modarresi M, Karimi N, Chaichi M, Chahardoli A, Najafi-Kakavand S. Salicylic acid and jasmonic acid-mediated different fate of nickel phytoremediation in two populations of Alyssum inflatum Nyár. Sci Rep 2024; 14:13259. [PMID: 38858574 PMCID: PMC11164946 DOI: 10.1038/s41598-024-64336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates Ni phytoremediation and accumulation potential in the presence of salicylic acid (SA) (0, 50 and 200 μM) and jasmonic acid (JA) (0, 5 and 10 μM) in two populations of Alyssum inflatum under various nickel (Ni) doses (0, 100 and 400 μM). By measuring Ni levels in the shoots and roots, values of bioaccumulation coefficient (BAC), biological concentration factor (BCF) and translocation factor (TF) were calculated to quantify Ni accumulation and translocation between plant organs. Additionally, the amounts of histidine (His), citric acid (CA) and malic acid (MA) were explored. The results showed that plant dry weight (DW) [in shoot (29.8%, 8.74%) and in root (21.6%, 24.4%)] and chlorophyll [a (17.1%, 32.5%), b (10.1%, 30.9%)] declined in M and NM populations respectively, when exposed to Ni (400 μM). Conversely, the levels of MA [in shoot (37.0%, 32.0%) and in root (25.5%, 21.2%)], CA [in shoot (17.0%, 10.0%) and in root (47.9%, 37.2%)] and His [in shoot (by 1.59- and 1.34-fold) and in root (by 1.24- and 1.18-fold)] increased. Also, in the presence 400 μM Ni, the highest accumulation of Ni was observed in shoots of M (1392 μg/g DW) and NM (1382 μg/g DW). However, the application of SA and JA (especially in Ni 400 μM + SA 200 μM + JA 5 and 10 μM treatments) mitigated the harmful impact of Ni on physiological parameters. Also, a decreasing trend was observed in the contents of MA, CA, and His. The reduction of these compounds as important chelators of Ni caused a decrease in root-to-shoot Ni transfer and reducing accumulation in the shoots of both populations. The values of phytoremediation indices in both populations exposed to Ni (400 μM) were above one. In presence of the SA and JA, these indices showed a decreasing trend, although the values remained above one (BAC, BCF and TF > 1). Overall, the results indicated that SA and JA can reduce phytoremediation potential of the two populations through different mechanisms.
Collapse
Grants
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
- Seed and Plant Improvement Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, Hamedan, Iran
Collapse
Affiliation(s)
- Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
| | - Mehrdad Chaichi
- Seed and Plant Improvement Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, Hamedan, Iran
| | - Azam Chahardoli
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
14
|
Sperdouli I, Panteris E, Moustaka J, Aydın T, Bayçu G, Moustakas M. Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress. Int J Mol Sci 2024; 25:5728. [PMID: 38891916 PMCID: PMC11171592 DOI: 10.3390/ijms25115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 μmol photons m-2 s-1) and high light (HL, 900 μmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece;
| | - Emmanuel Panteris
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
15
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
16
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
17
|
Hussain M, Hafeez A, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ashraf MA, Rasheed R, Rizwan M, Abeed AHA. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108433. [PMID: 38364631 DOI: 10.1016/j.plaphy.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
18
|
Shah T, Khan H, Ali A, Khan Z, Alsahli AA, Dewil R, Ahmad P. Silicon and arbuscular mycorrhizal fungi alleviate chromium toxicity in Brassica rapa by regulating Cr uptake, antioxidant defense expression, the glyoxalase system, and secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108286. [PMID: 38169223 DOI: 10.1016/j.plaphy.2023.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The potential contribution of silicon (Si) (300 mg kg-1 potash silica) or arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis) to reduce chromium toxicity (Cr; 0 and 300 mg kg-1) in Brassica rapa was examined in this work. Under Cr stress, Si and AMF were used separately and in combination (no Si, or AMF, Si, AMF, and Si + AMF). Brassica rapa growth, colonization, photosynthesis, and physio-biochemical characteristics decreased under Cr stress. Oxidative stress was a side effect of Cr stress and was associated with high levels of methylglyoxal (MG), hydrogen peroxide (H2O2), lipid peroxidation (MDA), and maximum lipoxygenase activity (LOX). On the other hand, quantitative real-time PCR analyses of gene expression showed that under Cr stress, the expression of genes for secondary metabolites and antioxidant enzymes was higher than that under the control. The co-application of Si and AMF activated the plant defense system by improving the antioxidative enzymes activities, the potassium citrate and glutathione pool, the glyoxalase system, metabolites, and genes encoding these enzymes under Cr stress. Under the influence of Cr stress, oxidative stress was reduced by the coordinated control of the antioxidant and glyoxalase systems. However, the restricted Cr uptake and root and shoot accumulation of Si and AMF co-applied to only Cr-stressed plants was more significant. In summary, Si and AMF applied together successfully counteract the deleterious effects of Cr stress and restore growth and physio-biochemical characteristics. As a result, the beneficial effects of the combined Si and AMF application may be attributed to mycorrhizae-mediated enhanced Si absorption and metal resistance.
Collapse
Affiliation(s)
- Tariq Shah
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture Peshawar 25130, Pakistan.
| | - Hamad Khan
- Institute of Cotton Research by Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan-455000, PR China
| | - Ahmad Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Zeeshan Khan
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Belgium; Department of Engineering Science, Univeristy of Oxford, United Kingdom
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India.
