1
|
Cardoso F, Hirshfield KM, Kraynyak KA, Tryfonidis K, Bardia A. Immunotherapy for hormone receptor‒positive HER2-negative breast cancer. NPJ Breast Cancer 2024; 10:104. [PMID: 39643613 PMCID: PMC11624285 DOI: 10.1038/s41523-024-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/14/2024] [Indexed: 12/09/2024] Open
Abstract
Additional therapies are needed to improve outcomes in patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer. Research on the potential role of immunotherapy, particularly programmed cell death protein 1/programmed cell death ligand 1 inhibitors, is rapidly expanding in both the early and metastatic settings with some preliminary evidence suggesting benefit when used as part of combination therapy. Several ongoing phase 3 studies should help define their future role in treating these patients.
Collapse
Affiliation(s)
- Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal.
| | | | | | | | - Aditya Bardia
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Becker AS, Wieder N, Zonnur S, Zimpfer A, Krause M, Schneider B, Strüder DF, Burmeister AS, Erbersdobler A, Junghanss C, Maletzki C. CMTM6 status predicts survival in head and neck squamous cell carcinoma and correlates with PD-L1 expression. Discov Oncol 2024; 15:745. [PMID: 39630300 PMCID: PMC11618569 DOI: 10.1007/s12672-024-01554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/08/2024] Open
Abstract
We retrospectively analyzed 129 treatment-naïve head and neck squamous cell carcinomas (HNSCCs) for the expression of programmed death ligand 1 (PD-L1), CKLF-like MARVEL transmembrane domain-containing 6 (CMTM6), tumor-infiltrating leukocytes (TILs), and tumor-associated macrophages (TAMs). We evaluated the relationships among these markers, human papilloma virus (HPV) status, and overall survival (OS). PD-L1 and CMTM6 (combined positive score (CPS) ≥ 1 and ≥ 5) were detected in ~ 70% of HNSCCs. HPV status had insignificant effects on marker expression. Most PD-L1-positive cases showed concomitant CMTM6 expression with comparable staining patterns. While PD-L1 and CMTM6 mRNA expression levels correlated with PD-L1 and CMTM6 protein status, no significant correlation was observed for PD-L1 and CMTM6 mRNA expression. Tumors expressing PD-L1 (p < 0.0001) and/or CMTM6 (p < 0.05) were associated with the best OS. A high density of TILs (p < 0.01), CD8+ T cells (p < 0.001), and CD68/CD163 ratio > 1 were prognostically relevant. In addition to HPV status, PD-L1 and CD8+ T cells, CMTM6 was identified as an independent prognostic factor using a multivariate Cox regression analysis. PD-L1 and CMTM6 correlated with TILs and CD8+ cells but not with HPV. Our results identified CMTM6 as an important interaction partner in the crosstalk between TILs, CD8+ T cells, and PD-L1, which mediates anticancer efficacy. Assessments of CMTM6 may be helpful for prognostic prediction, and it may serve as a reliable biomarker for immunotherapy selection.
Collapse
Affiliation(s)
- Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, Strempelstr. 14, 18057, Rostock, Germany.
| | - Nicolas Wieder
- Department of Neurology With Experimental Neurology, Berlin Institute of Health, Charite´, 10117, Berlin, Germany
| | - Sarah Zonnur
- Institute of Pathology, Rostock University Medical Center, Strempelstr. 14, 18057, Rostock, Germany
| | - Annette Zimpfer
- Institute of Pathology, Rostock University Medical Center, Strempelstr. 14, 18057, Rostock, Germany
| | - Mareike Krause
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, Strempelstr. 14, 18057, Rostock, Germany
| | - Daniel Fabian Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Ann-Sophie Burmeister
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Andreas Erbersdobler
- Institute of Pathology, Rostock University Medical Center, Strempelstr. 14, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
3
|
Vilela T, Valente S, Correia J, Ferreira F. Advances in immunotherapy for breast cancer and feline mammary carcinoma: From molecular basis to novel therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189144. [PMID: 38914239 DOI: 10.1016/j.bbcan.2024.189144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The role of inflammation in cancer is a topic that has been investigated for many years. As established, inflammation emerges as a defining characteristic of cancer, presenting itself as a compelling target for therapeutic interventions in the realm of oncology. Controlling the tumor microenvironment (TME) has gained paramount significance, modifying not only the effectiveness of immunotherapy but also modulating the outcomes and prognoses of standard chemotherapy and other anticancer treatments. Immunotherapy has surfaced as a central focus within the domain of tumor treatments, using immune checkpoint inhibitors as cancer therapy. Immune checkpoints and their influence on the tumor microenvironment dynamic are presently under investigation, aiming to ascertain their viability as therapeutic interventions across several cancer types. Cancer presents a significant challenge in humans and cats, where female breast cancer ranks as the most prevalent malignancy and feline mammary carcinoma stands as the third most frequent. This review seeks to summarize the data about the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), programmed cell death protein-1 (PD-1), V-domain Ig suppressor of T cell activation (VISTA), and T-cell immunoglobulin and mucin domain 3 (TIM-3) respective ongoing investigations as prospective targets for therapy for human breast cancer, while also outlining findings from studies reported on feline mammary carcinoma (FMC), strengthening the rationale for employing FMC as a representative model in the exploration of human breast cancer.
Collapse
Affiliation(s)
- Tatiana Vilela
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sofia Valente
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| |
Collapse
|
4
|
Noske A, Steiger K, Ballke S, Kiechle M, Oettler D, Roth W, Weichert W. Comparison of assessment of programmed death-ligand 1 (PD-L1) status in triple-negative breast cancer biopsies and surgical specimens. J Clin Pathol 2024; 77:239-245. [PMID: 36669878 PMCID: PMC10958329 DOI: 10.1136/jcp-2022-208637] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023]
Abstract
AIMS Programmed death-ligand 1 (PD-L1) status in triple-negative breast cancer (TNBC) is important for immune checkpoint inhibitor therapies but may vary between different immunohistochemical assays, scorings and the type of specimen used for analysis. METHODS We compared the analytical concordance of three clinically relevant PD-L1 assays (VENTANA SP142, VENTANA SP263 and DAKO 22C3 pharmDx) assessing immune cell score (IC), tumour proportion score and combined positive score (CPS) in preoperative biopsies and resection specimens of primary TNBC. PD-L1 expression was scored on virtual whole slide images and compared with expression data from corresponding surgical specimens. RESULTS The mean PD-L1 positivity in TNBC biopsies defined as IC ≥1% and CPS ≥1 ranged between 11% and 61% with the lowest positivity for SP142 and highest for SP263. The corresponding surgical specimens showed overall higher positivity rates (53%-75%). When comparing biopsies with surgical specimens, the agreement for PD-L1 positivity with SP263 and 22C3 at IC score ≥1% and CPS ≥1 was fair (kappa 0.47-0.52) and poor for SP142 (kappa 0.15-0.19). Using CPS ≥10 cut-off, the agreement for SP263 was excellent (kappa 0.751) but poor for 22C3 (kappa 0.261). Spearman correlation coefficients ranged between 0.489 and 0.75 indicating a generally moderate to strong correlation between biopsies and surgical specimens for all assays and scores. CONCLUSIONS We demonstrate high accordance between biopsies and surgical specimens for SP263 and 22C3 scoring but less for SP142. Generally, biopsies are suitable for PD-L1 testing in TNBC but the appropriate assay, scoring and cut-off must be considered.
Collapse
Affiliation(s)
- Aurelia Noske
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Ballke
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marion Kiechle
- Department of Gynaecology and Obstetrics, Technical University of Munich, Munich, Germany
| | - Dirk Oettler
- Medical affairs, MSD Sharp & Dohme GmbH, Haar, Germany
| | - Wilfried Roth
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Ntostoglou K, Theodorou SDP, Proctor T, Nikas IP, Awounvo S, Sepsa A, Georgoulias V, Ryu HS, Pateras IS, Kittas C. Distinct profiles of proliferating CD8+/TCF1+ T cells and CD163+/PD-L1+ macrophages predict risk of relapse differently among treatment-naïve breast cancer subtypes. Cancer Immunol Immunother 2024; 73:46. [PMID: 38349444 PMCID: PMC10864422 DOI: 10.1007/s00262-024-03630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/07/2024] [Indexed: 02/15/2024]
Abstract
Immunophenotypic analysis of breast cancer microenvironment is gaining attraction as a clinical tool improving breast cancer patient stratification. The aim of this study is to evaluate proliferating CD8 + including CD8 + TCF1 + Τ cells along with PD-L1 expressing tissue-associated macrophages among different breast cancer subtypes. A well-characterized cohort of 791 treatment-naïve breast cancer patients was included. The analysis demonstrated a distinct expression pattern among breast cancer subtypes characterized by increased CD8 + , CD163 + and CD163 + PD-L1 + cells along with high PD-L1 status and decreased fraction of CD8 + Ki67 + T cells in triple negative (TNBC) and HER2 + compared to luminal tumors. Kaplan-Meier and Cox univariate survival analysis revealed that breast cancer patients with high CD8 + , CD8 + Ki67 + , CD8 + TCF1 + cells, PD-L1 score and CD163 + PD-L1 + cells are likely to have a prolonged relapse free survival, while patients with high CD163 + cells have a worse prognosis. A differential impact of high CD8 + , CD8 + Ki67 + , CD8 + TCF1 + T cells, CD163 + PD-L1 + macrophages and PD-L1 status on prognosis was identified among the various breast cancer subtypes since only TNBC patients experience an improved prognosis compared to patients with luminal A tumors. Conversely, high infiltration by CD163 + cells is associated with worse prognosis only in patients with luminal A but not in TNBC tumors. Multivariate Cox regression analysis in TNBC patients revealed that increased CD8 + [hazard ratio (HR) = 0.542; 95% confidence interval (CI) 0.309-0.950; p = 0.032), CD8 + TCF1 + (HR = 0.280; 95% CI 0.101-0.779; p = 0.015), CD163 + PD-L1 + (HR: 0.312; 95% CI 0.112-0.870; p = 0.026) cells along with PD-L1 status employing two different scoring methods (HR: 0.362; 95% CI 0.162-0.812; p = 0.014 and HR: 0.395; 95% CI 0.176-0.884; p = 0.024) were independently linked with a lower relapse rate. Multivariate analysis in Luminal type A patients revealed that increased CD163 + was independently associated with a higher relapse rate (HR = 2.360; 95% CI 1.077-5.170; p = 0.032). This study demonstrates that the evaluation of the functional status of CD8 + T cells in combination with the analysis of immunosuppressive elements could provide clinically relevant information in different breast cancer subtypes.
