1
|
Nere PHA, Kern RRC, Carneiro LS, Lima BSA, Souza DDS, Serrão JE. Impact of a lambda-cyhalothrin formulation residues on larval Apis mellifera: examining midgut and fat body morphological response to insecticide chronic exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1422-1434. [PMID: 39960882 DOI: 10.1093/etojnl/vgaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 05/02/2025]
Abstract
Pollination by honey bees (Apis mellifera) is crucial for maintaining biodiversity and crop yields. However, the widespread use of pesticides may threaten bees' survival by contaminating their resources. Lambda-cyhalothrin, a neurotoxic insecticide commonly used in agricultural pest control, poses particular risks. In insects, the midgut and fat body serve as primary barriers against xenobiotics, and exposure to these chemicals during larval development can impact adult bees. This study aimed to assess whether the residual concentration of lambda-cyhalothrin in pollen grains affects the midgut and fat body of larval A. mellifera workers after chronic exposure. The midgut epithelium of larvae exposed to a lambda-cyhalothrin-based insecticide (λ-CBI) exhibited autophagic vacuoles, apical cell protrusions, apocrine secretion, nuclear pyknosis, and high levels of polysaccharides and glycoconjugates in the cytoplasm, with smaller amounts in the brush border. Histochemical analysis revealed areas of vacuolation and damage to cell integrity in the midgut. In fat body cells, the insecticide increased polysaccharide storage and decreased lipid droplet diameter. Despite the histopathological damage, no effects were found in the larval development and adult emergence. These findings suggest the occurrence of apoptosis and autophagy in midgut cells and alterations in nutrient storage in the fat body of A. mellifera larvae exposed to the λ-CBI, potentially impacting the physiology and development of this pollinator with possible effects on adult workers.
Collapse
|
2
|
Khan HAA, Khan T, Iqbal N. Sublethal and hormetic effects of the fungicide tebuconazol on the biology of a nontarget pest insect, Musca domestica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179155. [PMID: 40101405 DOI: 10.1016/j.scitotenv.2025.179155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Lethal levels of pesticides gradually decrease after application in field crops due to several environmental factors, thereby causing sublethal exposure to nontarget species. Sublethal exposure to pesticides may have negative, neutral and/or stimulatory (hormetic) effects on the biology of exposed organisms. Although fungicidal applications in field crops have been reported to cause side effects in different nontarget species through sublethal exposure, reports on the side effects of fungicide on nontarget insect species are limited. Musca domestica, an insect pest for public health and animal agriculture, is one of the most common nontarget insect species in cropping areas. This work aimed to study sublethal effects of the fungicide tebuconazol on key life history traits of M. domestica. The results of the present study revealed that, after five generations of exposure to LD5, LD10 and LD20 of tebuconazol, M. domestica showed hormetic response to LD5 and non-hormetic response to LD10 and LD20 in terms of the performance of most of the biological traits and population/demographic parameters. For example, the development of immature stages was faster in the LD5 treatment than in the control, LD10 and LD20 treatments. The performance of other biological traits such as longevity, preoviposition period, oviposition days, fecundity and preadult survival rates, was better than that of the other treatments. Similarly, the finite rate of increase, intrinsic rate of increase and net reproductive rate were greater in the LD5 treatment than in other treatment groups. In addition, the mean generation time was the lowest in the LD5 treatment, while it was the highest in the LD20 treatment of tebuconazol. Low lethal exposure of tebuconazol to M. domestica under field conditions may favor its resurgence and population expansion in and/or around cropping areas, thereby increasing the probability of fly borne diseases.
Collapse
Affiliation(s)
| | - Tiyyabah Khan
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
| | - Naeem Iqbal
- Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| |
Collapse
|
3
|
Polidori C, Trisoglio CF, Ferrari A, Romano A, Bonasoro F. Contaminant-driven midgut histological damage in bees and other aculeate Hymenoptera: A quantitative review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104670. [PMID: 40049307 DOI: 10.1016/j.etap.2025.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/09/2025]
Abstract
We present a review about histological sub-lethal effects due to anthropogenic contaminants on the midgut of bees and other aculeate hymenopterans. Contaminant types, damage types, and methodology were extracted and summarized from 74 published articles, and then quantitatively analyzed. We found that the Western honeybee (Apis mellifera) is by far the most widely used model. Contaminants have largely been tested under laboratory conditions, particularly insecticides and fungicides. Tissue-level damage (e.g., degradation of epithelium and of peritrophic membrane) were often detected together with cell-level damage (e.g., cell vacuolisation, karyorrhexis). Descriptive statistics and mixed models suggested that herbicides may cause a specific mix of alterations with an overall lower severity compared with other pesticides, while the combined use of light and electron microscopy seemed to detect more damage types. We claim for efforts to reduce biases in future studies on such histological effects, allowing their clearer use as markers of human activities.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy.
| | - Chiara Francesca Trisoglio
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| |
Collapse
|
4
|
Rocha FAD, Martinez LC, Lima BSA, Farder-Gomes CF, Cossolin JFS, Afzal MBS, Serrão JE. Potential of Lambda-Cyhalothrin for Controlling the Black Armyworm Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae): Toxicity and Midgut Histopathological Effects. NEOTROPICAL ENTOMOLOGY 2025; 54:26. [PMID: 39849251 DOI: 10.1007/s13744-024-01236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 01/25/2025]
Abstract
Caterpillars of the genus Spodoptera are the main pests in soybean and cotton crops and Spodoptera cosmioides causes more severe losses than other caterpillars in these agricultural crops. However, there are few recommended insecticides for controlling this pest. Lambda-cyhalothrin is a pyrethroid used to control a wide spectrum of arthropods including lepidopterans. Therefore, the objective of this study was to evaluate the potential of lambda-cyhalothrin for the control of S. cosmioides. Specifically, toxicity and histopathological changes in the midgut were evaluated. The effectiveness of the insecticide was determined by estimating the different lethal concentrations (LCs) in the laboratory upon S. cosmioides. Lambda-cyhalothrin was found toxic to S. cosmioides (LC50 = 23.03 mg L-1 and LC90 = 174.8 mg L-1), with the survival reduced from 83.33% in the control to 37.89%, 16.66%, 0%, and 0% after 72 h of exposure to the LC25, LC50, LC75, and LC90 of lambda-cyhalothrin, respectively. Histopathological studies revealed that lambda-cyhalothrin caused damage to midgut cells, including epithelial disorganization, increased cytoplasmic vacuolization, brush border degeneration, nuclear chromatin condensation, and cell fragmentation, indicating cell death by apoptosis. It was concluded that lambda-cyhalothrin, a neurotoxic insecticide, caused damage to the midgut of S. cosmioides, compromising its physiology and indicating that it has potential to be used to control this pest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José Eduardo Serrão
- Depto de Biologia Geral, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Motta JVDO, Gomes DS, Silva LLD, Oliveira MSD, Bastos DSS, Resende MTCS, Alvim JRL, Reis AB, Oliveira LLD, Afzal MBS, Serrão JE. Effects of sublethal concentration of thiamethoxam formulation on the wild stingless bee, Partamona helleri Friese (Hymenoptera: Apidae): Histopathology, oxidative stress and behavioral changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177626. [PMID: 39566631 DOI: 10.1016/j.scitotenv.2024.177626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Bees are pollinators of native and cultivated plants around the world. However, several factors are contributing to the decrease in their populations in recent years, with emphasis on the increasing use of insecticides in agriculture. Thiamethoxam is a neonicotinoid neurotoxicant, which binds to nicotinic acetylcholine receptors, causing hyperexcitation, paralysis and death of insects. Although thiamethoxam's target is the nervous system, it can affect other organs through ingestion, such as the midgut, affecting non-target insects such as bees. Partamona helleri Friese (Hymenoptera: Apidae) is a stingless bee, pollinator of several native and cultivated botanical families, and can be exposed to sublethal concentrations of thiamethoxam. This study evaluated the side effects of chronic oral exposure to thiamethoxam on the midgut, oxidative stress and behavior of P. helleri workers. The bees were exposed orally, for 7 days, to the approximate sublethal concentration of thiamethoxam found in pollen grains (0.09 ng/g). The results demonstrated changes in the midgut epithelium of workers treated with thiamethoxam, such as cytoplasmic vacuolization, cellular protrusions, increased apocrine transfer, mitochondrial damage, decreased proteins and neutral polysaccharides and the presence of cells undergoing autophagy and apoptosis. Sublethal concentration of thiamethoxam also induced oxidative stress, evidenced by changes in the activities of detoxification enzymes and antioxidant markers. Finally, thiamethoxam affects the bee's behavior, driving the distance covered and walking speed of this insect. The results indicate that the exposure of P. helleri workers to sublethal concentration of thiamethoxam have negative impacts upon midgut morphology and physiology and behavioral traits.
Collapse
Affiliation(s)
| | - Davy Soares Gomes
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Laryssa Lemos da Silva
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Mateus Soares de Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Daniel Silva Sena Bastos
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | | | - Aline Beatriz Reis
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | | | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
6
|
Alves TRR, Trivellato MF, Freitas TAL, Kato AY, Gomes CRA, Ferraz YMM, Serafim JA, De Jong D, Prado EP, Vicente EF, Orsi RO, Pereira GT, Miranda CA, Mingatto FE, Nicodemo D. Pollen contaminated with a triple-action fungicide induced oxidative stress and reduced longevity though with less impact on lifespan in honey bees from well fed colonies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104587. [PMID: 39505060 DOI: 10.1016/j.etap.2024.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Experiments were conducted to determine the effects of a triple-action fungicide on bees and whether improved nutrition can ameliorate eventual negative impacts. In cage tests, newly-emerged bees from well fed and from nutritionally-restricted honey bee colonies were fed for five days with pollen from sunflowers that had been sprayed or not with a commercial fungicide containing bixafen, prothioconazole and trifloxystrobin. Bees from well-fed colonies were significantly larger and consumed more uncontaminated pollen. They also exhibited increased glutathione peroxidase activity and higher concentrations of pyridine nucleotides, both of which are involved in antioxidase defense. However, pollen contaminated with fungicide led to an increase in lipoperoxidation, regardless of nutritional status. Bee longevity was reduced by both fungicide contamination of the pollen diet and poor nutritional condition. The fungicide adversely affected bees fed with contaminated pollen, though nutritional supplementation of the bee colonies that reared the bees partially compensated for these effects.