| |
Collapse
|
19
|
Khan MN, Siddiqui MH, AlSolami MA, Siddiqui ZH. Melatonin-regulated heat shock proteins and mitochondrial ATP synthase induce drought tolerance through sustaining ROS homeostasis in H 2S-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108231. [PMID: 38056039 DOI: 10.1016/j.plaphy.2023.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Drought is thought to be one of the major global hazards to crop production. Understanding the role of melatonin (Mel) during plant adaptive responses to drought stress (DS) was the aim of the current investigation. Involvement of hydrogen sulfide (H2S) was also explored in Mel-regulated mechanisms of plants' tolerance to DS. A perusal of the data shows that exposure of tomato plants to DS elevated the activity of mitochondrial enzymes viz. pyruvate dehydrogenase, malate dehydrogenase, and citrate synthase. Whereas the activity of ATP synthase and ATPase was downregulated under stress conditions. Under DS, an increase in the expression level of heat shock proteins (HSPs) and activation level of antioxidant defense system was observed as well. On the other hand, an increase in the activity of NADPH oxidase and glycolate oxidase was observed along with the commencement of oxidative stress and accompanying damage. Application of 30 μM Mel to drought-stressed plants enhanced H2S accumulation and further elevated the activity of mitochondrial enzymes, activation level of the defense system, and expression of HSP17.6 and HSP70. Positive effect of Mel on these attributes was reflected by reduced level of ROS and related damage. However, application of H2S biosynthesis inhibitor DL-propargylglycine reversed the effect of Mel on the said attributes and again the damaging effects of drought were observed even in presence of Mel. This observation led us to conclude that Mel-regulated defense mechanisms operate through endogenous H2S under DS conditions.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mazen A AlSolami
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
20
|
Li Q, Guan C, Zhao Y, Duan X, Yang Z, Zhu J. Salicylic acid alleviates Zn-induced inhibition of growth via enhancing antioxidant system and glutathione metabolism in alfalfa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115500. [PMID: 37757624 DOI: 10.1016/j.ecoenv.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Zinc (Zn) is considered as one of the heavy metal pollutants in soil affecting agriculture. Salicylic acid (SA) is an important phytohormone that can mitigate effects against various abiotic stresses in plants, however, its exploration to improve Zn stress tolerance in alfalfa plants is still elusive. Thus, in the present study, exogenous SA treatment was conducted on alfalfa plants under Zn stress. The effects of exogenous SA on the physiological effects of alfalfa plants and the expression levels related genes were studied. This study tested the biomass, relative water content, chlorophyll levels, photosynthetic capacity, proline and soluble sugar contents, detected the activity of antioxidant enzymes (such as peroxidase and superoxide dismutase), glutathione biosynthesis, and endogenous SA levels, and quantified the genes associated with the antioxidant system and glutathione metabolism-mediated Zn stress. The results showed that exogenous SA could elevate the physiological adaptability of alfalfa plants through enhancing photosynthesis, proline and soluble sugar levels, stimulating antioxidant system and glutathione metabolism, and inducing the transcription level of related genes, thereby diminishing oxidative stress, inhibiting excessive Zn accumulation of alfalfa plants, increasing tolerance to Zn stress, and reducing the toxicity of Zn. Collectively, the application of SA alleviates Zn toxicity in alfalfa plants. The findings gave first insights into the regulatory mechanism of the Zn stress tolerance of alfalfa by exogenous SA and this might have positive implications for managing other plants which are suffering Zn stress.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yi Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xiaoye Duan
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
21
|
Khan MN, Siddiqui MH, Alhussaen KM, El-Alosey AR, AlOmrani MAM, Kalaji HM. Titanium dioxide nanoparticles require K + and hydrogen sulfide to regulate nitrogen and carbohydrate metabolism during adaptive response to drought and nickel stress in cucumber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122008. [PMID: 37356795 DOI: 10.1016/j.envpol.2023.122008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Crop plants face severe yield losses worldwide owing to their exposure to multiple abiotic stresses. The study described here, was conducted to comprehend the response of cucumber seedlings to drought (induced by 15% w/v polyethylene glycol 8000; PEG) and nickel (Ni) stress in presence or absence of titanium dioxide nanoparticle (nTiO2). In addition, it was also investigated how nitrogen (N) and carbohydrate metabolism, as well as the defense system, are affected by endogenous potassium (K+) and hydrogen sulfide (H2S). Cucumber seedlings were subjected to Ni stress and drought, which led to oxidative stress and triggered the defense system. Under the stress, N and carbohydrate metabolism were differentially affected. Supplementation of the stressed seedlings with nTiO2 (15 mg L-1) enhanced the activity of antioxidant enzymes, ascorbate-glutathione (AsA-GSH) system and elevated N and carbohydrates metabolism. Application of nTiO2 also enhanced the accumulation of phytochelatins and activity of the enzymes of glyoxalase system that provided additional protection against the metal and toxic methylglyoxal. Osmotic stress brought on by PEG and Ni, was countered by the increase of proline and carbohydrates levels, which helped the seedlings keep their optimal level of hydration. Application nTiO2 improved the biosynthesis of H2S and K+ retention through regulating Cys biosynthesis and H+-ATPase activity, respectively. Observed outcomes lead to the conclusion that nTiO2 maintains redox homeostasis, and normal functioning of N and carbohydrates metabolism that resulted in the protection of cucumber seedlings against drought and Ni stress. Use of 20 mM tetraethylammonium chloride (K+- channel blocker), 500 μM sodium orthovanadate (PM H+-ATPase inhibitor), and 1 mM hypotaurine (H2S scavenger) demonstrate that endogenous K+ and H2S were crucial for the nTiO2-induced modulation of plants' adaptive responses to the imposed stress.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalaf M Alhussaen
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Alaa Rafat El-Alosey
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
22
|
Li R, Tang F, Che Y, Fernie AR, Zhou Q, Ding Z, Yao Y, Liu J, Wang Y, Hu X, Guo J. MeGLYI-13, a Glyoxalase I Gene in Cassava, Enhances the Tolerance of Yeast and Arabidopsis to Zinc and Copper Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3375. [PMID: 37836115 PMCID: PMC10574700 DOI: 10.3390/plants12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Although zinc and copper are the two essential nutrients necessary for plant growth, their excessive accumulation in soil not only causes environmental pollution but also seriously threatens human health and inhibits plant growth. The breeding of plants with novel zinc or copper toxicity tolerance capacities represents one strategy to address this problem. Glyoxalase I (GLYI) family genes have previously been suggested to be involved in the resistance to a wide range of abiotic stresses, including those invoked by heavy metals. Here, a MeGLYI-13 gene cloned from a cassava SC8 cultivar was characterized with regard to its potential ability in resistance to zinc or copper stresses. Sequence alignment indicated that MeGLYI-13 exhibits sequence differences between genotypes. Transient expression analysis revealed the nuclear localization of MeGLYI-13. A nuclear localization signal (NLS) was found in its C-terminal region. There are 12 Zn2+ binding sites and 14 Cu2+ binding sites predicted by the MIB tool, of which six binding sites were shared by Zn2+ and Cu2+. The overexpression of MeGLYI-13 enhanced both the zinc and copper toxicity tolerances of transformed yeast cells and Arabidopsis seedlings. Taken together, our study shows the ability of the MeGLYI-13 gene to resist zinc and copper toxicity, which provides genetic resources for the future breeding of plants resistant to zinc and copper and potentially other heavy metals.
Collapse
Affiliation(s)
- Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Fenlian Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yannian Che
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Qin Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhongping Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xinwen Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Liang Y, Li D, Sheng Q, Zhu Z. Exogenous Salicylic Acid Alleviates NO 2 Damage by Maintaining Cell Stability and Physiological Metabolism in Bougainvillea × buttiana 'Miss Manila' Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3283. [PMID: 37765447 PMCID: PMC10535129 DOI: 10.3390/plants12183283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Exogenous substances can alleviate plant damage under adverse conditions. In order to explore whether different concentrations of salicylic acid (SA) can play a role in the resistance of Bougainvillea × buttiana 'Miss Manila' to nitrogen dioxide (NO2) stress and the relevant mechanisms of their effects, different concentrations of SA were applied locally under the control experiment condition of 4.0 μL·L-1 NO2, and the role of SA in alleviating injury was studied. The findings noted a significant increase in metabolic adaptations and antioxidant enzyme activities following 0.25-0.75 mM SA application (p < 0.05), except 1 mM. Superoxide dismutase (SOD) and catalase (CAT) in particular increased by 21.88% and 59.71%, respectively. Such an increase led to effective control of the reduction in photosynthetic pigments and the photosynthetic rate and protection of the structural stability of chloroplasts and other organelles. In addition, the activity of nitrate reductase (NR) increased by 83.85%, and the content of nitrate nitrogen (NO3--N) decreased by 29.23% in nitrogen metabolism. Concurrently, a principal component analysis (PCA) and a membership function analysis further indicated that 0.75 mM SA provided the most notable improvement in NO2 resistance among the different gradients. These findings suggest that 0.25-0.75 mM SA can relieve the stress at 4 μL·L-1 NO2 injury by effectively improving the antioxidant enzyme activity and nitrogen metabolizing enzyme activity, protecting the photosynthetic system and cell structure, but 1 mM SA had the opposite effect. In the future, the specific reasons for inhibition of SA at high concentrations and the comprehensive effects of the application of other exogenous compounds should be further studied.
