1
|
Ranjbar S, Mohammadi P, Pashaei S, Sadeghi M, Mehrabi M, Shabani S, Ebrahimi A, Brühl AB, Khodarahmi R, Brand S. Effect of Aflatoxin B1 on the Nervous System: A Systematic Review and Network Analysis Highlighting Alzheimer's Disease. BIOLOGY 2025; 14:436. [PMID: 40282301 PMCID: PMC12024953 DOI: 10.3390/biology14040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Exposure to aflatoxin (AF) triggers the production of inflammatory molecules and free radicals, leading to chronic inflammation, cancer, and neurodegenerative diseases. This systematic review evaluated the effects of AFB1 on the nervous system, particularly focusing on Alzheimer's disease (AD). A comprehensive search was conducted in Scopus, Cochrane Library, PubMed, and Web of Science databases up to 1 June 2024, without restrictions. From 993 records retrieved, 16 articles were included in the systematic review. AFB1 participates in various biochemical processes and pathological conditions. The study highlights that AFB1 contributes to AD by inducing DNA damage, oxidative stress, and endoplasmic reticulum (ER) stress, impairing DNA repair mechanisms. This results in neuronal damage, cognitive decline, and neurodegeneration. AFB1 also affects key signaling pathways, reduces sodium-potassium pump activity, and disrupts cell cycle regulation involving p53, leading to neurotoxicity, inflammation, and the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. Additionally, network analysis revealed 309 genes associated with AD, inflammation, angiopathy, and aflatoxin B1 (AFB1). Among these, ESR1 exhibited the highest number of direct connections to other nodes within the network. The gene TP53 played a pivotal role in mediating communication among genes, while the EP300 gene significantly influenced the overall network structure. Additionally, KEGG enrichment analysis demonstrated that these 309 genes are substantially involved in pathways related to cancer, the FoxO signaling pathway, apoptosis, and AD. In summary, the study highlights that AFB1 causes DNA damage and stress, leading to cognitive decline and neurodegeneration. It disrupts signaling pathways, damages neurons, and affects DNA repair, contributing to neurotoxicity and inflammation. PROSPERO registration number: CRD420250651007.
Collapse
Affiliation(s)
- Samira Ranjbar
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Somayeh Pashaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Ali Ebrahimi
- Dermatology Department, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Annette B. Brühl
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland;
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland;
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, 4002 Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Center for Disaster Psychiatry and Disaster Psychology, Center of Competence for Disaster Medicine, Swiss Armed Forces, 4002 Basel, Switzerland
| |
Collapse
|
2
|
Owumi S, Chimezie J, Salami MO, Ishaya JA, Onyemuwa CV, Nnamdi M, Owoeye O. Lutein and Zeaxanthin abated neurobehavioral, neurochemical and oxido-inflammatory derangement in rats intoxicated with Aflatoxin B 1. Toxicon 2025; 258:108345. [PMID: 40194634 DOI: 10.1016/j.toxicon.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Aflatoxin B1 (AFB1), a mycotoxin commonly present in feed, has several toxic effects. AFB1 seems to have a neurotoxic effect that leads to neurobehavioral impairment. On the other hand, Lutein and Zeaxanthin (LUT/ZEA) have antioxidant and anti-inflammatory effects. Here, we aimed to compare the effects of AFB1 and the co-treatment with LUT/ZEA on neurobehavioural and biochemical changes viz-a-viz oxido-inflammatory response in male rats' hippocampal and pre-frontal cortexes. Experimental rats of the Wistar strain (n = 40) were randomly grouped into treatment cohorts: Control (corn oil 2 mL/kg), AFB1 (75 μg/kg), LUT/ZEA only (100 mg/kg), AFB1 + LUT/ZEA (75 μg/kg + 100 mg/kg), and AFB1 + LUT/ZEA (75 μg/kg + 200 mg/kg). All groups were administered their respective treatment orally for 28 days, while behavioural tests were conducted using open field tests (OFT), Y-maze, novel object tests (NORT), and forced swim tests (FST) 1 h after treatment on day 26-28. The animals were euthanized on day 29. In the hippocampal and pre-frontal cortex, antioxidant indicators (SOD, CAT, GSH, GST, GPx, TSH), inflammatory mediators (XO, NO, MPO), and acetylcholinesterase activity were measured. Our finding presents the anti-oxidant effect of lutein/Zeaxanthin in the brains of AFB1-intoxicated rats, indicating better cognitive and spatial memory capacity in Y-maze and NORT, an improvement in locomotive and explorative behaviour in OFT and reduction in anxio-depressive-like behaviour in LUT/ZEA co-treated rats. Acetylcholinesterase activity was enhanced in LUT/ZEA co-treated rats. LUT/ZEA co-treatment dampened oxido-inflammatory mediators by decreasing XO, NO, and MPO levels and increasing antioxidant activities (SOD, CAT, GSH, GST, GPx, TSH) in the prefrontal and hippocampal cortices. We surmise that mechanistically, co-treatment with LUT/ZEA effectively lessened AFB1 neurotoxicity through anti-inflammatory and antioxidant pathways and essentially improved the experimental rats' neurobehavioural outcomes.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Marvellous O Salami
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Japheth A Ishaya
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Chidindu Vine Onyemuwa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Mark Nnamdi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| |
Collapse
|
3
|
Lin J, Hong H, Liu S, Liang Z, Zheng Q, Luo K, Li J, Du Z, Yu J, Yang L, Deng P, Pi H, Yu Z, Yuan W, Zhou Z. Aflatoxin B1 exposure induces Alzheimer's disease like pathology by disrupting redox homeostasis and activating ferroptotic signals in C57BL/6 J mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179049. [PMID: 40054237 DOI: 10.1016/j.scitotenv.2025.179049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins with neurotoxicity. Human exposure to AFB1 via contaminated foodstuffs has been linked to the risk of cognitive impairment, which may contribute to the progression of Alzheimer's disease (AD). However, the mechanism underlying the pathogenesis of AD in relation to AFB1 exposure is not clear. Herein, C57BL/6 J mice were exposed to 1.5 mg/L AFB1 in drinking water for 8 weeks. It was found that AFB1 damaged blood-brain barrier function, accumulated in the brain, and led to cognitive impairments and AD-like pathology in the hippocampus. Impaired cognitive function was indicated by the significant alterations in Morris' water maze and Y-maze tests at 8 weeks after AFB1 exposure. Concurrently, AD-like pathology was evinced by a marked neuronal loss and the up-regulated AD related gene and protein expressions in the hippocampus. AFB1 exposure remarkably disrupted redox homeostasis and induced ferroptosis both in the hippocampus at 8 weeks after AFB1 exposure and in cultured hippocampal neuron in vitro as indicated by the suppressions on SOD and CAT activities, the down-regulation of Slc7a11/Gpx4 expressions, the decline in GSH content, the increase in MDA and the lipid peroxidation. AFB1 exposure also increased Fe2+ content significantly at 8 weeks after exposure. In addition, we demonstrated that ferroptosis inhibition by Fer-1 obviously alleviated AFB1 neurotoxicity in HT22 cells. These results revealed an unknown pivotal role of ferroptosis in AFB1 neurotoxicity in relation to AD pathogenesis and emphasized the importance to reduce the health risk of AFB1 exposure as an etiology of AD in humans.