Collapse
Affiliation(s)
- Konstantinos Ntostoglou
- Department of Histopathology, Biomedicine Group of Health Company, 15626, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, 11527, Goudi, Athens, Greece
| | - Sofia D P Theodorou
- Medical School, National and Kapodistrian University of Athens, 11527, Goudi, Athens, Greece
| | - Tanja Proctor
- Institute of Medical Biometry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ilias P Nikas
- Medical School, University of Cyprus, 2029, Nicosia, Cyprus
| | - Sinclair Awounvo
- Institute of Medical Biometry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Athanasia Sepsa
- Department of Anatomic Pathology, Metropolitan Hospital, 9 Ethnarchou Makariou & 1 E. Venizelou Street, Neo Faliro, 18547, Piraeus, Greece
| | | | - Han Suk Ryu
- Department of Pathology, College of Medicine, Seoul National University Hospital, 03080, Seoul, Republic of Korea
| | - Ioannis S Pateras
- 2nd Department of Pathology, Medical School, "Attikon" University Hospital, National and Kapodistrian University of Athens, 124 62, Athens, Greece.
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 15626, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, 11527, Goudi, Athens, Greece
| |
Collapse
|
6
|
Huang YY, Zheng Y, Liang SH, Wu LL, Liu X, Xing WQ, Ma GW. Establishment and validation of a prognostic risk classification for patients with stage T1-3N0M0 esophageal squamous cell carcinoma. J Cardiothorac Surg 2023; 18:192. [PMID: 37316912 PMCID: PMC10265826 DOI: 10.1186/s13019-023-02294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/15/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION At present, clinical factors and hematological indicators have been proved to have great potential in predicting the prognosis of cancer patients, and no one has combined these two valuable indicators to establish a prognostic model for esophageal squamous cell carcinoma (ESCC) patients with stage T1-3N0M0 after R0 resection. To verify, we aimed to combine these potential indicators to establish a prognostic model. METHODS Stage T1-3N0M0 ESCC patients from two cancer centers (including training cohort: N = 819, and an external validation cohort: N = 177)-who had undergone esophagectomy in 1995-2015 were included. We integrated significant risk factors for death events by multivariable logistic regression methods and applied them to the training cohort to build Esorisk. The parsimonious aggregate Esorisk score was calculated for each patient; the training set was divided into three prognostic risk classes according to the 33rd and 66th percentiles of the Esorisk score. The association of Esorisk with cancer-specific survival (CSS) was assessed using Cox regression analyses. RESULTS The Esorisk model was: [10 + 0.023 × age + 0.517 × drinking history - 0.012 × hemoglobin-0.042 × albumin - 0.032 × lymph nodes]. Patients were grouped into three classes-Class A (5.14-7.26, low risk), Class B (7.27-7.70, middle risk), and Class C (7.71-9.29, high risk). In the training group, five-year CSS decreased across the categories (A: 63%; B: 52%; C: 30%, Log-rank P < 0.001). Similar findings were observed in the validation group. Additionally, Cox regression analysis showed that Esorisk aggregate score remained significantly associated with CSS in the training cohort and validation cohort after adjusting for other confounders. CONCLUSIONS We combined the data of two large clinical centers, and comprehensively considered their valuable clinical factors and hematological indicators, established and verified a new prognostic risk classification that can predict CSS of stage T1-3N0M0 ESCC patients.
Collapse
Affiliation(s)
- Yang-Yu Huang
- The Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, No. 651 Dongfengdong Road, Guangzhou, 510060 People’s Republic of China
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Yan Zheng
- The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, No. 1 Jianshedong Road, Zhengzhou, 45000 People’s Republic of China
| | - Shen-Hua Liang
- The Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, No. 651 Dongfengdong Road, Guangzhou, 510060 People’s Republic of China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xuan Liu
- The Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, No. 651 Dongfengdong Road, Guangzhou, 510060 People’s Republic of China
| | - Wen-Qun Xing
- The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, No. 1 Jianshedong Road, Zhengzhou, 45000 People’s Republic of China
| | - Guo-Wei Ma
- The Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, No. 651 Dongfengdong Road, Guangzhou, 510060 People’s Republic of China
| |
Collapse
|
7
|
Sun GY, Zhang J, Wang BZ, Jing H, Fang H, Tang Y, Song YW, Jin J, Liu YP, Tang Y, Qi SN, Chen B, Lu NN, Li N, Li YX, Ying JM, Wang SL. The prognostic value of tumour-infiltrating lymphocytes, programmed cell death protein-1 and programmed cell death ligand-1 in Stage I-III triple-negative breast cancer. Br J Cancer 2023; 128:2044-2053. [PMID: 36966236 PMCID: PMC10205737 DOI: 10.1038/s41416-023-02218-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Tumour-infiltrating lymphocytes (TILs) represent a robust biological prognostic biomarker in triple-negative breast cancer (TNBC); however, the contribution of different subsets of immune cells is unclear. We investigated the prognostic value of immune markers, including stromal TILs (sTILs), CD8+T and FOPX3+T cells, PD-1 and PD-L1 in non-metastatic TNBC. METHODS In total, 259 patients with Stage I-III TNBC were reviewed. The density of sTILs along with the presence of total (t), stromal (s), and intratumoral (i) CD8+T cells and FOPX3+T cells were evaluated by haematoxylin and eosin and immunohistochemical staining. Immunohistochemical staining of PD-1, PD-L1 was also conducted. RESULTS All immune markers were positively correlated with each other (P < 0.05). In the multivariate analysis, sTILs (P = 0.046), tCD8+T cells (P = 0.024), iCD8+T cells (P = 0.050) and PD-1 (P = 0.039) were identified as independent prognostic factors for disease-free survival (DFS). Further analysis showed that tCD8+T cells (P = 0.026), iCD8+T cells (P = 0.017) and PD-1 (P = 0.037) increased the prognostic value for DFS beyond that of the classic clinicopathological factors and sTILs. CONCLUSIONS In addition to sTILs, inclusion of tCD8+T, iCD8+T cells, or PD-1 may further refine the prognostic model for non-metastatic TNBC beyond that including classical factors alone.
Collapse
Affiliation(s)
- Guang-Yi Sun
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Jing Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, China
| | - Bing-Zhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hao Jing
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hui Fang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yu Tang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yong-Wen Song
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Jing Jin
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yue-Ping Liu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yuan Tang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Shu-Nan Qi
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Bo Chen
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ning-Ning Lu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ning Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Jian-Ming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Shu-Lian Wang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
8
|
Gonçalves JPL, Bollwein C, Noske A, Jacob A, Jank P, Loibl S, Nekljudova V, Fasching PA, Karn T, Marmé F, Müller V, Schem C, Sinn BV, Stickeler E, van Mackelenbergh M, Schmitt WD, Denkert C, Weichert W, Schwamborn K. Characterization of Hormone Receptor and HER2 Status in Breast Cancer Using Mass Spectrometry Imaging. Int J Mol Sci 2023; 24:ijms24032860. [PMID: 36769215 PMCID: PMC9918176 DOI: 10.3390/ijms24032860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Immunohistochemical evaluation of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 status stratify the different subtypes of breast cancer and define the treatment course. Triple-negative breast cancer (TNBC), which does not register receptor overexpression, is often associated with worse patient prognosis. Mass spectrometry imaging transcribes the molecular content of tissue specimens without requiring additional tags or preliminary analysis of the samples, being therefore an excellent methodology for an unbiased determination of tissue constituents, in particular tumor markers. In this study, the proteomic content of 1191 human breast cancer samples was characterized by mass spectrometry imaging and the epithelial regions were employed to train and test machine-learning models to characterize the individual receptor status and to classify TNBC. The classification models presented yielded high accuracies for estrogen and progesterone receptors and over 95% accuracy for classification of TNBC. Analysis of the molecular features revealed that vimentin overexpression is associated with TNBC, supported by immunohistochemistry validation, revealing a new potential target for diagnosis and treatment.