Collapse
Affiliation(s)
- Yuxiang Liang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Dalu Li
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
24
|
Aslam M, Sonia M, Abbas G, Shahid M, Murtaza B, Khalid MS, Qaisrani SA, Alharby HF, Alghamdi SA, Alharbi BM, Chen Y. Multivariate characterization of biochemical and physiological attributes of quinoa (Chenopodium quinoa Willd.) genotypes exposed to nickel stress: implications for phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99247-99259. [PMID: 36279057 DOI: 10.1007/s11356-022-23581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is an essential element for plants; however, excessive uptake of Ni causes phytotoxicity in plants. The phytotoxic effects of Ni on the growth of quinoa and the underlaying mechanisms for Ni tolerance and phytoremediation are unknown. Hence, the present study investigated Ni tolerance and accumulation potential of two quinoa genotypes (Puno and Vikinga). Both genotypes were exposed to Ni (0, 100, 200, 300, and 400 μM) in half-strength Hoagland nutrient solution for three weeks. Results revealed that shoot and root lengths, biomass, stomatal conductance, and chlorophyll contents were decreased with the increase of Ni concentration. Excessive uptake of Ni resulted in the limited uptake of K by root and its translocation to shoot. Ni caused oxidative stress in plants by overproduction of H2O2 leading to lipid peroxidation of cell membranes. Genotype Puno showed greater tolerance to Ni than Vikinga based on tolerance index, lower bioconcentration factor, and translocation factor. Greater tolerance of Puno was mainly attributed to improved physiological responses and amelioration of oxidative stress by induction of antioxidant enzymes such as peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). It was revealed through multivariate analysis that Ni had strong negative correlations with growth and physiological attributes and positive associations with oxidative stress attributes. The study demonstrated genotypic variation in response to varying Ni concentrations and Puno performed better than Vikinga for phytostabilization of Ni-contaminated soils.
Collapse
Affiliation(s)
- Maria Aslam
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Mbarki Sonia
- Laboratory of Management and Valorization of Forest Resources, Water and Forestry (INRGREF), National Research Institute of Rural Engineering, 2080, Ariana, Tunisia
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhmmad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
25
|
Parwez R, Aqeel U, Aftab T, Khan MMA, Naeem M. Melatonin supplementation combats nickel-induced phytotoxicity in Trigonella foenum-graecum L. plants through metal accumulation reduction, upregulation of NO generation, antioxidant defence machinery and secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107981. [PMID: 37639982 DOI: 10.1016/j.plaphy.2023.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Nickel (Ni) at a toxic level (80 mg kg-1 of soil) adversely affects the crop performance of fenugreek (Trigonella foenum-graecum L.). Melatonin (MEL), a potent plant growth regulator, is ascribed to offer promising roles in heavy metal stress alleviation. In this study, different doses viz. 0, 25, 50, 75 and 100 μM of MEL were administered to plants through foliage under normal and Ni-stress conditions. The experiment unveiled positive roles of MEL in enhancing root-shoot lengths, fresh-dry weights, seed yield and restoring photosynthetic efficiency assessed in terms of higher Fv/Fm, YII, qP, and lower NPQ values in plants exposed to Ni (80 mg kg-1). MEL supplementation (at 75 μM) effectively restricted Ni accumulation and regulated oxidative stress via modulation of MDA, O2-, H2O2 and NO generation, most prominently. Besides, MEL at 75 μM more conspicuously perked up the activities of antioxidant enzymes like SOD, POX, CAT and APX by 15.7, 20.0, 14.5 and 16.5% higher than the Ni-exposed plants for effective ROS scavenging. Likewise, MEL at 75 μM also efficiently counteracted Ni-generated osmotic stress, through an upscaled accumulation of proline (19.6%) along with the enhancement in the concentration of total phenols (13.6%), total tannins (11.2%), total flavonoids (25.5%) and total alkaloids (19.2%) in plant's leaves. Furthermore, under 80 mg kg-1 Ni stress, MEL at 75 μM improved the seed's trigonelline content by 40.1% higher compared to Ni-disturbed plants, upgrading the pharmacological actions of the plant. Thus, the present study deciphers the envisaged roles of MEL in the alleviation of Ni stress in plants to enhance overall crop productivity.
Collapse
Affiliation(s)
- Rukhsar Parwez
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
26
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
27
|
Ashraf MA, Hafeez A, Rasheed R, Hussain I, Farooq U, Rizwan M, Ali S. Effect of exogenous taurine on growth, oxidative defense, and nickel (Ni) uptake in canola ( Brassica napus L.) under Ni stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1135-1152. [PMID: 37829701 PMCID: PMC10564706 DOI: 10.1007/s12298-023-01359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Nickel (Ni) contamination and its associated hazardous effects on human health and plant growth are ironclad. However, the potential remedial effects of taurine (TAU) on Ni-induced stress in plants remain obscure. Therefore, the present study was undertaken to examine the effect of TAU seed priming (100 and 150 mg L‒1) as an alleviative strategy to circumvent the phytotoxic effects of Ni (150 mg kg‒1) on two canola cultivars (Ni-tolerant cv. Shiralee and Ni-sensitive cv. Dunkeld). Our results manifested an apparent decline in growth, biomass, photosynthetic pigments, leaf relative water content, DPPH free radical scavenging activity, total soluble proteins, nitrate reductase activity, and nutrient acquisition (N, P, K, Ca) under Ni toxicity. Further, Ni toxicity led to a substantial increase in oxidative stress reflected as higher levels of superoxide radicals (O2•‒) and hydrogen peroxide (H2O2) alongside increased relative membrane permeability, lipoxygenase (LOX) activity, and Ni accumulation in leaves and roots. However, TAU protected canola plants from Ni-induced oxidative damage through the amplification of hydrogen sulfide (H2S) production that intensified the antioxidant system to avert O2•‒, H2O2, and malondialdehyde (MDA) production. Further, TAU-mediated increase in H2S levels maintained membrane integrity that might have improved ionomics and bettered plant growth under Ni toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01359-9.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| |
Collapse
|
28
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
29
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
30
|
Hasanuzzaman M, Raihan MRH, Nowroz F, Nahar K. Insight into the physiological and biochemical mechanisms of biostimulating effect of Ascophyllum nodosum and Moringa oleifera extracts to minimize cadmium-induced oxidative stress in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55298-55313. [PMID: 36890405 DOI: 10.1007/s11356-023-26251-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a serious threat for environmental sustainability as it can be taken up quickly by plants and transported to the food chain of living organisms. It alters plants' metabolic and physiological activities and causes yield loss, thereby, enhancing plant tolerance to Cd stress is of utmost essential. Therefore, an experiment was executed to investigate the potential role of Ascophyllum nodosum extract (ANE) and moringa (Moringa oleifera) leaf extract (MLE) to confer Cd tolerance in rice (Oryza sativa cv. BRRI dhan89). Thirty-five-day-old seedling was subjected to Cd stress (50 mg kg-1 CdCl2) alone and in a combination of ANE (0.25%) or MLE (0.5%) in a semi-controlled net house. Exposure to Cd resulted in accelerated production of reactive oxygen species, enhanced lipid peroxidation, and disrupted antioxidant defense and glyoxalase system, thus retarded plant growth, biomass production, and yield attributes of rice. On the contrary, the supplementation of ANE or MLE enhanced the contents of ascorbate and glutathione, and the activities of antioxidant enzymes such as ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase. Moreover, supplementation of ANE and MLE enhanced the activities of glyoxalase I and glyoxalase II which prevented the overgeneration of methylglyoxal in Cd stressed rice plants. Thus, because of ANE and MLE addition Cd-induced rice plants showed a noticeable declination in membrane lipid peroxidation, hydrogen peroxide generation, and electrolyte leakage, whereas improved water balance. Furthermore, the growth and yield attributes of Cd-affected rice plants were improved with the supplementation of ANE and MLE. All the studied parameters indicates the potential role of ANE and MLE in mitigating Cd stress in rice plants through improving the physiological attributes, modulating antioxidant defense and glyoxalase system.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| | - Md Rakib Hossain Raihan
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Farzana Nowroz