Collapse
Affiliation(s)
- Jinxian Lin
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Huihui Hong
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Sicheng Liu
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Zhengwei Liang
- Department of Otolaryngology, Chongqing General Hospital, Chongqing University, China
| | - Qixue Zheng
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Kun Luo
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Jiayi Li
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Zhulin Du
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Jinping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Wei Yuan
- Department of Otolaryngology, Chongqing General Hospital, Chongqing University, China.
| | - Zhou Zhou
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Nie T, Li J, You L, Wu Q. Environmental mycotoxins: A potential etiological factor for neurodegenerative diseases? Toxicology 2025; 511:154056. [PMID: 39814257 DOI: 10.1016/j.tox.2025.154056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Mycotoxins are potential environmental risk factors for neurodegenerative diseases. These toxins penetrate the central nervous system via a compromised blood-brain barrier, which may cause oxidative stress and neuroinflammation, these can also contribute to amyloid-beta (Aβ) plaque accumulation, Tau protein hyperphosphorylation, and neurofibrillary tangle formation. Mycotoxins also activate microglia, cause neuronal apoptosis, and disrupt central nervous system function. This study examines the evidence linking mycotoxin exposure to neurodegenerative disorders like Alzheimer's and Parkinson's diseases. We explore mechanisms such as oxidative stress, mitochondrial dysfunction, blood-brain barrier disruption, neuroinflammation, and direct neurotoxic effects. Epidemiological studies show regional variations in mycotoxin prevalence and corresponding neurodegenerative disease incidences, supporting this association. We also review current approaches to mitigate mycotoxin exposure and discuss the challenges and opportunities in developing strategies to prevent or slow neurodegenerative disease progression. This work highlights the need for increased awareness and research on mycotoxins as modifiable risk factors in neurological health.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
5
|
Wang T, Cui R, Yu HF, Yang D, Zhang S, Nie Y, Teng CB. The impact of aflatoxin B1 on animal health: Metabolic processes, detection methods, and preventive measures. Toxicon 2025; 255:108262. [PMID: 39855607 DOI: 10.1016/j.toxicon.2025.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Aflatoxin (AF) is a toxic metabolite produced by the fungus Aspergillus. The various subtypes of AFs include B1, B2, G1, G2, M1, and M2, with Aflatoxin B1 (AFB1) being the most toxic. These AFs are widespread in the environment, particularly in soil and food crops. The World Health Organization (WHO) has classified AFB1 as a highly potent natural Class 1A carcinogen. Excessive exposure to AFB1 can lead to poisoning in both humans and animals, posing substantial risks to food safety and livestock breeding industries. This review provides an overview of the metabolic processes, detection methods, and the detrimental impacts of AFB1 on animal reproduction, immunity, nerves, intestines, and metabolism. Furthermore, it explores the preventive and control capacities of natural active substances, trace elements, and microorganisms against AFB1. Ultimately, this paper serves as a reference for further research on the pathogenic mechanism of AFB1, the development of preventive drugs, and the selection of effective detoxification measures for AFB1 in animal feed.
Collapse
Affiliation(s)
- Tianyang Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Runzi Cui
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuting Zhang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuzhe Nie
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Yousif MA. Aflatoxins in liver disease. TREATMENT AND MANAGEMENT OF TROPICAL LIVER DISEASE 2025:176-181. [DOI: 10.1016/b978-0-323-87031-3.00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Yang C, Jiang W, Su D, Yang C, Yuan Q, Kang C, Xiao C, Wang L, Peng C, Zhou T, Zhang J. Contamination of the traditional medicine Radix Dipsaci with aflatoxin B1 impairs hippocampal neurogenesis and cognitive function in a mouse model of osteoporosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116831. [PMID: 39151374 DOI: 10.1016/j.ecoenv.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Aflatoxin B1, which can penetrate the blood-brain barrier and kill neural cells, can contaminate traditional herbal medicines, posing a significant risk to human health. The present study examined cellular, cognitive and behavioral consequences of aflatoxin B1 contamination of the anti-osteoporotic medicine Radix Dipsaci. METHODS A mouse model of osteoporosis was created by treating the animals with all-trans-retinoic acid. Then the animals were treated intragastically with water decoctions of Radix Dipsaci that contained detectable aflatoxin B1 or not. The animals were compared in terms of mineral density and mineral salt content of bone, production of pro-inflammatory factors, neurogenesis and microglial activation in hippocampus, as well as behavior and cognitive function. RESULTS Contamination of Radix Dipsaci with aflatoxin B1 significantly reduced the medicine's content of bioactive saponins. It destroyed the ability of the herbal decoction to improve mineral density and mineral salt content in the bones of diseased mice, and it induced the production of the oxidative stress marker malondialdehyde as well as the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α. Aflatoxin B1 contamination inhibited formation of new neurons and increased the proportion of activated microglia in the hippocampus. These neurological changes were associated with anhedonia, behavioral despair, and deficits in short-term memory and social memory. CONCLUSION Contamination of Radix Dipsaci with aflatoxin B1 not only eliminates the herbal decoction's anti-osteoporotic effects, but it also induces neurotoxicity that can lead to cognitive decline and behavioral abnormalities. Such contamination should be avoided through tightly regulated production and quality control of medicinal herbs.