Collapse
Affiliation(s)
- Thais R R Alves
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Matheus F Trivellato
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Tainá A L Freitas
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Aline Y Kato
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Cássia R A Gomes
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Yara M M Ferraz
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Jéssica A Serafim
- Department of Biosystems Engineering, College of Sciences and Engineering, São Paulo State University (Unesp), Tupã, SP, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evandro P Prado
- Department of Plant Production, College of Agricultural and Technology Sciences, São Paulo State University (Unesp) Dracena, SP, Brazil
| | - Eduardo F Vicente
- Department of Biosystems Engineering, College of Sciences and Engineering, São Paulo State University (Unesp), Tupã, SP, Brazil
| | - Ricardo O Orsi
- Department of Animal Production and Medicine Veterinary Preventive, College of Veterinary Medicine and Animal Sciences, São Paulo State University (Unesp) Botucatu, SP, Brazil
| | - Gener T Pereira
- Department of Exact Sciences, School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Camila A Miranda
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Fábio E Mingatto
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Daniel Nicodemo
- Department of Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
7
|
Reis AB, Martínez LC, de Oliveira MS, Souza DDS, Gomes DS, Silva LLD, Serrão JE. Sublethal Effects Induced by a Cyflumetofen Formulation on Honeybee Apis mellifera L. Workers: Assessment of Midgut, Hypopharyngeal Glands, and Fat Body Integrity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2455-2465. [PMID: 39171958 DOI: 10.1002/etc.5980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Worldwide, both cultivated and wild plants are pollinated by the honey bee, Apis mellifera. Bee numbers are declining as a result of a variety of factors, including increased pesticide use. Cyflumetofen controls pest mites in some plantations pollinated by bees, which may be contaminated with residual sublethal concentrations of this pesticide, in nectar and pollen. We evaluated the effects of a sublethal concentration of a cyflumetofen formulation on the midgut, hypopharyngeal gland, and fat body of A. mellifera workers orally exposed for 72 h or 10 days. The midgut epithelium of treated bees presented digestive cells with cytoplasm vacuoles and some cell fragmentation, indicating autophagy and cell death. After being exposed to the cyflumetofen formulation for 72 h, the midgut showed a higher injury rate than the control bees, but after 10 days, the organs had recovered. In the hypopharyngeal gland of treated bees, the end apparatus was filled with secretion, suggesting that the acaricide interferes with the secretory regulation of this gland. Histochemical tests revealed differences in the treated bees in both exposure periods in the midgut and hypopharyngeal glands. The acaricide caused cytotoxic effects on the midgut digestive cells, with apical protrusions, plasma membrane rupture, and several vacuoles in the cytoplasm, features of cell degeneration. In the hypopharyngeal glands of the treated bees, the secretory cells presented small electron-dense and large electron-lucent secretory granules. The fat body cells had no changes in comparison with the control bees. In conclusion, the cyflumetofen formulation at sublethal concentrations causes damage to the midgut and the hypopharyngeal glands of honey bee, which may compromise the functions of these organs and colony fitness. Environ Toxicol Chem 2024;43:2455-2465. © 2024 SETAC.
Collapse
Affiliation(s)
- Aline Beatriz Reis
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | | | | | - Diego Dos Santos Souza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Laryssa Lemos da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| |
Collapse
|
8
|
Tiritelli R, Zavatta L, Tadei R, Mathias da Silva EC, Sgolastra F, Cilia G. Microplastic ingestion and co-exposure to Nosema ceranae and flupyradifurone reduce the survival of honey bees (Apis mellifera L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104571. [PMID: 39401539 DOI: 10.1016/j.etap.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Bees are exposed to several threats, including pathogens (i.e. Nosema ceranae), pesticides and environmental contaminants. The new insecticide flupyradifurone, and the microplastics in the environment, have raised significant concerns on bee health. This study evaluated the simultaneous effects of microplastics, flupyradifurone, and N. ceranae on honey bee health, focusing on survival rates, N. ceranae replication, daily food consumption, and bee midgut histological alterations. Results showed a significant decrease in bee longevity across all treatments compared to the control, with the combination of flupyradifurone, microplastics, and N. ceranae having the most severe impact. Microplastics and flupyradifurone exposure also increased N. ceranae proliferation, especially in bees subjected to both stressors. Histological analysis revealed reduced regenerative cell nests in the midgut and changes in the nuclear matrix, indicating stress responses. Overall, the simultaneous presence of both biotic and abiotic stressors in nature can synergistically interact, leading to harmful effects on bees.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Rafaela Tadei
- São Paulo State University, Institute of Biosciences, Rio Claro, Brazil
| | | | - Fabio Sgolastra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy.
| |
Collapse
|
9
|
Gomes DS, Miranda FR, Fernandes KM, Farder-Gomes CF, Bastos DSS, Bernardes RC, Serrão JE. Acute exposure to fungicide fluazinam induces cell death in the midgut, oxidative stress and alters behavior of the stingless bee Partamona helleri (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116677. [PMID: 38971098 DOI: 10.1016/j.ecoenv.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cliver Fernandes Farder-Gomes
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Campus Araras, Araras, São Paulo 13.600-970, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
10
|
Szczygieł T, Koziróg A, Otlewska A. Synthetic and Natural Antifungal Substances in Cereal Grain Protection: A Review of Bright and Dark Sides. Molecules 2024; 29:3780. [PMID: 39202859 PMCID: PMC11357261 DOI: 10.3390/molecules29163780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Molds pose a severe challenge to agriculture because they cause very large crop losses. For this reason, synthetic fungicides have been used for a long time. Without adequate protection against pests and various pathogens, crop losses could be as high as 30-40%. However, concerns mainly about the environmental impact of synthetic antifungals and human health risk have prompted a search for natural alternatives. But do natural remedies only have advantages? This article reviews the current state of knowledge on the use of antifungal substances in agriculture to protect seeds against phytopathogens. The advantages and disadvantages of using both synthetic and natural fungicides to protect cereal grains were discussed, indicating specific examples and mechanisms of action. The possibilities of an integrated control approach, combining cultural, biological, and chemical methods are described, constituting a holistic strategy for sustainable mold management in the grain industry.
Collapse
Affiliation(s)
- Tomasz Szczygieł
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
- Interdisciplinary Doctoral School, Lodz University of Technology, 90-530 Lodz, Poland
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (T.S.); (A.O.)
| |
Collapse
|
11
|
Oliveira MSD, Pereira GDS, Martinez LC, Reis AB, Resende MTCSD, Silva LLD, Zanuncio JC, Serrão JE. Effects of chronic oral exposure to insecticide teflubenzuron on the midgut of the honey bee Apis mellifera workers: histopathological insights into pesticide toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44908-44919. [PMID: 38955973 DOI: 10.1007/s11356-024-34066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The honey bee Apis mellifera plays a significant role as a pollinator of native and cultivated plants, by increasing the productivity of several cultures, preserving the flora, and producing forest seeds. However, bee populations are declining worldwide, including A. mellifera, due to Colony Collapse Disorder, mainly resulting from the constant use of pesticides in the crops. Teflubenzuron is a physiological insecticide that belongs to the benzoylurea group, which inhibits chitin synthesis, the main component of the insect integument classified as safe for non-target insects, including bees. However, its effect on non-target organs of insects remains unknown. The midgut is the main organ of the digestive tract, which works in digestion and absorption and may be exposed to pesticides that contaminate food resources. The present work aimed to verify if the insecticide teflubenzuron is toxic and has histopathological effects on the midgut of A. mellifera adult workers. Workers exposed orally and chronically to the field-realistic concentration of teflubenzuron present 81.54% mortality. The epithelium of the midgut of these bees presents high vacuolization, spherocrystals, cell fragments released to the organ lumen, apocrine secretion, nuclear pyknosis, loss of cell-cell contact, and damage to regenerative cell nests and to the peritrophic matrix. These results indicate that the chitin synthesis-inhibiting insecticide teflubenzuron is toxic to A. mellifera after chronic oral exposure, at realistic field concentration, although it is classified as non-toxic to adult and non-target insects.
Collapse
Affiliation(s)
- Mateus Soares de Oliveira
- Departamento de Entomologia, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Giovanna Dos Santos Pereira
- Departamento de Biologia Geral, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs S/N - Campus Universitário, Viçosa, Minas Gerais, 36570 000, Brazil
| | | | - Aline Beatriz Reis
- Departamento de Biologia Geral, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs S/N - Campus Universitário, Viçosa, Minas Gerais, 36570 000, Brazil
| | - Matheus Tudor Cândido Santos de Resende
- Departamento de Biologia Geral, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs S/N - Campus Universitário, Viçosa, Minas Gerais, 36570 000, Brazil
| | - Laryssa Lemos da Silva
- Departamento de Biologia Geral, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs S/N - Campus Universitário, Viçosa, Minas Gerais, 36570 000, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs S/N - Campus Universitário, Viçosa, Minas Gerais, 36570 000, Brazil.
| |
Collapse
|
12
|
Reis AB, Oliveira MSD, Souza DDS, Gomes DS, Silva LLD, Martínez LC, Serrão JE. Exploring the effects of the acaricide cyflumetofen on the vital organs of the honey bee Apis mellifera (Hymenoptera: Apidae) workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172640. [PMID: 38670351 DOI: 10.1016/j.scitotenv.2024.172640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Bees are important for maintaining ecosystems, pollinating crops and producing marketable products. In recent years, a decline in bee populations has been reported, with multifactorial causes, including the intensification of pesticide use in agriculture. Among pesticides, cyflumetofen is an insecticide and acaricide used in apple, coffee and citrus crops, whose main pollinator is the honey bee Apis mellifera. Therefore, this bee is a potential target of cyflumetofen during foraging. This study evaluated the histopathological and cytological damage in the midgut, hypopharyngeal glands and fat body of A. mellifera workers exposed to LC50 of cyflumetofen. The midgut epithelium of exposed bees presented cytoplasmic vacuolization, release of vesicles and cell fragments, which indicate autophagy, increased production of digestive enzymes and cell death, respectively. The cytological analysis of the midgut revealed the dilation of the basal labyrinth and the presence of spherocrystals in the digestive cells. The hypopharyngeal glands produced greater amounts of secretion in treated bees, whereas no changes were observed in the fat body. The results indicate that acute exposure to cyflumetofen negatively affect A. mellifera, causing damage to the midgut and changes in the hypopharyngeal glands, which may compromise the survival and foraging of this pollinator.
Collapse
Affiliation(s)
- Aline Beatriz Reis
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Mateus Soares de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Diego Dos Santos Souza
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Laryssa Lemos da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Luis Carlos Martínez
- Facultad de Ciencias Agrícolas, Universidad de Nariño, 602-7244309 Pasto, Nariño, Colombia.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Bartling MT, Brandt A, Hollert H, Vilcinskas A. Current Insights into Sublethal Effects of Pesticides on Insects. Int J Mol Sci 2024; 25:6007. [PMID: 38892195 PMCID: PMC11173082 DOI: 10.3390/ijms25116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The effect of pesticides on insects is often discussed in terms of acute and chronic toxicity, but an important and often overlooked aspect is the impact of sublethal doses on insect physiology and behavior. Pesticides can influence various physiological parameters of insects, including the innate immune system, development, and reproduction, through a combination of direct effects on specific exposed tissues and the modification of behaviors that contribute to health and reproductive success. Such behaviors include mobility, feeding, oviposition, navigation, and the ability to detect pheromones. Pesticides also have a profound effect on insect learning and memory. The precise effects depend on many different factors, including the insect species, age, sex, caste, physiological condition, as well as the type and concentration of the active ingredients and the exposure route. More studies are needed to assess the effects of different active ingredients (and combinations thereof) on a wider range of species to understand how sublethal doses of pesticides can contribute to insect decline. This review reflects our current knowledge about sublethal effects of pesticides on insects and advancements in the development of innovative methods to detect them.