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-E-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
31
|
Ozfidan-Konakci C, Yildiztugay E, Arikan B, Alp-Turgut FN, Turan M, Cavusoglu H, Sakalak H. Responses of individual and combined polystyrene and polymethyl methacrylate nanoplastics on hormonal content, fluorescence/photochemistry of chlorophylls and ROS scavenging capacity in Lemna minor under arsenic-induced oxidative stress. Free Radic Biol Med 2023; 196:93-107. [PMID: 36657731 DOI: 10.1016/j.freeradbiomed.2023.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Nanoplastics alter the adverse impacts of hazardous contaminants such as heavy metals by changing their adsorption and accumulation. Few findings are available on the interaction between nanoplastic and heavy metals in plants. However, there is no report on the mechanisms for removing metal stress-mediated oxidative damage by the combination treatments of nanoplastics. To address this lack of information, polystyrene nanoplastic (PS, 100 mg L-1) and polymethyl methacrylate (PMMA, 100 mg L-1) were hydroponically applied to Lemna minor exposed to arsenate (As, 100 μM) for 7 days. PS or PMMA caused a reduction in the contents of N, P, K, Ca, Mg and Mn, but the improved contents were detected in the presence of PS or PMMA plus As stress. The hormone contents (auxin, gibberellic acid, cytokinin, salicylic acid and jasmonic acid) reduced by stress were re-arranged through PS or PMMA applications. Based on chlorophyll efficiency, fluorescence kinetics and performance of PSII, the impaired photosynthesis by As stress was improved via PS or PMMA applications. This alleviation did not continue under the combined form of PS and PMMA in As-applied plants. All analyzed antioxidant activity (superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR)) decreased or unchanged under As, PS or PMMA. Due to the inactivation of the defense system, L. minor had high levels of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS), showing lipid peroxidation. After As toxicity, induvial applications of PS or PMMA indicated the activated enzyme capacity (SOD, POX, GST and GPX) and upregulated AsA/DHA, GSH/GSSG and redox state of GSH, which facilitated the removal of radical accumulation. The efficiency of the antioxidant system in As + PS + PMMA-applied L. minor was not enough to remove damage induced by As stress; hereby, TBARS and H2O2 contents were similar to the As-treated group. Our findings from alone or combined application of PS and PMMA provide new information to advance the tolerance mechanism against As exposure in L. minor.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, 34755, Istanbul, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Huseyin Sakalak
- Graduate School of Natural and Applied Sciences, Nanotechnology and Advanced Materials, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
32
|
Singh A, Roychoudhury A. Salicylic acid-mediated alleviation of fluoride toxicity in rice by restricting fluoride bioaccumulation and strengthening the osmolyte, antioxidant and glyoxalase systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25024-25036. [PMID: 34075496 DOI: 10.1007/s11356-021-14624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The aim of the manuscript was to demonstrate the efficacy of salicylic acid (SA) in abrogating the fluoride-induced oxidative damages in the susceptible rice cultivar, MTU1010. Prolonged exposure of seedlings to sodium fluoride (25 mg L-1) severely impaired growth and overall physiological parameters like germination percentage, biomass and root and shoot length and incited the formation of hydrogen peroxide that enhanced electrolyte leakage, formation of cytotoxic products like malondialdehyde and methylglyoxal and lipoxygenase activity. Exogenous application of SA (0.5 mM) enhanced the endogenous level of SA that restored the chlorophyll content and catalase activity and further escalated the activity of other enzymatic antioxidants (superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase and glutathione S-transferase), formation of non-enzymatic antioxidants (anthocyanins, carotenoids, flavonoids, phenolics, ascorbate and reduced glutathione) and osmolytes (proline, amino acids and glycine betaine) that cumulatively maintained the integrity of membrane structure and homeostatic balance of the cells by scavenging the accumulated hydrogen peroxide. SA-mediated formation of proline and flavonoids was linked with the enhanced activity of Δ1-pyrroline-5-carboxylate synthetase and phenylalanine ammonia lyase. Fluoride stress enhanced the activity of enzymes like glyoxalase I and glyoxalase II which were further aggravated in the seedlings upon treatment with SA, effectively detoxifying the methylglyoxal formed during stress. Overall, the manuscript depicts the pivotal role played by exogenous SA in ameliorating the effects of fluoride-induced damages in the seedlings and proves its potentiality as a protective chemical against fluoride stress when applied exogenously in rice.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
33
|
Moustakas M, Sperdouli I, Moustaka J, Şaş B, İşgören S, Morales F. Mechanistic Insights on Salicylic Acid Mediated Enhancement of Photosystem II Function in Oregano Seedlings Subjected to Moderate Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030518. [PMID: 36771603 PMCID: PMC9919124 DOI: 10.3390/plants12030518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/12/2023]
Abstract
Dramatic climate change has led to an increase in the intensity and frequency of drought episodes and, together with the high light conditions of the Mediterranean area, detrimentally influences crop production. Salicylic acid (SA) has been shown to supress phototoxicity, offering photosystem II (PSII) photoprotection. In the current study, we attempted to reveal the mechanism by which SA is improving PSII efficiency in oregano seedlings under moderate drought stress (MoDS). Foliar application of SA decreased chlorophyll content under normal growth conditions, but under MoDS increased chlorophyll content, compared to H2O-sprayed oregano seedlings. SA improved the PSII efficiency of oregano seedlings under normal growth conditions at high light (HL), and under MoDS, at both low light (LL) and HL. The mechanism by which, under normal growth conditions and HL, SA sprayed oregano seedlings compared to H2O-sprayed exhibited a more efficient PSII photochemistry, was the increased (17%) fraction of open PSII reaction centers (qp), and the increased (7%) efficiency of these open reaction centers (Fv'/Fm'), which resulted in an enhanced (24%) electron transport rate (ETR). SA application under MoDS, by modulating chlorophyll content, resulted in optimized antenna size and enhanced effective quantum yield of PSII photochemistry (ΦPSII) under both LL (7%) and HL (25%), compared to non-SA-sprayed oregano seedlings. This increased effective quantum yield of PSII photochemistry (ΦPSII) was due to the enhanced efficiency of the oxygen evolving complex (OEC), and the increased fraction of open PSII reaction centers (qp), which resulted in an increased electron transport rate (ETR) and a lower amount of singlet oxygen (1O2) production with less excess excitation energy (EXC).
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Navarra, Spain
| |
Collapse
|
34
|
Talaat NB, Hanafy AMA. Spermine-Salicylic Acid Interplay Restrains Salt Toxicity in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020352. [PMID: 36679065 PMCID: PMC9861978 DOI: 10.3390/plants12020352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 05/30/2023]
Abstract
Spermine (SPM) and salicylic acid (SA) are plant growth regulators, eliciting specific responses against salt toxicity. In this study, the potential role of 30 mgL-1 SPM and/or 100 mgL-1 SA in preventing salt damage was investigated. Wheat plants were grown under non-saline or saline conditions (6.0 and 12.0 dS m-1) with and without SA and/or SPM foliar applications. Exogenously applied SA and/or SPM alleviated the inhibition of plant growth and productivity under saline conditions by increasing Calvin cycle enzyme activity. Foliage applications also improved ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase activities, which effectively scavenged hydrogen peroxide and superoxide radicals in stressed plants. Furthermore, foliar treatments increased antioxidants such as ascorbate and glutathione, which effectively detoxified reactive oxygen species (ROS). Exogenous applications also increased N, P, and K+ acquisition, roots' ATP content, and H+-pump activity, accompanied by significantly lower Na+ accumulation in stressed plants. Under saline environments, exogenous SA and/or SPM applications raised endogenous SA and SPM levels. Co-application of SA and SPM gave the best response. The newly discovered data suggest that the increased activities of Calvin cycle enzymes, root H+-pump, and antioxidant defense machinery in treated plants are a mechanism for salt tolerance. Therefore, combining the use of SA and SPM can be a superior method for reducing salt toxicity in sustainable agricultural systems.
