1
|
Li T, Yang X, Sun H, Jing H, Bao S, Hu Y, Shi W, Jia H, Li J. Competitive ion uptake and transcriptional regulation as a coordinated dual mechanism of NaCl-mediated cadmium detoxification in Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109939. [PMID: 40262398 DOI: 10.1016/j.plaphy.2025.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Cadmium (Cd), a highly toxic heavy metal, severely inhibits plant growth. Salt alleviates Cd stress in halophytes, however, the molecular mechanisms governing salt-mediated regulation of Cd toxicity remain poorly understood. This study elucidates the protective mechanism of NaCl in Cd-stressed Suaeda salsa seedlings. Cd exposure suppressed seedling growth and induced membrane lipid peroxidation. Conversely, NaCl application not only maintained normal growth but also effectively ameliorated Cd-induced phytotoxicity, potentially through osmotic adjustment mechanisms. Notably, using ion flux analysis, we found that NaCl attenuated Cd2+ influx into root epidermal cells, thereby enhancing Cd resistance. Pharmacological inhibition studies confirmed that Na + competitively inhibits Cd2+ uptake through shared channels/transporters. Furthermore, RT-qPCR gene expression profiling revealed that NaCl coordinately activated both ionic compartmentalization and efflux systems through upregulating plasma membrane-localized SsSOS1 and tonoplast-associated SsNHX1 for Na + extrusion and vacuolar sequestration, enhancing Cd2+ compartmentalization via SsCAX and SsVHA-B mediated transport and maintaining cellular homeostasis through SsHKT1 and SsPIP-mediated regulation of water and K+ balance, or indirectly inhibit Cd2+ influx. It reveals that salt weakens Cd2+ influx and enhances Cd tolerance by activating a coordinated gene regulatory network in Suaeda salsa. This finding offers valuable insights into phytoremediation strategies for enhancing crop resilience in Cd-contaminated saline soils.
Collapse
Affiliation(s)
- Tian Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haotian Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Jing
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sinuo Bao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Liu S, Chen S, Zhang K, Xu N, Ni X, Yue L, He M. Exogenous Hydrogen sulfide attenuates cadmium toxicity to Chrysanthemum (Chrysanthemum indicum) by modulating glutathione synthesis and cadmium adsorption capacity in the cell wall. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109860. [PMID: 40194502 DOI: 10.1016/j.plaphy.2025.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Soil cadmium (Cd) contamination leads to plant toxicity and poses a risk to human health both directly and indirectly through the food chain. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, has been shown to enhance plant tolerance to various abiotic stresses. In this study, the potential of H2S in mitigating Cd toxicity in chrysanthemum (Chrysanthemum indicum) was investigated through physiological, biochemical and transcriptomic analyses. Results showed that the application of exogenous H2S resulted Cd accumulation in the roots by 21.15 %, while reducing Cd in the aboveground parts by 13.21 %. It was further found that H2S increased the pectin and hemicellulose content by 50.09 % and 49.79 %, respectively, through the regulation of cell wall polysaccharide synthesis-related genes, leading to changes in root functional group content and cell wall adsorption capacity for cadmium ions (Cd2+). Additionally, H2S also promoted the synthesis of GSH and PCs by regulating the expression of genes related to sulfur metabolism, chelating free Cd2+ in the cytoplasm, and reducing their harmful effects on the organelles. It was also found that exogenous H2S may have regulated the expression of transporter proteins by modulating the expression of transcription factors (MYB, AP2/ERF, and WRKY), thereby affecting the uptake, transport, and accumulation of Cd2+. In conclusion, exogenous H2S reduced the free Cd2+ content in the cytoplasm by promoting the adsorption of Cd2+ in the root cell walls and facilitating the synthesis of GSH and PCs in the cells, which in turn alleviated the toxic effects of Cd2+ on chrysanthemum.
Collapse
Affiliation(s)
- Shuguang Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Shengyan Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Kaiyuan Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ning Xu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Xingyu Ni
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Liran Yue
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Li Q, Niu C, Guo J, Chen G, Li J, Sun L, Li W, Li T. Physiological regulation underlying the alleviation of cadmium stress in maize seedlings by exogenous glycerol. Sci Rep 2025; 15:11156. [PMID: 40169844 PMCID: PMC11961616 DOI: 10.1038/s41598-025-94385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Cadmium (Cd) contamination in maize poses a significant threat to global food security due to its persistent accumulation in crops. In this study, the effects of foliar application of glycerol on Cd accumulation in maize seedlings were studied. Our results demonstrated that under Cd treatment, biomass, total chlorophyll content, net photosynthetic rate (Pn), Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity, Phosphoenolpyruvate carboxylase (PEPC) activity, sucrose levels, and carbohydrate levels in maize seedlings significantly increased after glycerol application. H2O2 and MDA levels in both the aboveground and belowground portions of the maize plants significantly decreased. Moreover, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities in the aboveground parts significantly increased. Notably, maize plants used glycerol to chelate Cd, which was fixed within the cell wall and soluble fraction of the roots, reducing Cd transport to the shoots and significantly lowering the Cd transport coefficient (TF). Transcriptomic data suggested that glycerol-mediated alleviation of Cd stress in maize seedlings may be associated with phenylpropanoid biosynthesis, plant-pathogen interactions and photosynthesis pathways. These molecular patterns align with the observed physiological improvements. This study provided a novel approach to effectively alleviate excessive Cd in maize and suggested possible applications of glycerol in cultivating plant resistance to heavy metals.
Collapse
Affiliation(s)
- Qiao Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chunda Niu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxu Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Geng Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingti Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China.
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Tianpu Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Riaz M, Kamran M, Hussain S, Yan L. "Nano-calcium L-Aspartate enhances rice tolerance to arsenic toxicity by improving nitrogen metabolism, cell wall sequestration, and antioxidant system". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109862. [PMID: 40194504 DOI: 10.1016/j.plaphy.2025.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Rice is one of the major sources of human exposure to arsenic (As), and its contamination is a critical issue for crop productivity and human health. Herein, we investigated how nano-calcium L-aspartate (nano-Ca) nanoparticles alleviate As-induced toxicity in rice (Oryzae sativa L.) seedlings. The results showed that As stress restricted rice growth and increased the concentration of As in roots and shoots. Application of nano-Ca markedly improved seedling growth, including biomass, photosynthetic pigment content, and antioxidant enzyme activity. As a result, Nano-Ca decreased As concentrations in shoots and roots by 67.04 % and 22.78 %, respectively, primarily due to the increasing accumulation of As in pectin and hemicellulose. Furthermore, nano-Ca elevated the activity of nitrogen-metabolizing enzymes. The treatment also promoted demethylation of pectin, which enhanced its As-binding capability. Additionally, nano-Ca enhanced proline metabolism, also provided antioxidant defenses, and regulated calcium homeostasis, which help mitigate oxidative damage characteristics like malondialdehyde and hydrogen peroxidation. As these findings demonstrated, nano-Ca could be an efficient, friendly means of alleviating As toxicity in rice, offering an environmentally sustainable option for agricultural strategies in the arsenic-contaminated areas.
Collapse
Affiliation(s)
- Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, South Australia, 5005, Australia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Cui J, Xu J, Qi J, Lu X, Liu Y, Xiong J, Yu W, Li C. Genome-wide identification of SlIQMs and the regulatory effect of calcium on tomato seedlings under drought stress and phytohormone treatment. PLANT CELL REPORTS 2025; 44:70. [PMID: 40055201 DOI: 10.1007/s00299-025-03459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/23/2025] [Indexed: 04/12/2025]
Abstract
KEY MESSAGE SlIQMs were identified, exogenous calcium and phytohormones induced their expression. SlIQMs's function were verified by VIGS. Calcium synergistically promoted seedling growth with ABA, IAA, MeJA and antagonized growth inhibition with GA3 or SA. The IQM genes, are crucial members of the calmodulin-binding protein family, play pivotal roles in plant growth and stress response. However, the existence and impact of IQM in tomato remain unclear. This study demonstrates that the SlIQMs are randomly distributed across the 4 chromosomes of tomato and exclusively located within the nucleus. Phylogenetic analysis classifies the SlIQMs into 3 distinct subclasses. Analysis of cis-acting elements reveals that SlIQMs may function in stress or hormone process. Quantitative reverse-transcriptase PCR analysis further testified that polyethylene glycol (PEG), abscisic acid (ABA), indole acetic acid (IAA), gibberellin (GA3), methyl jasmonate (MeJA), and salicylic acid (SA) induce expression levels of SlIQM1/2/3/5/6/7. Furthermore, exogenous calcium significantly alleviates detrimental effects on seedlings growth leaded by drought stress. Moreover, the relationships between hormones and calcium were explored. The results showed that calcium synergistically promoted the seedlings growth with ABA, IAA and MeJA, however antagonistic effects on inhibiting growth are observed between calcium and GA3 or SA. The virus-induced silencing of 6 candidate genes caused growth inhibition of tomato seedlings under drought stress and phytohormone treatment. These findings lay the foundation for a comprehensive study of the structure and biological function of SlIQM genes and the interaction between calcium and different plant hormones on plant growth.
Collapse
Affiliation(s)
- Jing Cui
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jingli Xiong
- The Ziyuan Bureau of Agriculture and Rural, Guilin, 541400, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Yu S, Wang S, Tang M, Pan S, Wang M. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154419. [PMID: 39864245 DOI: 10.1016/j.jplph.2025.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. × vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. × vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. × vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
Collapse
Affiliation(s)
- Shiyin Yu
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shan Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Min Tang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shuzhen Pan
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Meixian Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
7
|
Wang X, Wang S, Gao L, Guo P, Du H, Ma M, Rennenberg H. Nitric oxide mitigates cadmium stress by promoting the biosynthesis of cell walls in Robinia pseudoacacia roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109544. [PMID: 39879830 DOI: 10.1016/j.plaphy.2025.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) pollution is a growing concern worldwide, because it threatens human health through the food chain. Woody plants, such as the pioneer species black locust (Robinia pseudoacacia L.), are widely used in phytoremediation of Cd-contaminated soils, but strongly differ in Cd tolerance. Nitric oxide (NO), a highly reactive gas of biogenic and anthropogenic origin, has been shown to protect plants to Cd exposure. We investigated the protective mechanism of NO against Cd toxicity in black locust using physiological, transcriptomic and metabolomic approaches. We studied the correlation between cell wall traits, genes, and metabolites. The findings indicated that NO improved the growth of black locust under Cd exposure and elevated the fraction of Cd in the cell wall. NO increased cell wall thickness by stimulating the biosynthesis of pectin, cellulose, hemicellulose, and lignin. Transcriptomic and metabolomic analyses demonstrated that NO upregulated genes related to root cell wall biosynthesis and increased the accumulation of related metabolites, thereby increasing the Cd resistance of black locust. Our results elucidated a molecular mechanism underlying NO-mediated Cd tolerance in black locust and provided novel insights for phytoremediation of Cd-polluted soils by woody plants.