Collapse
Affiliation(s)
- Chengyan Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Dapeng Su
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changgui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chuanzhi Kang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
8
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Neurotoxic mechanisms of mycotoxins: Focus on aflatoxin B1 and T-2 toxin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124359. [PMID: 38866317 DOI: 10.1016/j.envpol.2024.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Aflatoxin B1 (AFB1) and T-2 toxin are commonly found in animal feed and stored grain, posing a serious threat to human and animal health. Mycotoxins can penetrate brain tissue by compromising the blood-brain barrier, triggering oxidative stress and neuroinflammation, and leading to oxidative damage and apoptosis of brain cells. The potential neurotoxic mechanisms of AFB1 and T-2 toxin were discussed by summarizing the relevant research reports from the past ten years. AFB1 and T-2 toxin cause neuronal damage in the cerebral cortex and hippocampus, leading to synaptic transmission dysfunction, ultimately impairing the nervous system function of the body. The toxic mechanism is related to excessive reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction, apoptosis, autophagy, and an exaggerated inflammatory response. After passing through the blood-brain barrier, toxins can directly affect glial cells, alter the activation state of microglia and astrocytes, thereby promoting brain inflammation, disrupting the blood-brain barrier, and influencing the synaptic transmission process. We discussed the diverse effects of various concentrations of toxins and different modes of exposure on neurotoxicity. In addition, toxins can also cross the placental barrier, causing neurotoxic symptoms in offspring, as demonstrated in various species. Our goal is to uncover the underlying mechanisms of the neurotoxicity of AFB1 and T-2 toxin and to provide insights for future research, including investigating the impact of mycotoxins on interactions between microglia and astrocytes.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China.
| |
Collapse
|
9
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Hesperetin protects hippocampal neurons from the neurotoxicity of Aflatoxin B1 in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115782. [PMID: 38056121 DOI: 10.1016/j.ecoenv.2023.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Aflatoxin B1 (AFB1) is a major food and feed pollutant that endangers public health. Previous studies have shown that exposure to AFB1 causes neurotoxicity in the body. However, the mechanism of neurotoxicity caused by AFB1 is not well understood, and finding a workable and practical method to safeguard animals from AFB1 toxicity is essential. This study confirmed that AFB1 caused endoplasmic reticulum stress (ER stress) and apoptosis in hippocampal neurons using C57BL/6 J mice and HT22 cells as models. In vitro experiments showed that the aryl hydrocarbon receptor (AHR) plays a significant role in the cytotoxicity of AFB1. Finally, we assessed how hesperetin protecting against the neurotoxicity caused by AFB1. Our findings demonstrated that AFB1 increased the levels of BAX and Cleaved-Caspase3 proteins, while decreasing the levels of BCL2 protein in the CA1 and CA3 regions of the hippocampus. The AFB1 increased the expression of AHR and activated nuclear translocation. It also elevated the expression levels of Chop, GRP78, p-IRE1/ Xbp1s, and p-PERK/p-EIF2a. Importantly, we also discovered for the first time that blocking AHR in HT22 cells dramatically reduced the level of ER stress and apoptosis caused by AFB1. In vivo and in vitro studies, supplementation of hesperetin effectively reversed AFB1-induced cytotoxicity. We have demonstrated that hesperetin effectively restored the imbalance in the GSH/GST system in HT22 cells treated with AFB1. Furthermore, we observed that elevated GSH levels facilitated the formation of AFB1-GSH complexes, which enhanced the excretion of AFB1. Therefore, hesperetin improves ER stress-induced apoptosis by reducing AFB1 activation of AHR.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
10
|
Adedara IA, Atanda OE, Sant'Anna Monteiro C, Rosemberg DB, Aschner M, Farombi EO, Rocha JBT, Furian AF, Emanuelli T. Cellular and molecular mechanisms of aflatoxin B 1-mediated neurotoxicity: The therapeutic role of natural bioactive compounds. ENVIRONMENTAL RESEARCH 2023; 237:116869. [PMID: 37567382 DOI: 10.1016/j.envres.2023.116869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwadarasimi E Atanda
- Human Toxicology Program, Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Camila Sant'Anna Monteiro
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
11
|
Wang Z, Li X, Wang T, Liao G, Gu J, Hou R, Qiu J. Lipidomic profiling study on neurobehavior toxicity in zebrafish treated with aflatoxin B1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165553. [PMID: 37459993 DOI: 10.1016/j.scitotenv.2023.165553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Mycotoxin aflatoxin B1 (AFB1) has been proven to cause neurotoxicity, but its potential interference with the normal function of brain tissue is not fully defined. As the indispensable role of lipids in maintaining the normal function of brain tissue, the aim of this study is to clarify the effect of AFB1 short-term (7 days) exposure on brain tissue from the perspective of lipid metabolism. In this study, zebrafish were exposed to two concentrations (5, 20 μg/L). Through quantitative analysis of AFB1, the detection of AFB1 in zebrafish brain tissue was discovered for the first time, combined with the changes in zebrafish neurobehavior, the occurrence of brain injury was deduced. Subsequently, 1734 lipids in zebrafish brain tissue were mapped using ion mobility time-of-flight mass spectrometry (UPLC-QTOF-IMS-MS), which has great advantages in lipid detection. Comparative analysis of the abnormal lipid metabolism in zebrafish brain revealed 114 significantly changed lipids, mainly involving two pathways of sphingolipid metabolism and fatty acid degradation. This study discovered the detection of AFB1 in the brain and revealed a potential link between AFB1-induced behavioral abnormalities and lipid metabolism disorders in brain tissue, providing reliable evidence for elucidating the neurotoxicity of AFB1.
Collapse
Affiliation(s)
- Zishuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Xiabing Li
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Guangqin Liao
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Jingyi Gu
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Jing Qiu
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
12
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Ahmad SF. Aflatoxin B 1 Exposure Aggravates Neurobehavioral Deficits and Immune Dysfunctions of Th1, Th9, Th17, Th22, and T Regulatory Cell-Related Transcription Factor Signaling in the BTBR T +Itpr3 tf/J Mouse Model of Autism. Brain Sci 2023; 13:1519. [PMID: 38002479 PMCID: PMC10669727 DOI: 10.3390/brainsci13111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-β1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-β1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Zhou Z, Luo D, Li M, Lao G, Zhou Z, Dinnyés A, Xu W, Sun Q. A Novel Multicellular Placental Barrier Model to Investigate the Effect of Maternal Aflatoxin B 1 Exposure on Fetal-Side Neural Stem Cells. Toxins (Basel) 2023; 15:toxins15050312. [PMID: 37235346 DOI: 10.3390/toxins15050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species' differences, and testing on humans is ethically impermissible. Here, we developed an in vitro human maternal-fetal multicellular model composed of a human hepatic compartment, a bilayer placental barrier, and a human fetal central nervous system compartment using neural stem cells (NSCs) to investigate the effect of AFB1 on fetal-side NSCs. AFB1 passed through the HepG2 hepatocellular carcinoma cells to mimic the maternal metabolic effects. Importantly, even at the limited concentration (0.0641 ± 0.0046 μM) of AFB1, close to the national safety level standard of China (GB-2761-2011), the mixture of AFB1 crossing the placental barrier induced NSC apoptosis. The level of reactive oxygen species in NSCs was significantly elevated and the cell membrane was damaged, causing the release of intracellular lactate dehydrogenase (p < 0.05). The comet experiment and γ-H2AX immunofluorescence assay showed that AFB1 caused significant DNA damage to NSCs (p < 0.05). This study provided a new model for the toxicological evaluation of the effect of food mycotoxin exposure during pregnancy on fetal neurodevelopment.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Dongmei Luo