Collapse
Affiliation(s)
- Merle-Theresa Bartling
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Annely Brandt
- Bee Institute Kirchhain, Landesbetrieb Landwirtschaft Hessen, Erlenstr. 9, 35274 Kirchhain, Germany;
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany;
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
14
|
Phan NT, Joshi NK, Rajotte EG, Zhu F, Peter KA, López-Uribe MM, Biddinger DJ. Systemic pesticides in a solitary bee pollen food store affect larval development and increase pupal mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170048. [PMID: 38218472 DOI: 10.1016/j.scitotenv.2024.170048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Solitary bees are often exposed to various pesticides applied for pest control on farmland while providing pollination services to food crops. Increasing evidence suggests that sublethal toxicity of agricultural pesticides affects solitary bees differently than the social bees used to determine regulatory thresholds, such as honey bees and bumblebees. Studies on solitary bees are challenging because of the difficulties in obtaining large numbers of eggs or young larvae for bioassays. Here we show the toxic and sublethal developmental effects of four widely used plant systemic pesticides on the Japanese orchard bee (Osmia cornifrons). Pollen food stores of this solitary bee were treated with different concentrations of three insecticides (acetamiprid, flonicamid, and sulfoxaflor) and a fungicide (dodine). Eggs were transplanted to the treated pollen and larvae were allowed to feed on the pollen stores after egg hatch. The effects of chronic ingestion of contaminated pollen were measured until adult eclosion. This year-long study revealed that chronic exposure to all tested pesticides delayed larval development and lowered larval and adult body weights. Additionally, exposure to the systemic fungicide resulted in abnormal larval defecation and increased mortality at the pupal stage, indicating potential risk to bees from fungicide exposure. These findings demonstrate potential threats to solitary bees from systemic insecticides and fungicides and will help in making policy decisions to mitigate these effects.
Collapse
Affiliation(s)
- Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Hanoi, Vietnam.
| | - Neelendra K Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA.
| | - Edwin G Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Kari A Peter
- Penn State Fruit Research and Extension Center, Biglerville, PA, USA
| | | | - David J Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA, USA; Penn State Fruit Research and Extension Center, Biglerville, PA, USA
| |
Collapse
|
15
|
Gierer F, Vaughan S, Slater M, Elmore JS, Girling RD. Residue dynamics of a contact and a systemic fungicide in pollen, nectar, and other plant matrices of courgette (Cucurbita pepo L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122931. [PMID: 38006995 DOI: 10.1016/j.envpol.2023.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
Pollen and nectar can be contaminated with a range of pesticides, including insecticides, fungicides, and herbicides. Since these matrices are important food sources for pollinators and other beneficial insects, their contamination can represent a key route of exposure. However, limited knowledge exists with respect to pesticide residue levels and their dynamics in these matrices for many crops and active ingredients (AIs). We used controlled glasshouse studies to investigate the residue dynamics of a systemic (cyprodinil) and a contact (fludioxonil) fungicide in the floral matrices and other plant parts of courgette/zucchini (Cucurbita pepo L.). We aimed to better understand the processes behind residue accumulation and decline in pollen and nectar. Each AI was applied to plants, either by spraying whole plants or by targeted spraying onto leaves only. Samples of pollen, nectar, anthers, flowers, and leaves were taken on the day of application and each subsequent morning for up to 13 days and analysed for residues using LC-MS/MS. Significant differences in residue levels and dynamics were found between AIs and floral matrices. The present study allowed for the identification of potential routes by which residues translocate between tissues and to link those to the physicochemical properties of each AI, which may facilitate the prediction of residue levels in pollen and nectar. Residues of the contact AI declined more quickly than those of the systemic AI in pollen and nectar. Our results further suggest that the risk of oral exposure for pollinators may be considerably reduced by using contact AIs during the green bud stage of plants, but application of systemic compounds could still result in a low, but continuous long-term exposure for pollinators with limited decline.
Collapse
Affiliation(s)
- Fiona Gierer
- School of Agriculture, Policy and Development, University of Reading, Reading, UK; Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, UK.
| | - Sarah Vaughan
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, UK
| | - Mark Slater
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Reading, UK; Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| |
Collapse
|
16
|
Hu W, Chen G, Yuan W, Guo C, Liu F, Zhang S, Cao Z. Iprodione induces hepatotoxicity in zebrafish by mediating ROS generation and upregulating p53 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115911. [PMID: 38181604 DOI: 10.1016/j.ecoenv.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Iprodione is an effective and broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Due to rainfall, iprodione often finds its way into water bodies, posing toxicity risks to non-target organisms and potentially entering the human food chain. However, there is limited information available regarding the developmental toxicity of iprodione specifically on the liver in existing literature. In this study, we employed larval and adult zebrafish as models to investigate the toxicity of iprodione. Our findings revealed that iprodione exposure led to yolk sac edema and increased mortality in zebrafish. Notably, iprodione exhibited specific effects on zebrafish liver development. Additionally, zebrafish exposed to iprodione experienced an overload of reactive oxygen species, resulting in the upregulation of p53 gene expression. This, in turn, triggered hepatocyte apoptosis and disrupted carbohydrate/lipid metabolism as well as energy demand systems. These results demonstrated the substantial impact of iprodione on zebrafish liver development and function. Furthermore, the application of astaxanthin (an antioxidant) and p53 morpholino partially mitigated the liver toxicity caused by iprodione. To summarize, iprodione induces apoptosis through the upregulation of p53 mediated by oxidative stress signals, leading to liver toxicity in zebrafish. Our study highlights that exposure to iprodione can result in hepatotoxicity in zebrafish, and it may potentially pose toxicity risks to other aquatic organisms and even humans.
Collapse
Affiliation(s)
- Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Wenbin Yuan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Shouhua Zhang
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
17
|
Duan X, Wang L, Wang R, Xiong M, Qin G, Huang S, Li J. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115754. [PMID: 38043416 DOI: 10.1016/j.ecoenv.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.
Collapse
Affiliation(s)
- Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| | - Lizhu Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruyi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Manqiong Xiong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gan Qin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
18
|
Favaro R, Garrido PM, Bruno D, Braglia C, Alberoni D, Baffoni L, Tettamanti G, Porrini MP, Di Gioia D, Angeli S. Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167277. [PMID: 37741399 DOI: 10.1016/j.scitotenv.2023.167277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.
Collapse
Affiliation(s)
- Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Martin Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
19
|
Carneiro LS, Santos CG, Resende MTCSD, Souza DLLD, Souza DDS, Souza AMDC, Motta JVDO, Nere PHA, Oliveira AHD, Serrão JE. Effects of the insecticide imidacloprid on the post-embryonic development of the honey bee Apis mellifera (Hymenoptera: Apidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167278. [PMID: 37741377 DOI: 10.1016/j.scitotenv.2023.167278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The widespread use of pesticides in agriculture has been linked to declines in bee populations worldwide. Imidacloprid is a widely used systemic insecticide that can be found in the pollen and nectar of plants and has the potential to negatively impact the development of bee larvae. We investigated the effects of oral exposure to a realistic field concentration (20.5 ng g-1) of imidacloprid on the midgut and fat body of Apis mellifera worker larvae. Our results showed that larvae exposed to imidacloprid exhibited changes in the midgut epithelium, including disorganization of the brush border, nuclear chromatin condensation, cytoplasm vacuolization, and release of cell fragments indication cell death. Additionally, histochemical analysis revealed that the midgut brush border glycocalyx was disorganized in exposed larvae. The fat body cells of imidacloprid-exposed larvae had a decrease in the size of lipid droplets from 50 to 8 μm and increase of 100 % of protein content, suggesting possible responses to the stress caused by the insecticide. However, the expression of de cdc20 gene, which plays a role in cell proliferation, was not affected in the midgut and fat body of treated larvae. These results suggest that imidacloprid negatively affects non-target organs during the larval development of A. mellifera potentially impacting this important pollinator species.
Collapse
Affiliation(s)
- Lenise Silva Carneiro
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | | | | | - Diego Dos Santos Souza
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | | | | | | | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
20
|
Domingues CEC, Inoue LVB, Gregorc A, Ansaloni LS, Malaspina O, Mathias da Silva EC. Ultrastructural Changes in the Midgut of Brazilian Native Stingless Bee Melipona scutellaris Exposed to Fungicide Pyraclostrobin. TOXICS 2023; 11:1028. [PMID: 38133429 PMCID: PMC10748086 DOI: 10.3390/toxics11121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Melipona scutellaris is a Brazilian stingless bee that is important for pollinating wild flora and agriculture crops. Fungicides have been widely used in agriculture, and floral residues can affect forager bees. The goal of our study was to evaluate the effects of sublethal concentrations of pyraclostrobin on the midgut ultrastructure of M. scutellaris forager workers. The bees were collected from three non-parental colonies and kept under laboratory conditions. The bees were orally exposed continuously for five days to pyraclostrobin in syrup at concentrations of 0.125 ng a.i./µL (FG1) and 0.005 ng a.i./µL (FG2). The control bees (CTL) were fed a no-fungicide sucrose solution, and the acetone solvent control bees (CAC) received a sucrose solution containing acetone. At the end of the exposure, the midguts were sampled, fixed in Karnovsky solution, and routinely processed for transmission electron microscopy. Ultrastructural analysis demonstrated that both the fungicide concentrations altered the midgut, such as cytoplasmic vacuolization (more intense in FG1), the presence of an atypical nuclear morphology, and slightly dilated mitochondrial cristae in the bees from the FG1 and FG2 groups (both more intense in FG1). Additionally, there was an alteration in the ultrastructure of the spherocrystals (FG1), which could be the result of cellular metabolism impairment and the excretion of toxic metabolites in the digestive cells as a response to fungicide exposure. The results indicate that ingested pyraclostrobin induced cytotoxic effects in the midgut of native stingless bees. These cellular ultrastructural responses of the midgut are a prelude to a reduced survival rate, as observed in previous studies.
Collapse
Affiliation(s)
- Caio E. C. Domingues
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia (L.S.A.)
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)—“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil; (L.V.B.I.); (O.M.)
| | - Lais V. B. Inoue
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)—“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil; (L.V.B.I.); (O.M.)
| | - Aleš Gregorc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia (L.S.A.)
| | - Leticia S. Ansaloni
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia (L.S.A.)