Collapse
Affiliation(s)
- Xun Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Ren R, Cao Z, Ma X, Li Z, Zhao K, Cao D, Ma Q, Hou M, Zhao K, Zhang L, Qiu D, Gong F, Zhang X, Liu H, Yin D. Multi-Omics Analysis Reveals That AhNHL Contributes to Melatonin-Mediated Cadmium Tolerance in Peanut Plants. J Pineal Res 2025; 77:e70035. [PMID: 39940063 PMCID: PMC11822082 DOI: 10.1111/jpi.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Cadmium (Cd) pollution significantly hampers cleaner production of peanut (Arachis hypogaea L.). Therefore, exploring of tolerance mechanisms to Cd stress and breeding of low-Cd peanut cultivars are urgently needed and require intense efforts. Herein, multi-omics and physiological studies reveal that multiple biological processes, including melatonin (MT) biosynthesis, are involved in the Cd tolerance in peanut plants. Exogenous MT was applied to peanut plants under Cd stress, which decreased Cd accumulation in roots, shoots and seeds for 40%-60%, and promoted the antioxidant capacity. Integrated investigation reveals that MT-mediated Cd tolerance is mainly attributed to the enhanced metabolism of linolenic acid, glutathione (GSH), and phenylpropanoid (lignin), and development of casparian strip in root cell wall. Defense genes, such as non-race-specific disease resistance gene 1/harpininduced gene 1 (NDR1/HIN1)-like in peanut (AhNHL), were also significantly upregulated by MT under Cd stress. Overexpression of the AhNHL gene in tobacco reduced Cd accumulation for 37%-46%, and alleviated photosynthesis-inhibition induced by Cd stress. Transcriptomic analysis suggested that AhNHL confers the Cd tolerance mainly through promoting phenylpropanoid biosynthesis and GSH metabolism. Additionally, exogenous GSH effectively alleviated the Cd stress through improving Cd sequestration and antioxidant capacity in peanut plants, while apply of the GSH biosynthesis inhibitor (buthionine sulfoximine) exacerbated the Cd phytotoxicity. Transcriptomic analysis reveals that exogenous GSH improves Cd tolerance through affecting the expression of genes involved in transcription regulation, and metal ion binding and transport. Our findings provide novel insights into molecular mechanisms underlying Cd tolerance in plants, which would facilitate breeding of low-Cd peanut cultivars.
Collapse
Affiliation(s)
- Rui Ren
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Zenghui Cao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xingli Ma
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Zhongfeng Li
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Kunkun Zhao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Di Cao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Qian Ma
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Mengtian Hou
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Kai Zhao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Lin Zhang
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Ding Qiu
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xingguo Zhang
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Haitao Liu
- College of Resources and EnvironmentHenan Agricultural UniversityZhengzhouChina
| | - Dongmei Yin
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
9
|
Li J, Zheng W, Li J, Askari K, Tian Z, Liu R. Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109504. [PMID: 39832395 DOI: 10.1016/j.plaphy.2025.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood. To address this, a short-term indoor experiment and a long-term outdoor pot experiment were conducted to evaluate the potential of SA to alleviate DFZ-induced phytotoxicity and its effects on DFZ uptake, translocation, metabolism, and accumulation. The underlying mechanisms were explored through physiological, biochemical, and gene expression analyses. The results showed that DFZ induced oxidative damage and reduced photosynthesis by 15.6% in wheat. SA upregulated the expression of genes encoding antioxidant enzymes (POD, CAT, SOD1, and SOD2) in the roots and leaves of DFZ-exposed plants, leading to a 7.5%-13.4% increase in antioxidant enzyme activities and a subsequent 9.7%-14.5% decrease in reactive oxygen species levels. Additionally, SA increased the total chlorophyll content by 16.3%, which was enhanced by regulating chlorophyll synthesis and degradation-related genes, thereby improving the net photosynthetic rate by 12.2%. Furthermore, SA upregulated the expression of lignin biosynthesis-related, CYP450, and GST genes, which reduced DFZ uptake and accelerated its degradation. Consequently, the wheat grain DFZ content decreased by 36.2%, thus reducing the health risk index. This study confirms the potential of SA to reduce DFZ phytotoxicity and accumulation. Based on these findings, we recommend using SA in DFZ-contaminated areas to mitigate phytotoxicity and the associated human dietary exposure risks.
Collapse
Affiliation(s)
- Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wende Zheng
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Komelle Askari
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
10
|
Zhang QH, Tan XT, Li ZB, Chen YQ, Yang ZY, Xin GR, He CT. De-Methyl Esterification Modification of Root Pectin Mediates Cd Accumulation of Lactuca sativa. PLANT, CELL & ENVIRONMENT 2025; 48:1735-1748. [PMID: 39491538 DOI: 10.1111/pce.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Cadmium (Cd) contamination in agricultural soil brings severe health risks through the dietary intake of Cd-polluted crops. The comprehensive role of pectin in lowering Cd accumulation is investigated through low Cd accumulated (L) and high Cd accumulated (H) cultivars of L. sativa. The significantly different Cd contents in the edible parts of two L. sativa cultivars are accomplished by different Cd transportations. The pectin is the dominant responsive cell wall component according to significantly increased uronic acid contents and the differential Cd absorption between unmodified and modified cell wall. The chemical structure characterization revealed the decreased methyl esterification in pectin under Cd treatment compared with control. Significantly brighter LM19 relative fluorescence density and 40.82% decreased methanol in the root pectin of L cultivar under Cd treatment (p < 0.05) supported that the de-methyl esterification of root pectin is more significant in L cultivar than in H cultivar. The pectin de-methyl esterification of L cultivar is achieved by the upregulation of pectin esterases and the downregulation of pectin esterase inhibitors under Cd treatments, which has facilitated the higher Cd-binding of pectin. Our findings provide deep insight into the differential Cd accumulation of L. sativa cultivars and contribute to the understanding the pollutant behaviors in plants.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Xuan-Tong Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhen-Bang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Yi-Qi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhong-Yi Yang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Guo-Rong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Chun-Tao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| |
Collapse
|
11
|
Chen R, Liu Z, Yang J, Ma T, Guo A, Shi R. Predicting cadmium enrichment in crops/vegetables and identifying the effects of soil factors based on transfer learning methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117823. [PMID: 39904259 DOI: 10.1016/j.ecoenv.2025.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Cadmium (Cd) is present in soils and can easily migrate into plants due to its various forms. This mobility allows it to be absorbed by plant roots and accumulate in edible parts, entering the food chain and posing health risks. In some regions, insufficient sampling and research, or the limited cultivation of specific vegetables and crops, make it challenging to gather adequate data for modeling. A total of 353 pairs of soil and crop/vegetable samples were collected across three regions using a unified measurement method. These samples were utilized to build predictive models to study the relationship between soil factors and cadmium (Cd) absorption in six different crops/vegetables, followed by a unified comparison. This study compares regression and probability models and determines the best feature combination, which can retain enough information to accurately predict and prevent over-fitting caused by too many features. The best feature combination is used to apply transfer learning to cadmium enrichment in crops/vegetables. The results show that the best accuracy of the random forest probability model in the rice dataset is 0.89. The best feature combination of prediction results was found by feature optimization. This feature combination has a very good effect on the prediction of cadmium in corn / vegetables by transfer learning. The accuracy of corn, rape and radish is 0.93,0.89 and 0.81, respectively. In the case of good prediction effect of transfer learning, available Cd is the most critical function, and available Cd is positively correlated with Cd in plants. It suggests that available heavy metal significantly influence predictions in crops/vegetables. In areas with less sampling and research, selecting relevant features and using transfer learning methods is more appropriate for constructing predictive models.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zean Liu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jingyan Yang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Aihong Guo
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
12
|
Chen C, Teng G, Shen W, Lu Y, Jin Y, Yuan X, Chen K, Yuan Y, Wu Z, Zhang J. Green Carbon Dots/CaCO 3/Abamectin Colloidal Pesticide Formulation for Safer and More Effective Pest Management. ACS NANO 2025; 19:1007-1025. [PMID: 39707989 DOI: 10.1021/acsnano.4c12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
An ideal green leaf-deposited pesticide formulation should offer advantages such as good water dispersibility, strong foliar affinity, sustained or controlled release of active ingredients, photostability and rain-fastness, minimal nontarget toxicity, use of nontoxic organic solvents, and degradable adjuvants. In line with this objective, we present green preparation of a colloidal pesticide formulation using optimized lysine-derived carbon dots (LysCDs)-modified CaCO3 (LysCDs/CaCO3) particles as the carrier and abamectin (Abm) as the active ingredient. The loading capacity of abamectin in this colloidal pesticide (LysCDs/CaCO3/Abm) is 1.7 to 2.1 times higher than that of its counterpart (CaCO3/Abm) prepared without LysCDs, which is attributed to the increased specific surface area and pore volume of LysCDs/CaCO3 particles. Due to the acid-induced degradation of CaCO3, the release of abamectin for LysCDs/CaCO3/Abm is accelerated under weakly acidic conditions, which is accompanied by the release of Ca2+ ions and the fluorescence changes of LysCDs. The incorporation of LysCDs enhances the photostability and foliar adhesiveness of this colloidal pesticide, resulting in the highest degree of foliar retention when exposed to ultraviolet (UV) light or rainfall, compared to free-form abamectin and CaCO3/Abm. This results in the best performance of pest control on Plutella xylostella for LysCDs/CaCO3/Abm in both indoor and outdoor tests. Nontarget biocompatibility evaluations show that LysCDs/CaCO3/Abm exhibits lower acute toxicity to zebrafish and earthworms than free-form abamectin. In addition, this colloidal pesticide is favored by the minimal residue of the adjuvant material after abamectin release, which is converted into harmless Ca2+ ions, CO2, and LysCDs. Therefore, this work designs a safer and more effective colloidal pesticide formulation to deliver abamectin with minimal adjuvant residue, realizing its trajectory as basically "circular and green".
Collapse
Affiliation(s)
- Chuang Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guopeng Teng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Weicheng Shen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yijun Lu
- Key Laboratory of Medical Physics and Technology of Anhui Province, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yuwei Jin
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| | - Xue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Kang Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhengyan Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jia Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| |
Collapse
|
13
|
Cui Q, Beiyuan J, Chen Y, Li M, Qiu T, Zhao S, Zhu X, Chen H, Fang L. Synergistic enhancement of plant growth and cadmium stress defense by Azospirillum brasilense and plant heme: Modulating the growth-defense relationship. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174503. [PMID: 38971246 DOI: 10.1016/j.scitotenv.2024.174503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and defense under heavy metal (HM) stress. The direct integration of microbial and plant signals is key to the regulation of plant growth and HM stress defense, but the underlying mechanisms are still limited. Herein, we reveal a novel mechanism by which PGPR regulates plant growth-regulating substances in plant tissues and coordinates plant growth and defense in pak choi under cadmium (Cd) stress. This might be an efficient strategy and an extension of the mechanism by which plant-microbe interactions improve plant stress resistance. Azospirillum brasilense and heme synergistically reduced the shoot Cd content and promoted the growth of pak choi. The interaction between abscisic acid of microbial origin and heme improved Cd stress tolerance through enhancing Cd accumulation in the root cell wall. The interaction between A. brasilense and heme induced the growth-defense shift in plants under Cd stress. Plants sacrifice growth to enhance Cd stress defense, which then transforms into a dual promotion of both growth and defense. This study deepens our understanding of plant-microbe interactions and provides a novel strategy to improve plant growth and defense under HM stress, ensuring future food production and security.