Collapse
Affiliation(s)
- Juliana Pereira Lopes Gonçalves
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Christine Bollwein
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany
| | - Aurelia Noske
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany
| | - Anne Jacob
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), 35043 Marburg, Germany
| | - Sibylle Loibl
- German Breast Group (GBG), 63263 Neu-Isenburg, Germany
| | | | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Thomas Karn
- Department of Gynecology and Obstetrics, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Frederik Marmé
- Department of Obstetrics and Gynecology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Volkmar Müller
- Department of Gynecology, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | | | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen, 52074 Aachen, Germany
| | - Marion van Mackelenbergh
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany
| | | | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), 35043 Marburg, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Kristina Schwamborn
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
9
|
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA, Oesterreich S. The Great Immune Escape: Understanding the Divergent Immune Response in Breast Cancer Subtypes. Cancer Discov 2023; 13:23-40. [PMID: 36620880 PMCID: PMC9833841 DOI: 10.1158/2159-8290.cd-22-0475] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer, the most common type of cancer affecting women, encompasses a collection of histologic (mainly ductal and lobular) and molecular subtypes exhibiting diverse clinical presentation, disease trajectories, treatment options, and outcomes. Immunotherapy has revolutionized treatment for some solid tumors but has shown limited promise for breast cancers. In this review, we summarize recent advances in our understanding of the complex interactions between tumor and immune cells in subtypes of breast cancer at the cellular and microenvironmental levels. We aim to provide a perspective on opportunities for future immunotherapy agents tailored to specific features of each subtype of breast cancer. SIGNIFICANCE Although there are currently over 200 ongoing clinical trials testing immunotherapeutics, such as immune-checkpoint blockade agents, these are largely restricted to the triple-negative and HER2+ subtypes and primarily focus on T cells. With the rapid expansion of new in vitro, in vivo, and clinical data, it is critical to identify and highlight the challenges and opportunities unique for each breast cancer subtype to drive the next generation of treatments that harness the immune system.
Collapse
Affiliation(s)
- Sayali S. Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Neil M. Carleton
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Lucas
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Acar E, Esendağlı G, Yazıcı O, Dursun A. Tumor-Infiltrating Lymphocytes (TIL), Tertiary Lymphoid Structures (TLS), and Expression of PD-1, TIM-3, LAG-3 on TIL in Invasive and In Situ Ductal Breast Carcinomas and Their Relationship with Prognostic Factors. Clin Breast Cancer 2022; 22:e901-e915. [PMID: 36089459 DOI: 10.1016/j.clbc.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Immunotherapy has been determined as an important choice in breast carcinomas, especially in tumors with markedly inflammatory response. About this promising subject, tumor-infiltrating lymphocytes (TIL) and the expression of immune control point receptors on TIL have gained importance. MATERIALS AND METHODS In this study, stromal TIL and tertiary lymphoid structures (TLS) were determined in tumor tissues of 312 invasive and 68 in situ breast cancer patients. Expression rates of PD-1, LAG-3, and TIM-3 on intratumoral and stromal TIL were immunohistochemically evaluated. RESULTS In invasive breast carcinomas, stromal TIL was found to be significantly associated with lymph node metastasis, HR and HER2 expression, and basal-like phenotype, as the presence of TLS with neoadjuvant therapy, recurrence, death, and expression of HR and HER2. PD-1, LAG-3, and TIM-3 expressions were found to be associated with HR and HER2 status, stromal TIL rates, and TLS. In multivariate analysis, high stromal TIL and PD-1 expression in intratumoral TIL were found to be independent prognostic factors in terms of overall survival and disease-free survival. CONCLUSION Evaluation of TIL and immune control point receptor expressions in breast cancer is particularly important in terms of planning the therapeutic approaches based on immunotherapy protocols.
Collapse
Affiliation(s)
- Elif Acar
- Department of Medical Pathology, Ömer Halis Demir University, Niğde, Turkey.
| | - Güldal Esendağlı
- Department of Medical Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozan Yazıcı
- Department of Medical Oncology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ayşe Dursun
- Department of Medical Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Schüler K, Bethmann D, Kaufhold S, Hartung C, Stückrath K, Lantzsch T, Uleer C, Hanf V, Peschel S, John J, Pöhler M, Buchmann J, Bürrig KF, Weigert E, Thomssen C, Kantelhardt EJ, Vetter M. Prognostic Value of Tumour-Infiltrating Lymphocytes in an Unselected Cohort of Breast Cancer Patients. Diagnostics (Basel) 2022; 12:2527. [PMID: 36292215 PMCID: PMC9601161 DOI: 10.3390/diagnostics12102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 02/13/2024] Open
Abstract
Tumour-infiltrating lymphocytes (TILs) are considered to have prognostic and predictive value for patients with early breast cancer. We examined 1166 breast cancer patients from a prospective, multicentre cohort (Prognostic Assessment in Routine Application (PiA), n = 1270, NCT01592825) following recommendations from the International TILs Working Group. TIL quantification was performed using predefined groups and as a continuous variable in 10% increments. The primary objective was the distribution of TILs in different breast cancer types. The second objective was the association with the recurrence-free interval (RFI) and overall survival (OS). Stromal infiltration with more than 60% TILs appeared in 2% of hormone receptor (HR)-positive and HER2-negative tumours, in 9.8% of HER2-positive tumours (any HR) and 19.4% of triple-negative breast cancers (TNBCs). Each 10% increment was associated with an improvement in the prognosis in HER2-positive samples (RFI, hazard ratio 0.773, 95% CI 0.587-1.017; OS, hazard ratio 0.700, 95% CI 0.523-0.937). When defining exploratory cut-offs for TILs, the use of a 30% threshold for the HR-positive and HER2-negative group, a 20% threshold for the HER2 group and a 60% threshold for the TNBC group appeared to be the most suitable. TILs bore prognostic value, especially in HER2-positive breast cancer. For clinical use, additional research on the components of immune infiltration might be reasonable.
Collapse
Affiliation(s)
- Kathleen Schüler
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sandy Kaufhold
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Carolin Hartung
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kathrin Stückrath
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tilmann Lantzsch
- Department of Gynaecology, Hospital St. Elisabeth and St. Barbara, 06110 Halle (Saale), Germany
| | - Christoph Uleer
- Gynäkologisch-Onkologische Praxis, 31134 Hildesheim, Germany
| | - Volker Hanf
- Department of Gynaecology, Nathanstift, Hospital Fürth, 90766 Fürth, Germany
| | - Susanne Peschel
- Department of Gynaecology, St. Bernward Hospital, 31134 Hildesheim, Germany
| | - Jutta John
- Department of Gynaecology, Helios Hospital Hildesheim, 31135 Hildesheim, Germany
| | - Marleen Pöhler
- Department of Gynaecology, Asklepios Hospital Goslar, 38642 Goslar, Germany
| | - Jörg Buchmann
- Institute of Pathology, Hospital Martha-Maria, 81479 Halle (Saale), Germany
| | | | - Edith Weigert
- Institute of Pathology, Hospital Fürth, 90766 Fürth, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Institute of Epidemiology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Martina Vetter
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Chen L, Huang S, Liu Q, Kong X, Su Z, Zhu M, Fang Y, Zhang L, Li X, Wang J. PD-L1 Protein Expression Is Associated With Good Clinical Outcomes and Nomogram for Prediction of Disease Free Survival and Overall Survival in Breast Cancer Patients Received Neoadjuvant Chemotherapy. Front Immunol 2022; 13:849468. [PMID: 35669769 PMCID: PMC9163312 DOI: 10.3389/fimmu.2022.849468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study aims to investigate the potential prognostic significance of programmed death ligand-1 (PD-L1) protein expression in tumor cells of breast cancer patients received neoadjuvant chemotherapy (NACT).MethodsUsing semiquantitative immunohistochemistry, the PD-L1 protein expression in breast cancer tissues was analyzed. The correlations between PD-L1 protein expression and clinicopathologic characteristics were analyzed using Chi-square test or Fisher’s exact test. The survival curve was stemmed from Kaplan-Meier assay, and the log-rank test was used to compare survival distributions against individual index levels. Univariate and multivariate Cox proportional hazards regression models were accessed to analyze the associations between PD-L1 protein expression and survival outcomes. A predictive nomogram model was constructed in accordance with the results of multivariate Cox model. Calibration analyses and decision curve analyses (DCA) were performed for the calibration of the nomogram model, and subsequently adopted to assess the accuracy and benefits of the nomogram model.ResultsA total of 104 breast cancer patients received NACT were enrolled into this study. According to semiquantitative scoring for IHC, patients were divided into: low PD-L1 group (61 cases) and high PD-L1 group (43 cases). Patients with high PD-L1 protein expression were associated with longer disease free survival (DFS) (mean: 48.21 months vs. 31.16 months; P=0.011) and overall survival (OS) (mean: 83.18 months vs. 63.31 months; P=0.019) than those with low PD-L1 protein expression. Univariate and multivariate analyses indicated that PD-L1, duration of neoadjuvant therapy, E-Cadherin, targeted therapy were the independent prognostic factors for patients’ DFS and OS. Nomogram based on these independent prognostic factors was used to evaluate the DFS and OS time. The calibration plots shown PD-L1 based nomogram predictions were basically consistent with actual observations for assessments of 1-, 3-, and 5-year DFS and OS time. The DCA curves indicated the PD-L1 based nomogram had better predictive clinical applications regarding prognostic assessments of 3- and 5-year DFS and OS, respectively.ConclusionHigh PD-L1 protein expression was associated with significantly better prognoses and longer DFS and OS in breast cancer patients. Furthermore, PD-L1 protein expression was found to be a significant prognostic factor for patients who received NACT.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaolong Huang
- Department of Thyroid and Breast, Burn and Plastic Surgery, Tongren City People’s Hospital, Tongren, China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohui Su
- School of Public Health, Southeast University, Nanjing, China
| | - Mengliu Zhu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Melbourne School of Population and Global Health, The University of Melbourne, VIC, Australia
- Centre of Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lin Zhang, ; Xingrui Li, ; Jing Wang,
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Zhang, ; Xingrui Li, ; Jing Wang,
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lin Zhang, ; Xingrui Li, ; Jing Wang,
| |
Collapse
|
13
|
Valencia GA, Rioja P, Morante Z, Ruiz R, Fuentes H, Castaneda CA, Vidaurre T, Neciosup S, Gomez HL. Immunotherapy in triple-negative breast cancer: A literature review and new advances. World J Clin Oncol 2022; 13:219-236. [PMID: 35433291 PMCID: PMC8966508 DOI: 10.5306/wjco.v13.i3.219] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly complex, heterogeneous disease and historically has limited treatment options. It has a high probability of disease recurrence and rapid disease progression despite adequate systemic treatment. Immunotherapy has emerged as an important alternative in the management of this malignancy, showing an impact on progression-free survival and overall survival in selected populations. In this review we focused on immunotherapy and its current relevance in the management of TNBC, including various scenarios (metastatic and early -neoadjuvant, adjuvant-), new advances in this subtype and the research of potential predictive biomarkers of response to treatment.