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)—“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil; (L.V.B.I.); (O.M.)
| | - Elaine C. Mathias da Silva
- Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Departamento de Biologia (DBio), Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, SP, Brazil;
| |
Collapse
|
21
|
Ding J, Sun Y, Mortimer M, Guo LH, Yang F. Enantiomer-specific burden of metalaxyl and myclobutanil in non-occupationally exposed population with evidence from dietary intake and urinary excretion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115623. [PMID: 37890250 DOI: 10.1016/j.ecoenv.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Metalaxyl (MET) and myclobutanil (MYC) are two widely used chiral fungicides that may pose health risks to non-occupationally exposed populations. Here, the two fungicides were enantiomer-specific quantified in the dietary food and urine of residents in an Eastern China city, to determine the exposure and excretion of these contaminants in different populations. Results indicate that residues of MET and MYC varied with different food items at 0.42-0.86 ng/g fresh weight (FW) and 0.18-0.33 ng/g FW, respectively. In urine samples, the residual levels after creatinine adjusting (CR) ranged from 10.2 to 1715.4 ng/g CR for MET and were below the detection limit up to 320.7 ng/g CR for MYC. Significant age- and gender-related differences were separately found in urinary MET and MYC of different populations. Monte-Carlo simulations suggested that children had higher daily dietary intake (DDI) but lower urinary excretion (DUE) rates than youths, and thus may suffer higher body burdens. The residues of antifungally ineffective enantiomers (S-MET and R-MYC) were slightly higher than their antipodes in foods. Moreover, the enantiomer-selective urinary excretion resulted in higher retention of S-MET and R-MYC in the human body. Our results suggest that both dietary intake and urinary excretion should be enantiomer-specifically considered when assessing the exposure risk and body burden of chiral fungicides in the non-occupationally exposed population. Furthermore, substitutive application of enantiomer-enriched fungicide formulations can not only benefit the antifungal efficacy but also be safer for human health.
Collapse
Affiliation(s)
- Jinjian Ding
- Institute of Environmental and Health Sciences, China Jiliang University, 310018 Hangzhou, China; Key Laboratory for Identification and Health Hazard Prevention of Environmental Emerging Contaminants, China Jiliang University and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Sun
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 310018 Hangzhou, China; Key Laboratory for Identification and Health Hazard Prevention of Environmental Emerging Contaminants, China Jiliang University and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 310018 Hangzhou, China; Key Laboratory for Identification and Health Hazard Prevention of Environmental Emerging Contaminants, China Jiliang University and Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China; Innovation center of Yangtze River Delta, Zhejiang University, 314100 Jiashan, China.
| |
Collapse
|
22
|
Miranda LA, de Souza VV, Campos RA, de Campos JMS, da Silva Souza T. Phytotoxicity and cytogenotoxicity of pesticide mixtures: analysis of the effects of environmentally relevant concentrations on the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112117-112131. [PMID: 37824048 DOI: 10.1007/s11356-023-30100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
In this study, we investigate the toxicity of commercial formulations based on glyphosate, 2,4-D, imidacloprid, and iprodione, in isolation and mixed, on Allium cepa. The mixtures consisted of combinations in the lowest (M1), intermediate (M2), and highest concentrations (M3) of each pesticide. We measured physiological (germination rate, germination speed, and radicular length) and cyto-genotoxic (mitotic index and frequency of aberrant cells) parameters. In addition, we analyzed the cell cycle progression and cell death induction by flow cytometry. When applied in isolation, the pesticides changed the parameters evaluated. M1 and M2 inhibited root length and increased the frequency of aberrant cells. Their genotoxic effect was equivalent to that of pesticides applied in isolation. Furthermore, M1 and M2 caused cell death and M2 changed the cell cycle progression. M3 had the greatest deleterious effect on A. cepa. This mixture inhibited root length and promoted an additive or synergistic effect on the mitotic index. In addition, M3 changed all parameters analyzed by flow cytometry. This research clearly demonstrates that the pesticides tested, and their mixtures, may pose a risk to non-target organisms.
Collapse
Affiliation(s)
- Luanna Alves Miranda
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, S/No, Guararema, Alegre, Espírito Santo, 29500-000, Brazil
| | - Victor Ventura de Souza
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Alice Campos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - José Marcello Salabert de Campos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Tatiana da Silva Souza
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, S/No, Guararema, Alegre, Espírito Santo, 29500-000, Brazil.
| |
Collapse
|
23
|
Motta JVDO, Carneiro LS, Martínez LC, Bastos DSS, Resende MTCS, Castro BMC, Neves MM, Zanuncio JC, Serrão JE. Midgut Cell Damage and Oxidative Stress in Partamona helleri (Hymenoptera: Apidae) Workers Caused by the Insecticide Lambda-Cyhalothrin. Antioxidants (Basel) 2023; 12:1510. [PMID: 37627505 PMCID: PMC10451733 DOI: 10.3390/antiox12081510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The stingless bee Partamona helleri plays a role in pollinating both native and cultivated plants in the Neotropics. However, its populations can be reduced by the pyrethroid insecticide lambda-cyhalothrin. This compound may cross the intestinal barrier and circulate through the hemolymph, affecting various non-target bee organs. The aim of the present study was to assess the extent of cellular damage in the midgut and the resulting oxidative stress caused by lambda-cyhalothrin in P. helleri workers. Bees were orally exposed to lambda-cyhalothrin. The lethal concentration at which 50% of the bees died (LC50) was 0.043 mg a.i. L-1. The P. helleri workers were fed this concentration of lambda-cyhalothrin and their midguts were evaluated. The results revealed signs of damage in the midgut epithelium, including pyknotic nuclei, cytoplasm vacuolization, changes in the striated border, and the release of cell fragments, indicating that the midgut was compromised. Furthermore, the ingestion of lambda-cyhalothrin led to an increase in the activity of the detoxification enzyme superoxide dismutase and the levels of the NO2/NO3 markers, indicating oxidative stress. Conversely, the activities of the catalase and glutathione S-transferase enzymes decreased, supporting the occurrence of oxidative stress. In conclusion, the ingestion of lambda-cyhalothrin by P. helleri workers resulted in damage to their midguts and induced oxidative stress.
Collapse
Affiliation(s)
- João Victor de Oliveira Motta
- Department of General Biology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (J.V.d.O.M.); (L.S.C.); (D.S.S.B.); (M.T.C.S.R.); (M.M.N.)
| | - Lenise Silva Carneiro
- Department of General Biology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (J.V.d.O.M.); (L.S.C.); (D.S.S.B.); (M.T.C.S.R.); (M.M.N.)
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (J.V.d.O.M.); (L.S.C.); (D.S.S.B.); (M.T.C.S.R.); (M.M.N.)
| | - Matheus Tudor Candido Santos Resende
- Department of General Biology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (J.V.d.O.M.); (L.S.C.); (D.S.S.B.); (M.T.C.S.R.); (M.M.N.)
| | - Bárbara Monteiro Castro Castro
- Department of Entomology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (B.M.C.C.); (J.C.Z.)
| | - Mariana Machado Neves
- Department of General Biology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (J.V.d.O.M.); (L.S.C.); (D.S.S.B.); (M.T.C.S.R.); (M.M.N.)
| | - José Cola Zanuncio
- Department of Entomology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (B.M.C.C.); (J.C.Z.)
| | - José Eduardo Serrão
- Department of General Biology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa, Viçosa 36570-900, Brazil; (J.V.d.O.M.); (L.S.C.); (D.S.S.B.); (M.T.C.S.R.); (M.M.N.)
| |
Collapse
|
24
|
Huang M, Dong J, Yang S, Xiao M, Guo H, Zhang J, Wang D. Ecotoxicological effects of common fungicides on the eastern honeybee Apis cerana cerana (Hymenoptera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161637. [PMID: 36649770 DOI: 10.1016/j.scitotenv.2023.161637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The widespread use of fungicides for plant protection has increased the potential for pollinator exposure. This study therefore aimed at assessing the acute and chronic effects of fungicides on pollinators. For this purpose, the acute oral toxicity of the common fungicides azoxystrobin, pyraclostrobin, and boscalid to Eastern honeybee Apis cerana cerena was first evaluated, and the chronic effects on multiple aspects were investigated after exposure to a one-tenth medium lethal dose (LD50) for 10 days. This study revealed that the LD50 values of azoxystrobin, pyraclostrobin and boscalid for adult Eastern honeybees were 12.7 μg/bee, 36.6 μg/bee, and >119 μg/bee, respectively. Midgut epithelial cells revealed that fungicide exposure caused increased intercellular spaces and varying degrees of vacuolization. Exposure to these three fungicides and their binary mixtures significantly affected glycerophospholipid, alanine, aspartate, and glutamate metabolism in Eastern honeybee midguts. Additionally, the relative composition of Lactobacillus, the dominant functional genus in Eastern honeybee guts decreased and microbial balance was disrupted. All fungicides and their mixtures induced strong transcriptional upregulation of genes associated with the immune response and encoding enzymes related to oxidative phosphorylation and metabolism, including abaecin, apidaecin, hymenotaecin, cyp4c3, cyp6a2 and hbg3. Our study provides important insight for understanding the effects of commonly used fungicides on nontarget pollinator and contributes to a more comprehensive assessment of fungicide effects on ecological and environmental safety.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Shuyuan Yang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Minghui Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
25
|
Dong J, Huang M, Guo H, Zhang J, Tan X, Wang D. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). Int J Mol Sci 2023; 24:ijms24065354. [PMID: 36982426 PMCID: PMC10049333 DOI: 10.3390/ijms24065354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (Apis cerana cerana), and its sublethal effect on foragers’ guts was evaluated. The results showed that the acute oral median lethal concentration (LD50) of ABP for foragers was 12.6 μg a.i./bee. ABP caused disorder of the morphological structure of midgut tissue and affected the intestinal metabolism; the composition and structure of the intestinal microbial community was perturbed, which altered its function. Moreover, the transcripts of genes involved in detoxification and immunity were strongly upregulated with ABP treatment. The study implies that exposure to a fungicide mixture of ABP can cause a series of negative effects on the health of foragers. This work provides a comprehensive understanding of the comprehensive effects of common fungicides on non-target pollinators in the context of ecological risk assessment and the future use of fungicides in agriculture.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| | - Haikun Guo
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaodong Tan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (M.H.); (D.W.)
| |
Collapse
|
26
|
Serra RS, Martínez LC, Cossolin JFS, Resende MTCSD, Carneiro LS, Fiaz M, Serrão JE. The fungicide azoxystrobin causes histopathological and cytotoxic changes in the midgut of the honey bee Apis mellifera (Hymenoptera: Apidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:234-242. [PMID: 36740648 DOI: 10.1007/s10646-023-02633-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Apis mellifera is an important bee pollinating native and crop plants but its recent population decline has been linked to the use of pesticides, including fungicides that have been commonly classified as safe for bees. However, many pesticides, in addition to direct mortality cause sublethal effects, including damage to target selective honey bee organs. The midgut is the organ responsible for the digestion and absorption of nutrients and the detoxification of ingested substances, such as pesticides. This study evaluated the histopathological and cytotoxic changes in the midgut of A. mellifera workers caused by the pesticide azoxystrobin. The limit-test was performed, and a 100 µg a.i./bee dose was administered orally and midgut analyzed with light and transmission electron microscopies after 24 h and 48 h of pesticide exposure. The midgut of the control bees has a single layer of digestive cells, with spherical nuclei, nests of regenerative cells, and the lumen coated with the peritrophic matrix. The bees fed on azoxystrobin showed morphological changes, including intense cytoplasm vacuolization and cell fragments released into the gut lumen. The protein detection test showed greater staining intensity in the nests of regenerative cells after 24 h of exposure to azoxystrobin. The occurrence of damage to the midgut in A. mellifera exposed to azoxystrobin indicates that although this fungicide has been classified as low toxicity for bees, it has sublethal effects in the midgut, and effects in other organs should be investigated.