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Mengxue Li
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Guangjie Lao
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhiqiang Zhou
- Department of Food Engineering, Sichuan University, Chengdu 610064, China
| | - András Dinnyés
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Godollo, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610064, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Zamir-Nasta T, Abbasi A, Kakebaraie S, Ahmadi A, Pazhouhi M, Jalili C. Aflatoxin G1 exposure altered the expression of BDNF and GFAP, histopathological of brain tissue, and oxidative stress factors in male rats. Res Pharm Sci 2022; 17:677-685. [PMID: 36704432 PMCID: PMC9872184 DOI: 10.4103/1735-5362.359434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 10/02/2022] [Indexed: 01/28/2023] Open
Abstract
Background and purpose Aflatoxins are highly toxic compounds that can cause acute and chronic toxicity in humans and animals. This study aimed to evaluate the expression of BDNF and GFAP, histopathological changes, and oxidative stress factors in brain tissue exposed to aflatoxin G1 (AFG1) in male rats. Experimental approach Twenty-eight male Wistar rats were used. Animals were randomly divided into 4 groups of 7 each. The control group received 0.2 mL of corn oil and the treatment groups were exposed to AFG1 (2 mg/kg) intra-peritoneally for 15, 28, and 45 days. The tissue was used for histopathological studies, and the level of TAC, SOD, and MDA, and the expression of BDNF and GFAP genes were evaluated. Findings/Results Real-time PCR results showed that AFG1 increased GFAP expression and decreased BDNF expression in AFG1-treated groups compared to the control group. The tissue level of TAC and SOD over time in the groups receiving AFG1 significantly decreased and the tissue level of MDA increased compared to the control group. Histopathological results showed that AFG1 can cause cell necrosis, a reduction of the normal cells number in the hippocampal region of CA1, cerebral edema, shrinkage of nerve cells, formation of space around neuroglia, and diffusion of gliosis in the cerebral cortex after 45 days. Conclusion and implication AFG1, by causing pathological complications in cortical tissue, was able to affect the exacerbation of nerve tissue damage and thus pave the way for future neurological diseases.
Collapse
Affiliation(s)
- Toraj Zamir-Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R. Iran
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Arash Ahmadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, I.R. Iran
| | - Mona Pazhouhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran,Corresponding author: C. Jalili Tel: +98-9188317220, Fax: +98-8334276477
| |
Collapse
|
15
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Dai C, Tian E, Hao Z, Tang S, Wang Z, Sharma G, Jiang H, Shen J. Aflatoxin B1 Toxicity and Protective Effects of Curcumin: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11102031. [PMID: 36290754 PMCID: PMC9598162 DOI: 10.3390/antiox11102031] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues. Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/β-catenin have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer, and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and the underlying molecular mechanisms are summarized. This review, in our opinion, advances significant knowledge, sparks larger discussions, and drives additional improvements in the hazardous examination of AFTs and detoxifying the application of curcumin.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhihui Hao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Artichoke Leaf Extract-Mediated Neuroprotection against Effects of Aflatoxin in Male Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4421828. [PMID: 35909495 PMCID: PMC9325642 DOI: 10.1155/2022/4421828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Attenuation of adverse effects of aflatoxin (AFB1) in brains of B1 rats by extracts of leaves of artichoke was studied. The active ingredients in extracts of leaves of artichoke, Cynara scolymus L., were determined by HPLC analysis. In the 42-day experiment, rats were exposed to either sterile water, 4% DMSO, 100 mg artichoke leaf extract/kg body mass, 72 μg aflatoxin B1/kg body mass, or AFB1 plus artichoke leaf extract. Neurotoxicity of AFB1 was determined by an increase in profile of lipids, augmentation of plasmatic glucose and concentrations of insulin, oxidative stress, increased activities of cholinergic enzymes, and a decrease in activities of several antioxidant enzymes and pathological changes in brain tissue. Extracts of artichoke leaf significantly reduced adverse effects caused by AFB1, rescuing most of the parameters to values similar to unexposed controls, which demonstrated that adverse, neurotoxic effects caused by aflatoxin B1 could be significantly reduced by simultaneous dietary supplementation with artichoke leaf extract, which itself is not toxic.
Collapse
|
19
|
Zhang J, Su D, Liu Q, Yuan Q, Ouyang Z, Wei Y, Xiao C, Li L, Yang C, Jiang W, Guo L, Zhou T. Gasdermin D-mediated microglial pyroptosis exacerbates neurotoxicity of aflatoxins B1 and M1 in mouse primary microglia and neuronal cultures. Neurotoxicology 2022; 91:305-320. [PMID: 35716928 DOI: 10.1016/j.neuro.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/26/2022] [Accepted: 06/12/2022] [Indexed: 12/16/2022]
Abstract
Aflatoxin B1 (AFB1) disrupts the blood-brain barrier by poisoning the vascular endothelial cells and astrocytes that maintain it. It is important to examine whether aflatoxin B1 or its metabolite, aflatoxin M1 (AFM1), affect microglia, which as the "immune cells" in the brain may amplify their damaging effects. Here we evaluated the toxicity of AFB1 and AFM1 against primary microglia and found that both aflatoxins decreased the viability of primary microglia and increased the leakage of lactate dehydrogenase, gamma-H2AX expression, nuclear lysis, necrosis and apoptosis in a dose-dependent manner. The potential contribution of microglia to the toxic effects of aflatoxins was assessed in transwell co-culture experiments involving microglia, neurons, astrocytes, oligodendrocytes or neural stem/precursor cells. And we found that the toxic effects of both aflatoxins on various types of nervous system cells were greater in the presence of microglia than in their absence. We also found that both aflatoxins induced gasdermin D-mediated microglial pyroptosis and inflammatory cytokine expression by activating the NLRP3 inflammasome. Blockade of gasdermin D activity in AFB1- or AFM1-treated primary microglia using dimethyl fumarate (DMF) reduced the release of IL-1β, IL-18 and nitric oxide, as well as the neurotoxicity of microglia-conditioned medium to neurons, astrocytes, oligodendrocytes and neural stem/precursor cells. These data suggested that the toxicity of AFB1 and AFM1 on various cells of the central nervous system is due, remarkably, the gasdermin D-mediated microglial pyroptosis exacerbates their neurotoxicity.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Dapeng Su
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qin Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qingsong Yuan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changgui Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Weike Jiang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
20
|
Janik-Karpinska E, Ceremuga M, Wieckowska M, Szyposzynska M, Niemcewicz M, Synowiec E, Sliwinski T, Bijak M. Direct T-2 Toxicity on Human Skin-Fibroblast Hs68 Cell Line-In Vitro Study. Int J Mol Sci 2022; 23:ijms23094929. [PMID: 35563320 PMCID: PMC9105691 DOI: 10.3390/ijms23094929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