Collapse
Affiliation(s)
| | - Patricia Rioja
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Zaida Morante
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Rossana Ruiz
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Hugo Fuentes
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Carlos A Castaneda
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Tatiana Vidaurre
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Silvia Neciosup
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Henry L Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| |
Collapse
|
14
|
Giacchetti S, Faucheux L, Gardair C, Cuvier C, de Roquancourt A, Campedel L, Groheux D, de Bazelaire C, Lehmann-Che J, Miquel C, Cahen Doidy L, Amellou M, Madelaine I, Reyal F, Someil L, Hocini H, Hennequin C, Teixeira L, Espié M, Chevret S, Soumelis V, Hamy AS. Negative Relationship between Post-Treatment Stromal Tumor-Infiltrating Lymphocyte (TIL) and Survival in Triple-Negative Breast Cancer Patients Treated with Dose-Dense Dose-Intense NeoAdjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14051331. [PMID: 35267639 PMCID: PMC8909288 DOI: 10.3390/cancers14051331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Patients with triple-negative breast cancers (TNBC) have a poor prognosis unless a pathological complete response (pCR) is achieved after neoadjuvant chemotherapy (NAC). Few studies have analyzed changes in TIL levels following dose-dense dose-intense (dd-di) NAC. Patients and methods: From 2009 to 2018, 117 patients with TNBC received dd-di NAC at our institution. We aimed to identify factors associated with pre- and post-NAC TIL levels, and oncological outcomes relapse-free survival (RFS), and overall survival (OS). Results: Median pre-NAC and post-NAC TIL levels were 15% and 3%, respectively. Change in TIL levels with treatment was significantly correlated with metabolic response (SUV) and pCR. High post-NAC TIL levels were associated with a weak metabolic response after two cycles of NAC, with the presence of residual disease and nodal involvement at NAC completion. In multivariate analyses, high post-NAC TIL levels independently predicted poor RFS and poor OS (HR = 1.4 per 10% increment, 95%CI (1.1; 1.9) p = 0.014 and HR = 1.8 per 10% increment 95%CI (1.3−2.3), p < 0.0001, respectively). Conclusion: Our results suggest that TNBC patients with TIL enrichment after NAC are at higher risk of relapse. These patients are potential candidates for adjuvant treatment, such as immunotherapy, in clinical trials.
Collapse
Affiliation(s)
- Sylvie Giacchetti
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
- Correspondence:
| | - Lilith Faucheux
- ECSTRRA Team, Statistic and Epidemiologic Research Center, INSERM UMR-1153, Université de Paris, F-75010 Paris, France; (L.F.); (S.C.)
- INSERM U976, Université de Paris, F-75010 Paris, France; (D.G.); (J.L.-C.); (V.S.)
| | - Charlotte Gardair
- Department of Anatomopathology, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.G.); (A.d.R.); (C.M.)
| | - Caroline Cuvier
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
| | - Anne de Roquancourt
- Department of Anatomopathology, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.G.); (A.d.R.); (C.M.)
| | - Luca Campedel
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
| | - David Groheux
- INSERM U976, Université de Paris, F-75010 Paris, France; (D.G.); (J.L.-C.); (V.S.)
- Department of Nuclear Medicine, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France
| | | | - Jacqueline Lehmann-Che
- INSERM U976, Université de Paris, F-75010 Paris, France; (D.G.); (J.L.-C.); (V.S.)
- Immunology, Biology and Histocompatibility Laboratory, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France
| | - Catherine Miquel
- Department of Anatomopathology, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.G.); (A.d.R.); (C.M.)
| | | | - Malika Amellou
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
| | - Isabelle Madelaine
- Department of Pharmacy, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France;
| | - Fabien Reyal
- Department of Surgery, Institut Curie, 26 rue d’Ulm, University Paris, F-75005 Paris, France;
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, 26 rue d’Ulm, University Paris, F-75005 Paris, France;
| | - Laetitia Someil
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
| | - Hamid Hocini
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
| | | | - Luis Teixeira
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
- INSERM U976, Université de Paris, F-75010 Paris, France; (D.G.); (J.L.-C.); (V.S.)
| | - Marc Espié
- Breast Disease Unit (Sénopole), AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.C.); (L.C.); (M.A.); (L.S.); (H.H.); (L.T.); (M.E.)
- INSERM U976, Université de Paris, F-75010 Paris, France; (D.G.); (J.L.-C.); (V.S.)
| | - Sylvie Chevret
- ECSTRRA Team, Statistic and Epidemiologic Research Center, INSERM UMR-1153, Université de Paris, F-75010 Paris, France; (L.F.); (S.C.)
- Department of Biostatistics and Medical Information, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France
| | - Vassili Soumelis
- INSERM U976, Université de Paris, F-75010 Paris, France; (D.G.); (J.L.-C.); (V.S.)
- Department of Anatomopathology, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France; (C.G.); (A.d.R.); (C.M.)
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, 26 rue d’Ulm, University Paris, F-75005 Paris, France;
- Department of Oncology, Institut Curie St Cloud–35 rue Dailly, St Cloud, F-92210 Paris, France
| |
Collapse
|
15
|
Junjun S, Yangyanqiu W, Jing Z, Jie P, Jian C, Yuefen P, Shuwen H. Prognostic model based on six PD-1 expression and immune infiltration-associated genes predicts survival in breast cancer. Breast Cancer 2022; 29:666-676. [PMID: 35233733 PMCID: PMC9226094 DOI: 10.1007/s12282-022-01344-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/13/2022] [Indexed: 11/23/2022]
Abstract
Background The prognosis of breast cancer (BC) was associated with the expression of programmed cell death-1 (PD-1). Methods BC-related expression and clinical data were downloaded from TCGA database. PD-1 expression with overall survival and clinical factors were investigated. Gene set variation analysis (GSVA) and weighted gene correlation network analysis were performed to investigate the PD-1 expression-associated KEGG pathways and genes, respectively. Immune infiltration was analyzed using the ssGSEA algorithm and DAVID, respectively. Univariate and multivariable Cox and LASSO regression analyses were performed to select prognostic genes for modeling. Results High PD-1 expression was related to prolonged survival time (P = 0.014). PD-1 expression status showed correlations with age, race, and pathological subtype. ER- and PR-negative patients exhibited high PD-1 expression. The GSVA revealed that high PD-1 expression was associated with various immune-associated pathways, such as T cell/B cell receptor signaling pathway or natural killer cell-mediated cytotoxicity. The patients in the high-immune infiltration group exhibited significantly higher PD-1 expression levels. In summary, 397 genes associated with both immune infiltration and PD-1 expression were screened. Univariate analysis and LASSO regression model identified the six most valuable prognostic genes, namely IRC3, GBP2, IGJ, KLHDC7B, KLRB1, and RAC2. The prognostic model could predict survival for BC patients. Conclusion High PD-1 expression was associated with high-immune infiltration in BC patients. Genes closely associated with PD-1, immune infiltration and survival prognosis were screened to predict prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-022-01344-2.
Collapse
Affiliation(s)
- Shen Junjun
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Wang Yangyanqiu
- Graduate School of Medical College of Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang, China
| | - Zhuang Jing
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Pu Jie
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Huzhou, 313000, Zhejiang, China
| | - Chu Jian
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Pan Yuefen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China.
| | - Han Shuwen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, China.
| |
Collapse
|
16
|
Gershtein ES, Korotkova EA, Vorotnikov IK, Sokolov NY, Ermilova VD, Mochalova AS, Kushlinskii NE. Soluble forms of PD-1/PD-L immune checkpoint receptor and ligand in blood serum of breast cancer patients: association with clinical pathologic factors and molecular type of the tumor. Klin Lab Diagn 2022; 67:76-80. [PMID: 35192751 DOI: 10.51620/0869-2084-2022-67-2-76-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Results of enzyme-linked immunosorbent assay of the soluble forms of PD-1/PD-L immune checkpoint receptor and ligand (sPD-1 and sPD-L1) in pretreatment blood serum of 88 breast cancer patients at various disease stages aged 30-83 years are presented. The control group included 55 practically healthy women aged 19-82 years. Serum sPD-1 and sPD-L1 levels in breast cancer patients highly significantly (p<0.0001) differ from control and these changes are opposite: soluble receptor level is more than 6-fold decreased, while soluble ligand concentration - 5.5 fold increased. Both markers separately, as well as their ratio demonstrate very high sensitivity (94-100%) and specificity (95-100%) in relation to healthy control. No statistically significant associations of sPD-1 and sPD-L1 levels with clinical stage, individual TNM system criteria, tumor histological structure, grade, receptor status, and molecular type were established. In particular, no significant peculiarities of the markers' levels in triple negative breast cancer successfully treated with anti-PD-1/PD-L1 preparations were revealed. Long-term follow-up and dynamic studies of sPD-1 and sPD-L1serum levels in the course of treatment are required for evaluation of their independent from clinical and morphological factors prognostic significance and the possibility of application as low invasive tests for prediction and monitoring of corresponding targeted therapy efficiency.