Collapse
Affiliation(s)
- Raissa Santana Serra
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luis Carlos Martínez
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Lenise Silva Carneiro
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Muhammad Fiaz
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Jose Eduardo Serrão
- Department of General Biology, BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
27
|
Xiong M, Qin G, Wang L, Wang R, Zhou R, Luo X, Lou Q, Huang S, Li J, Duan X. Field recommended concentrations of pyraclostrobin exposure disturb the development and immune response of worker bees ( Apis mellifera L.) larvae and pupae. Front Physiol 2023; 14:1137264. [PMID: 36846328 PMCID: PMC9947242 DOI: 10.3389/fphys.2023.1137264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The strobilurin fungicide pyraclostrobin is widely used to prevent and control the fungal diseases of various nectar and pollen plants. Honeybees also directly or indirectly contact this fungicide with a long-term exposure period. However, the effects of pyraclostrobin on the development and physiology of Apis mellifera larvae and pupae during continuous exposure have been rarely known. To investigate the effects of field-realistic concentrations of pyraclostrobin on honeybee survival and development, the 2-day-old larvae were continuously fed with different pyraclostrobin solutions (100 mg/L and 83.3 mg/L), and the expression of development-, nutrient-, and immune-related genes in larvae and pupae were examined. The results showed that two field-realistic concentrations of pyraclostrobin (100 and 83.3 mg/L) significantly decreased the survival and capped rate of larvae, the weight of pupae and newly emerged adults, and such decrease was a positive correlation to the treatment concentrations. qPCR results showed that pyraclostrobin could induce the expression of Usp, ILP2, Vg, Defensin1, and Hymenoptaecin, decrease the expression of Hex100, Apidaecin, and Abaecin in larvae, could increase the expression of Ecr, Usp, Hex70b, Vg, Apidaecin, and Hymenoptaecin, and decreased the expression of ILP1, Hex100 and Defensin1in pupae. These results reflect pyraclostrobin could decrease nutrient metabolism, immune competence and seriously affect the development of honeybees. It should be used cautiously in agricultural practices, especially in the process of bee pollination.
Collapse
Affiliation(s)
- Manqiong Xiong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gan Qin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruyi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiqi Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaotian Luo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qun Lou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou, China,*Correspondence: Xinle Duan,
| |
Collapse
|
28
|
Pan H, Zhu B, Li J, Zhou Z, Bu W, Dai Y, Lu X, Liu H, Tian Y. Degradation of iprodione by a novel strain Azospirillum sp. A1-3 isolated from Tibet. Front Microbiol 2023; 13:1057030. [PMID: 36699606 PMCID: PMC9869045 DOI: 10.3389/fmicb.2022.1057030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
A bacterial strain A1-3 with iprodione-degrading capabilities was isolated from the soil for vegetable growing under greenhouses at Lhasa, Tibet. Based on phenotypic, phylogenetic, and genotypic data, strain A1-3 was considered to represent a novel species of genus Azospirillum. It was able to use iprodione as the sole source of carbon and energy for growth, 27.96 mg/L (50.80%) iprodione was reduced within 108 h at 25°C. During the degradation of iprodione by Azospirillum sp. A1-3, iprodione was firstly degraded to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and then to (3,5-dichlorophenylurea) acetic acid. However, (3,5-dichlorophenylurea) acetic acid cannot be degraded to 3,5-dichloroaniline by Azospirillum sp. A1-3. A ipaH gene which has a highly similarity (98.72-99.92%) with other previously reported ipaH genes, was presented in Azospirillum sp. A1-3. Azospirillum novel strain with the ability of iprodione degradation associated with nitrogen fixation has never been reported to date, and Azospirillum sp. A1-3 might be a promising candidate for application in the bioremediation of iprodione-contaminated environments.
Collapse
Affiliation(s)
- Hu Pan
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Beike Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jin Li
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ziqiong Zhou
- School of Food Science, Tibet Institute of Agriculture and Animal Husbandry, Nyingchi, China
| | - Wenbin Bu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Huhu Liu, ✉
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Yun Tian, ✉
| |
Collapse
|
29
|
Deng H, Chen D, Li X, Yang F, Liu S, Sun Y, Shi M, Bian Z, Tang G, Fan Z. Development of a colloidal gold immunochromatographic test strip for the rapid detection of iprodione. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4370-4376. [PMID: 36268701 DOI: 10.1039/d2ay01374f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Iprodione is a dicarboximide fungicide that is widely used in agriculture around the world. A reliable and rapid detection method is needed for the on-site monitoring of iprodione residues in a variety of agricultural products. Herein, a colloidal gold immunochromatographic test strip was developed based on a selected coating antigen and a specific monoclonal antibody against iprodione. The particle size of colloidal gold, the preparation technique of the conjugate pad, the composition of the loading buffer, and the extraction solvent were comprehensively optimized for the test strip. A cut-off value of 0.9 mg kg-1 (50 ng mL-1) and a visual limit of detection of 0.09 mg kg-1 (5 ng mL-1) were achieved in a complex matrix of tobacco. No cross-reactivity was observed for iprodione metabolite and four other widely used pesticides during tobacco growth. Furthermore, the developed colloidal gold immunochromatographic test strip was applied to determine iprodione residues in tobacco samples, and the obtained results were in good agreement with those obtained by liquid chromatography tandem mass spectrometry. Additionally, the test strip was found to be stable afterlong-term storage at 37 °C for two months. The developed colloidal gold immunochromatographic test strip showed excellent accuracy, sensitivity, specificity, and stability, therefore, it is suitable for the rapid detection of iprodione residues in complex matrices.
Collapse
Affiliation(s)
- Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection & Supervision, Kunming 650106, China
| | - Xiangyang Li
- China Tobacco Yunan Imp. & Exp. Co., Ltd, Kunming 650031, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Yingying Sun
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Mowen Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| |
Collapse
|
30
|
Fisher Ii A, Glass JR, Ozturk C, DesJardins N, Raka Y, DeGrandi-Hoffman G, Smith BH, Fewell JH, Harrison JF. Seasonal variability in physiology and behavior affect the impact of fungicide exposure on honey bee (Apis mellifera) health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120010. [PMID: 36002100 DOI: 10.1016/j.envpol.2022.120010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Honey bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom. The mechanisms by which fungicides affect honey bees are poorly understood and any seasonal variations in their impact are unknown. Here we assess the effects on honey bee colonies of four-week exposure (the approximate duration of the almond pollination season) of a fungicide, Pristine® (25.2% boscalid, 12.8% pyraclostrobin), that has been commonly used for almonds. We exposed colonies to Pristine® in pollen patties placed into the hive, in either summer or fall, and assessed colony brood and worker populations, colony pollen collection and consumption, and worker age of first foraging and longevity. During the summer, Pristine® exposure induced precocious foraging, and reduced worker longevity resulting in smaller colonies. During the fall, Pristine® exposure induced precocious foraging but otherwise had no significant measured effects. During the fall, adult and brood population levels, and pollen consumption and collection, were all much lower, likely due to preparations for winter. Fungicides and other pesticides may often have reduced effects on honey bees during seasons of suppressed colony growth due to bees consuming less pollen and pesticide.
Collapse
Affiliation(s)
- Adrian Fisher Ii
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
| | - Jordan R Glass
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Nicole DesJardins
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Yash Raka
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Gloria DeGrandi-Hoffman
- United States Department of Agriculture, Agricultural Research Service, Carl Hayden Bee Research Center, 2000 E Allen Rd., Tucson, AZ, 85719, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| |
Collapse
|
31
|
Inoue LVB, Domingues CEC, Gregorc A, Silva-Zacarin ECM, Malaspina O. Harmful Effects of Pyraclostrobin on the Fat Body and Pericardial Cells of Foragers of Africanized Honey Bee. TOXICS 2022; 10:530. [PMID: 36136494 PMCID: PMC9501569 DOI: 10.3390/toxics10090530] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Managed honey bees are daily exposed in agricultural settings or wild environments to multiple stressors. Currently, fungicide residues are increasingly present in bees' pollen and nectar and can harm colonies' production and survival. Therefore, our study aimed to evaluate the effects of the fungicide pyraclostrobin on the fat body and pericardial cells of Africanized honey bees. The foragers were divided into three experimental treatment groups and two controls: pyraclostrobin 0.125 ng/µL (FG1), 0.025 ng/µL (FG2), 0.005 ng/µL (FG3), untreated control (CTL), and acetone control (CAC). After five days of oral exposure (ad libitum), the bees were dissected and prepared for histopathological and morphometric analysis. The FG1-treated bees showed extensive cytoarchitecture changes in the fat body and pericardial cells, inducing cell death. Bees from the FG2 group showed disarranged oenocytes, peripheral vacuolization, and pyknotic nuclei of pericardial cells, but the cytoarchitecture was not compromised as observed in FG1. Additionally, immune system cells were observed through the fat body in the FG1 group. Bees exposed to FG3 demonstrated only oenocytes vacuolization. A significant decrease in the oenocyte's surface area for bees exposed to all pyraclostrobin concentrations was observed compared to the CTL and CAC groups. The bees from the FG1 and FG2 treatment groups presented a reduced surface area of pericardial cells compared to the controls and the FG3 group. This study highlighted the harmful effects of fungicide pyraclostrobin concentrations at the individual bee cellular level, potentially harming the colony level on continuous exposure.