T-2 toxin is produced by different Fusarium species, and it can infect crops such as wheat, barley, and corn. It is known that the T-2 toxin induces various forms of toxicity such as hepatotoxicity, nephrotoxicity, immunotoxicity, and neurotoxicity. In addition, T-2 toxin possesses a strong dermal irritation effect and can be absorbed even through intact skin. As a dermal irritant agent, it is estimated to be 400 times more toxic than sulfur mustard. Toxic effects can include redness, blistering, and necrosis, but the molecular mechanism of these effects still remains unknown. This in vitro study focused on the direct toxicity of T-2 toxin on human skin-fibroblast Hs68 cell line. As a result, the level of toxicity of T-2 toxin and its cytotoxic mechanism of action was determined. In cytotoxicity assays, the dose and time-dependent cytotoxic effect of T-2 on a cell line was observed. Bioluminometry results showed that relative levels of ATP in treated cells were decreased. Further analysis of the toxin's impact on the induction of apoptosis and necrosis processes showed the significant predominance of PI-stained cells, lack of caspase 3/7 activity, and increased concentration of released Human Cytokeratin 18 in treated cells, which indicates the necrosis process. In conclusion, the results of an in vitro human skin fibroblast model revealed for the first time that the T-2 toxin induces necrosis as a toxicity effect. These results provide new insight into the toxic T-2 mechanism on the skin.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Magdalena Wieckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
- Correspondence:
| |
Collapse
|
21
|
The metabolism and biotransformation of AFB 1: Key enzymes and pathways. Biochem Pharmacol 2022; 199:115005. [PMID: 35318037 DOI: 10.1016/j.bcp.2022.115005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023]
Abstract
Aflatoxins B1 (AFB1) is a hepatoxic compound produced by Aspergillus flavus and Aspergillus parasiticus, seriously threatening food safety and the health of humans and animals. Understanding the metabolism of AFB1 is important for developing detoxification and intervention strategies. In this review, we summarize the AFB1 metabolic fates in humans and animals and the key enzymes that metabolize AFB1, including cytochrome P450s (CYP450s) for AFB1 bioactivation, glutathione-S-transferases (GSTs) and aflatoxin-aldehyde reductases (AFARs) in detoxification. Furthermore, AFB1 metabolism in microbes is also summarized. Microorganisms specifically and efficiently transform AFB1 into less or non-toxic products in an environmental-friendly approach which could be the most desirable detoxification strategy in the future. This review provides a wholistic insight into the metabolism and biotransformation of AFB1 in various organisms, which also benefits the development of protective strategies in humans and animals.
Collapse
|
22
|
Zhou Y, Wang S, Luo H, Xu F, Liang J, Ma C, Ren L, Wang H, Hou Y. Aflatoxin B1 induces microglia cells apoptosis mediated by oxidative stress through NF-κB signaling pathway in mice spinal cords. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103794. [PMID: 34971797 DOI: 10.1016/j.etap.2021.103794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Many studies have shown that aflatoxin B1 (AFB1) can cause cytotoxicity in numerous cells and organs induced by oxidative stress. However, the toxic effects and related mechanism of AFB1 on the microglia cells in the spinal cords have not been studied yet. Our results showed that AFB1 significantly reduced the number of microglia cells, increased the oxidants (malonaldehyde and hydrogen peroxide) but decreased the anti-oxidants (superoxide dismutase and total antioxidant capacity) in a dose dependent manner in mice spinal cords. In addition, AFB1 significantly increased the oxidative stress, promoted apoptosis and cell cycle arrest in G2-M phase, and activated NF-κB phosphorylation in BV2 microglia cells. However, the addition of active oxygen scavenger N-acetylcysteine can significantly reduce the ROS production, improve cell cycle arrest, reduce apoptosis, and the expression of phosphorylated NF-κB in BV2 microglia cells. These results indicate that AFB1 induces microglia cells apoptosis through oxidative stress by activating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanqiu Zhou
- Department of Histology and Embryology, Binzhou Medical University, China
| | - Siyuan Wang
- Department of Histology and Embryology, Binzhou Medical University, China
| | - Hanlin Luo
- Department of Histology and Embryology, Binzhou Medical University, China
| | - Feibo Xu
- Department of Histology and Embryology, Binzhou Medical University, China
| | - Jingjing Liang
- Department of Histology and Embryology, Binzhou Medical University, China
| | - Chenxu Ma
- Department of Histology and Embryology, Binzhou Medical University, China
| | - Luyu Ren
- Department of Histology and Embryology, Binzhou Medical University, China
| | - Hui Wang
- Key Laboratory for Robot & Intelligent Technology of Shandong Province, Shandong University of Science and Technology, China.
| | - Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, China.
| |
Collapse
|
23
|
In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem Toxicol 2021; 160:112798. [PMID: 34973406 DOI: 10.1016/j.fct.2021.112798] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 01/20/2023]
Abstract
Due to the globalization, mycotoxins have been considered a major risk to human health being the main contaminants of foodstuffs. Among them, AFB1 and OTA are the most toxic and studied. Therefore, the goal of this review is to deepen the knowledge about the toxicological effects that AFB1 and OTA can induce on human health by using flow cytometry and immunofluorescence techniques in vitro and in vivo models. The examination of the selected reports shows that the majority of them are focused on immunotoxicity while the rest are concerned about nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, neurotoxicity, embryotoxicity, reproductive system, breast, esophageal and lung toxicity. In relation to immunofluorescence analysis, biological processes related to AFB1- and OTA-toxicity were evaluated such as inflammation, neuronal differentiation, DNA damage, oxidative stress and cell death. In flow cytometry analysis, a wide range of assays have been performed across the reviewed studies being apoptosis assay, cell cycle analysis and intracellular ROS measurement the most employed. Although, the toxic effects of AFB1 and OTA have been reported, further research is needed to clarify AFB1 and OTA-mechanism of action on human health.
Collapse
|
24
|
Food-Origin Mycotoxin-Induced Neurotoxicity: Intend to Break the Rules of Neuroglia Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9967334. [PMID: 34621467 PMCID: PMC8492254 DOI: 10.1155/2021/9967334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
Mycotoxins are key risk factors in human food and animal feed. Most of food-origin mycotoxins could easily enter the organism and evoke systemic toxic effects, such as aflatoxin B1 (AFB1), ochratoxin A (OTA), T-2 toxin, deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), and 3-nitropropionic acid (3-NPA). For the last decade, the researches have provided much evidences in vivo and in vitro that the brain is an important target organ on mycotoxin-mediated neurotoxic phenomenon and neurodegenerative diseases. As is known to all, glial cells are the best regulator and defender of neurons, and a few evaluations about the effects of mycotoxins on glial cells such as astrocytes or microglia have been conducted. The fact that mycotoxin contamination may be a key factor in neurotoxicity and glial dysfunction is exactly the reason why we reviewed the activation, oxidative stress, and mitochondrial function changes of glial cells under mycotoxin infection and summarized the mycotoxin-mediated glial cell proliferation disorders, death pathways, and inflammatory responses. The purpose of this paper is to analyze various pathways in which common food-derived mycotoxins can induce glial toxicity and provide a novel perspective for future research on the neurodegenerative diseases.