Collapse
Affiliation(s)
| | - E A Korotkova
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - I K Vorotnikov
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - N Yu Sokolov
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - V D Ermilova
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - A S Mochalova
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - N E Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| |
Collapse
|
17
|
Núñez Abad M, Calabuig-Fariñas S, Lobo de Mena M, Torres-Martínez S, García González C, García García JÁ, Iranzo González-Cruz V, Camps Herrero C. Programmed Death-Ligand 1 (PD-L1) as Immunotherapy Biomarker in Breast Cancer. Cancers (Basel) 2022; 14:307. [PMID: 35053471 PMCID: PMC8773553 DOI: 10.3390/cancers14020307] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer constitutes the most common malignant neoplasm in women around the world. Approximately 12% of patients are diagnosed with metastatic stage, and between 5 and 30% of early or locally advanced BC patients will relapse, making it an incurable disease. PD-L1 ligation is an immune inhibitory molecule of the activation of T cells, playing a relevant role in numerous types of malignant tumors, including BC. The objective of the present review is to analyze the role of PD-L1 as a biomarker in the different BC subtypes, adding clinical trials with immune checkpoint inhibitors and their applicable results. Diverse trials using immunotherapy with anti-PD-1/PD-L1 in BC, as well as prospective or retrospective cohort studies about PD-L1 in BC, were included. Despite divergent results in the reviewed studies, PD-L1 seems to be correlated with worse prognosis in the hormone receptor positive subtype. Immune checkpoints inhibitors targeting the PD-1/PD-L1 axis have achieved great response rates in TNBC patients, especially in combination with chemotherapy, making immunotherapy a new treatment option in this scenario. However, the utility of PD-L1 as a predictive biomarker in the rest of BC subtypes remains unclear. In addition, predictive differences have been found in response to immunotherapy depending on the stage of the tumor disease. Therefore, a better understanding of tumor microenvironment, as well as identifying new potential biomarkers or combined index scores, is necessary in order to make a better selection of the subgroups of BC patients who will derive benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Martín Núñez Abad
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.C.-F.); (S.T.-M.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe-Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Miriam Lobo de Mena
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
| | - Susana Torres-Martínez
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.C.-F.); (S.T.-M.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe-Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Clara García González
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
| | | | - Vega Iranzo González-Cruz
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Carlos Camps Herrero
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.C.-F.); (S.T.-M.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe-Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
18
|
Prognostic Role of PD-L1 Expression in Invasive Breast Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13236090. [PMID: 34885199 PMCID: PMC8656531 DOI: 10.3390/cancers13236090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The role of PD-L1 expression in breast cancer remains controversial. Therefore, we performed a systematic review and meta-analysis to assess the association of PD-L1 expression with clinicopathological variables, overall survival (OS), and disease-free survival (DFS) in invasive breast cancer. PD-L1 expression was associated with age ≥ 50 years, lymph node status-negative, progesterone receptor-negative, Ki67 ≥ 20%, and human epidermal growth factor receptor 2 (HER2)-negative. PD-L1 positivity was associated with worse OS; however, there was no significant improvement in DFS. PD-L1 positivity was significantly associated with the clinicopathological characteristics of favorable and unfavorable prognoses. However, the final clinical outcome was associated with lower OS and had no significant association with DFS. Abstract Programmed death ligand 1 (PD-L1) has been investigated in various types of cancer; however, the role of PD-L1 expression in breast cancer remains controversial. We performed a systematic review and meta-analysis to assess the association of PD-L1 expression with clinicopathological variables, overall survival (OS), and disease-free survival (DFS) in invasive breast cancer. A total of 965 articles were included from CINAHL, Embase, PubMed, and Scopus databases. Of these, 22 studies encompassing 6468 cases of invasive breast cancer were included in the systematic review, and 15 articles were included in the meta-analysis. PD-L1 expression was associated with age ≥ 50 years, lymph node status-negative, progesterone receptor-negative, Ki67 ≥ 20%, and human epidermal growth factor receptor 2 (HER2)-negative. PD-L1 positivity was associated with worse OS (hazard ratio, HR, 2.39; 95% confidence interval, CI, 1.26–3.52; p =< 0.000); however, there was no significant improvement in DFS (HR 0.17; 95% CI −0.12–0.46; p =< 0.252). PD-L1 positivity was significantly associated with the clinicopathological characteristics of favorable and unfavorable prognoses. However, the final clinical outcome was associated with lower OS and had no significant association with DFS.
Collapse
|
19
|
Van Bockstal MR, François A, Altinay S, Arnould L, Balkenhol M, Broeckx G, Burguès O, Colpaert C, Dedeurwaerdere F, Dessauvagie B, Duwel V, Floris G, Fox S, Gerosa C, Hastir D, Jaffer S, Kurpershoek E, Lacroix-Triki M, Laka A, Lambein K, MacGrogan GM, Marchio C, Martinez MDM, Nofech-Mozes S, Peeters D, Ravarino A, Reisenbichler E, Resetkova E, Sanati S, Schelfhout AM, Schelfhout V, Shaaban A, Sinke R, Stanciu-Pop CM, van Deurzen CHM, Van de Vijver KK, Van Rompuy AS, Vincent-Salomon A, Wen H, Wong S, Bouzin C, Galant C. Interobserver variability in the assessment of stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative invasive breast carcinoma influences the association with pathological complete response: the IVITA study. Mod Pathol 2021; 34:2130-2140. [PMID: 34218258 PMCID: PMC8595512 DOI: 10.1038/s41379-021-00865-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
High stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative breast cancer (TNBC) are associated with pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). Histopathological assessment of sTILs in TNBC biopsies is characterized by substantial interobserver variability, but it is unknown whether this affects its association with pCR. Here, we aimed to investigate the degree of interobserver variability in an international study, and its impact on the relationship between sTILs and pCR. Forty pathologists assessed sTILs as a percentage in digitalized biopsy slides, originating from 41 TNBC patients who were treated with NAC followed by surgery. Pathological response was quantified by the MD Anderson Residual Cancer Burden (RCB) score. Intraclass correlation coefficients (ICCs) were calculated per pathologist duo and Bland-Altman plots were constructed. The relation between sTILs and pCR or RCB class was investigated. The ICCs ranged from -0.376 to 0.947 (mean: 0.659), indicating substantial interobserver variability. Nevertheless, high sTILs scores were significantly associated with pCR for 36 participants (90%), and with RCB class for eight participants (20%). Post hoc sTILs cutoffs at 20% and 40% resulted in variable associations with pCR. The sTILs in TNBC with RCB-II and RCB-III were intermediate to those of RCB-0 and RCB-I, with lowest sTILs observed in RCB-I. However, the limited number of RCB-I cases precludes any definite conclusions due to lack of power, and this observation therefore requires further investigation. In conclusion, sTILs are a robust marker for pCR at the group level. However, if sTILs are to be used to guide the NAC scheme for individual patients, the observed interobserver variability might substantially affect the chance of obtaining a pCR. Future studies should determine the 'ideal' sTILs threshold, and attempt to fine-tune the patient selection for sTILs-based de-escalation of NAC regimens. At present, there is insufficient evidence for robust and reproducible sTILs-guided therapeutic decisions.