Collapse
|
35
|
López-Villamor A, Nunes da Silva M, Vasconcelos MW. Evaluation of plant elicitation with methyl-jasmonate, salicylic acid and benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester for the sustainable management of the pine wilt disease. TREE PHYSIOLOGY 2022; 42:2596-2613. [PMID: 35867422 PMCID: PMC11648887 DOI: 10.1093/treephys/tpac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Treatment with plant elicitors can be a promising method to induce Pinus pinaster tolerance against the pinewood nematode (PWN), Bursaphelenchus xylophilus, by promoting plant antioxidant system, micronutrient accumulation and by modulating plant-associated bacterial populations. To test this hypothesis, plants were sprayed with methyl jasmonate (MeJA), salicylic acid (SA) or benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester (BTH), and evaluated until 35 days after-inoculation (dai) for: i) extent of foliar symptoms; ii) nematode density inside stem tissues; iii) proxies for oxidative damage and antioxidant activity, iv) micronutrient concentration and v) bacterial diversity. Compared with non-elicited plants, plant elicitation, particularly with BTH, significantly decreased nematodes density inside stem tissues (by 0.63-fold). Concordantly, without elicitation plant mortality reached 12.5% while no mortality was observed in elicited plants. BTH-elicited plants had significantly higher concentrations of anthocyanins and carotenoids at the end of the assay than SA-elicited and MeJA-elicited plants, which possibly contributed to the lower PWN colonization and degree of foliar symptoms observed. Accordingly, MeJA and SA led to increased lipid peroxidation at 28 dai (by 2.64- and 2.52-fold, respectively) in comparison with BTH (by 1.10-fold), corroborating its higher potential in increasing plant antioxidative response during infection. Moreover, carotenoids showed a negative correlation with nematode migration, whereas polyphenols showed a positive correlation. Elicitors also induced changes in the bacterial community of infected P. pinaster plants, increasing the diversity of specific populations. Finally, elicitors induced significant changes in micronutrients accumulation in plant tissues, namely a decrease in the concentration of B, Mn and Ni in plants treated with BTH compared to those treated with the other elicitors. Altogether, results suggest that elicitation with MeJA, SA and, particularly, BTH, increases tolerance against B. xylophilus by promoting plant antioxidant system, changing the accumulation of essential micronutrients and modulating plant-associated bacterial diversity.
Collapse
Affiliation(s)
- Adrián López-Villamor
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química
Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de
Diogo Botelho 1327, 4169-005 Porto, Portugal
- Misión Biológica de Galicia (CSIC), Grupo de Genética y
Ecología Forestal, Apdo. 28, 36080 Pontevedra, Spain
| | - Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF – Centro de
Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia,
Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de
Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia,
Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
36
|
Kumar S, Wang M, Liu Y, Fahad S, Qayyum A, Jadoon SA, Chen Y, Zhu G. Nickel toxicity alters growth patterns and induces oxidative stress response in sweetpotato. FRONTIERS IN PLANT SCIENCE 2022; 13:1054924. [PMID: 36438136 PMCID: PMC9685627 DOI: 10.3389/fpls.2022.1054924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) contaminated soil is a persistent risk to plant growth and production worldwide. Therefore, to explore the Ni toxicity levels in sweetpotato production areas, we investigated the influence of different Ni treatments (0, 7.5, 15, 30, and 60 mg L-1) for 15 days on phenotype, Ni uptake, relative water content, gas exchange, photosynthetic pigments, oxidative stress, osmolytes, antioxidants, and enzymes of sweetpotato plants. The results presented that Ni at higher levels (30 and 60 mg L-1) substantially reduced growth, biomass, and root morphological traits. The Pearson correlation analysis suggested that Ni toxicity causes oxidative injuries as persistent augmentation of hydrogen peroxide (H2O2) and malonaldehyde (MDA) and reduced RWC, gas exchange, and photosynthetic pigment. Furthermore, this study revealed that sweetpotato could tolerate moderate Ni treatment (up to 15 mg L-1) by reducing oxidative stress. The results also indicated that the increase in the activities of mentioned osmolytes, antioxidants, and enzymes is not sufficient to overcome the higher Ni toxicity. Based on these results, we suggest using low Ni-contaminated soil for better growth of sweetpotato and also could be used as a phytoremediator in moderate Ni-contaminated soil.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Yi Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Sultan Akbar Jadoon
- Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| |
Collapse
|
37
|
Aina O, Bakare OO, Daniel AI, Gokul A, Beukes DR, Fadaka AO, Keyster M, Klein A. Seaweed-Derived Phenolic Compounds in Growth Promotion and Stress Alleviation in Plants. Life (Basel) 2022; 12:1548. [PMID: 36294984 PMCID: PMC9604836 DOI: 10.3390/life12101548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Abiotic and biotic stress factors negatively influence the growth, yield, and nutritional value of economically important food and feed crops. These climate-change-induced stress factors, together with the ever-growing human population, compromise sustainable food security for all consumers across the world. Agrochemicals are widely used to increase crop yield by improving plant growth and enhancing their tolerance to stress factors; however, there has been a shift towards natural compounds in recent years due to the detrimental effect associated with these agrochemicals on crops and the ecosystem. In view of these, the use of phenolic biostimulants as opposed to artificial fertilizers has gained significant momentum in crop production. Seaweeds are marine organisms and excellent sources of natural phenolic compounds that are useful for downstream agricultural applications such as promoting plant growth and improving resilience against various stress conditions. In this review, we highlight the different phenolic compounds present in seaweed, compare their extraction methods, and describe their downstream applications in agriculture.
Collapse
Affiliation(s)
- Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 121001, Ogun State, Nigeria
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Augustine Innalegwu Daniel
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna 920101, Niger State, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba 9866, South Africa
| | - Denzil R. Beukes
- School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa
| | - Adewale Oluwaseun Fadaka
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| |
Collapse
|
38
|
Zaid A, Mohammad F, Siddique KHM. Salicylic Acid Priming Regulates Stomatal Conductance, Trichome Density and Improves Cadmium Stress Tolerance in Mentha arvensis L. FRONTIERS IN PLANT SCIENCE 2022; 13:895427. [PMID: 35865293 PMCID: PMC9295833 DOI: 10.3389/fpls.2022.895427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/06/2022] [Indexed: 06/01/2023]
Abstract
The application of phytohormones through seed priming could enhance quality of important medicinal and aromatic plants (MAPs) under heavy metal stress. We evaluated the potential of salicylic acid (SA) priming for overcoming the adverse effects of cadmium stress in Mentha arvensis L. plants. Suckers of plants were primed with SA before transplanting them into soil. At 30 days after transplanting, two doses (50 and 100 μm) of CdCl2 were applied to the soil. Both Cd treatments altered plant growth, photosynthetic pigments, leaf gas exchange attributes, and mineral nutrient contents. The 50 and 100 μm Cd treatments increased endogenous Cd content by 97.95 and 98.03%, electrolyte leakage (EL) by 34.21 and 44.38%, hydrogen peroxide (H2O2) by 34.71 and 55.80%, malondialdehyde (MDA) by 53.08 and 63.15%, and superoxide content (O2 -•) by 24.07 and 38.43%, respectively. Cd triggered the up-regulation of antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; and glutathione reductase GR) and increased osmolyte biosynthesis and, interestingly, secondary metabolite (SM) accumulation. The presence of SA and Cd had an additive effect on these parameters. Nevertheless, plants primed with SA regulated stomatal conductance under Cd stress. SA priming to menthol mint plants under Cd stress overcome the effects of Cd stress while increasing SMs.