Collapse
|
25
|
Nguyen VTT, König S, Eggert S, Endres K, Kins S. The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biol Chem 2021; 403:3-26. [PMID: 34449171 DOI: 10.1515/hsz-2021-0214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Mycotoxins are fungal metabolites that can cause various diseases in humans and animals. The adverse health effects of mycotoxins such as liver failure, immune deficiency, and cancer are well-described. However, growing evidence suggests an additional link between these fungal metabolites and neurodegenerative diseases. Despite the wealth of these initial reports, reliable conclusions are still constrained by limited access to human patients and availability of suitable cell or animal model systems. This review summarizes knowledge on mycotoxins associated with neurodegenerative diseases and the assumed underlying pathophysiological mechanisms. The limitations of the common in vivo and in vitro experiments to identify the role of mycotoxins in neurotoxicity and thereby in neurodegenerative diseases are elucidated and possible future perspectives to further evolve this research field are presented.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Svenja König
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
26
|
Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. Biocontrol of Aflatoxins Using Non-Aflatoxigenic Aspergillus flavus: A Literature Review. J Fungi (Basel) 2021; 7:jof7050381. [PMID: 34066260 PMCID: PMC8151999 DOI: 10.3390/jof7050381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are mycotoxins, predominantly produced by Aspergillus flavus, A. parasiticus, A. nomius, and A. pseudotamarii. AFs are carcinogenic compounds causing liver cancer in humans and animals. Physical and biological factors significantly affect AF production during the pre-and post-harvest time. Several methodologies have been developed to control AF contamination, yet; they are usually expensive and unfriendly to the environment. Consequently, interest in using biocontrol agents has increased, as they are convenient, advanced, and friendly to the environment. Using non-aflatoxigenic strains of A. flavus (AF−) as biocontrol agents is the most promising method to control AFs’ contamination in cereal crops. AF− strains cannot produce AFs due to the absence of polyketide synthase genes or genetic mutation. AF− strains competitively exclude the AF+ strains in the field, giving an extra advantage to the stored grains. Several microbiological, molecular, and field-based approaches have been used to select a suitable biocontrol agent. The effectiveness of biocontrol agents in controlling AF contamination could reach up to 99.3%. Optimal inoculum rate and a perfect time of application are critical factors influencing the efficacy of biocontrol agents.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Correspondence: ; Tel.: +60-12219-8912
| | - Nor Ainy Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
27
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
28
|
Xu F, Li Y, Cao Z, Zhang J, Huang W. AFB 1-induced mice liver injury involves mitochondrial dysfunction mediated by mitochondrial biogenesis inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112213. [PMID: 33838459 DOI: 10.1016/j.ecoenv.2021.112213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1 (AFB1) pollutes foodstuffs and feeds, causing a food safety problem and seriously endangering human and animal health. Liver is the principal organ for AFB1 accumulation and biotransformation, during which AFB1 can cause acute and chronic liver damage, however, the specific mechanism is not completely clear. Mitochondria are the primary organelle of cellular bio-oxidation, providing 95% energy for liver to execute its multiple functions. Therefore, we speculated that mitochondrial dysfunction is involved in AFB1-induced liver injury. To verify the hypothesis, a total of eighty healthy male mice were randomly divided into four groups on average, and exposed with 0, 0.375, 0.75 and 1.5 mg/kg body weight AFB1 by intragastric administration for 30 d. The results displayed that AFB1 triggered liver injury accompanied by oxidative stress. AFB1 exposure also damaged mitochondria structure, decreased mitochondrial membrane potential (MMP), as well as increased cytoplasmic cytochrome c (Cyt-c) protein expression, Bax, p53, Caspase-3/9 protein and/or mRNA expression levels and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine-5'-triphosphate (dUTP) nick end labeling (TUNEL) staining positive cells in mice liver. Meanwhile, AFB1 exposure elevated pyruvate content, inhibited tricarboxylic acid (TCA) cycle rate-limiting enzymes and electron transport chain (ETC) complexes I-V activities, disturbed ETC complexes I-V subunits mRNA expression levels and reduced adenosine triphosphate (ATP) level in mice liver. These results indicated that AFB1 destroyed mitochondrial structure, activated mitochondrion-dependent apoptosis and induced mitochondrial dysfunction. In addition, AFB1 disrupted mitochondrial biogenesis, presented as the abnormalities of protein and/or gene expression levels of voltage dependent anion channel protein 1 (VDAC1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (Nrf1) and mitochondrial transcription factor A (Tfam). This may contribute to hepatic and mitochondrial lesions induced by AFB1. These results provide a new perspective for elucidating the mechanisms of AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Feibo Xu
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai 246003, Shandong, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
29
|
Mohammadi S, Keshavarzi M, Kazemi A, Berizi E, Mohsenpour MA, Ghaffarian‐Bahraman A. Occurrence of aflatoxin M 1 in yogurt of five countries in west Asia region: A systematic review and meta‐analysis. J Food Saf 2021. [DOI: 10.1111/jfs.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Salman Mohammadi
- Department of Clinical Nutrition School of Nutrition and Food Sciences, Shiraz University of Medical Sciences Shiraz Iran
| | - Majid Keshavarzi
- Department of Environmental Health Engineering School of Public Health, Sabzevar University of Medical Sciences Sabzevar Iran
| | - Asma Kazemi
- Nutrition Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control School of Nutrition and Food Sciences, Shiraz University of Medical Sciences Shiraz Iran
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition School of Nutrition and Food Sciences, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Ghaffarian‐Bahraman
- Occupational Environment Research Center Rafsanjan University of Medical Sciences Rafsanjan Iran
| |
Collapse
|
30
|
El-Sayed Mostafa H, Ahmed Allithy AN, Abdellatif NA, Anani M, Fareed SA, El-Shafei DA, Alaa El-Din EA. Amelioration of pulmonary aflatoxicosis by green tea extract: An in vivo study. Toxicon 2020; 189:48-55. [PMID: 33212099 DOI: 10.1016/j.toxicon.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Aflatoxins (AFB1) are mycotoxins known to be associated with human and animal diseases. The lung is a at risk from AFB1exposure either via inhalation or circulation. Green tea consumption is increasing over time due to widespread popularity as antioxidants, anti-inflammatory, and cytoprotective agents. Therefore, we attempted to study the lung toxicity caused by AFB1 and the possible ameliorating effect of green tea extract. Forty adult male albino rats were divided into five groups; Group I: Untreated control group, Group II (vehicle): Each rat received 1 ml of olive oil, Group III (GTE): Each rat received Camellia sinensis, green tea extract (30 mg/kg/day), Group IV(AFB1): Each rat received (50 μg/kg/day of AFB1). Group V (AFB1+ GTE): Each rat received the same previously mentioned doses of AFB1 in addition to GTE concomitantly. All treatments were orally gavaged for 8 weeks then rats were sacrificed. Serum levels of pro-inflammatory (IL-1β, TNF-α, IL-6) and anti-inflammatory (IL-10) cytokines were measured, lung tissues' oxidative stress indices were also measured in addition to the histopathological study which was performed by using hematoxylin & eosin and Masson trichrome stains. Morphometric and statistical analyses were also performed. Oral gavage of AFB1 resulted in significant histopathological changes in the lung tissues, in the form of variable degrees of congestion, hemorrhage, interstitial inflammation with infiltration by chronic inflammatory cells, interstitial fibrosis, bronchitis, vasculitis and fibrous thickening of arterial walls. Inflammation was evident by elevated levels of pro-inflammatory cytokines and a declined level of anti-inflammatory cytokines. Also, oxidative stress was evident by increased levels of Malondialdehyde (MDA), Myeloperoxidase (MPO), and decreased levels of total glutathione (tGSH) and Catalase (CAT). The histopathological changes, inflammatory cytokines, and oxidative stress markers were significantly decreased during concomitant administration of green tea extract in (AFB1+ GTE) group. Aflatoxin B1 has deleterious effects on the lung tissue that could be minimized by concomitant administration of Green tea extract owing to its anti-inflammatory, antioxidant, and protective properties.