Collapse
Affiliation(s)
- Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yinglong Chen
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Mengdi Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
14
|
Yang Z, Wang M, Fan S, Zhang Z, Zhang D, He J, Li T, Wei R, Wang P, Dawood M, Li W, Wang L, Wang S, Yuan Y, Shang H. GhPME36 aggravates susceptibility to Liriomyza sativae by affecting cell wall biosynthesis in cotton leaves. BMC Biol 2024; 22:197. [PMID: 39256779 PMCID: PMC11389454 DOI: 10.1186/s12915-024-01999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Cotton is an important economic crop and a host of Liriomyza sativae. Pectin methylesterase (PME)-mediated pectin metabolism plays an indispensable role in multiple biological processes in planta. However, the pleiotropic functions of PME often lead to unpredictable effects on crop resistance to pests. Additionally, whether and how PME affects susceptibility to Liriomyza sativae remain unclear. RESULTS Here, we isolated GhPME36, which is located in the cell wall, from upland cotton (Gossypium hirsutum L.). Interestingly, the overexpression of GhPME36 in cotton caused severe susceptibility to Liriomyza sativae but increased leaf biomass in Arabidopsis. Cytological observations revealed that the cell wall was thinner with more demethylesterified pectins in GhPME36-OE cotton leaves than in WT leaves, whereas the soluble sugar content of GhPME36-OE cotton leaf cell walls was accordingly higher; both factors attracted Liriomyza sativae to feed on GhPME36-OE cotton leaves. Metabolomic analysis demonstrated that glucose was significantly differentially accumulated. Transcriptomic analysis further revealed DEGs enriched in glucose metabolic pathways when GhPME36 was overexpressed, suggesting that GhPME36 aggravates susceptibility to Liriomyza sativae by affecting both the structure and components of cell wall biosynthesis. Moreover, GhPME36 interacts with another pectin-modifying enzyme, GhC/VIF1, to maintain the dynamic stability of pectin methyl esterification. CONCLUSIONS Taken together, our results reveal the cytological and molecular mechanisms by which GhPME36 aggravates susceptibility to Liriomyza sativae. This study broadens the knowledge of PME function and provides new insights into plant resistance to pests and the safety of genetically modified plants.
Collapse
Affiliation(s)
- Zheng Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Hainan Seed Industry Laboratory, Sanya, 572000, China
| | - Menglei Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Senmiao Fan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Shennong Laboratory, Zhengzhou, 450002, China
| | - Zhen Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Doudou Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tongyi Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Renhui Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Panpan Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Dawood
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Weijie Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shaogan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Youlu Yuan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Haihong Shang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Henan Grain and Cotton Crops Research Institute, Zhengzhou, China.
| |
Collapse
|
15
|
Zhang D, Wang H, Zhang Y, Su Z, Hu T, Liu J, Ding Q, Niu N, Ma L. Methyl jasmonate enhances the safe production ability of Cd-stressed wheat by regulating the antioxidant capacity, Cd absorption, and distribution in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108788. [PMID: 38830276 DOI: 10.1016/j.plaphy.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Identifying green and effective measures for reducing wheat Cd toxicity and grain Cd accumulation is crucial. This study used seedling sand culture and full-grown pot experiments of wheat cultivars 'Luomai23' (LM) and 'Zhongyu10' (ZY). The purpose was to determine the effects of exogenous MeJA on the phenotype, photosynthesis, antioxidant system, Cd accumulation and distribution, transporter gene expression, and cell wall properties of Cd-stressed wheat. Compared with Cd treatment alone, the plant height and maximum root length treated with 0.001 μM MeJA increased by more than 6.3% and 16.6%, respectively. Under 5 mg⋅kg-1 Cd treatment, spraying 10 μM MeJA increased the photosynthetic rate of LM and ZY by 23.5% and 35.8% at the filling stage, respectively. Methyl jasmonate significantly reduced the H2O2 and MDA contents by increasing the activities of POD, DHAR, MDHAR, and GR and the contents of AsA and GSH. Applicating MeJA increased the content of chelate substances, cell wall polysaccharides, and cell wall functional groups. Besides, MeJA regulated the expression of Cd transporter genes, with shoot and root Cd content decreasing by 46.7% and 27.9% in LM, respectively. Spraying 10 μM MeJA reduced Cd absorption and translocation from vegetative organs to grains, thus reducing the grain Cd content of LM and ZY by 36.1 and 39.9% under 5 mg⋅kg-1 Cd treatment, respectively. Overexpressing TaJMT significantly increased the MeJA content and Cd tolerance of Arabidopsis. These results have improved the understanding of the mechanism through which MeJA alleviates Cd toxicity and reduces Cd accumulation in wheat.
Collapse
Affiliation(s)
- Dazhong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China; Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yuanbo Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhan Su
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Tiezhu Hu
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, China
| | - Jiajia Liu
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Na Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
16
|
Sun Y, Yang H, Ren T, Zhao J, Lang X, Nie L, Zhao W. CmERF1 acts as a positive regulator of fruits and leaves growth in melon (Cucumis melo L.). PLANT MOLECULAR BIOLOGY 2024; 114:70. [PMID: 38842600 DOI: 10.1007/s11103-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.
Collapse
Affiliation(s)
- Yufan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Haiming Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| |
Collapse
|
17
|
Fan CY, Yu XF, Liu YJ, Zeng XX, Luo FW, Wang XT, Yang X, Wang XY, Xue X, Yang LJ, Lei T, Jiang MY, Jiang BB, Gao SP, Li X. Methyl jasmonate regulation of pectin polysaccharides in Cosmos bipinnatus roots: A mechanistic insight into alleviating cadmium toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123503. [PMID: 38331243 DOI: 10.1016/j.envpol.2024.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Methyl jasmonate (MeJA), a crucial phytohormone, which plays an important role in resistance to Cadmium (Cd) stress. The cell wall (CW) of root system is the main location of Cd and plays a key role in resistance to Cd toxicity. However, the mechanism effect of MeJA on the CW composition and Cd accumulation remain unclear. In this study, the contribution of MeJA in regulating CW structure, pectin composition and Cd accumulation was investigated in Cosmos bipinnatus. Phenotypic results affirm MeJA's significant role in reducing Cd-induced toxicity in C. bipinnatus. Notably, MeJA exerts a dual impact, reducing Cd uptake in roots while increasing Cd accumulation in the CW, particularly bound to pectin. The molecular structure of pectin, mainly uronic acid (UA), correlates positively with Cd content, consistent in HC1 and cellulose, emphasizing UA as pivotal for Cd binding. Furthermore, MeJA modulates pectin methylesterase (PME) activity under Cd stress, influencing pectin's molecular structure and homogalacturonan (HG) content affecting Cd-binding capacity. Chelate-soluble pectin (CSP) within soluble pectins accumulates a substantial Cd proportion, with MeJA regulating both UA content and the minor component 3-deoxy-oct-2-ulosonic acid (Kdo) in CSP. The study delves into the intricate regulation of pectin monosaccharide composition under Cd stress, revealing insights into the CW's physical defense and Cd binding. In summary, this research provides novel insights into MeJA-specific mechanisms alleviating Cd toxicity in C. bipinnatus, shedding light on complex interactions between MeJA, and Cd accumulation in CW pectin polysaccharide.
Collapse
Affiliation(s)
- Chun-Yu Fan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yu-Jia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Xuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fu-Wen Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xian-Tong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Xue
- Triticeae Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li-Juan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bei-Bei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Su-Ping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
18
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
19
|
Calderan-Rodrigues MJ, Caldana C. Impact of the TOR pathway on plant growth via cell wall remodeling. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154202. [PMID: 38422631 DOI: 10.1016/j.jplph.2024.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth. The plant C status plays a significant role in controlling the rate of cell wall synthesis. TOR signaling regulates cell growth and expansion, which are fundamental processes for plant development. The availability of nutrients and energy, sensed and integrated by TOR, influences cell division and elongation, ultimately impacting the synthesis and deposition of cell wall components. The plant cell wall is crucial in environmental adaptation and stress responses. TOR senses and internalizes various environmental cues, such as nutrient availability and stresses. These environmental factors influence TOR activity, which modulates cell wall remodeling to cope with changing conditions. Plant hormones, including auxins, gibberellins, and brassinosteroids, also regulate TOR signaling and cell wall-related processes. The connection between nutrients and cell wall pathways modulated by TOR are discussed.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900, Piracicaba, SP, Brazil.
| | - Camila Caldana
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| |
Collapse
|
20
|
Jia H, Wei Y, An H, Wang Q, Yang J, Li C. Copper oxide nanoparticles alter the uptake and distribution of cadmium through disturbing the ordered structure of the cell wall in Arabidopsis root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108430. [PMID: 38364632 DOI: 10.1016/j.plaphy.2024.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Copper oxide nanoparticles (CuO NPs) influence the uptake of heavy metal ions by plants, but molecular mechanism is still unknown. Here, we proved the mechanism of CuO NPs affecting Cd absorption in Arabidopsis root. 4-d-old seedlings were treated by 10 and 20 mg/L CuO NPs for 3 d, which decreased the contents of cellulose and hemicellulose in roots. Moreover, the contents of some important monosaccharides were altered by CuO NPs, including arabinose, glucose and mannose. Biosynthesis of cellulose and hemicellulose is regulated by cellulose synthase A complexe (CSC) dynamics. The synthesis of tubulin cytoskeleton was inhibited by CuO NPs, which resulted in the decrease of CSCs bidirectional velocities. Furthermore, the arrangement and network of cellulose fibrillar bundles were disrupted by CuO NPs. CuO NPs treatment significantly increased the influx of Cd2+. The accumulation and translocation of Cd were increased by 10 and 20 mg/L CuO NPs treatment. The subcellular distribution of Cd in root cells indicated CuO NPs decrease the enrichment of Cd in cell wall, but increase the enrichment of Cd in soluble fraction and organelle. In light of these findings, we proposed a mechanistic model in which CuO NPs destroy the ordered structure of the cell wall, alter the uptake and distribution of Cd in Arabidopsis.