Collapse
Affiliation(s)
- Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Degree College Doda, Doda, India
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
39
|
Effect of salicylic acid treatment on antioxidant capacity and endogenous hormones in winter jujube during shelf life. Food Chem 2022; 397:133788. [DOI: 10.1016/j.foodchem.2022.133788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/18/2023]
|
40
|
Guo R, Lu D, Liu C, Hu J, Wang P, Dai X. Toxic effect of nickel on microalgae Phaeodactylum tricornutum (Bacillariophyceae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:746-760. [PMID: 35364763 DOI: 10.1007/s10646-022-02532-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Nickel acts as an essential trace nutrient or toxicant for organisms, depending on its concentration. The increased concentrations of nickel, due to anthropogenic activity, in the aquatic environment are potential threats to aquatic organisms. However, the knowledge on toxic mechanisms of nickel to microalgae remains incompletely understood. In the present study, we investigated the toxic effects of nickel in the cosmopolitan diatom Phaeodactylum tricornutum via evaluation of physiological and transcriptome responses. The results showed that the median effective concentration-72 h (EC50-72 h) and EC50-96 h of nickel was 2.48 ± 0.33 and 1.85 ± 0.17 mg/L, respectively. The P. tricornutum cell abundance and photosynthesis significantly decreased by 1 mg/L of nickel. Results from photosynthetic parameters including efficiency of the oxygen evolving complex (OEC) of photosystem II (PSII) (Fv/F0), maximum photosynthetic efficiency of PS II (Fv/Fm), electron transport rate (ETR), actual photosynthetic efficiency of PS II (Y(II)), non-photochemical quenching (NPQ), and photochemical quenching (qP) indicated that OEC of PS II might be impaired by nickel. The transcriptome data also reveal that OEC apparatus coding gene PS II oxygen-evolving enhancer protein 2 (PsbP) was regulated by nickel. Moreover, induced reactive oxygen species (ROS) production and chlorophyll a content were also detected under nickel stress. Transcriptome analysis revealed that nickel affected a variety of differentially expressed genes (DEGs) that involved in redox homeostasis, nitrogen metabolisms, fatty acids, and DNA metabolism. However, thiol-disulfide redox system might play important roles in nickel-induced oxidative stress resistance. This study improved the understanding of the toxic effect of nickel on the diatom P. tricornutum.
Collapse
Affiliation(s)
- Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China.
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China.
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China.
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China
| | - Jiarong Hu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China.
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China.
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China.
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China.
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China.
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China.
| |
Collapse
|
41
|
Moustakas M, Sperdouli I, Adamakis IDS, Moustaka J, İşgören S, Şaş B. Harnessing the Role of Foliar Applied Salicylic Acid in Decreasing Chlorophyll Content to Reassess Photosystem II Photoprotection in Crop Plants. Int J Mol Sci 2022; 23:ijms23137038. [PMID: 35806045 PMCID: PMC9266436 DOI: 10.3390/ijms23137038] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA), an essential plant hormone, has received much attention due to its role in modulating the adverse effects of biotic and abiotic stresses, acting as an antioxidant and plant growth regulator. However, its role in photosynthesis under non stress conditions is controversial. By chlorophyll fluorescence imaging analysis, we evaluated the consequences of foliar applied 1 mM SA on photosystem II (PSII) efficiency of tomato (Solanum lycopersicum L.) plants and estimated the reactive oxygen species (ROS) generation. Tomato leaves sprayed with 1 mM SA displayed lower chlorophyll content, but the absorbed light energy was preferentially converted into photochemical energy rather than dissipated as thermal energy by non-photochemical quenching (NPQ), indicating photoprotective effects provided by the foliar applied SA. This decreased NPQ, after 72 h treatment by 1 mM SA, resulted in an increased electron transport rate (ETR). The molecular mechanism by which the absorbed light energy was more efficiently directed to photochemistry in the SA treated leaves was the increased fraction of the open PSII reaction centers (qp), and the increased efficiency of open reaction centers (Fv’/Fm’). SA induced a decrease in chlorophyll content, resulting in a decrease in non-regulated energy dissipated in PSII (ΦNO) under high light (HL) treatment, suggesting a lower amount of triplet excited state chlorophyll (3Chl*) molecules available to produce singlet oxygen (1O2). Yet, the increased efficiency, compared to the control, of the oxygen evolving complex (OEC) on the donor side of PSII, associated with lower formation of hydrogen peroxide (H2O2), also contributed to less creation of ROS. We conclude that under non stress conditions, foliar applied SA decreased chlorophyll content and suppressed phototoxicity, offering PSII photoprotection; thus, it can be regarded as a mechanism that reduces photoinhibition and photodamage, improving PSII efficiency in crop plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Correspondence:
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| |
Collapse
|
42
|
Li X, Riaz M, Song B, Liang X, Liu H. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113587. [PMID: 35512468 DOI: 10.1016/j.ecoenv.2022.113587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Fomesafen herbicide application has become major pollution in the growth and production of crops. Spraying fomesafen on the target crops may drift out to non-target crops. In northeast China, sugar beets are always planted adjacent to soybeans. Salicylic acid (SA) plays an important role in crop growth and alleviating abiotic stress, however, the role of SA in relieving fomesafen stress in sugar beet growth has rarely been investigated. Therefore, a pot study was conducted to elucidate the effects of different concentrations (0.025, 0.25, 0.5, 1, 5, and 10 mM) of SA on morphological parameters, photosynthetic performance, and antioxidant defense system in sugar beet seedlings under fomesafen (22.5 g a.i. ha-1) stress. The results showed that fomesafen stress inhibited the growth of sugar beet seedlings, and photosynthetic performance, while increased membrane lipid peroxidation and oxidative stress. However, exogenous SA alleviated the fomesafen stress and increased plant height, biomass, photosynthetic pigment contents, net photosynthetic rate (Pn), and photochemical efficiency of PSⅡ (Fv/Fm) in sugar beet leaves. Meanwhile, exogenous SA maintained the cell membrane integrity by reducing the content of malondialdehyde (MDA) and electrolyte permeability and regulating the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol (PPO). Therefore, it is concluded that exogenous SA ameliorated the adverse effects of fomesafen on the growth of sugar beet seedlings, with a pronounced effect at 1 mM SA. The present study results may have useful implications in managing other plants that are poisoned by herbicides.