Collapse
Affiliation(s)
- Heba El-Sayed Mostafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | - Maha Anani
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Shimaa Antar Fareed
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Dalia Abdallah El-Shafei
- Departments of Community, Environmental & Occupational Medicine, Faculty of Medicine, Zagazig University, Egypt.
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
31
|
Wu L, Zhou M, Wang Y, Liu J. Nanozyme and aptamer- based immunosorbent assay for aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123154. [PMID: 32937727 DOI: 10.1016/j.jhazmat.2020.123154] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 05/05/2023]
Abstract
Traditional enzyme-linked immunosorbent assay (ELISA) suffers from the limitations of relatively low sensitivity and stability, and enzyme-labelled antibodies are hard to be prepared and purified. Based on a nanozyme, an aptamer and Fe3O4 magnetic nanoparticles (MNP), a nanozyme and aptamer-based immunosorbent assay (NAISA) was developed for aflatoxin B1 (AFB1) detection with simpler operation and separation. In this work, mesoporous SiO2/Au-Pt (m-SAP) were prepared to act as signal labels, which showed high catalase-like activity and was denoted as nanozyme. Aptamer was adopted to specifically recognize with AFB1, and MNP facilitated to realize magnetic separation. To verify the performance of NAISA, traditional ELISA (t-ELISA) and enhanced ELISA (e-ELISA) using MNP and m-SAP nanozyme were applied in AFB1 detection. The NAISA method showed the lowest limit of detection (LOD) with 5 pg mL-1 (n = 3, ±4.2 %), 600 and 12-fold lower than that of t-ELISA (3 ng mL-1) and e-ELISA (0.06 ng mL-1), respectively. In the interference tests, AFB1 can be identified among six different interfering substances. The NAISA method, thus, can be of great importance as it allows selective and sensitive AFB1 detection, while providing the simplicity of use and need for screening hazardous materials.
Collapse
Affiliation(s)
- Long Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Min Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yasheng Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| | - Jingmin Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| |
Collapse
|
32
|
Akang E, Dosumu O, Afolayan S, Agumah R, Akanmu AS. Modeling cerebellar limb dysmetria and impaired spatial memory in rats using lamivudine: A preliminary study. J Chem Neuroanat 2020; 109:101838. [PMID: 32569723 PMCID: PMC11065771 DOI: 10.1016/j.jchemneu.2020.101838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIM Neurodegeneration has been associated with the use of combination antiretroviral therapy (cART). This study is aimed at determining if any constituent of cART can induce cerebellar limb dysmetria and spatial memory impairments. MATERIALS AND METHODS Forty adult male Wistar rats were randomly grouped into four (n = 10): control (distilled water 0.5 mL); Tenofovir (6 mg/kg); Lamivudine (6 mg/kg) and Efavirenz (12 mg/kg). The following neurobehavioral studies were conducted: open field, beam walk, and Morris water maze. Immunohistochemistry of CD 68 and GFAP were used to test for neuroinflammation and neurodegeneration. RESULTS There was marked increase in pyknotic pyramidal cells of the hippocampus and ghost Purkinje cells in the cerebellum of treatment groups. There was also a significant increase in oxidative stress in lamivudine and efavirenz groups. In addition, Lamivudine caused a significant increase of microglial and astrocytic activity (p < 0.001, 0.05 respectively) compared to control. The open field test showed a significant decrease (p < 0.0001) of the line crossing performance in the efavirenz, lamivudine and tenofovir (with means: 26.4, 4.6, 17.4 respectively) compared to control (50.6). There was also a significant decrease in the grooming (p < 0.05) and rearing (p < 0.01) in lamivudine group. Whereas, walk latency increased in efavirenz (p < 0.01), and lamivudine (p < 0.0001) compared to control. While hind limb slips significantly increased in efavirenz (p < 0.05) and lamivudine (p < 0.0001) compared with control group. Likewise, Lamivudine and Tenofovir exposed groups experienced a significant delay in the time to identify the hidden platform in compared to control (p < 0.05). CONCLUSION Lamivudine altered efferent stimuli along the cerebellospinal tracts thereby causing motor impairments. The degenerating Purkinje fibers may have induced marked neurodegeneration in the hippocampus resulting in impaired spatial memory.