Collapse
Affiliation(s)
- Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Yuting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Haodong An
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qing Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jun Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
21
|
Li L, Wu W, Lin H, Zhou L, Zhang D, Ishfaq M, Zhong Y, Li B, Peng Y, Wu X, Yu Y, Li X, Chen Q. Amino acid application inhibits root-to-shoot cadmium translocation in Chinese cabbage by modulating pectin methyl-esterification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108401. [PMID: 38301327 DOI: 10.1016/j.plaphy.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiru Lin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Donghan Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Ishfaq
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Bingcheng Li
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Xiuwen Wu
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifa Yu
- Nanning Harworld Biological Technology, Inc, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Li S, Wang HY, Zhang Y, Huang J, Chen Z, Shen RF, Zhu XF. Auxin is involved in cadmium accumulation in rice through controlling nitric oxide production and the ability of cell walls to bind cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166644. [PMID: 37659569 DOI: 10.1016/j.scitotenv.2023.166644] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Although auxin has been linked to plants' responses to cadmium (Cd) stress, the exact mechanism is yet elusive. The objective of the current investigation was to determine the role and the mechanism of auxin in controlling rice's Cd accumulation. Rice roots with Cd stress have higher endogenous auxin levels, and exogenous auxin combined Cd treatment could reduce root cell wall's hemicellulose content when compared with Cd treatment alone, which in turn reduced its fixation of Cd, as well as decreased the expression of OsCd1 (a major facilitator superfamily gene), OsNRAMP1/5 (Natural Resistance-Associated Macrophage Protein 1/5), OsZIP5/9 (Zinc Transporter 5/9), and OsHMA2 (Heavy Metal ATPase 2) that participated in Cd uptake and root to shoot translocation. Furthermore, less Cd accumulated in the shoots as a result of auxin's impact in increasing the expression of OsCAL1 (Cadmium accumulation in Leaf 1), OsABCG36/OsPDR9 (G-type ATP-binding cassette transporter/Pleiotropic drug resistance 9), and OsHMA3, which were in charge of Cd efflux and sequestering into vacuoles, respectively. Additionally, auxin decreased endogenous nitric oxide (NO) levels and antioxidant enzyme activity, while treatment of a NO scavenger-cPTIO-reduced auxin's alleviatory effects. In conclusion, the rice's ability to tolerate Cd toxicity was likely increased by the auxin-accelerated cell wall Cd exclusion mechanism, a pathway that controlled by the buildup of NO.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Yue Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Khalid M, Liu X, Ur Rahman S, Rehman A, Zhao C, Li X, Yucheng B, Hui N. Responses of microbial communities in rhizocompartments of king grass to phytoremediation of cadmium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167226. [PMID: 37734611 DOI: 10.1016/j.scitotenv.2023.167226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
King grass has been recognized as a potential phytoremediation plant species due to its high biomass and resistance to heavy metals (HMs). However, the possible impacts of cadmium (Cd) contamination on rhizocompartments' microbial activities in association with king grass have not been extensively explored. The utilization of 16S rRNA gene and ITS sequencing was carried out to examine alterations in the bacterial and fungal communities in the rhizosphere and rhizoplane of king grass in response to low and high Cd stress. Results demonstrated that both bacterial and fungal communities' diversity and richness were negatively impacted by Cd stress, regardless of its concentration. However, evenness did not exhibit any significant response to either of the concentrations. Additionally, nonmetric multidimensional scaling (NMDS) ordination demonstrated a significant difference (p < 0.001) in microbial communities under different treatments. The abundance of bacterial taxa such as Steroibacter, Nitrospira, Pseudoxanthomonas, Cellvirio, Phenylobacterium, Mycobacterium, Pirellula and Aquicella was adversely affected under Cd stress while Flavobacterium, Gemmata, Thiobacillus and Gemmatimonas showed no prominent response, indicating their resistance to Cd stress. Like that, certain fungal taxa for instance, Cladosporium, Cercophora, Acremonium, Mortierella, Aspergillus, Penicillium, Glomus and Sebacina were also highly reduced by low and high Cd stress. In contrast, Fusarium, Thanatephorus, Botrytis and Curvularia did not show any response to Cd stress. The identified taxa may have a crucial role in the growth of king grass under heavy metal contamination, making them promising candidates for developing bioinoculants to encourage plant performance and phytoremediation capability in HM-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xinxin Liu
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation, 800 Dongchuan Rd, Shanghai 200240, China
| | - Saeed Ur Rahman
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Li
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bian Yucheng
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation, 800 Dongchuan Rd, Shanghai 200240, China; Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
24
|
Qiu J, Zhang J, Zhao H, Wu C, Jin C, Hu X, Li J, Cao X, Liu S, Jin X. Cellulose and JbKOBITO 1 mediate the resistance of NaHCO 3-tolerant chlorella to saline-alkali stress. Front Microbiol 2023; 14:1285796. [PMID: 38033574 PMCID: PMC10684911 DOI: 10.3389/fmicb.2023.1285796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Carbonate stress has profound impacts on both agricultural and industrial production. Although a number of salinity-tolerant genes have been reported and applied in plants, there is a lack of research on the role of cell wall-related genes in resistance to carbonate. Likewise, in industry, current strategies have not been able to more effectively address the conflict between stress-induced microalgal biofuel accumulation and microalgal growth inhibition. It is of great significance to study the adaptation mechanism of carbonate-tolerant organisms and to explore related genes for future genetic modification. In this study, the role of the cell wall in the NaHCO3-tolerant chlorella JB17 was investigated. We found that JB17 possesses a relatively thick cell wall with a thickness of 300-600 nm, which is much higher than that of the control chlorella with a thickness of about 100 nm. Determination of the cell wall polysaccharide fractions showed that the cellulose content in the JB17 cell wall increased by 10.48% after NaHCO3 treatment, and the decrease in cellulose levels by cellulase digestion inhibited its resistance to NaHCO3. Moreover, the saccharide metabolome revealed that glucose, rhamnose, and trehalose levels were higher in JB17, especially rhamnose and trehalose, which were almost 40 times higher than in control chlorella. Gene expression detection identified an up-regulated expressed gene after NaHCO3 treatment, JbKOBITO1, overexpression of which could improve the NaHCO3 tolerance of Chlamydomonas reinhardtii. As it encodes a glycosyltransferase-like protein that is involved in cellulose synthesis, the strong tolerance of JB17 to NaHCO3 may be partly due to the up-regulated expression of JbKOBITO 1 and JbKOBITO 1-mediated cellulose accumulation. The above results revealed a critical role of cellulose in the NaHCO3 resistance of JB17, and the identified NaHCO3-tolerance gene will provide genetic resources for crop breeding in saline-alkali soils and for genetic modification of microalgae for biofuel production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
25
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Papaioannou EH, Bazzarelli F, Mazzei R, Giannakopoulos V, Roberts MR, Giorno L. Membrane Cascade Fractionation of Tomato Leaf Extracts-Towards Bio-Based Crop Protection. MEMBRANES 2023; 13:855. [PMID: 37999341 PMCID: PMC10673455 DOI: 10.3390/membranes13110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Promising initial results from the use of membrane-fractionated extracts of tomato leaf as crop protection agents have recently been reported. This paper provides additional evidence from larger scale experiments that identify an efficient pipeline for the separation of tomato leaf extracts to generate a fraction with significant defence elicitor activity. A UF tubular membrane 150 kDa, with an internal diameter of 5 mm, proved appropriate for initial extract clarification, whereas afterwards a UF 10 kDa and three NF membranes (200-800 Da) in sequence were evaluated for the subsequent fractionation of this tomato extract. The compositions of sugars, proteins and total biophenols were changed in these fractions with respect to the initial extract. The initial extract ratio of sugars: proteins: biophenols was 1:0.047:0.052, whereas for the retentate of the 800 Da NF membrane, which has the higher crop protection activity, this ratio was 1:0.06:0.1. In this regard, it appears that the main crop protection effect in this fraction was due to the sugars isolated. It was found that with the appropriate membrane cascade selection (UF 150 kDa, UF 10 kDa and NF 800 Da) it was possible to produce (easily and without the need of additional chemicals) a fraction that has significant activity as an elicitor of disease resistance in tomato, whereas the remaining fractions could be used for other purposes in a biorefinery. This is very promising for the wider application of the proposed approach for the relatively easy formulation of bio-based aqueous streams with bio-pesticide activities.
Collapse
Affiliation(s)
| | - Fabio Bazzarelli
- National Research Council of Italy, Institute on Membrane Technology, CNR-ITM, Via P. Bucci, 87036 Rende, Italy (L.G.)
| | - Rosalinda Mazzei
- National Research Council of Italy, Institute on Membrane Technology, CNR-ITM, Via P. Bucci, 87036 Rende, Italy (L.G.)
| | | | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Lidietta Giorno
- National Research Council of Italy, Institute on Membrane Technology, CNR-ITM, Via P. Bucci, 87036 Rende, Italy (L.G.)
| |
Collapse
|
27
|
Lin ML, Lu F, Zhou X, Xiong X, Lai NW, Li-Song C, Zeng-Rong H. The adaptation of root cell wall pectin to copper toxicity in two citrus species differing in copper tolerance: remodeling and responding. TREE PHYSIOLOGY 2023; 43:1825-1840. [PMID: 37490400 DOI: 10.1093/treephys/tpad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Citrus species are prone to suffer from copper (Cu) toxicity because of improper application of Cu-based agrochemicals. Copper immobilization mediated by pectin methylesterase (PME) in the root cell wall (CW) is effective for Cu detoxification. However, the underlying mechanisms of the structural modification and stress responses of citrus root CW pectin to Cu toxicity have been less discussed. In the present study, seedlings of 'Shatian pummelo' (Citrus grandis L. Osbeck) and 'Xuegan' (Citrus sinensis L. Osbeck), which differ in Cu tolerance, were irrigated with nutrient solution containing 0.5 (as control), 100, 300 or 500 μM Cu for 18 weeks in sandy culture or 24 h in hydroponics. At the end of treatments in the 18-week sandy culture, Cu toxicity on CW pectin content, Cu distribution, degree of pectin methylesterification (DPM) and the PME enzyme activity were discussed. At the genome-wide level, PME gene family was identified from the two citrus species, and qRT-PCR array of citrus PMEs under control and 300 μM Cu stress for 18 weeks were performed to screen the Cu-responsive PME genes. Moreover, the candidate genes that responded to Cu toxicity were further examined within 24 h. The results showed that Cu toxicity increased the root CW pectin content. The root CW pectin under Cu toxicity was remodeled by upregulation of the expression of the Cu-responsive PME genes followed by increasing PME activity, which mainly promoted low methylesterased pectin level and the Cu content on root CW pectin. Compared with C. sinensis, C. grandis root CW had a lower DPM and higher Cu content on the Cu-stressed root CW pectin, contributing to its higher Cu tolerance. Our present study provided theoretical evidence for root CW pectin remodeling in response to Cu toxicity of citrus species.