Collapse
Affiliation(s)
- Mieke R. Van Bockstal
- Department of pathology, Cliniques universitaires Saint-Luc Bruxelles, Avenue Hippocrate 10, Woluwé-Saint-Lambert 1200, Belgium
| | - Aline François
- Department of pathology, Cliniques universitaires Saint-Luc Bruxelles, Avenue Hippocrate 10, Woluwé-Saint-Lambert 1200, Belgium
| | - Serdar Altinay
- Department of Pathology, University of Health Sciences, Bakirköy Dr. Sadi Konuk Health Application and Research Center, 34147 Istanbul, Turkey
| | - Laurent Arnould
- Département de Biologie et de Pathologie des Tumeurs, Centre George-François Leclerc, 1 Rue Pr. Marion, 21000 Dijon, France
| | - Maschenka Balkenhol
- Department of Pathology, Radboud University Medical Center, PO Box 9100, 6500, HB Nijmegen, The Netherlands
| | - Glenn Broeckx
- Department of Pathology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Octavio Burguès
- Department of Pathology, Hospital Clínico Universitario de Valencia, Av. De Blasco Ibáñez 17, 46010 València, Valencia, Spain
| | - Cecile Colpaert
- Department of Pathology, AZ Turnhout Campus Sint-Jozef, Steenweg op Merksplas 44, 2300 Turnhout, Belgium
| | | | - Benjamin Dessauvagie
- Division of Pathology and Laboratory Medicine, Medical School, The University of Western Australia, Crawley, WA 6009, Australia,Anatomical Pathology, PathWest Laboratory Medicine WA, Perth, Australia
| | - Valérie Duwel
- Department of pathology, AZ Klina Brasschaat, Augustijnslei 100, 2930 Brasschaat, Belgium
| | - Giuseppe Floris
- Department of Pathology, University Hospitals Leuven, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium,Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven – University of Leuven, Leuven, Belgium
| | - Stephen Fox
- Department of Pathology, Peter MacCallum Cancer Center and the University of Melbourne, Melbourne, Vic 3000, Australia
| | - Clara Gerosa
- Department of Pathology, University of Cagliari, AOU San Giovanni di Dio, Via Ospedale 54, 09124 Cagliari, Italy
| | - Delfyne Hastir
- Institute of Pathology, Lausanne University Hospital, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland
| | - Shabnam Jaffer
- Department of Pathology, Mount Sinai Hospital and Icahn School of Medicine, New York, New York, NY10029 USA
| | | | - Magali Lacroix-Triki
- Department of Pathology, Gustave-Roussy Cancer Campus, 114 Rue Edouard-Vaillant, 94805 Villejuif, France
| | - Andoni Laka
- Department of Pathology, Clinique Notre-Dame de Grâce (CNDG), Chaussée de Nivelles 212, 6041 Gosselies, Belgium
| | - Kathleen Lambein
- Department of Pathology, AZ St Lucas Hospital, Groenebriel 1, 9000 Ghent, Belgium
| | - Gaëtan Marie MacGrogan
- Surgical Pathology Unit, Department of Pathobiology, Institut Bergonié, F-33076 Bordeaux, France
| | - Caterina Marchio
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy,Pathology Unit, FPO-IRCCS, Candiolo Cancer Institute, Candiolo, Italy
| | | | - Sharon Nofech-Mozes
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, ON M4N 3M5, Canada
| | - Dieter Peeters
- Department of Pathology, AZ St Maarten, Liersesteenweg 435, 2800 Mechelen, Belgium,Histopathology, Imaging and Quantification Unit, HistoGeneX, Sint-Bavostraat 78, 2610 Antwerp, Belgium
| | - Alberto Ravarino
- Department of Pathology, University of Cagliari, AOU San Giovanni di Dio, Via Ospedale 54, 09124 Cagliari, Italy
| | - Emily Reisenbichler
- Department of Pathology, Yale School of Medicine, Yale New Haven Hospital, 310 Cedar Street, New Haven, CT06510, United States
| | - Erika Resetkova
- The University of Texas MD Anderson Cancer Center, Houston TX77030, Texas, USA
| | - Souzan Sanati
- Department of Pathology and Lab Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Rm8612, Los Angeles, CA90048, United States
| | - Anne-Marie Schelfhout
- Department of Pathology, Onze-Lieve-Vrouwziekenhuis Aalst, Moorselbaan 164, 9300 Aalst, Belgium
| | - Vera Schelfhout
- Department of Pathology, AZ St Maarten, Liersesteenweg 435, 2800 Mechelen, Belgium
| | - Abeer Shaaban
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, University of Birmingham, Birmingham B15 2GW, United Kingdom
| | - Renata Sinke
- Pathan BV, Kleiweg 500, 3045 PM Rotterdam, The Netherlands
| | - Claudia M Stanciu-Pop
- Department of Pathology, CHU UCL Namur, Site Godinne, Avenue Docteur G. Thérasse 1, 5530 Yvoir, Belgium
| | - Carolien HM van Deurzen
- Department of Pathology, Erasmus Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Koen K Van de Vijver
- Department of Pathology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Anne-Sophie Van Rompuy
- Department of Pathology, University Hospitals Leuven, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anne Vincent-Salomon
- Pôle de Médicine Diagnostique & Théranostique, INSERM U934, Institut Curie, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Hannah Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Serena Wong
- Department of Pathology, Yale School of Medicine, Yale New Haven Hospital, 310 Cedar Street, New Haven, CT06510, United States
| | - Caroline Bouzin
- 2IP IREC Imaging Platform, Institute of Clinical and Experimental Research (IREC), Université catholique de Louvain, Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Christine Galant
- Department of pathology, Cliniques universitaires Saint-Luc Bruxelles, Avenue Hippocrate 10, Woluwé-Saint-Lambert 1200, Belgium,Institute of Clinical and Experimental Research (IREC), Université catholique de Louvain, Avenue Hippocrate 55, 1200 Brussels, Belgium
| |
Collapse
|
20
|
Seeing the forest and the tree: TILs and PD-L1 as immune biomarkers. Breast Cancer Res Treat 2021; 189:599-606. [PMID: 34487294 DOI: 10.1007/s10549-021-06287-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Here we will provide an immune-focussed overview of biomarkers in early and advanced stage breast cancer. It should be noted from the outset that all the biomarkers under discussion here have not been tested in prospective clinical trials to determine their predictive performance. Such trials require very large sample sizes due to the statistical burden of testing an interaction between a treatment and a biomarker, which is compounded by the heterogeneous biology of breast cancer (Polley et al. in J Natl Cancer Inst 105:1677-1683 2013 [1]). For a detailed discussion of the immunobiology of breast cancer, analytical aspects of these biomarkers, emerging biomarkers such as tumour mutation burden and detailed immunotherapy clinical trial data, see other articles in this issue.
Collapse
|
21
|
Eckstein M, Strissel P, Strick R, Weyerer V, Wirtz R, Pfannstiel C, Wullweber A, Lange F, Erben P, Stoehr R, Bertz S, Geppert CI, Fuhrich N, Taubert H, Wach S, Breyer J, Otto W, Burger M, Bolenz C, Keck B, Wullich B, Hartmann A, Sikic D. Cytotoxic T-cell-related gene expression signature predicts improved survival in muscle-invasive urothelial bladder cancer patients after radical cystectomy and adjuvant chemotherapy. J Immunother Cancer 2021; 8:jitc-2019-000162. [PMID: 32448798 PMCID: PMC7253053 DOI: 10.1136/jitc-2019-000162] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Assessment of the immune status of muscle-invasive bladder cancer (MIBC) has previously shown to be prognostically relevant after treatment with curative intent. We conducted this study to develop a clinically applicable immune gene expression assay to predict prognosis and adjuvant chemotherapy benefit. Patients and methods Gene expression of CD3Z, CD8A and CXCL9, immune cell (IC) populations including stromal tumor infiltrating lymphocytes (sTILs), T-cells, natural killer cells (NK-cells), macrophages, Programmed cell death protein 1 positive (PD-1) IC and tumor subtypes (MD Anderson Cancer Center/MDACC-approach) were assessed in 187 MIBC patients (Comprehensive Cancer Center Erlangen-EMN/CCC-EMN-cohort). A gene expression signature was derived by hierarchical-clustering and validated in The Cancer Genome Atlas (TCGA)-cohort. IC populations in the TCGA cohort were assessed via CIBERSORT. Benefit of platinum-containing adjuvant chemotherapy was assessed in a pooled cohort of 125 patients. Outcome measurements were disease specific survival, disease-free survival and overall survival. Results The gene expression signature of CXCL9, CD3Z and CD8A correlates with quantitative amounts of specific IC populations and sTILs (CCC-EMN: ρ-range: 0.44–0.74; TCGA: ρ-range: 0.56–0.82) and allows stratification of three different inflammation levels (inflamed high, inflamed low, uninflamed). Highly inflamed tumors are preferentially basal subtype and show favorable 5-year survival rates of 67.3% (HR=0.27; CCC-EMN) and 55% (HR=0.41; TCGA). Uninflamed tumors are predominantly luminal subtypes and show low 5-year survival rates of 28% (CCC-EMN) and 36% (TCGA). Inflamed tumors exhibit higher levels of PD-1 and Programmed cell death 1 ligand 1 (PD-L1). Patients undergoing adjuvant platinum-based chemotherapy with ‘inflamed high’ tumors showed a favorable 5-year survival rate of 64% (HR=0.27; merged CCC-EMN and TCGA cohort). Conclusion The gene expression signature of CD3Z, CD8A and CXCL9 can assess the immune status of MIBC and stratify the survival of MIBC patients undergoing surgery and adjuvant platinum-based chemotherapy. Furthermore, the assay can identify patients with immunological hot tumors with particular high expression of PD-L1 potentially suitable for immunotherapy.