Collapse
Affiliation(s)
- Edidiong Akang
- Department of Anatomy, College of Medicine, University of Lagos, P.M.B. 12003, Idi-Araba, Lagos, Nigeria.
| | - Olufunke Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, P.M.B. 12003, Idi-Araba, Lagos, Nigeria.
| | - Samuel Afolayan
- Department of Anatomy, College of Medicine, University of Lagos, P.M.B. 12003, Idi-Araba, Lagos, Nigeria.
| | - Rhoda Agumah
- Department of Anatomy, College of Medicine, University of Lagos, P.M.B. 12003, Idi-Araba, Lagos, Nigeria.
| | - Alani Sulaimon Akanmu
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria.
| |
Collapse
|
33
|
Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A. Environmental toxins and Alzheimer's disease progression. Neurochem Int 2020; 141:104852. [PMID: 33010393 DOI: 10.1016/j.neuint.2020.104852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes progressive memory loss and cognitive decline. Effective strategies to treat or prevent remains one of the most challenging undertakings in the medical field. AD is a complex and multifactorial disease that involves several risk factors. Aging and genetic factors both play important roles in the onset of the AD, however; certain environmental factors have been reported to increase the risk of AD. Chronic exposure to toxins has been seen as an environmental factor that may increase the risk of developing a neurodegenerative disease such as AD. Exposure to metals and biotoxins produced by bacteria, molds, and viruses may contribute to the cognitive decline and pathophysiology associated with AD. Toxins may contribute to the pathology of the disease through various mechanisms such as deposition of amyloid-beta (Aβ) plaques and tangles in the brain, induction of apoptosis, inflammation, or oxidative damage. Here, we will review how toxins affect brain physiology with a focus on mechanisms by which toxins may contribute to the development and progression of AD. A better understanding of these mechanisms may help contribute towards the development of an effective strategy to slow the progression of AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department Biology, Lamar University, Beaumont, TX, United States.
| | | | | | - Anthony Osu
- Department Biology, Lamar University, Beaumont, TX, United States
| |
Collapse
|
34
|
Huang B, Chen Q, Wang L, Gao X, Zhu W, Mu P, Deng Y. Aflatoxin B1 Induces Neurotoxicity through Reactive Oxygen Species Generation, DNA Damage, Apoptosis, and S-Phase Cell Cycle Arrest. Int J Mol Sci 2020; 21:ijms21186517. [PMID: 32899983 PMCID: PMC7554769 DOI: 10.3390/ijms21186517] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely distributed in a variety of food commodities and exhibits strong toxicity toward multiple tissues and organs. However, little is known about its neurotoxicity and the associated mechanism. In this study, we observed that brain integrity was markedly damaged in mice after intragastric administration of AFB1 (300 μg/kg/day for 30 days). The toxicity of AFB1 on neuronal cells and the underlying mechanisms were then investigated in the neuroblastoma cell line IMR-32. A cell viability assay showed that the IC50 values of AFB1 on IMR-32 cells were 6.18 μg/mL and 5.87 μg/mL after treatment for 24 h and 48 h, respectively. ROS levels in IMR-32 cells increased significantly in a time- and AFB1 concentration-dependent manner, which was associated with the upregulation of NOX2, and downregulation of OXR1, SOD1, and SOD2. Substantial DNA damage associated with the downregulation of PARP1, BRCA2, and RAD51 was also observed. Furthermore, AFB1 significantly induced S-phase arrest, which is associated with the upregulation of CDKN1A, CDKN2C, and CDKN2D. Finally, AFB1 induced apoptosis involving CASP3 and BAX. Taken together, AFB1 manifests a wide range of cytotoxicity on neuronal cells including ROS accumulation, DNA damage, S-phase arrest, and apoptosis-all of which are key factors for understanding the neurotoxicology of AFB1.
Collapse
Affiliation(s)
- Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wenya Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| |
Collapse
|
35
|
Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020; 9:E644. [PMID: 32443392 PMCID: PMC7278662 DOI: 10.3390/foods9050644] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Department of Biotechnology, Sari Agricultural Science and Natural Resource University, 9th km of Farah Abad Road, Mazandaran 48181-68984, Iran;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, Polo III-Saúde, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
36
|
Benkerroum N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E423. [PMID: 31936320 PMCID: PMC7013914 DOI: 10.3390/ijerph17020423] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
Abstract
There are presently more than 18 known aflatoxins most of which have been insufficiently studied for their incidence, health-risk, and mechanisms of toxicity to allow effective intervention and control means that would significantly and sustainably reduce their incidence and adverse effects on health and economy. Among these, aflatoxin B1 (AFB1) has been by far the most studied; yet, many aspects of the range and mechanisms of the diseases it causes remain to be elucidated. Its mutagenicity, tumorigenicity, and carcinogenicity-which are the best known-still suffer from limitations regarding the relative contribution of the oxidative stress and the reactive epoxide derivative (Aflatoxin-exo 8,9-epoxide) in the induction of the diseases, as well as its metabolic and synthesis pathways. Additionally, despite the well-established additive effects for carcinogenicity between AFB1 and other risk factors, e.g., hepatitis viruses B and C, and the hepatotoxic algal microcystins, the mechanisms of this synergy remain unclear. This study reviews the most recent advances in the field of the mechanisms of toxicity of aflatoxins and the adverse health effects that they cause in humans and animals.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
37
|
Branchial bioenergetics dysfunction as a relevant pathophysiological mechanism in freshwater silver catfish (Rhamdia quelen) experimentally infected with Flavobacterium columnare. Microb Pathog 2019; 138:103817. [PMID: 31672529 DOI: 10.1016/j.micpath.2019.103817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, is a serious bacterial disease responsible for causing devastating mortality rates in several species of freshwater fish, leading to severe economic losses in the aquaculture industry. Notwithstanding the enormous impacts this disease can have, very little is known regarding the interaction between the host and bacterium in terms of the mortality rate of silver catfish (Rhamdia quelen), as well its linkage to gill energetic homeostasis. Therefore, we conducted independent experiments to evaluate the mortality rates caused by F. columnare in silver catfish, as well as whether columnaris disease impairs the enzymes of the phosphoryl transfer network in gills of silver catfish and the pathways involved in this inhibition. Experiment I revealed that clinical signs started to appear 72 h post-infection (hpi), manifesting as lethargy, skin necrosis, fin erosion and gill discoloration. Silver catfish began to die at 96 hpi, and 100% mortality was observed at 120 hpi. Experiment II revealed that creatine kinase (CK, cytosolic and mitochondrial) and pyruvate kinase (PK) activities were inhibited in silver catfish experimentally infected with F. columnare, while no significant difference was observed between experimental and control groups with respect to adenylate kinase activity. Activity of the branchial sodium-potassium pump (Na+, K+-ATPase) was inhibited while reactive oxygen species (ROS) and lipid peroxidation levels were higher in silver catfish experimentally infected with F. columnare than in the control group at 72 hpi. Based on these data, the impairment of CK activity elicited by F. columnare caused a disruption in branchial energetic balance, possibly reducing ATP availability in the gills and provoking impairment of Na+, K +ATPase activity. The inhibition of CK and PK activities appears to be mediated by ROS overproduction and lipid peroxidation, both of which contribute to disease pathogenesis associated with branchial tissue.
Collapse
|