Collapse
Affiliation(s)
- Mei-Lan Lin
- Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Fei Lu
- Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xin Zhou
- Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xing Xiong
- Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ning-Wei Lai
- Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chen Li-Song
- Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Huang Zeng-Rong
- Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
28
|
Song W, Shao H, Zheng A, Zhao L, Xu Y. Advances in Roles of Salicylic Acid in Plant Tolerance Responses to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3475. [PMID: 37836215 PMCID: PMC10574961 DOI: 10.3390/plants12193475] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
A multitude of biotic and abiotic stress factors do harm to plants by bringing about diseases and inhibiting normal growth and development. As a pivotal signaling molecule, salicylic acid (SA) plays crucial roles in plant tolerance responses to both biotic and abiotic stresses, thereby maintaining plant normal growth and improving yields under stress. In view of this, this paper mainly discusses the role of SA in both biotic and abiotic stresses of plants. SA regulates the expression of genes involved in defense signaling pathways, thus enhancing plant immunity. In addition, SA mitigates the negative effects of abiotic stresses, and acts as a signaling molecule to induce the expression of stress-responsive genes and the synthesis of stress-related proteins. In addition, SA also improves certain yield-related photosynthetic indexes, thereby enhancing crop yield under stress. On the other hand, SA acts with other signaling molecules, such as jasmonic acid (JA), auxin, ethylene (ETH), and so on, in regulating plant growth and improving tolerance under stress. This paper reviews recent advances in SA's roles in plant stress tolerance, so as to provide theoretical references for further studies concerning the decryption of molecular mechanisms for SA's roles and the improvement of crop management under stress.
Collapse
Affiliation(s)
- Weiyi Song
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224002, China
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences (JAAS), Nanjing 210014, China
| | - Aizhen Zheng
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Longfei Zhao
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Yajun Xu
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| |
Collapse
|
29
|
Liang Y, Li D, Sheng Q, Zhu Z. Exogenous Salicylic Acid Alleviates NO 2 Damage by Maintaining Cell Stability and Physiological Metabolism in Bougainvillea × buttiana 'Miss Manila' Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3283. [PMID: 37765447 PMCID: PMC10535129 DOI: 10.3390/plants12183283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Exogenous substances can alleviate plant damage under adverse conditions. In order to explore whether different concentrations of salicylic acid (SA) can play a role in the resistance of Bougainvillea × buttiana 'Miss Manila' to nitrogen dioxide (NO2) stress and the relevant mechanisms of their effects, different concentrations of SA were applied locally under the control experiment condition of 4.0 μL·L-1 NO2, and the role of SA in alleviating injury was studied. The findings noted a significant increase in metabolic adaptations and antioxidant enzyme activities following 0.25-0.75 mM SA application (p < 0.05), except 1 mM. Superoxide dismutase (SOD) and catalase (CAT) in particular increased by 21.88% and 59.71%, respectively. Such an increase led to effective control of the reduction in photosynthetic pigments and the photosynthetic rate and protection of the structural stability of chloroplasts and other organelles. In addition, the activity of nitrate reductase (NR) increased by 83.85%, and the content of nitrate nitrogen (NO3--N) decreased by 29.23% in nitrogen metabolism. Concurrently, a principal component analysis (PCA) and a membership function analysis further indicated that 0.75 mM SA provided the most notable improvement in NO2 resistance among the different gradients. These findings suggest that 0.25-0.75 mM SA can relieve the stress at 4 μL·L-1 NO2 injury by effectively improving the antioxidant enzyme activity and nitrogen metabolizing enzyme activity, protecting the photosynthetic system and cell structure, but 1 mM SA had the opposite effect. In the future, the specific reasons for inhibition of SA at high concentrations and the comprehensive effects of the application of other exogenous compounds should be further studied.
Collapse
Affiliation(s)
- Yuxiang Liang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Dalu Li
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
30
|
Tang W, Liang L, Xie Y, Li X, Lin L, Huang Z, Sun B, Sun G, Tu L, Li H, Tang Y. Foliar application of salicylic acid inhibits the cadmium uptake and accumulation in lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1200106. [PMID: 37636124 PMCID: PMC10452881 DOI: 10.3389/fpls.2023.1200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Introduction Salicylic acid (SA) is a multi-functional endogenous phytohormone implicated in the growth, development, and metabolism of many plant species. Methods This study evaluated the effects of different concentrations of SA (0, 25, 100, 200, and 500 mg/L) on the growth and cadmium (Cd) content of lettuce (Lactuca sativa L.) under Cd stress. The different concentrations of SA treatments were administered through foliar application. Results Our results showed that 100-200 mg/L SA significantly increased the plant height and biomass of lettuce under Cd stress. When SA concentration was 200 mg/L, the plant height and root length of lettuce increased by 19.42% and 22.77%, respectively, compared with Cd treatment alone. Moreover, 200 mg/L and 500mg/L SA concentrations could reduce peroxidase (POD) and superoxide dismutase (SOD) activities caused by Cd stress. When the concentration of exogenous SA was 500 mg/L, the POD and SOD activities of lettuce leaves decreased by 15.51% and 19.91%, respectively, compared with Cd treatment. A certain concentration of SA reduced the uptake of Cd by the lettuce root system and the transport of Cd from the lettuce root system to shoots by down-regulating the expression of Nramp5, HMA4, and SAMT, thus reducing the Cd content of lettuce shoots. When the concentration of SA was 100 mg/L, 200 mg/L, and 500 mg/L, the Cd contents of lettuce shoots were 11.28%, 22.70%, and 18.16%, respectively, lower than that of Cd treatment alone. Furthermore, principal component and correlation analyses showed that the Cd content of lettuce shoots was correlated with plant height, root length, biomass, antioxidant enzymes, and the expression level of genes related to Cd uptake. Discussion In general, these results provide a reference for the mechanism by which SA reduces the Cd accumulation in vegetables and a theoretical basis for developing heavy metal blockers with SA components.
Collapse
Affiliation(s)
- Wen Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Xiaomei Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, Sichuan, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Peng W, He Y, He S, Luo J, Zeng Y, Zhang X, Huo Y, Jie Y, Xing H. Exogenous plant growth regulator and foliar fertilizers for phytoextraction of cadmium with Boehmeria nivea [L.] Gaudich from contaminated field soil. Sci Rep 2023; 13:11019. [PMID: 37419889 PMCID: PMC10329045 DOI: 10.1038/s41598-023-37971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
As a enrichment plant, ramie can be used for the phytoremediation of cadmium (Cd)-contaminated soil. However, it is worth exploring the role of plant growth regulators and foliar fertilizers in the process of plant growth and development and Cd adsorption. By measuring the agronomic traits, Cd content of aboveground and underground ramie, calculating the Cd transfer coefficient (TF) and Cd bioconcentration factors (BCF), and the correlation between various indicators. This study examined the effects of plant growth regulators and foliar fertilizers on ramie's capacity for Cd accumulation and transportation. Plant growth regulators and foliar fertilizers increased the Cd content of the aboveground ramie, reduced the Cd content of the underground ramie, and increased the TF. Among them, GA-1 increased the Cd content of the aboveground ramie to 3 times more than that of the control and reduced the Cd content of the underground ramie by 54.76%. Salicylic acid (SA) increased the Cd content of the aboveground ramie to three times more than that of the control. The combination of GA and foliar fertilizer reduced the Cd content of the aboveground and underground ramie and the TF and BCF of the underground ramie. After the hormones were sprayed, the TF of ramie had a significant positive correlation with the Cd content of the aboveground ramie; the BCF of the aboveground ramie had a significant positive correlation with the Cd content and TF of the aboveground ramie. The results indicate that Brassinolide (BR), gibberellin (GA), ethephon (ETH), polyamines (PAs), and salicylic acid (SA) have different effects on the enrichment and transport of Cd in ramie. This study provided an effective method to improve the capacity for ramie to adsorb heavy metals during cultivation.
Collapse
Affiliation(s)
- Wenxian Peng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yejun He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Si He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Jinfeng Luo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yi Zeng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Xiaoyang Zhang
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yingyi Huo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yucheng Jie
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China.
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
32
|
Yu X, Yang L, Fan C, Hu J, Zheng Y, Wang Z, Liu Y, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Pan Y, Li X, Gao S, Zhou Y. Abscisic acid (ABA) alleviates cadmium toxicity by enhancing the adsorption of cadmium to root cell walls and inducing antioxidant defense system of Cosmos bipinnatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115101. [PMID: 37290296 DOI: 10.1016/j.ecoenv.2023.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/08/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) pollution is a global problem affecting soil ecology and plant growth. Abscisic acid (ABA) acts as a growth and stress hormone, regulates cell wall synthesis, and plays an important role in plant responses to stress. There are few studies on the mechanisms behind abscisic acid alleviation of cadmium stress in Cosmos bipinnatus, especially in regards to regulation of the root cell wall. This study examined the effects of different concentrations of abscisic acid at different concentrations of cadmium stress. Through adding 5 μmol/L and 30 μmol/L cadmium, followed by spraying 10 μmol/L and 40 μmol/L ABA in a hydroponic experiment, it was found that under two concentrations of cadmium stress, low concentration of ABA improved root cell wall polysaccharide, Cd, and uronic acid content. Especially in pectin, after the application of low concentration ABA, the cadmium concentration was significantly increased by 1.5 times and 1.2 times compared with the Cd concentration under Cd5 and Cd30 treatment alone, respectively. Fourier-Transform Infrared spectroscopy (FTIR) demonstrated that cell wall functional groups such as -OH and -COOH were increased with exposure to ABA. Additionally, the exogenous ABA also increased expression of three kinds of antioxidant enzymes and plant antioxidants. The results of this study suggest that ABA could reduce Cd stress by increasing Cd accumulation, promoting Cd adsorption on the root cell wall, and activating protective mechanisms. This result could help promote application of C. bipinnatus for phytostabilization of cadmium-contaminated soil.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liu Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunyu Fan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiani Hu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunhao Zheng
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhiwen Wang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yujia Liu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xue Xiao
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lijuan Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ting Lei
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingyan Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Beibei Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanzhi Pan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xi Li
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suping Gao
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yonghong Zhou
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
33
|
Yang X, Ren J, Yang W, Xue J, Gao Z, Yang Z. Hydrogen sulfide alleviates chromium toxicity by promoting chromium sequestration and re-establishing redox homeostasis in Zea mays L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121958. [PMID: 37286026 DOI: 10.1016/j.envpol.2023.121958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/28/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule involved in the regulation of Cr stress responses. In the present study, we combined transcriptomic and physiological analyses to elucidate the mechanism underlying the mitigation of Cr toxicity by H2S in maize (Zea mays L.). We showed that treatment with sodium hydrosulfide (NaHS, a donor of H2S) partially alleviated Cr-induced growth inhibition. However, Cr uptake was not affected. RNA sequencing suggested that H2S regulates the expression of many genes involved in pectin biosynthesis, glutathione metabolism, and redox homeostasis. Under Cr stress, NaHS treatment significantly increased pectin content and pectin methylesterase activity; thus, more Cr was retained in the cell wall. NaHS application also increased the content of glutathione and phytochelatin, which chelate Cr and transport it into vacuoles for sequestration. Furthermore, NaHS treatment mitigated Cr-induced oxidative stress by enhancing the capacity of enzymatic and non-enzymatic antioxidants. Overall, our results strongly support that H2S alleviates Cr toxicity in maize by promoting Cr sequestration and re-establishing redox homeostasis rather than by reducing Cr uptake from the environment.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Wenping Yang
- College of Life Sciences, North China University of Science and Technology, Caofeidian, 063210, China
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, Shanxi, 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, Shanxi, 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, Shanxi, 030801, China; Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR47UH, UK.