Collapse
Affiliation(s)
- Lais V. B. Inoue
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)-“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil
| | - Caio E. C. Domingues
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)-“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Aleš Gregorc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Elaine C. M. Silva-Zacarin
- Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Departamento de Biologia (DBio), Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, SP, Brazil
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)-“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil
| |
Collapse
|
32
|
Santos AA, Farder-Gomes CF, Ribeiro AV, Costa TL, França JCO, Bacci L, Demuner AJ, Serrão JE, Picanço MC. Lethal and sublethal effects of an emulsion based on Pogostemon cablin (Lamiaceae) essential oil on the coffee berry borer, Hypothenemus hampei. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45763-45773. [PMID: 35152351 DOI: 10.1007/s11356-022-19183-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The global search for eco-friendly and human-safe pesticides has intensified, and research on essential oils (EOs) has expanded due to their remarkable insecticidal activities and apparent human-safe. Despite this, most of the literature focuses on short-term and simplified efforts to understand lethal effects, with only a few comprehensive studies addressing sublethal exposures. To fill this shortcoming, we explore the lethal and sublethal effects of Pogostemon cablin (Lamiaceae) EO and an EO-based emulsion (18%) using the coffee berry borer Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) as a model. First, we determine the toxicity of EO and EO-based emulsion using dose-mortality curves and lethal times. Second, we subjected adult females of H. hampei to sublethal doses to assess whether they affected their behavior, reproductive output, and histological features. Our findings reveal that patchoulol (43.05%), α-Guaiene (16.06%), and α-Bulnesene (13.69%) were the main components of the EO. Furthermore, the EO and its emulsion had similar toxicity, with dose-mortality curves and lethal times overlapping 95% confidence intervals. We also observed that sublethal exposure of females of H. hampei reduces reproduction and feeding, increases walking activity, and causes histopathological changes in the midgut. This study advances the knowledge of the lethal and sublethal effects of an eco-friendly substance on insects.Responsible Editor: Giovanni Benelli.
Collapse
Affiliation(s)
- Abraão Almeida Santos
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | | | | | - Thiago Leandro Costa
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Leandro Bacci
- Department of Agronomy, Universidade Federal de Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Antônio Jacinto Demuner
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo Coutinho Picanço
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
33
|
Chapman AVE, Elmore JM, McReynolds M, Walley JW, Wise RP. SGT1-Specific Domain Mutations Impair Interactions with the Barley MLA6 Immune Receptor in Association with Loss of NLR Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:274-289. [PMID: 34889653 DOI: 10.1094/mpmi-08-21-0217-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Mla (Mildew resistance locus a) of barley (Hordeum vulgare L.) is an effective model for cereal immunity against fungal pathogens. Like many resistance proteins, variants of the MLA coiled-coil nucleotide-binding leucine-rich repeat (CC-NLR) receptor often require the HRS complex (HSP90, RAR1, and SGT1) to function. However, functional analysis of Sgt1 has been particularly difficult, as deletions are often lethal. Recently, we identified rar3 (required for Mla6 resistance 3), an in-frame Sgt1ΔKL308-309 mutation in the SGT1-specific domain, that alters resistance conferred by MLA but without lethality. Here, we use autoactive MLA6 and recombinant yeast-two-hybrid strains with stably integrated HvRar1 and HvHsp90 to determine that this mutation weakens but does not entirely disrupt the interaction between SGT1 and MLA. This causes a concomitant reduction in MLA6 protein accumulation below the apparent threshold required for effective resistance. The ΔKL308-309 deletion had a lesser effect on intramolecular interactions than alanine or arginine substitutions, and MLA variants that display diminished interactions with SGT1 appear to be disproportionately affected by the SGT1ΔKL308-309 mutation. We hypothesize that those dimeric plant CC-NLRs that appear unaffected by Sgt1 silencing are those with the strongest intermolecular interactions with it. Combining our data with recent work in CC-NLRs, we propose a cyclical model of the MLA-HRS resistosome interactions.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Antony V E Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - J Mitch Elmore
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Maxwell McReynolds
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, U.S.A
| | - Justin W Walley
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA 50011, U.S.A
| |
Collapse
|
34
|
Serrão JE, Plata-Rueda A, Martínez LC, Zanuncio JC. Side-effects of pesticides on non-target insects in agriculture: a mini-review. Naturwissenschaften 2022; 109:17. [PMID: 35138481 DOI: 10.1007/s00114-022-01788-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Climate change mediated by anthropogenic activity induces significant alterations on pest abundance and behavior and a potential increase in the use of agrochemicals for crop protection. Pesticides have been a tool in the control of pests, diseases, and weeds of agricultural systems. However, little attention has been given to their toxic effects on beneficial insect communities that contribute to the maintenance and sustainability of agroecosystems. In addition to pesticide-induced direct mortality, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. This review describes the sublethal effects of pesticides on agriculturally beneficial insects and provides new information about the impacts on the behavior and physiology of these insects. The different types of sublethal effects of pesticides used in agriculture on pollinators, predators, parasitoids, and coprophagous insects were detailed.
Collapse
Affiliation(s)
- José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - Angelica Plata-Rueda
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
35
|
Hotchkiss MZ, Poulain AJ, Forrest JRK. Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiol Rev 2022; 46:6517452. [PMID: 35107129 DOI: 10.1093/femsre/fuab056] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Social bee gut microbiotas play key roles in host health and performance. Worryingly, a growing body of literature shows that pesticide exposure can disturb these microbiotas. Most studies examine changes in taxonomic composition in Western honey bee (Apis mellifera) gut microbiotas caused by insecticide exposure. Core bee gut microbiota taxa shift in abundance after exposure but are rarely eliminated, with declines in Bifidobacteriales and Lactobacillus near melliventris abundance being the most common shifts. Pesticide concentration, exposure duration, season and concurrent stressors all influence whether and how bee gut microbiotas are disturbed. Also, the mechanism of disturbance-i.e. whether a pesticide directly affects microbial growth or indirectly affects the microbiota by altering host health-likely affects disturbance consistency. Despite growing interest in this topic, important questions remain unanswered. Specifically, metabolic shifts in bee gut microbiotas remain largely uninvestigated, as do effects of pesticide-disturbed gut microbiotas on bee host performance. Furthermore, few bee species have been studied other than A. mellifera, and few herbicides and fungicides have been examined. We call for these knowledge gaps to be addressed so that we may obtain a comprehensive picture of how pesticides alter bee gut microbiotas, and of the functional consequences of these changes.
Collapse
|
36
|
Miotelo L, Mendes Dos Reis AL, Rosa-Fontana A, Karina da Silva Pachú J, Malaquias JB, Malaspina O, Roat TC. A food-ingested sublethal concentration of thiamethoxam has harmful effects on the stingless bee Melipona scutellaris. CHEMOSPHERE 2022; 288:132461. [PMID: 34624342 DOI: 10.1016/j.chemosphere.2021.132461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 05/26/2023]
Abstract
In recent years, the importance of bee's biodiversity in the Neotropical region has been evidencing the relevance of including native bees in risk assessments. Therefore, the sublethal effects of the insecticide thiamethoxam on the survival and morphological parameters of the stingless bee Melipona scutellaris were investigated in the present study. Cells from both non-target organs (Malpighian tubules and midgut) and target organs (brain) were analyzed for morphological alterations using light microscopy and transmission electron microscopy. The findings showed that when M. scutellaris foragers were exposed to a sublethal concentration of thiamethoxam (LC50/100 = 0.000543 ng a. i./μL), longevity was not reduced but brain function was affected, even with the non-target organs attempting to detoxify. The cellular damage in all the organs was mostly reflected in irregular nuclei shape and condensed chromatin, indicating cell death. The most frequent impairments in the Malpighian tubules were loss of microvilli, disorganization of the basal labyrinth, and cytoplasmic loss. These characteristics are related to an attempt by the cells to increase the excretion process, probably because of the high number of toxic molecules that reach the Malpighian tubules and need to be secreted. In general, damages that compromise the absorption of nutrients, excretion, memory, and learning processes, which are essential for the survival of M. scutellaris, were found. The present results also fill in gaps on how these bees respond to thiamethoxam exposure and will be useful in future risk assessments for the conservation of bee biodiversity.
Collapse
Affiliation(s)
- Lucas Miotelo
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Ana Luiza Mendes Dos Reis
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Annelise Rosa-Fontana
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Jéssica Karina da Silva Pachú
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, SP, 13418-900, Brazil.
| | - José Bruno Malaquias
- Department of Biostatistics, Institute of Biosciences e IBB, São Paulo State University (UNESP), Botucatu, SP, 18618-693, Brazil.
| | - Osmar Malaspina
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Thaisa Cristina Roat
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
37
|
Gonçalves DDC, Ribeiro WR, Gonçalves DC, Menini L, Costa H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res Int 2021; 150:110758. [PMID: 34865776 DOI: 10.1016/j.foodres.2021.110758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
The world population growth has raised concerns about food security. Agricultural systems are asked to satisfy a growing demand for food with increasingly limited resources, and simultaneously still must reduce the impacts on the environment. This scenario encourages the search for safe and sustainable production strategies. Reducing losses in the production process can be one of the main ways to guarantee food safety. In fruticulture, it is estimated that more than 50% of the production can be lost between harvest and the final consumer due to postharvest diseases caused by phytopathogenic fungi. The fungi of the genus Colletotrichum are opportunistic and are associated with several diseases, being the anthracnose the most relevant in terms of the quality and yield losses in fruit species around worldwide. To control these diseases, the use of synthetic fungicides has been the main instrument utilized, however, because of their phytotoxicity to human health, the environment, and strong selection pressure imposed by continuous applications, the fungicides have caused resistance in the pathogen populations. So reducing the excessive application of these products is indispensable for human health and for sustainable Agriculture. Towards this purpose, research has been carried out to identify the phytopathological potentiality of essential oils (EOs) extracted from plants. Therefore, this review aims to contribute to the formation of knowledge bases, about the discoveries, recent advances, and the use of EOs as a strategy to alternatively control fungal disease caused by Colletotrichum spp. in postharvest fruits. Here, we provide valuable information exploring the application potential of essential oils as commercially useful biorational pesticides for food preservation, contributing to sustainable production and global food security.