Collapse
Affiliation(s)
- Xingfan Li
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Baiquan Song
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Xilong Liang
- Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huajun Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| |
Collapse
|
43
|
Liu J, Qiu G, Liu C, Li H, Chen X, Fu Q, Lin Y, Guo B. Salicylic Acid, a Multifaceted Hormone, Combats Abiotic Stresses in Plants. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060886. [PMID: 35743917 PMCID: PMC9225363 DOI: 10.3390/life12060886] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, many new and exciting findings have paved the way to the better understanding of plant responses in various environmental changes. Some major areas are focused on role of phytohormone during abiotic stresses. Salicylic acid (SA) is one such plant hormone that has been implicated in processes not limited to plant growth, development, and responses to environmental stress. This review summarizes the various roles and functions of SA in mitigating abiotic stresses to plants, including heating, chilling, salinity, metal toxicity, drought, ultraviolet radiation, etc. Consistent with its critical roles in plant abiotic tolerance, this review identifies the gaps in the literature with regard to the complex signalling network between SA and reactive oxygen species, ABA, Ca2+, and nitric oxide. Furthermore, the molecular mechanisms underlying signalling networks that control development and stress responses in plants and underscore prospects for future research on SA concerning abiotic-stressed plants are also discussed.
Collapse
|
44
|
Kharbech O, Sakouhi L, Mahjoubi Y, Ben Massoud M, Debez A, Zribi OT, Djebali W, Chaoui A, Mur LAJ. Nitric oxide donor, sodium nitroprusside modulates hydrogen sulfide metabolism and cysteine homeostasis to aid the alleviation of chromium toxicity in maize seedlings (Zea mays L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127302. [PMID: 34583165 DOI: 10.1016/j.jhazmat.2021.127302] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 05/12/2023]
Abstract
The current research aimed to assess the protective role of nitric oxide (NO) against chromium (Cr) toxicity in maize seedlings. Chromium (200 µM) lowered osmotic potential in epicotyls and mostly in radicles (by 38% and 63%, respectively) as compared to the control. Sodium nitroprusside (SNP, NO donor) restored seedling biomass (+90% for both organs) and water potential, whereas application of Nω-nitro-L-arginine methylester (L-NAME, a NOS inhibitor) increased sensitivity to Cr. SNP suppressed Cr-triggered proline accumulation by inhibiting Δ1-pyrroline-5-carboxylate synthetase activity and stimulating proline dehydrogenase activity, leading to glutamate over-accumulation (~30% for both organs). Cr stimulated cysteine metabolism and this was further enhanced by SNP which stimulated serine acetyl-transferase and O-acetylserine (thiol) lyase activities. This was followed by an increase in endogenous hydrogen sulfide (H2S) generation by up-regulating L-cysteine desulfhydrase (+205%), D-cysteine desulfhydrase (+150%) and cyanoalanine synthase (+65%) activities in radicles compared to Cr-treatments plants. These positive effects were reduced in L-NAME compared to control. Combined Cr+SNP affected the levels of compounds involved in glutathione metabolism (γ-glutamyl-cysteinyl, γ-glutamyl-cysteinyl-clycine, γ-cysteinyl-glycine, and glycine.). All together, our findings indicate that NO and elicited cellular H2S act synergistically to alleviate Cr stress in maize seedlings by influencing a metabolic interplay between cysteine, proline, and glutathione.
Collapse
Affiliation(s)
- Oussama Kharbech
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021 Zarzouna, Tunisia; Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Penglais Campus, SY23 2DA, Aberystwyth, Wales, UK.
| | - Lamia Sakouhi
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021 Zarzouna, Tunisia
| | - Yethreb Mahjoubi
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021 Zarzouna, Tunisia
| | - Marouane Ben Massoud
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021 Zarzouna, Tunisia; School of Biological, Earth & Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland T23 N73K, Ireland
| | - Ahmed Debez
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), BP 901, Hammam-Lif 2050, Tunisia
| | - Ons Talbi Zribi
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), BP 901, Hammam-Lif 2050, Tunisia
| | - Wahbi Djebali
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021 Zarzouna, Tunisia
| | - Abdelilah Chaoui
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021 Zarzouna, Tunisia
| | - Luis Alejandro Jose Mur
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Penglais Campus, SY23 2DA, Aberystwyth, Wales, UK
| |
Collapse
|
45
|
Baran U, Ekmekçi Y. Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4446-4460. [PMID: 34409529 DOI: 10.1007/s11356-021-15493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The impacts of Ni toxicity on growth behaviors, photochemical, and antioxidant enzymes activities of wild (Carthamus oxyacantha M. Bieb.) and cultivated (Carthamus tinctorius L.) safflower species were investigated in this study. Fourteen-day-old seedlings were treated with excessive Ni levels [control, 0.5, 0.75, and 1.0 mM NiCl2·6H2O] for 7 days. The results of chlorophyll a fluorescence indicated that toxic nickel exposure led to changes in specific, phenomenological energy fluxes and quantum yields in thylakoid membranes, and activities of donor and acceptor sides of photosystems. These changes resulted in a significant decrease in the photosynthetic activities by about 50% in both species, but these negative effects of Ni were not in a level to destroy the functionality of the photosystems. At the same time, toxic Ni affected membrane integrity and the amount of photosynthetic pigments in the antenna and active reaction centers. Additionally, the accumulation of Ni was higher in roots than in stem and leaves for both species. Depending on Ni accumulation, a significant reduction in dry biomass of root by approx. 64.8 and 45.7% and shoot by 41 and 24.7% were observed in wild and cultivated species, respectively. Two species could probably withstand deleterious Ni toxicity with better upregulating own protective defense systems such as antioxidant enzymes and phenolic compounds. Among of them, SOD and POD activities were increased with increasing Ni concentrations. The POD activities of both species were most prominent and consistently increased (approx. 2 folds in roots and 6 folds in leaves) in highly toxic Ni levels and may be protected them from damaging effect of H2O2. When all results are evaluated as a whole, Carthamus species produced similar responses to toxicity and also both species have bioconcentration (BCF) and bioaccumulation factor (BF) > 1 and translocation factor < 1 under Ni toxicity may be regarded a good indication of Ni tolerance. Furthermore, it is possible to use the Carthamus species as phytostabilizers of soils contaminated with nickel, because of their roots accumulating more nickel.
Collapse
Affiliation(s)
- Uğurcan Baran
- Akdeniz University, Faculty o f Science, Department of Biology, 07058, Antalya, Turkey
| | - Yasemin Ekmekçi
- Hacettepe University, Faculty of Science, Department of Biology, 06800, Ankara, Turkey.