| |
Collapse
|
34
|
Cai X, Li X, Peng L, Liang Y, Jiang M, Ma J, Sun L, Guo B, Yu X, Du J, Li N, Cai S. Effects of mowing on Pb accumulation and transport in Cynodon dactylon (L.) Pers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57571-57586. [PMID: 36973620 DOI: 10.1007/s11356-023-26623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Bermudagrass is a perennial herb with the potential to remediate Pb pollution in soils, and it has mechanical resistance to shearing. However, the effects of mowing on Pb absorption and accumulation in bermudagrass are still unclear. In this study, we investigated the effects of different quantities (0, 1, 2, 4 applications) of mowing treatments under 200 mg L-1 Pb application on Pb accumulation and transport in bermudagrass and explored the related mechanisms. Compared to the Pb treatment, all of the mowing treatments greatly decreased root Pb concentration/accumulation, significantly enhanced Pb concentrations/accumulations in stubble stems and stubble leaves, and ultimately promoted Pb enrichment and transport. Of the treatments in this study, two applications of mowing best promoted Pb enrichment, and four applications of mowing best promoted Pb transport efficiency. Furthermore, mowing mediated the microdistribution and physiological patterns of Pb in bermudagrass and affected the Pb transport by changing the subcellar distribution patterns and chemical forms of Pb in various tissues. Additionally, mowing promoted the transport of all mineral elements and showed a synergistic relationship with Pb absorption and transport. The change in mineral element metabolism patterns may be an important reason why mowing promoted Pb accumulation in bermudagrass. Our study provides the first comprehensive evidence regarding mowing facilitating the absorption, accumulation and transport of Pb in bermudagrass. Moderate mowing may be an effective strategy to assist in soil Pb remediation using bermudagrass.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yahao Liang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Nian Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shizhen Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
35
|
Huang J, Jing HK, Zhang Y, Chen SY, Wang HY, Cao Y, Zhang Z, Lu YH, Zheng QS, Shen RF, Zhu XF. Melatonin reduces cadmium accumulation via mediating the nitric oxide accumulation and increasing the cell wall fixation capacity of cadmium in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130529. [PMID: 37055957 DOI: 10.1016/j.jhazmat.2022.130529] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
Melatonin (MT) is participated in plants' response to cadmium (Cd) tolerance, although its work model remains elusive. Here, the function of MT in adjusting Cd accumulation in rice was investigated. 'Nipponbare' (Nip) was cultured in the -Cd (1/2 Kimura B), -Cd + MT (1/2 Kimura B with 1 μM MT), +Cd (1/2 Kimura B plus 1 μM Cd) and +Cd + MT (1/2 Kimura B with 1 μM Cd and 1 μM MT) nutrient solutions for 7 d. Cd markedly induced the endogenous MT accumulation in rice roots and shoots, even within 1 h. MT applied exogenously elevated the hemicelluloses level, which in turn increased the cell wall's binding capacity to Cd. Furthermore, MT applied exogenously down-regulated the transcription level of Natural Resistance-Associated Macrophage Protein 1 (OsNRAMP1), OsNRAMP5, a major facilitator superfamily gene (OsCd1), and IRON-REGULATED TRANSPORTER 1 (OsIRT1), all of which were responsible for Cd intake, thus less Cd was entered into roots. Moreover, MT applied exogenously also up-regulated transcription level of Cadmium accumulation in Leaf 1 (OsCAL1) and Heavy Metal ATPase 3 (OsHMA3), two genes both attributed to the decreased Cd accumulation in shoots through expelling Cd out of cells and chelating Cd in the vacuoles, respectively. In addition, MT applied exogenously further aggravated the production of nitric oxide (NO) that induced by Cd, while application of a NO donor-SNP mimicked this alleviatory effect of the MT, indicating MT decreased rice Cd accumulation relied on the accumulation of NO.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Kang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Si Yuan Chen
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuan Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Hao Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Song Zheng
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Li S, Zhang K, Tian J, Chang K, Yuan S, Zhou Y, Zhao H, Zhong F. Fulvic acid mitigates cadmium toxicity-induced damage in cucumber seedlings through the coordinated interaction of antioxidant enzymes, organic acid, and amino acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28780-28790. [PMID: 36401696 DOI: 10.1007/s11356-022-24258-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Fulvic acid (FA) can significantly alleviate cadmium (Cd) stress, but the specific metabolic response of FA to Cd toxicity is still not clarified. In the present study, we used untargeted metabolomic [gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS)] analysis to profile cucumber metabolism in response to Cd stress after spray application of FA. Our results showed that 331 differentially enriched metabolites (DEMs) were identified in leaf materials. These DEMs were enriched in 21 shared pathways in comparative groups of "Cd treatment vs. the control treatment" and "FA + Cd treatment vs. the Cd treatment." Specifically, treatment with FA significantly enhanced the organic acid content (citric acid, isocitric acid, 2-oxoglutaric acid, fumaric acid, and malic acid), which would contribute to provide sufficient substrates for the tricarboxylic acid (TCA) cycle and amino acid biosynthesis, thereby ensuring the normal production of energy and amino acid. At the same time, FA significantly increased the amino acid content (aspartate, citrulline, histidine, leucine, and phenylalanine). The accumulation of organic acid and amino acid can act as chelating agents for heavy metal ions and as scavengers of reactive oxygen species (ROS), thereby reducing intracellular oxidative damage. Furthermore, the application of FA improves antioxidant enzymes and accelerates ROS clearance. The improved contents of organic acid and amino acid, and the increased activity of antioxidant enzymes both played a central role in the reduction of malondialdehyde (MDA, 14.08%), hydrogen peroxide (H2O2, 61.70%) contents, and superoxide anion radical (O2-, 30.41%) production rate in plants under Cd stress. Taken together, the present study demonstrates the effects of FA on the antioxidant capacity and carbohydrate and amino acid metabolism of cucumber seedlings exposed to Cd stress, which provides comprehensive insights into the regulation of plants' response to Cd toxicity with FA was applied in cucumber.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China
| | - Kun Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China
| | - Jun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China
| | - Kaizhen Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China
| | - Song Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China
| | - Yuqi Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China
| | - Huanhuan Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Fuzhou Intelligent Agriculture (Seed) Industry Technology Innovation Center, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
37
|
Cui H, Tang S, Huang S, Lei L, Jiang Z, Li L, Wei S. Simultaneous mitigation of arsenic and cadmium accumulation in rice grains by foliar inhibitor with ZIF-8@Ge-132. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160307. [PMID: 36403824 DOI: 10.1016/j.scitotenv.2022.160307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous mitigation of Arsenic (As) and Cadmium (Cd) in rice grains is hardly achieved with conventional soil treatments due to their opposite chemical behaviors in paddy soils. This study evaluates the effectiveness of a novel foliar inhibitor with germanium (Ge) -modified zeolitic imidazolate framework (ZIF-8@Ge-132) in cooperative mitigation of As and Cd in rice grains in a As and Cd co-contaminated paddy field, and the effecting mechanisms are elucidated by a series of advanced techniques. The results showed that the grains inorganic As and Cd was remarkably decreased by 45 % and 66 % by the foliar spay of ZIF-8@Ge-132, respectively. ZIF-8@Ge-132 also reduced the As and Cd contents in rice tissues, except for Cd in leaves, where Cd content increased by 148 %. The image-based measurement of plant phenotypic traits and the elements of image analysis using Laser Ablation-ICP-MS (LA-ICP-MS) and Laser Scanning Confocal Microscopy (LSCM) revealed that the possible mechanisms for the reduction of As and Cd in rice grains were as follows: (i) the thickening of the xylem in roots significantly retarded As and Cd absorption by rice plants. (ii) co-accumulation of Ge and Cd in the leaf vascular system likely contributed to the high Cd retention in rice leaves. (iii) antagonistic effects of Zn suppressed the uptake and transport of As in roots/leaves, resulting a lower As accumulation in rice grains.
Collapse
Affiliation(s)
- Hao Cui
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Shuting Tang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqi Huang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lidan Lei
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
38
|
Yu X, Yang Z, Xu Y, Wang Z, Fan C, Zeng X, Liu Y, Lei T, Jiang M, Li J, Xiao X, Yang L, Li X, Zhou Y, Gao S. Effect of chromium stress on metal accumulation and cell wall fractions in Cosmos bipinnatus. CHEMOSPHERE 2023; 315:137677. [PMID: 36608889 DOI: 10.1016/j.chemosphere.2022.137677] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
As one of the major pollutants in the environment, chromium (Cr), a heavy metal, poses a serious threat to urban green spaces and human life and health. Cosmos bipinnatus is considered a potential accumulator of Cr, and the differences in cellular Cr distribution and compartmentalization may uncover the mechanisms involved in its tolerance to Cr. To elucidate the effects of Cr stress on C. bipinnatus and determine the mechanism of Cr tolerance in C. bipinnatus, we investigated the physiological indicators, subcellular distribution and chemical forms, cell wall fractions and their Cr contents, uronic acid content in the cell wall fractions, and Fourier transform infrared spectroscopy (FTIR) of the cell wall. The results showed that the antioxidant enzyme activities in C. bipinnatus under Cr stress and most of the Cr were fixed in the cell wall. Notably, changes in the content of pectin fractions in the cell wall affected the accumulation of Cr in the cell wall of C. bipinnatus and the stability of negatively charged groups. In addition, the carboxyl and hydroxyl groups played a role in fixing metal in various parts of the C. bipinnatus cell wall.
Collapse
Affiliation(s)
- XiaoFang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - ZiHan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - YuHan Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - ZhiWen Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - ChunYu Fan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - XiaoXuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - YuJia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - MingYan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - JiaNi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - LiJuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - YongHong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - SuPing Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
39
|
Shukla A, Gupta A, Srivastava S. Bacterial consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and Priestia flexa NDAS28R) and thiourea mediated amelioration of arsenic stress and growth improvement of Oryza sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:14-24. [PMID: 36584629 DOI: 10.1016/j.plaphy.2022.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The present study analyzed the effects of individual microbes and their consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and P. flexa NDAS28R) either alone or in interaction with thiourea (TU) on growth and responses of rice plants subjected to As stress (50 mg kg-1 in soil) in a pot experiment. The bacteria used in the experiment were isolated from As contaminated fields of Nadia, West Bengal and showed significant As removal potential in in vitro experiment. The results revealed significant growth improvement, biomass accumulation, and decline in malondialdehyde levels in rice plants in bacterial and TU treatments as compared to control As treatment. The best results were observed in a bacterial consortium (B1-2-3), which induced a profound increase of 65%, 43%, 127% and 83% in root length, shoot length, leaf width and fresh weight, respectively. Sulfur metabolism and cell wall synthesis were stimulated upon bacterial and TU amendment in plants. The maximum reduction in As concentration was observed in B2 in roots (-55%) and in B1-2-3 in shoot (-83%). The combined treatment of B1-2-3 + TU proved to be less effective as compared to that of B1-2-3 in terms of As reduction and growth improvement. Hence, the usage of bacterial consortium obtained in the present work is a sustainable approach, which might find relevance in field conditions to achieve As reduction in rice grains and to attain higher growth of plants without the need for additional TU supplementation.