Collapse
Affiliation(s)
- Dalila da Costa Gonçalves
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Wilian Rodrigues Ribeiro
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Débora Cristina Gonçalves
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Luciano Menini
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Hélcio Costa
- Fazenda do Estado - Incaper. BR 262, km 94 - Domingos, Martins - ES 29278-000, Brazil.
| |
Collapse
|
38
|
Silva WM, Martínez LC, Plata-Rueda A, Serrão JE, Zanuncio JC. Exposure to insecticides causes effects on survival, prey consumption, and histological changes in the midgut of the predatory bug, Podisus nigrispinus (Hemiptera: Pentatomidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57449-57458. [PMID: 34091850 DOI: 10.1007/s11356-021-14589-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The control of defoliating caterpillars in forestry includes the use of insecticides and releases of the predatory bug Podisus nigrispinus, but some compounds may affect non-target natural enemies, which need evaluation of risk assessment. This research investigates the survival, preference, and prey consumption of P. nigrispinus adults fed with prey treated with the lethal concentration (LC50) of Bacillus thuringiensis (Bt), permethrin, tebufenozide, and thiamethoxam. Moreover, midgut histopathology of P. nigrispinus fed with preys treated with LC50 of each insecticide was investigated. The insecticides Bt, permethrin, and thiamethoxam reduce the survival and the prey consumption in P. nigrispinus fed with preys contaminate with these chemicals. However, the four tested insecticides, including tebufenozide, cause histological changes such as irregular epithelial architecture, cytoplasm vacuolization, and release of cell fragments in the midgut lumen of P. nigrispinus. The sublethal effects of Bt, permethrin, tebufenozide, and thiamethoxam to the natural enemy suggest that they should be better evaluated to be used together with P. nigrispinus for integrated pest management in forestry.
Collapse
Affiliation(s)
- Wiane Meloni Silva
- Departamento de Engenharia Florestal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Angelica Plata-Rueda
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
39
|
Lai Q, Sun X, Li L, Li D, Wang M, Shi H. Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish. CHEMOSPHERE 2021; 272:129577. [PMID: 33465616 DOI: 10.1016/j.chemosphere.2021.129577] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Dicarboximide fungicides mainly including procymidone, iprodione, vinclozolin, and dimethachlon are often applied as protective fungicides, 3,5-dichloroaniline (3,5-DCA) is their common metabolite in plant and environment. In this study, the acute toxicity of procymidone, iprodione and their metabolite of 3,5-DCA toward zebrafish was evaluated by semi-static method. The enrichment and metabolism of procymidone and iprodione in zebrafish were also clarified. The results indicated that procymidone and iprodione exhibited moderately toxic to adult zebrafish with the LC50 of 2.00 mg/L, 5.70 mg/L at 96 h. Both procymidone and iprodione could be metabolized to 3,5-DCA in zebrafish, which showed higher toxic to adult zebrafish with the LC50 of 1.64 mg/L at 96 h. From the perspective of histomorphology, for all treatment groups, the brain of the zebrafish was significantly damaged, while the damage to gut and gills was lighter. For procymidone, the biological concentration factor (BCF8d) were 236 and 246 at the exposure concentration of 0.2 mg/L and 0.04 mg/L, and the BCF8d were 3.2 and 2.4 for iprodione at the exposure concentration of 0.5 mg/L and 0.1 mg/L. Therefore, the procymidone and iprodione were moderate-enriched and low-enriched in zebrafish, respectively.
Collapse
Affiliation(s)
- Qi Lai
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Da Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China.
| |
Collapse
|
40
|
Vinha GL, Plata-Rueda A, Soares MA, Zanuncio JC, Serrão JE, Martínez LC. Deltamethrin-Mediated Effects on Locomotion, Respiration, Feeding, and Histological Changes in the Midgut of Spodoptera frugiperda Caterpillars. INSECTS 2021; 12:insects12060483. [PMID: 34067273 PMCID: PMC8224794 DOI: 10.3390/insects12060483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Spodoptera frugiperda is controlled mainly with chemical insecticides. Toxicity, survival, respiration, mobility, anti-feeding effect, and histology of the midgut of S. frugiperda caterpillars exposed to deltamethrin were evaluated. Deltamethrin was toxic to third-instar caterpillars, decreasing survival. The insecticide reduces the respiratory rate and food consumption, and causes repellency. Exposure to deltamethrin causes histological alterations in the midgut, damaging the digestive cells and peritrophic matrix. Deltamethrin is toxic to S. frugiperda caterpillars, causing mortality, alteration of locomotor behavior, reduced respiration and feeding, and irreversible damage to the midgut epithelium. Abstract Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is the main pest of maize crops, and effective methods for pest management are needed. The insecticidal efficacy of deltamethrin was evaluated against S. frugiperda for toxicity, survival, locomotion, anti-feeding, and histological changes in the midgut. Concentration–mortality bioassays confirmed that deltamethrin (LC50 = 3.58 mg mL−1) is toxic to S. frugiperda caterpillars. The survival rate was 99.7% in caterpillars not exposed to deltamethrin, decreasing to 50.3% in caterpillars exposed to LC50, and 0.1% in caterpillars treated with LC90. Spodoptera frugiperda demonstrated reduced mobility on deltamethrin-treated surfaces. Deltamethrin promoted a low respiration rate of S. frugiperda for up to 3 h after insecticide exposure, displaying immobilization and inhibiting food consumption. Deltamethrin induces histological alterations (e.g., disorganization of the striated border, cytoplasm vacuolization, and cell fragmentation) in the midgut, damaging the digestive cells and peritrophic matrix, affecting digestion and nutrient absorption.
Collapse
Affiliation(s)
- Germano Lopes Vinha
- Department of Crop Science, Federal University of Viçosa, Viçosa 36570000, Brazil;
| | - Angelica Plata-Rueda
- Department of Entomology, Federal University of Viçosa, Viçosa 36570000, Brazil; (A.P.-R.); (J.C.Z.)
| | - Marcus Alvarenga Soares
- Department of Crop Production, Federal University of Vales Jequitinhonha and Mucuri, Diamantina 39100000, Brazil;
| | - José Cola Zanuncio
- Department of Entomology, Federal University of Viçosa, Viçosa 36570000, Brazil; (A.P.-R.); (J.C.Z.)
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa 36570000, Brazil;
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa 36570000, Brazil;
- Correspondence: ; Tel.: +55-31-3899-4012
| |
Collapse
|
41
|
Serra RS, Cossolin JFS, Resende MTCSD, Castro MAD, Oliveira AH, Martínez LC, Serrão JE. Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). CHEMOSPHERE 2021; 270:129439. [PMID: 33395581 DOI: 10.1016/j.chemosphere.2020.129439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The honeybee Apis mellifera is an important pollinator that, similarly to other bees, undergoes colony losses due to several problems, including the use of pesticides in the agriculture. In addition to direct mortality, pesticides cause side-effects in some non-target organs, such as the midgut, which is the main organ for digestion and absorption. Spiromesifen is a pesticide used to control mites and whiteflies, which can be ingested by bees feeding on contaminated floral resources. This study evaluated the histopathological and cytological effects of the ingestion of spiromesifen on the midgut of A. mellifera workers. The bees were exposed per os to the field recommended dose of spiromesifen, and the midgut was analyzed after 24h and 48h of exposure to the pesticide. The midgut has a single layer of digestive cells, with spherical nucleus, nests of regenerative cells and layers of peritrophic matrix in the lumen. Bees treated with spiromesifen presented histological and cytological changes in the midgut, including disorganization of the epithelial architecture, release of cell fragments to the lumen, accumulation of mitochondria in the apical cytoplasm, alteration of the basal labyrinth, changes in the rough endoplasmic reticulum and cell degeneration. The occurrence of damage in the digestive cells of the A. mellifera midgut indicates that spiromesifen does not cause mortality in honeybees, but its side-effects can damage the midgut, which may affect the longevity and behavior of this pollinator.
Collapse
Affiliation(s)
- Raissa Santana Serra
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | | | - Mayara Arthidoro de Castro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - André Henrique Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
42
|
Araújo RDS, Bernardes RC, Martins GF. A mixture containing the herbicides Mesotrione and Atrazine imposes toxicological risks on workers of Partamona helleri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142980. [PMID: 33121769 DOI: 10.1016/j.scitotenv.2020.142980] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
A mixture of Mesotrione and Atrazine (Calaris®) has been reported as an improvement of the atrazine herbicides, which are agrochemicals used for weed control. However, its possible harmful effects on non-target organisms, including pollinators, needs to be better understood. In this work, the effects of the mix of herbicides on food consumption, behaviour (walking distance, and meandering), and the morphology of the midgut of the stingless bee Partamona helleri were studied. Foragers were orally exposed to different concentrations of the mix. The concentrations leading to 10% and 50% mortality (LC10 and LC50, respectively) were estimated and used in the analysis of behaviour and morphology. The ingestion of contaminated diets (50% aqueous sucrose solution + mix) led to a reduction in food consumption by the bees when compared to the control, bees fed a non-contaminated diet (sucrose solution). Ingestion of the LC50 diet reduced locomotor activity, increased meandering, induced the degradation of the epithelium and peritrophic matrix, and also changed the number of cells positive for signalling-pathway proteins in the midgut. These results show the potential toxicological effects and environmental impacts of the mix of herbicides in beneficial insects, including a native bee.
Collapse
|
43
|
Farder-Gomes CF, Saravanan M, Martínez LC, Plata-Rueda A, Zanuncio JC, Serrão JE. Azadirachtin-based biopesticide affects the respiration and digestion in Anticarsia gemmatalis caterpillars. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1892764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Meenakshi Saravanan
- Karunya Institute of Technology and Sciences, Coimbatore, India
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brasil
| | | | | | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brasil
| |
Collapse
|
44
|
Krichilsky E, Centrella M, Eitzer B, Danforth B, Poveda K, Grab H. Landscape Composition and Fungicide Exposure Influence Host-Pathogen Dynamics in a Solitary Bee. ENVIRONMENTAL ENTOMOLOGY 2021; 50:107-116. [PMID: 33247307 DOI: 10.1093/ee/nvaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 06/12/2023]
Abstract
Both ecosystem function and agricultural productivity depend on services provided by bees; these services are at risk from bee declines which have been linked to land use change, pesticide exposure, and pathogens. Although these stressors often co-occur in agroecosystems, a majority of pollinator health studies have focused on these factors in isolation, therefore limiting our ability to make informed policy and management decisions. Here, we investigate the combined impact of altered landscape composition and fungicide exposure on the prevalence of chalkbrood disease, caused by fungi in the genus Ascosphaera Olive and Spiltoir 1955 (Ascosphaeraceae: Onygenales), in the introduced solitary bee, Osmia cornifrons (Radoszkowski 1887) (Megachilidae: Hymenoptera). We used both field studies and laboratory assays to evaluate the potential for interactions between altered landscape composition, fungicide exposure, and Ascosphaera on O. cornifrons mortality. Chalkbrood incidence in larval O. cornifrons decreased with high open natural habitat cover, whereas Ascosphaera prevalence in adults decreased with high urban habitat cover. Conversely, high fungicide concentration and high forest cover increased chalkbrood incidence in larval O. cornifrons and decreased Ascosphaera incidence in adults. Our laboratory assay revealed an additive effect of fungicides and fungal pathogen exposure on the mortality of a common solitary bee. Additionally, we utilized phylogenetic methods and identified four species of Ascosphaera with O. cornifrons, both confirming previous reports and shedding light on new associates. Our findings highlight the impact of fungicides on bee health and underscore the importance of studying interactions among factors associated with bee decline.