Collapse
Affiliation(s)
- Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pamela Strissel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralph Wirtz
- STRATIFYER Molecular Pathology, Cologne, Germany
| | - Carolin Pfannstiel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Wullweber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabienne Lange
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Erben
- Department of Urology, Ruprecht-Karls-Universität Heidelberg Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol Imanuel Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Fuhrich
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Breyer
- Department of Urology, Universitätsklinikum Regensburg, Universität Regensburg, Regensburg, Germany
| | - Wolfgang Otto
- Department of Urology, Universitätsklinikum Regensburg, Universität Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Universitätsklinikum Regensburg, Universität Regensburg, Regensburg, Germany
| | - Christian Bolenz
- Department of Urology and Pediatric Urology, Universitätsklinikum Ulm, Universität Ulm, Ulm, Germany
| | - Bastian Keck
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
22
|
Bertucci F, Boudin L, Finetti P, Van Berckelaer C, Van Dam P, Dirix L, Viens P, Gonçalves A, Ueno NT, Van Laere S, Birnbaum D, Mamessier E. Immune landscape of inflammatory breast cancer suggests vulnerability to immune checkpoint inhibitors. Oncoimmunology 2021; 10:1929724. [PMID: 34104544 PMCID: PMC8158040 DOI: 10.1080/2162402x.2021.1929724] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Anti-PD1/PDL1 immune checkpoint inhibitors (ICIs) showed promising results in breast cancer, and exploration of additional actionable immune checkpoints is ongoing. Inflammatory breast cancer (IBC) is an aggressive form of disease, the immune tumor microenvironment (TME) of which is poorly known. We aimed at providing the first comprehensive immune portrait of IBCs. Methods. From the gene expression profiles of 137 IBC and 252 non-IBC clinical samples, we measured the fractions of 22 immune cell types, expression of signatures associated with tertiary lymphoid structures (TLS) and with the response to ICIs (T cell-inflamed signature: TIS) and of 18 genes coding for major actionable immune checkpoints. The IBC/non-IBC comparison was adjusted upon the clinicopathological variables. Results. The immune profiles of IBCs were heterogeneous. CIBERSORT analysis showed profiles rich in macrophages, CD8+ and CD4 + T-cells, with remarkable similarity with melanoma TME. The comparison with non-IBCs showed significant enrichment in M1 macrophages, γδ T-cells, and memory B-cells. IBCs showed higher expression of TLS and TIS signatures. The TIS signature displayed values in IBCs close to those observed in other cancers sensitive to ICIs. Two-thirds of actionable immune genes (HAVCR2/TIM3, CD27, CD70, CTLA4, ICOS, IDO1, LAG3, PDCD1, TNFRSF9, PVRIG, CD274/PDL1, and TIGIT) were overexpressed in IBCs as compared to normal breast and two-thirds were overexpressed in IBCs versus non-IBCs, with very frequent co-overexpression. For most of them, the overexpression was associated with better pathological response to chemotherapy. Conclusion. Our results suggest the potential higher vulnerability of IBC to ICIs. Clinical trials.
Collapse
Affiliation(s)
- François Bertucci
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.,Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Laurys Boudin
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals & CORE, MIPRO, University of Antwerp, Antwerp, Belgium.,Department of Oncological Research, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Patrice Viens
- Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Anthony Gonçalves
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.,Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Naoto T Ueno
- Breast Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium.,Translational Cancer Research Unit, GZA Hospitals & CORE, MIPRO, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| |
Collapse
|
23
|
Stevenson J, Barrow-McGee R, Yu L, Paul A, Mansfield D, Owen J, Woodman N, Natrajan R, Haider S, Gillett C, Tutt A, Pinder SE, Choudary J, Naidoo K. Proteomics of REPLICANT perfusate detects changes in the metastatic lymph node microenvironment. NPJ Breast Cancer 2021; 7:24. [PMID: 33674617 PMCID: PMC7935848 DOI: 10.1038/s41523-021-00227-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
In breast cancer (BC), detecting low volumes of axillary lymph node (ALN) metastasis pre-operatively is difficult and novel biomarkers are needed. We recently showed that patient-derived ALNs can be sustained ex-vivo using normothermic perfusion. We now compare reactive (tumour-free; n = 5) and macrometastatic (containing tumour deposits >2 mm; n = 4) ALNs by combining whole section multiplex immunofluorescence with TMT-labelled LC-MS/MS of the circulating perfusate. Macrometastases contained significantly fewer B cells and T cells (CD4+/CD8+/regulatory) than reactive nodes (p = 0.02). Similarly, pathway analysis of the perfusate proteome (119/1453 proteins significantly differentially expressed) showed that immune function was diminished in macrometastases in favour of ‘extracellular matrix degradation’; only ‘neutrophil degranulation’ was preserved. Qualitative comparison of the perfusate proteome to that of node-positive pancreatic and prostatic adenocarcinoma also highlighted ‘neutrophil degranulation’ as a contributing factor to nodal metastasis. Thus, metastasis-induced changes in the REPLICANT perfusate proteome are detectable, and could facilitate biomarker discovery.
Collapse
Affiliation(s)
- Julia Stevenson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachel Barrow-McGee
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Lu Yu
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Angela Paul
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - David Mansfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Julie Owen
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Natalie Woodman
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Andrew Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Comprehensive Cancer Centre, London, UK
| | - Jyoti Choudary
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Kalnisha Naidoo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK. .,Department of Cellular Pathology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK.
| |
Collapse
|
24
|
Noske A, Ammann JU, Wagner DC, Denkert C, Lebeau A, Sinn P, Kreipe HH, Sommer U, Baretton G, Steiger K, Kiechle M, Hieke-Schulz S, Flores M, Roth W, Weichert W. A multicentre analytical comparison study of inter-reader and inter-assay agreement of four programmed death-ligand 1 immunohistochemistry assays for scoring in triple-negative breast cancer. Histopathology 2021; 78:567-577. [PMID: 32936950 DOI: 10.1111/his.14254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
AIMS Studies in various cancer types have demonstrated discordance between results from different programmed death-ligand 1 (PD-L1) assays. Here, we compare the reproducibility and analytical concordance of four clinically developed assays for assessing PD-L1-positivity in tumour-infiltrating immune cells in the tumour area (PD-L1-IC-positivity) in triple-negative breast cancer (TNBC). METHODS AND RESULTS Primary TNBC resection specimens (n = 30) were selected based on their PD-L1-IC-positivity per VENTANA SP142 (<1%: 15 cases; 1-5%: seven cases; >5%: eight cases). Serial histological sections were stained for PD-L1 using VENTANA SP142, VENTANA SP263, DAKO 22C3 and DAKO 28-8. PD-L1-IC-positivity and tumour cell expression (≥1 versus <1%) were scored by trained readers from seven sites using online virtual microscopy. The adjusted mean of PD-L1-IC-positivity for SP263 (7.8%) was significantly higher than those for the other three assays (3.7-4.9%). Differences in adjusted means were statistically significant between SP263 and the other three assays (P < 0.0001) but not between the three remaining assays when excluding SP263 (P = 0.0961-0.6522). Intra-class correlation coefficients revealed moderate-to-strong inter-reader agreement for each assay (0.460-0.805) and poor-to-strong inter-assay agreement for each reader (0.298-0.678) on PD-L1-IC-positivity. CONCLUSIONS In this first multicentre study of different PD-L1 assays in TNBC, we show that PD-L1-IC-positivity for SP142, 22C3 and 28-8 was reproducible and analytically concordant, indicating that these three assays may be analytically interchangeable. The relevance of the higher PD-L1-IC-positivity for SP263 should be further investigated.
Collapse
Affiliation(s)
- Aurelia Noske
- Technical University of Munich, Institute of Pathology, Munich, Germany
| | | | - Daniel-Christoph Wagner
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Annette Lebeau
- Private Group Practice for Pathology Lübeck, Lübeck, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Sinn
- Division of Gynecopathology, University Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ulrich Sommer
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Katja Steiger
- Technical University of Munich, Institute of Pathology, Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Mike Flores
- Ventana Medical Systems, Inc., Tucson, AZ, USA
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wilko Weichert
- Technical University of Munich, Institute of Pathology, Munich, Germany
| |
Collapse
|
25
|
Gadaleta-Caldarola G, Nenna R, Lanotte L, Doronzo A, Gadaleta-Caldarola A, Roma ID, Lombardi L, Infusino S. Metaplastic breast cancer: an old histotype but a current therapeutic problem. Future Oncol 2021; 17:955-963. [PMID: 33538176 DOI: 10.2217/fon-2020-0490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metaplastic breast cancer (MPBC) is a rare and aggressive tumor type in great need of satisfactory therapies. Although most cases of MPBC are 'triple negative', they are nonetheless related to worse outcomes compared with other triple-negative invasive tumors. MPBC presents high levels of genetic and molecular heterogeneity, suggesting that novel targeted therapies can be exploited. Overexpression of PD-L1 and high levels of tumor-infiltrating lymphocytes have also been observed in these tumors, suggesting a role for immunotherapy. We present an updated literature revision on clinical, histopathological and molecular features of MPBC and their significance to prognosis and therapy options. We discuss emerging efforts to improve and personalize prognostic and therapeutic approaches, exploiting the molecular signature of MPBC with targeted therapies and immunotherapies.