Collapse
Affiliation(s)
- Anurakti Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Ankita Gupta
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
40
|
ShangGuan X, Qi Y, Wang A, Ren Y, Wang Y, Xiao T, Shen Z, Wang Q, Xia Y. OsGLP participates in the regulation of lignin synthesis and deposition in rice against copper and cadmium toxicity. FRONTIERS IN PLANT SCIENCE 2023; 13:1078113. [PMID: 36714698 PMCID: PMC9878301 DOI: 10.3389/fpls.2022.1078113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 05/26/2023]
Abstract
Copper (Cu) and cadmium (Cd) are common heavy metal pollutants. When Cd and excessive Cu accumulate in plants, plant growth is reduced. Our previous study showed that Germin-like proteins (GLPs), which exist in tandem on chromosomes, are a class of soluble glycoproteins that respond to Cu stress. In this study, hydroponic cultures were carried out to investigate the effect of GLP on Cd and Cu tolerance and accumulation in rice. The results showed that knockout of a single OsGLP8-2 gene or ten OsGLP genes (OsGLP8-2 to OsGLP8-11) resulted in a similar sensitivity to Cd and Cu toxicity. When subjected to Cu and Cd stress, the glp8-2 and glp8-(2-11) mutants displayed a more sensitive phenotype based on the plant height, root length, and dry biomass of the rice seedlings. Correspondingly, Cu and Cd concentrations in the glp8-2 and glp8-(2-11) mutants were significantly higher than those in the wild-type (WT) and OsGLP8-2-overexpressing line. However, Cu and Cd accumulation in the cell wall was the opposite. Furthermore, we determined lignin accumulation. The overexpressing-OsGLP8-2 line had a higher lignin accumulation in the shoot and root cell walls than those of the WT, glp8-2, and glp8-(2-11). The expression of lignin synthesis genes in the OsGLP8-2-overexpressing line was significantly higher than that in the WT, glp8-2, and glp8-(2-11). The SOD activity of OsGLP8-2, Diaminobe-nzidine (DAB), propidium iodide (PI) staining, and Malondialdehyde (MDA) content determination suggested that OsGLP8-2 is involved in heavy metal-induced antioxidant defense in rice. Our findings clearly suggest that OsGLPs participate in responses to heavy metal stress by lignin deposition and antioxidant defense capacity in rice, and OsGLP8-2 may play a major role in the tandem repeat gene clusters of chromosome 8 under heavy metal stress conditions.
Collapse
Affiliation(s)
- Xiangchao ShangGuan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Ying Qi
- College of Agronomy, Yunnan Research Center of Urban Agricultural Engineering and Technology, Kunming University, Kunming, China
| | - Aiguo Wang
- Key Laboratory of Ecological Environment and Tobacco Quality in Tobacco Industry, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yingnan Ren
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Tengwei Xiao
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Ma P, Zang J, Shao T, Jiang Q, Li Y, Zhang W, Liu M. Cadmium distribution and transformation in leaf cells involved in detoxification and tolerance in barley. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114391. [PMID: 36508843 DOI: 10.1016/j.ecoenv.2022.114391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/14/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Barley is a diagnostic plant that often used in the research of soil pollution by heavy metals, our research explored the detoxification and tolerance mechanism of cadmium(Cd) in barley through pot experiment. We investigated subcellular distribution, chemical forms and oxidative damage of Cd in barley leaves, combing with the transmission electron microscopy and Fourier-transform infrared spectroscopy(FT-IR) to further understand the translocation, transformation characteristics and toxic effect of Cd in cells. The results showed that, the bioaccumulation factors in roots and shoots of barley were ranged of 4.03-7.48 and 0.51-1.30, respectively. Barley reduces the toxic effects by storing Cd in the roots and reducing its transport to the shoots. Compared to the control treatment (0 mg/kg), the percentage of Cd in the cell wall fractions of leaves in 300 mg/kg Cd treatment increased from 34.74 % to 38.41 %; the percentage of the organelle fractions increased from 24.47 % to 56.02 %; and the percentage of soluble fraction decreased from 40.80 % to 5.57 %. We found that 69.13 % of the highly toxic inorganic Cd and water-soluble Cd were converted to less toxic pectates and protein-integrated Cd (50.20 %) and undissolved Cd phosphates (18.93 %). This conversion of Cd was mainly due to its combination with -OH, -NH, -CN, -C-O-C, and -C-O-P groups. Excessive Cd induced a significant (P < 0.05) increase in the levels of peroxidase, malondialdehyde, and cell membrane permeability, which damaged the cell membrane and allowed Cd to enter the organelles. The chloroplasts and mitochondria were destroyed, and eventually the metabolism of intracellular substances was affected, resulting in symptoms of toxicity. Our research provides cellular-scale insight into the mechanisms of Cd tolerance in barley.
Collapse
Affiliation(s)
- Pan Ma
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jian Zang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tingyu Shao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Qianru Jiang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuanqi Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Wei Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
42
|
Luo S, Wang K, Li Z, Li H, Shao J, Zhu X. Salicylic Acid Enhances Cadmium Tolerance and Reduces Its Shoot Accumulation in Fagopyrum tataricum Seedlings by Promoting Root Cadmium Retention and Mitigating Oxidative Stress. Int J Mol Sci 2022; 23:ijms232314746. [PMID: 36499075 PMCID: PMC9739840 DOI: 10.3390/ijms232314746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Soil cadmium (Cd) contamination seriously reduces the production and product quality of Tartary buckwheat (Fagopyrum tataricum), and strategies are urgently needed to mitigate these adverse influences. Herein, we investigated the effect of salicylic acid (SA) on Tartary buckwheat seedlings grown in Cd-contaminated soil in terms of Cd tolerance and accumulation. The results showed that 75-100 µmol L-1 SA treatment enhanced the Cd tolerance of Tartary buckwheat, as reflected by the significant increase in plant height and root and shoot biomass, as well as largely mitigated oxidative stress. Moreover, 100 µmol L-1 SA considerably reduced the stem and leaf Cd concentration by 60% and 47%, respectively, which is a consequence of increased root biomass and root Cd retention with promoted Cd partitioning into cell wall and immobile chemical forms. Transcriptome analysis also revealed the upregulation of the genes responsible for cell wall biosynthesis and antioxidative activities in roots, especially secondary cell wall synthesis. The present study determines that 100 µmol L-1 is the best SA concentration for reducing Cd accumulation and toxicity in Tartary buckwheat and indicates the important role of root in Cd stress in this species.
Collapse
Affiliation(s)
- Siwei Luo
- College of Environmental Sciences, Sichuan Agricultural University, Huimin Road No. 211, Chengdu 611130, China
| | - Kaiyi Wang
- College of Environmental Sciences, Sichuan Agricultural University, Huimin Road No. 211, Chengdu 611130, China
| | - Zhiqiang Li
- College of Environmental Sciences, Sichuan Agricultural University, Huimin Road No. 211, Chengdu 611130, China
| | - Hanhan Li
- College of Environmental Sciences, Sichuan Agricultural University, Huimin Road No. 211, Chengdu 611130, China
| | - Jirong Shao
- College of Life Science, Sichuan Agricultural University, Xinkang Road No. 46, Yaan 625014, China
- Correspondence: (J.S.); (X.Z.)
| | - Xuemei Zhu
- College of Environmental Sciences, Sichuan Agricultural University, Huimin Road No. 211, Chengdu 611130, China
- Correspondence: (J.S.); (X.Z.)
| |
Collapse
|
43
|
Li Y, Zhang Y, Luo H, Lv D, Yi Z, Duan M, Deng M. WGCNA Analysis Revealed the Hub Genes Related to Soil Cadmium Stress in Maize Kernel ( Zea mays L.). Genes (Basel) 2022; 13:2130. [PMID: 36421805 PMCID: PMC9690088 DOI: 10.3390/genes13112130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 01/12/2024] Open
Abstract
Soil contamination by heavy metals has become a prevalent topic due to their widespread release from industry, agriculture, and other human activities. Great progress has been made in elucidating the uptake and translocation of cadmium (Cd) accumulation in rice. However, there is still little known about corresponding progress in maize. In the current study, we performed a comparative RNA-Seq-based approach to identify differentially expressed genes (DEGs) of maize immature kernel related to Cd stress. In total, 55, 92, 22, and 542 DEGs responsive to high cadmium concentration soil were identified between XNY22-CHS-8 vs. XNY22-YA-8, XNY22-CHS-24 vs. XNY22-YA-24, XNY27-CHS-8 vs. XNY27-YA-8, and XNY27-CHS-24 vs. XNY27-YA-24, respectively. The weighted gene co-expression network analysis (WGCNA) categorized the 9599 Cd stress-responsive hub genes into 37 different gene network modules. Combining the hub genes and DEGs, we obtained 71 candidate genes. Gene Ontology (GO) enrichment analysis of genes in the greenyellow module in XNY27-YA-24 and connectivity genes of these 71 candidate hub genes showed that the responses to metal ion, inorganic substance, abiotic stimulus, hydrogen peroxide, oxidative stress, stimulus, and other processes were enrichment. Moreover, five candidate genes that were responsive to Cd stress in maize kernel were detected. These results provided the putative key genes and pathways to response to Cd stress in maize kernel, and a useful dataset for unraveling the underlying mechanism of Cd accumulation in maize kernel.
Collapse
Affiliation(s)
- Yongjin Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| | - Dan Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| |
Collapse
|
44
|
Mining Candidate Genes Related to Heavy Metals in Mature Melon ( Cucumis melo L.) Peel and Pulp Using WGCNA. Genes (Basel) 2022; 13:genes13101767. [PMID: 36292652 PMCID: PMC9602089 DOI: 10.3390/genes13101767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
The content of metal ions in fruits is inseparable from plant intake of trace elements and health effects in the human body. To understand metal ion content in the fruit and pericarp of melon (Cucumis melo L.) and the candidate genes responsible for controlling this process, we analyzed the metal ion content in distinct parts of melon fruit and pericarp and performed RNA-seq. The results showed that the content of metal ions in melon fruit tissue was significantly higher than that in the pericarp. Based on transcriptome expression profiling, we found that the fruit and pericarp contained elevated levels of DEGs. GO functional annotations included cell surface receptor signaling, signal transduction, organic substance metabolism, carbohydrate derivative binding, and hormone-mediated signaling pathways. KEGG pathways included pectate lyase, pentose and glucuronate interconversions, H+-transporting ATPase, oxidative phosphorylation, plant hormone signal transduction, and MAPK signaling pathways. We also analyzed the expression patterns of genes and transcription factors involved in hormone biosynthesis and signal transduction. Using weighted gene co-expression network analysis (WGCNA), a co-expression network was constructed to identify a specific module that was significantly correlated with the content of metal ions in melon, after which the gene expression in the module was measured. Connectivity and qRT–PCR identified five candidate melon genes, LOC103501427, LOC103501539, LOC103503694, LOC103504124, and LOC107990281, associated with metal ion content. This study provides a theoretical basis for further understanding the molecular mechanism of heavy metal ion content in melon fruit and peel and provides new genetic resources for the study of heavy metal ion content in plant tissues.