| |
Collapse
|
46
|
Shahrajabian MH, Sun W. Sustainable Approaches to Boost Yield and Chemical Constituents of Aromatic and Medicinal Plants by Application of Biostimulants. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:72-92. [PMID: 36200191 DOI: 10.2174/2772574x13666221004151822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Biostimulants consist of natural ingredients, metabolites of fermentation, micro-organisms, algae or plant extracts, bacteria, mushrooms, humus substances, amino acids, biomolecules, etc. Methods: In this study, all relevant English-language articles were collected. The literature was reviewed using the keywords of biostimulant, medicinal plant, aromatic plant, natural products, and pharmaceutical benefits from Google Scholar, Scopus, and PubMed databases. RESULTS The significant and promoting impact of biostimulants has been reported for different medicinal and aromatic plants, such as salicylic acid for ajuga, artichoke, ajwain, basil, common rue, common sage, common thyme, coneflower, coriander, dendrobium, desert Indian wheat, dragonhead, fennel, fenugreek, feverfew, ginger, groundnut, guava, henna, Iranian soda, lavender, lemon balm, lemongrass, Malabar spinach; seaweed extract on almond, bird,s eye chili; amino acids on artemisia, broccoli, chamomile, beneficial bacteria on ashwagandha; humic acid on black cumin, cannabis, chicory, garlic, gerbera, Hungarian vetch, Moldavian dragonhead, niger plant; chitosan on dragon fruit, marigold, milk thistle, etc. The suggested mechanisms include the stimulatory impacts on the activity of enzymes involved in different biosynthetic processes, the hormone-like activity of biostimulant compounds and the improvement of nutrient uptake of plants. CONCLUSION The current manuscript gives many examples of the potential of biostimulants for medicinal and aromatic plant production. However, further studies are needed to better understand the effectiveness of different biostimulants and foliar applications in sustainable agriculture.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
47
|
Antioxidant enzymatic activities and profiling of gene expression associated with organophosphate stress tolerance in Solanum melongena L.cv. Longai. 3 Biotech 2021; 11:510. [PMID: 34926108 DOI: 10.1007/s13205-021-03061-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
The tolerance mechanism of chemical pesticide is necessary to combat the pest infestation challenges. This study intended to analyze the responses of enzymatic activity and expression level of an antioxidant gene to organophosphate pesticide stress. The alteration of anti-oxidative correlated with pesticide treatment in eggplant (S. melongena L.cv. Longai) using varying concentrations (0, 50, 100, 150 and 200 ppm) of malathion (PM) and tatafen (PTF) each. The enzyme activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were observed to be elevated with pesticide treatment in eggplant seedling. FeSOD (iron SOD), CAT and APX genes associated in defense mechanisms were significantly expressed under PM and PTF stress which contributed to stress tolerance to the plant. The different concentration of both pesticide stresses altered the expression level of mRNA, FeSOD, CAT and APX genes in comparison to the non-treated plant. While mRNA level of three antioxidant genes were evaluated and found to be APX gene expression was more potent than the CAT and FeSOD gene subjected to different concentrations of PM and PTF in eggplant. The current experiment highlights the presence of minimum level of pesticide concentration impacted positively towards the plant growth and metabolism, while high level of pesticide concentration impacted negatively. In summary, antioxidant enzymes activity responded to both pesticide stresses at an early stage of exposure and their gene expression profiles provided more details about their complex interaction and effectively scavenge reactive oxygen species. This allows the plant to maintain growth under pesticide stress.
Collapse
|
48
|
Hannan F, Islam F, Huang Q, Farooq MA, Ayyaz A, Fang R, Ali B, Xie X, Zhou W. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. CHEMOSPHERE 2021; 282:130897. [PMID: 34470145 DOI: 10.1016/j.chemosphere.2021.130897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Mussel shell (MS) and biochar (BC) are commonly used for the remediation of metal contaminated soil. However, less research has been focused to examine the efficacy of their combinations to reduce metal toxicity in crop plants. This study was therefore conducted to investigate the effects of BC, MS and their activated concoctions on the soil properties, enzyme activities and nickel (Ni) immobilization in aged Ni contaminated soil. Moreover, the growth, photosynthetic pigments and anti-oxidative machnery of Brassica napus plants has also been investigated in order to determine amendments efficiency in reducing soil Ni toxicity for plants. The results showed that the application of Ni adversely affected soil health and trigged stress responses by inducing oxidative stress in B. napus. However, the incorporation of amendments reduced the bioavailability of Ni, and the concoctions of BC and MS showed promising results in the immobilization of Ni. Among various combinations of BC and MS, treatment with BC + MS (3:1) significantly reduced Ni uptake, decreased reactive oxygen species (ROS) and enhanced antioxidant defense of B. napus plants. Results showed that amendment's combinations stimulated the transcriptional levels of ROS scavenging enzymes and suppressed the expression level of Ni transporters. The morphological and physical characterization techniques (i.e. SEM, BET, EDS, FTIR and X-ray diffraction analyses) showed that amendment's combinations had relatively higher Ni adsorption capacity, indicating that BC and MS concoctions are efficient immobilizing agents for minimizing Ni availability, preventing oxidative toxicity and promoting growth and biomass production in rapeseed plants under metal stress conditions.
Collapse
Affiliation(s)
- Fakhir Hannan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiaohong Xie
- Department of Landscape Architecture, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Liu C, Xiao R, Huang F, Yang X, Dai W, Xu M. Physiological responses and health risks of edible amaranth under simultaneous stresses of lead from soils and atmosphere. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112543. [PMID: 34332251 DOI: 10.1016/j.ecoenv.2021.112543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is widely distributed in the environment that can impose potential risks to vegetables and humans. In this work, we conducted a pot experiment in Southern China to examine the physiological response and risk of edible amaranth (Amaranthus tricolor L.) under the simultaneous stresses of lead from soil and atmosphere. The results indicate that the lead content of amaranth substantially exceeded China's national standard when Pb concentration from soils and atmosphere was high, and comparing to teenagers and adults, children exposed a higher health risk after consuming the contaminated amaranth. Under the co-stress, the lead in roots of amaranth mainly came from the soil, but the Pb from atmospheric deposition can significantly affect the lead concentration in leaves. While lead from atmospheric deposition is found to promote the growth of amaranth, the stress of lead from the soils shows an inhibitory effect, as indicated by the increase in H2O2 content, the damage in cell membranes, and the limitation in chlorophyll synthesis. The antioxidant system in stems and leaves of amaranth can effectively alleviate the Pb toxicity. However, the stress of high lead concentration from soils can substantially suppress the antioxidant enzyme activity of roots. While it is found that heavy metals in soils can significantly affect the vegetables grown in a multi-source pollution environment, we also call for the attention on the potential health risk imposed by the lead from atmospheric deposition. This study provides an important reference for the prevention and control of crop contamination in multi-source pollution environments.
Collapse
Affiliation(s)
- Chufan Liu
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Shenzhen Academy of Environmental Science, Shenzhen 518001, PR China
| | - Rongbo Xiao
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Fei Huang
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Yang
- Department of Geography, Florida State University, Tallahassee, FL 32306, USA
| | - Weijie Dai
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meili Xu
- Guangdong Research Center for Industrial Contaminated Site Remediation Technology and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
50
|
Husna, Hussain A, Shah M, Hamayun M, Iqbal A, Murad W, Irshad M, Qadir M, Kim HY. Pseudocitrobacter anthropi reduces heavy metal uptake and improves phytohormones and antioxidant system in Glycine max L. World J Microbiol Biotechnol 2021; 37:195. [PMID: 34651251 DOI: 10.1007/s11274-021-03156-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023]
Abstract
Heavy metal contamination due to anthropogenic activities is a great threat to modern humanity. A novel and natural technique of bioremediation using microbes for detoxification of heavy metals while improving plants' growth is the call of the day. In this study, exposing soybean plants to different concentrations (i.e., 10 and 50 ppm) of chromium and arsenic showed a severe reduction in agronomic attributes, higher reactive oxygen species production, and disruption in the antioxidant system. Contrarily, rhizobacterial isolate C18 inoculation not only rescued host growth, but also improved the production of nonenzymatic antioxidants (i.e., flavonoids, phenolic, and proline contents) and enzymatic antioxidants i.e., catalases, ascorbic acid oxidase, peroxidase activity, and 1,1-diphenyl-2-picrylhydrazyl, lower reactive oxygen species accumulation in leaves. Thereby, lowering secondary oxidative stress and subsequent damage. The strain was identified using 16 S rDNA sequencing and was identified as Pseudocitrobacter anthropi. Additionally, the strain can endure metals up to 1200 ppm and efficient in detoxifying the effect of chromium and arsenic by regulating phytohormones (IAA 59.02 µg/mL and GA 101.88 nM/mL) and solubilizing inorganic phosphates, making them excellent phytostimulant, biofertilizers, and heavy metal bio-remediating agent.
Collapse
Affiliation(s)
- Husna
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Irshad
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangwon, Korea.
| |
Collapse
|