Collapse
Affiliation(s)
| | - Mary Centrella
- Pesticide Management Education Program, Cornell University, Ithaca, NY
| | - Brian Eitzer
- The Connecticut Agricultural Experiment Station, Department of Analytical Chemistry, Johnson-Horsfall Laboratory, New Haven, CT
| | - Bryan Danforth
- Department of Entomology, Cornell University, Ithaca, NY
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, NY
| | - Heather Grab
- Department of Entomology, Cornell University, Ithaca, NY
| |
Collapse
|
45
|
Plata-Rueda A, Fiaz M, Brügger BP, Cañas V, Coelho RP, Zanuncio JC, Martínez LC, Serrão JE. Lemongrass essential oil and its components cause effects on survival, locomotion, ingestion, and histological changes of the midgut in Anticarsia gemmatalis caterpillars. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1861468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Muhammad Fiaz
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Veronica Cañas
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Cola Zanuncio
- Departmento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Eduardo Serrão
- Departmento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
46
|
Castro BMDCE, Martínez LC, Plata-Rueda A, Soares MA, Wilcken CF, Zanuncio AJV, Fiaz M, Zanuncio JC, Serrão JE. Exposure to chlorantraniliprole reduces locomotion, respiration, and causes histological changes in the midgut of velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). CHEMOSPHERE 2021; 263:128008. [PMID: 32841879 DOI: 10.1016/j.chemosphere.2020.128008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 05/27/2023]
Abstract
The anthranilic diamide, chlorantraniliprole is a systemic insecticide affecting ryanodine receptors. This insecticide is used to control caterpillars in soybean crops because it has low toxicity to non-target organisms. The objective was to identify side-effects of chlorantraniliprole on midgut histopathology, respiration and behavior of the velvetbean caterpillar Anticarsia gemmatalis in laboratoty. Chlorantraniliprole has LC50 = 0.61 (0.58-0.64) mg mL-1 for A. gemmatalis fourth instar caterpillars after 96 h. The insecticide causes severe histopathological effects in the midgut with epithelial disorganization, microvilli degeneration, cytoplasm vacuolization, cell fragmentation, and peritrophic matrix disorganization. The respiratory rate and the walking speed decrease, whereas the resting period increase for caterpillars exposed to this insecticide. Chlorantraniliprole is toxic to A. gemmatalis at median lethal concentrations causing severe histological and ultrastructural changes with degeneration of the midgut epithelium, reduction of respiratory rates and inducing an arresting behavioral response of this insect.
Collapse
Affiliation(s)
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Angelica Plata-Rueda
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcus Alvarenga Soares
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Dos Vales Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Carlos Frederico Wilcken
- Departamento de Proteção Vegetal, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Muhammad Fiaz
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
47
|
da Costa Domingues CE, Bello Inoue LV, da Silva-Zacarin ECM, Malaspina O. Fungicide pyraclostrobin affects midgut morphophysiology and reduces survival of Brazilian native stingless bee Melipona scutellaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111395. [PMID: 33031995 DOI: 10.1016/j.ecoenv.2020.111395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Native stingless bees are key pollinators of native flora and important for many crops. However, the loss of natural fragments and exposure to pesticides can hinder the development of colonies and represent a high risk for them. Nevertheless, most studies are conducted with honeybees and there are not many studies on native species, especially in relation to the effects of fungicides on them. Therefore, the objective of this paper is to evaluate the effects of sublethal concentrations of pyraclostrobin, on Melipona scutellaris forager workers. These Brazilian native stingless bees were submitted to continuous oral exposure to three concentrations of pyraclostrobin in sirup: 0.125 ng a.i./µL (P1), 0.025 ng a.i./µL (P2), and 0.005 ng a.i./µL (P3). Histopathological and histochemical parameters of midgut, as well as survival rate were evaluated. All concentrations of fungicide showed an increase in the midgut lesion index and morphological signs of cell death, such as cytoplasmic vacuolizations, presence of atypical nuclei or pyknotic nuclei. Histochemical analyzes revealed a decreased marking of polysaccharides and neutral glycoconjugates both in the villi and in peritrophic membrane in all exposed-groups in relation to control-groups. P1 and P2 groups presented a reduction in total protein marking in digestive cells in relation to control groups. As a consequence of alteration in the midgut, all groups exposed to fungicide showed a reduced survival rate. These findings demonstrate that sublethal concentrations of pyraclostrobin can lead to significant adverse effects in stingless bees. These effects on social native bees indicate the need for reassessment of the safety of fungicides to bees.
Collapse
Affiliation(s)
- Caio Eduardo da Costa Domingues
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil.
| | - Lais Vieira Bello Inoue
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| | - Elaine Cristina Mathias da Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), NuPECA (Núcleo de Pesquisa em Ecotoxicologia e Conservação de Abelhas), Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Sorocaba, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| |
Collapse
|
48
|
Tadei R, Menezes-Oliveira VB, Silva-Zacarin ECM. Silent effect of the fungicide pyraclostrobin on the larval exposure of the non-target organism Africanized Apis mellifera and its interaction with the pathogen Nosema ceranae in adulthood. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115622. [PMID: 33254673 DOI: 10.1016/j.envpol.2020.115622] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 05/26/2023]
Abstract
The frequent exposure of bees to a wide variety of fungicides, on crops where they forage, can be considered a stressor factor for these pollinators. The organisms are exposed both to the fungicide active ingredients and to the adjuvants of commercial formulations. All these ingredients are brought to the hive by bee foragers through contaminated pollen and nectar, thus exposing also immature individuals during larval phase. This work aimed to compare the effects of larval exposure to the fungicide pyraclostrobin (active ingredient and commercial formulation) and its influence on the cytotoxicity to midguts in adults, which were inoculated with the Nosema ceranae spores in the post-emergence stage. Under laboratory conditions, Apis mellifera larvae received an artificial diet containing fungicide solution from the third to the sixth day of the feeding phase. One-day-old adult workers ingested 100,000 infectious N. ceranae spores mixed in sucrose solution. Effects on midgut were evaluated through cellular biomarkers of stress and cell death. The exposure to the fungicide (active ingredient and commercial formulation) did not affect the larval post-embryonic development and survival of adult bees. However, this exposure induced cytotoxicity in the cells of the midgut, showed by the increase in DNA fragmentation and alteration in the HSP70 immunolabeling pattern. Without the pathogen, the midgut cytotoxic effects and HSP70 immunolabeling of the organisms exposed to the commercial formulation were lower when compared to the exposure to its active ingredient. However, in the presence of the pathogen, the cytotoxic effects of the commercial formulation to the adult bees' midgut were potentialized. The pathogen N. ceranae increased the damage to the intestinal epithelium of adult bees. Thus, realistic doses of pyraclostrobin present in beebread consumed by larvae can affect the health and induce physiological implications to the midgut functions of the adult bees.
Collapse
Affiliation(s)
- Rafaela Tadei
- UFSCar, Universidade Federal de São Carlos, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental - PPGBMA, CCTS, Sorocaba, São Paulo, Brazil.
| | - Vanessa B Menezes-Oliveira
- UFSCar, Universidade Federal de São Carlos, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental - PPGBMA, CCTS, Sorocaba, São Paulo, Brazil; UFSCar, Universidade Federal de São Carlos, CCHB, Departamento de Biologia, NuPECA, Sorocaba, São Paulo, Brazil
| | - Elaine C M Silva-Zacarin
- UFSCar, Universidade Federal de São Carlos, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental - PPGBMA, CCTS, Sorocaba, São Paulo, Brazil; UFSCar, Universidade Federal de São Carlos, CCHB, Departamento de Biologia, NuPECA, Sorocaba, São Paulo, Brazil
| |
Collapse
|
49
|
Eduardo da Costa Domingues C, Bello Inoue LV, Mathias da Silva-Zacarin EC, Malaspina O. Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115267. [PMID: 32822922 DOI: 10.1016/j.envpol.2020.115267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
The honeybee has economic importance both for the commercial value of bee products and for its role in the pollination of agricultural crops. Despite the fact that the fungicides are widely used in agriculture, studies comparing the effects of this group of pesticides on bees are still scarce. There are many gaps preventing the understanding of bees' responses to exposure to fungicides, including the influence of the age of the exposed workers. However, this study aimed to compare the effects of residual concentrations of pyraclostrobin on young and old bees of Africanized Apis mellifera. The parameters analyzed were the survival rates, as well as the histopathological and histochemical changes in midgut of orally exposed workers to different sublethal concentrations of this strobilurin fungicide: 0.125 ng a.i./μL (C1), 0.025 ng a.i./μL (C2) e 0.005 ng a.i./μL (C3). The results showed a significant decrease in the longevity only for old bees exposed to the three concentrations of pyraclostrobin. After the five-day exposure period, the fungicide induced sublethal effects in the midgut only from the old bees. These effects were the increase both in cytoplasmic vacuolization of digestive cells and morphological changes in the nests of regenerative cells, which reflected in the higher lesion index of organ for groups C1 and C2. Additionally, there was a reduction in total protein staining in the intestinal epithelium in C1 and C2. At the same exposure period, the midgut of young bees presented only a reduction in the staining of neutral polysaccharides in the group C1. Concluding, old workers are more sensitive to the fungicide than young workers. This study showed different responses according to worker age, which can affect the maintenance of colony health. Future studies should take into account the age of the workers to better understand the effects of fungicides on bees.
Collapse
Affiliation(s)
- Caio Eduardo da Costa Domingues
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil.
| | - Lais Vieira Bello Inoue
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| | - Elaine Cristina Mathias da Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Sorocaba, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Rio Claro, SP, Brazil
| |
Collapse
|
50
|
Feldhaar H, Otti O. Pollutants and Their Interaction with Diseases of Social Hymenoptera. INSECTS 2020; 11:insects11030153. [PMID: 32121502 PMCID: PMC7142568 DOI: 10.3390/insects11030153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/07/2022]
Abstract
Many insect species, including social insects, are currently declining in abundance and diversity. Pollutants such as pesticides, heavy metals, or airborne fine particulate matter from agricultural and industrial sources are among the factors driving this decline. While these pollutants can have direct detrimental effects, they can also result in negative interactive effects when social insects are simultaneously exposed to multiple stressors. For example, sublethal effects of pollutants can increase the disease susceptibility of social insects, and thereby jeopardize their survival. Here we review how pesticides, heavy metals, or airborne fine particulate matter interact with social insect physiology and especially the insects’ immune system. We then give an overview of the current knowledge of the interactive effects of these pollutants with pathogens or parasites. While the effects of pesticide exposure on social insects and their interactions with pathogens have been relatively well studied, the effects of other pollutants, such as heavy metals in soil or fine particulate matter from combustion, vehicular transport, agriculture, and coal mining are still largely unknown. We therefore provide an overview of urgently needed knowledge in order to mitigate the decline of social insects.
Collapse
|