Collapse
|
45
|
Barzin G, Safari F, Bishehkolaei R. Beneficial role of methyl jasmonate on morphological, physiological and phytochemical responses of Calendula officinalis L. under Chromium toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1453-1466. [PMID: 36051237 PMCID: PMC9424436 DOI: 10.1007/s12298-022-01213-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Contamination of soil with chromium (Cr) is a rising problem in terms of agricultural sustainability and food safety. Here, the effects of methyl jasmonate (MJ; 0, 5, and 10 µM) on alleviating Cr stress (0, 100, and 200 µM) were surveyed in pot marigold (Calendula officinalis L.). The results showed that Cr stress significantly reduced photosynthetic pigments and leaf accumulation of total soluble sugars, total starch, and mineral nutrients and, consequently, lowered the height and biomass of pot marigold plants. Chromium toxicity also increased the leaf levels of oxidative stress markers and induced oxidative stress, which was associated with damage to bio-membranes and increased levels of malondialdehyde. However, MJ supplementation reduced the leaf accumulation of Cr, increased the content of photosynthetic pigments, and improved the performance of the photosynthetic machinery in Cr-stressed plants. MJ supplementation boosted the antioxidant defense system by upregulating antioxidant enzymes, glyoxalase enzymes, and the ascorbate-glutathione (AsA-GSH) pool redox, which significantly diminished Cr-induced oxidative stress. Hence, MJ supplementation might be a practicable approach for reducing Cr absorption and its negative impacts on pot marigold plants growing under Cr-contaminated conditions. Clinical trials registration Not applicable.
Collapse
Affiliation(s)
- Giti Barzin
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Fatemeh Safari
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Roya Bishehkolaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
46
|
Li Y, Zhang S, Bao Q, Chu Y, Sun H, Huang Y. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119178. [PMID: 35367286 DOI: 10.1016/j.envpol.2022.119178] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a potentially hazardous element with substantial biological toxicity, adversely affecting plant growth and physiological metabolism. Therefore, it is necessary to explore practical and environment-friendly approaches to reduce toxicity. Jasmonic acid (JA) is an endogenous growth regulator which helps plants defend against biological and abiotic stresses. To determine how JA help relieve Cd toxicity in rice, both laboratory and field experiments were implemented. In the seedling stage, the role of JA in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry. At the mature growth stage of rice, field experiments were implemented to research the effects of JA on the Cd uptake and translocation in rice. In the seedling stage of rice, we found that JA application increased the cell wall compartmentalization of Cd by promoting the Cd combination on chelated-soluble pectin of rice roots and inhibited Cd movement into protoplasts, thereby reducing the Cd content in the roots by 30.5% and in the shoots by 53.3%, respectively. Application of JA reduced H2O2 content and helped relieve Cd-induced peroxidation damage of membrane lipid by increasing the level of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione (GSH), but had no significant effect on the superoxide dismutase (SOD) activity. Additionally, field experiments showed that foliar spraying of JA inhibited rice Cd transport from the stalk and root to the grain and reduced Cd concentration in grain by 29.7% in the high-Cd fields and 28.0% in the low-Cd fields. These results improve our understanding of how JA contributes to resistance against Cd toxicity in rice plants and reduces the accumulation of Cd in rice kernels.
Collapse
Affiliation(s)
- Yan Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Shengnan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Qiongli Bao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yutan Chu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Hongyu Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yizong Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| |
Collapse
|
47
|
Jia H, Ma P, Huang L, Wang X, Chen C, Liu C, Wei T, Yang J, Guo J, Li J. Hydrogen sulphide regulates the growth of tomato root cells by affecting cell wall biosynthesis under CuO NPs stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:627-635. [PMID: 34676641 DOI: 10.1111/plb.13316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) show strong nano-toxic effects on organisms. Hydrogen sulphide (H2 S) plays a pivotal role in plant response to abiotic stress. In this study, we examine the crucial role of the cell wall as regulated by H2 S in response to CuO NPs stress. The digestion method was employed to determine Cu content using atomic absorption spectrometry. The TraKine pro-tubulin staining kit was used to investigate the microtubule cytoskeleton using confocal laser-scanning microscopy. Cell wall component analysis utilized the ICS-3000 HPLC system. Application of H2 S reduced growth inhibition caused by CuO NPs. Furthermore, most of the CuO NPs accumulates in roots, indicating a low transfer rate, and H2 S significantly decreased CuO NPs content in roots, leaves and stems. Subcellular distribution analysis implied most Cu accumulated in root cell walls, and that H2 S reduced the content of Cu in root cell walls. Cortical microtubules in the plasma membrane, guide cell wall biosynthesis. H2 S obviously alleviated microtubule cytoskeleton disorders caused by CuO NPs. In addition, the content of cellulose, hemicellulose, pectin and other monosaccharides in root cell walls was reduced by CuO NPs treatment. H2 S enhanced the monosaccharide and polysaccharide contents compared with that after CuO NPs treatment. In conclusion, H2 S regulates cell wall development in response to CuO NPs stress by stabilizing microtubules. H2 S affected Cu distribution and alleviated growth inhibition of tomato seedlings. The research results provide a theoretical basis for further study of nano-toxicity regulation in plants.
Collapse
Affiliation(s)
- H Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - P Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - L Huang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - X Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - C Chen
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - C Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - T Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - J Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - J Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - J Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Vega A, Delgado N, Handford M. Increasing Heavy Metal Tolerance by the Exogenous Application of Organic Acids. Int J Mol Sci 2022; 23:5438. [PMID: 35628249 PMCID: PMC9141679 DOI: 10.3390/ijms23105438] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Several metals belong to a group of non-biodegradable inorganic constituents that, at low concentrations, play fundamental roles as essential micronutrients for the growth and development of plants. However, in high concentrations they can have toxic and/or mutagenic effects, which can be counteracted by natural chemical compounds called chelators. Chelators have a diversity of chemical structures; many are organic acids, including carboxylic acids and cyclic phenolic acids. The exogenous application of such compounds is a non-genetic approach, which is proving to be a successful strategy to reduce damage caused by heavy metal toxicity. In this review, we will present the latest literature on the exogenous addition of both carboxylic acids, including the Kreb's Cycle intermediates citric and malic acid, as well as oxalic acid, lipoic acid, and phenolic acids (gallic and caffeic acid). The use of two non-traditional organic acids, the phytohormones jasmonic and salicylic acids, is also discussed. We place particular emphasis on physiological and molecular responses, and their impact in increasing heavy metal tolerance, especially in crop species.
Collapse
Affiliation(s)
| | | | - Michael Handford
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile; (A.V.); (N.D.)
| |
Collapse
|
49
|
Zhou Z, Wei C, Liu H, Jiao Q, Li G, Zhang J, Zhang B, Jin W, Lin D, Chen G, Yang S. Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21739-21750. [PMID: 34767171 DOI: 10.1007/s11356-021-17371-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The aggravation of soil cadmium (Cd) pollution is a serious threat to human food health and safety. To reduce Cd uptake and alleviate Cd toxicity in staple food of wheat, a completely random experiment was performed to investigate the effect of exogenous ascorbic acid (AsA) on Cd toxicity in two wheat varieties (L979 and H27). In this study, the treatments with combinations of Cd (0, 5, and 10 µmol L-1) and AsA (0, 50, and 200 µmol L-1) were applied in a hydroponic system. Toxicity induced by Cd inhibited biomass accumulation; decreased wheat growth, photosynthesis, and chlorophyll content; increased lipid peroxidation; and reduced activity of superoxide dismutase (SOD), but stimulated catalase (CAT) and peroxidase (POD). The addition of AsA significantly improved the growth status by increasing the wheat biomass, chlorophyll content, photosynthetic rate, protein concentrations, and antioxidant enzyme activity. Besides, AsA significantly decreased Cd concentration of shoot and root by 14.1-53.9% and 20.8-59.5% in L979 and 23.7-58.8% and 22.1-58.1% in H27 under Cd5, and 23.7-53.6% and 16.6-57.1% in L979 and 21.5-51.6% and 15.3-54.0% in H27 under Cd10, respectively. Malondialdehyde (MDA) accumulation was decreased remarkably with the addition of AsA by 31.2-32.9% in L979 and 27.1-45.2% in H27 under Cd10, respectively. Overall, exogenous application of AsA alleviated the Cd toxicity in wheat plants by improving the wheat growth, soluble protein content, photosynthesis, and antioxidant defense systems, and decreasing MDA accumulation.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Gezi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Biao Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Weihuan Jin
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Di Lin
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Guo Chen
- College of Ecology and Environment, Chendu University of Technology, Chengdu, 610059, People's Republic of China
| | - Suqin Yang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
50
|
Pan J, Guan M, Xu P, Chen M, Cao Z. Salicylic acid reduces cadmium (Cd) accumulation in rice (Oryza sativa L.) by regulating root cell wall composition via nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149202. [PMID: 34346363 DOI: 10.1016/j.scitotenv.2021.149202] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The effects of salicylic acid (SA) on cadmium (Cd) accumulation, Cd subcellular distribution, cell wall composition and Cd adsorption in Cd-stressed rice seedlings were examined. The interaction between SA and nitric oxide (NO) signaling in regulating cell wall composition under Cd exposure was also investigated. Our results showed that 5 μmol·L-1 Cd treatment significantly decreased plant height, root length and plant dry weight by 40.1%, 46.1% and 21.3% (p < 0.05), respectively, and the inhibitory effects of Cd on the growth parameters were alleviated by exogenous SA. Application of SA remarkably decreased Cd concentrations in roots and shoots of rice seedlings by 48.0% and 19.6%, respectively, and increased the distribution ratio of Cd in the root cell wall fraction (from 35.7% to 40.6%) compared with Cd treatment alone. The reduced Cd accumulation in rice plants could be attributed to that SA application promoted pectin synthesis and demethylesterification, thereby increasing Cd deposition in the root cell wall. Moreover, SA application promoted lignin biosynthesis to strengthen the cell wall and prevent Cd from entering the root cells. In addition, NO might be involved in SA-induced pectin synthesis, pectin demethylesterification and lignin biosynthesis as a downstream signaling molecule, contributing to reduced Cd accumulation in Cd-stressed rice seedlings. The results provide deep insights into the mechanisms of exogenous SA action in reducing Cd accumulation in rice plants.
Collapse
Affiliation(s)
- Jiuyue Pan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Meiyan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Xu
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhenzhen Cao
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|