Collapse
Affiliation(s)
| | - Rosanna Nenna
- Anatomic Patology Unit, "L. Bonomo" Hospital, Andria (BT), ASL BT, 76123, Italy
| | - Laura Lanotte
- Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, 76121, Italy
| | - Antonio Doronzo
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria "Ospedali Riuniti", Foggia, 71100, Italy
| | | | - Ileana de Roma
- Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, 76121, Italy
| | - Lucia Lombardi
- Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, 76121, Italy
| | - Stefania Infusino
- Medical Oncology Unit, "SS. Annunziata" Hospital, Cosenza (CS), Azienda Ospedaliera di Cosenza, 87100, Italy
| |
Collapse
|
26
|
Yamashita N, Long M, Fushimi A, Yamamoto M, Hata T, Hagiwara M, Bhattacharya A, Hu Q, Wong KK, Liu S, Kufe D. MUC1-C integrates activation of the IFN-γ pathway with suppression of the tumor immune microenvironment in triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002115. [PMID: 33495298 PMCID: PMC7839859 DOI: 10.1136/jitc-2020-002115] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/09/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have had a profound impact on the treatment of many tumors; however, their effectiveness against triple-negative breast cancers (TNBCs) has been limited. One factor limiting responsiveness of TNBCs to ICIs is a lack of functional tumor-infiltrating lymphocytes (TILs) in ‘non-inflamed’ or ‘cold’ tumor immune microenvironments (TIMEs), although by unknown mechanisms. Targeting MUC1-C in a mouse transgenic TNBC tumor model increases cytotoxic tumor-infiltrating CD8+ T cells (CTLs), supporting a role for MUC1-C in immune evasion. The basis for these findings and whether they extend to human TNBCs are not known. Methods Human TNBC cells silenced for MUC1-C using short hairpin RNAs (shRNAs) were analyzed for the effects of MUC1-C on global transcriptional profiles. Differential expression and rank order analysis was used for gene set enrichment analysis (GSEA). Gene expression was confirmed by quantitative reverse-transcription PCR and immunoblotting. The The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets were analyzed for effects of MUC1 on GSEA, cell-type enrichment, and tumor immune dysfunction and exclusion. Single-cell scRNA-seq datasets of TNBC samples were analyzed for normalized expression associations between MUC1 and selected genes within tumor cells. Results Our results demonstrate that MUC1-C is a master regulator of the TNBC transcriptome and that MUC1-C-induced gene expression is driven by STAT1 and IRF1. We found that MUC1-C activates the inflammatory interferon (IFN)-γ-driven JAK1→STAT1→IRF1 pathway and induces the IDO1 and COX2/PTGS2 effectors, which play key roles in immunosuppression. Involvement of MUC1-C in activating the immunosuppressive IFN-γ pathway was extended by analysis of human bulk and scRNA-seq datasets. We further demonstrate that MUC1 associates with the depletion and dysfunction of CD8+ T cells in the TNBC TIME. Conclusions These findings demonstrate that MUC1-C integrates activation of the immunosuppressive IFN-γ pathway with depletion of TILs in the TNBC TIME and provide support for MUC1-C as a potential target for improving TNBC treatment alone and in combination with ICIs. Of translational significance, MUC1-C is a druggable target with chimeric antigen receptor (CAR) T cells, antibody-drug conjugates (ADCs) and a functional inhibitor that are under clinical development.
Collapse
Affiliation(s)
- Nami Yamashita
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Atsushi Fushimi
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Masaaki Yamamoto
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tsuyoshi Hata
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Masayuki Hagiwara
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Donald Kufe
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Affiliation(s)
- Harold J Burstein
- From the Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School - all in Boston
| |
Collapse
|
28
|
Li C, Ma RZ, Han GY, Guo YH, Zhang YN, Zhang YT, Wang H, Zhang YP, Chen FM, Zhang SG, Wang MC, Hao FR, Zhang YX. A Potential Predictive Biomarker for Miller/Payne Grading: PD-L1 Expression before Neoadjuvant Chemotherapy in Breast Cancer. Oncol Res Treat 2020; 43:573-583. [PMID: 32957100 DOI: 10.1159/000508139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to investigate the value of programmed death ligand 1 (PD-L1) expression as a predictive biomarker for Miller/Payne grading before neoadjuvant chemotherapy (NACT) in breast cancer. PATIENTS AND METHODS The expression of PD-L1 in pretreatment biopsies of breast cancer was assessed by immunohistochemistry in tissue microarrays. The results were analyzed using SPSS 22.0 statistical software. RESULTS Of 53 female patients, 10 (18.9%) patients had a grade 5 (G5) response, and 12 (22.6%) patients showed PD-L1 expression, including 7 (13.2%) patients with staining in tumor cells (TCs) and 8 (15.1%) patients with staining in peritumoral lymphocytes (PTLCs). Logistic regression analysis revealed that G5 response to NACT was significantly associated with TCs or PTLCs PD-L1 positivity, whether with univariate analysis (TCs PD-L1: p = 0.00, OR 20.50, 95% CI 3.11-134.94; PTLCs PD-L1: p = 0.02, OR 6.50, 95% CI 1.27-33.20) or with multivariate analysis (TCs PD-L1: p = 0.00, OR 42.23, 95% CI 3.36-530.90; PTLCs PD-L1: p = 0.02, OR 9.07, 95% CI 1.37-60.02). The same trend was found in the luminal subgroup analysis (TCs PD-L1: p = 0.02, OR 23.43, 95% CI 1.66-331.58; PTLCs PD-L1: p = 0.01, OR 47.89, 95% CI 2.47-927.41). CONCLUSION G5 response to NACT in breast cancer was significantly associated with TCs or PTLCs PD-L1-positive expression in pretreatment biopsies; it can be expected that PD-L1 will become a new independent biomarker of response to NACT in breast cancer.
Collapse
Affiliation(s)
- Cheng Li
- Clinical School, Weifang Medical University, Weifang, China
| | - Rui-Zhong Ma
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Gui-Yan Han
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Ying-Hua Guo
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Ya-Nan Zhang
- Clinical School, Weifang Medical University, Weifang, China
| | - Ya-Ting Zhang
- Clinical School, Weifang Medical University, Weifang, China
| | - Hui Wang
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Yu-Ping Zhang
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Fang-Ming Chen
- Department of Radiation Oncology, Rongcheng People's Hospital, Weihai, China
| | - Shi-Geng Zhang
- Department of Radiation Oncology, Taian Tumor Prevention and Treatment Hospital, Taian, China
| | - Ming-Chen Wang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Fu-Rong Hao
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China, .,Weifang Key Laboratory of Radiophysics and Oncological Radiobiology, Weifang, China,
| | - Yun-Xiang Zhang
- Department of Pathology, Weifang People's Hospital, Weifang, China
| |
Collapse
|
29
|
Lotfinejad P, Kazemi T, Mokhtarzadeh A, Shanehbandi D, Jadidi Niaragh F, Safaei S, Asadi M, Baradaran B. PD-1/PD-L1 axis importance and tumor microenvironment immune cells. Life Sci 2020; 259:118297. [PMID: 32822718 DOI: 10.1016/j.lfs.2020.118297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is heterogeneous cancer with poor prognosis among the other breast tumors. Rapid recurrence and increased progression rate could be reasons for the poor prognosis of this type of breast cancer. Recently, because of the lack of specific targets in multiple cancer treatment, immune checkpoint blockade therapies with targeting PD-1/PD-L1 axis have displayed significant advances and improved survival. Among different types of breast cancers, TNBC is considered more immunogenic with high T-cell and other immune cells infiltration compared to other breast cancer subtypes. This immunogenic characteristic of TNBC is a beneficial marker in the immunotherapy of these tumors. Clinical studies with a focus on immune checkpoint therapy have demonstrated promising results in TNBC treatment. In this review, we summarize clinical trials with the immunotherapy-based treatment of different cancers and also discuss the interaction between infiltrating immune cells and breast tumor microenvironment. In addition, we focus on the signaling pathway that controls PD-L1 expression and continues with CAR T-cell therapy and siRNA as novel strategies and potential tools in targeted therapy.
Collapse
Affiliation(s)
- Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Chao X, Liu L, Sun P, Yang X, Li M, Luo R, Huang Y, He J, Yun J. Immune parameters associated with survival in metaplastic breast cancer. Breast Cancer Res 2020; 22:92. [PMID: 32811533 PMCID: PMC7437173 DOI: 10.1186/s13058-020-01330-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background Metaplastic breast carcinoma (MBC) is a rare histological type of breast cancer, which commonly shows resistance to standard therapies and is associated with poor prognosis. The immune microenvironment in MBC and its significance has not been well established due to its low incurrence rate and complex components. We aimed to investigate the diversity of immune parameters including subsets of TILs and PDL1/PD1 expression in MBC, as well as its correlation with prognosis. Methods A total of 60 patients diagnosed with MBC from January 2006 to December 2017 were included in our study. The percentage (%) and quantification (per mm2) of TILs and presence of tertiary lymphoid structures (TLS) were evaluated by hematoxylin and eosin staining (HE). The quantification of CD4+, CD8+ TILs (per mm2), and PD-1/PDL1 expression were evaluated through immunohistochemistry and analyzed in relation to clinicopathological characteristics. A ≥ 1% membranous or cytoplasmatic expression of PD1 and PDL1 was considered a positive expression. Results We found squamous cell carcinoma MBC (33/60, 55%) exhibiting most TILs of all the MBC subtypes (p = 0.043). Thirty-three of 60 (50%) of the patients had coexisting invasive ductal carcinoma of no special type (IDC-NST), and the average percentage of TILs in MBC components was lower compared with NST components (p < 0.001). Thirty (50%) patients exhibited positive (≥ 1%) PDL1 expression in their tumor cells, while 36 (60%) had positive (≥ 1%) PDL1 expression in their TILs. Twenty-seven (45%) of all the patients had positive (≥ 1%) PD1 expression in their tumor cells and 33 (55%) had PD1-positive (≥ 1%) stromal TILs. More CD8+ TILs were associated with positive PDL1 expression of tumor cells as well as positive PD1 expression in stromal cells. Greater number of stromal TILS (> 300/mm2, 20%), CD4+ TILs (> 250/mm2), and CD8+ TILs (> 70/mm2) in MBC were found associated with longer disease-free survival. Positive expression of PDL1 in tumor cells (≥ 1%) and PD1 in stromal cells (≥ 1%) were also associated with longer survival. Conclusions The immune characteristics differ in various subtypes as well as components of MBC. Immune parameters are key predictive factors of MBC and provide the clinical significance of applying immune checkpoint therapies in patients with MBC.
Collapse
Affiliation(s)
- Xue Chao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Lili Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Peng Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Xia Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Mei Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Rongzhen Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Yuhua Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Jiehua He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China
| | - Jingping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China. .,Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
31
|
Guo H, Ding Q, Gong Y, Gilcrease MZ, Zhao M, Zhao J, Sui D, Wu Y, Chen H, Liu H, Zhang J, Resetkova E, Moulder SL, Wang WL, Huo L. Comparison of three scoring methods using the FDA-approved 22C3 immunohistochemistry assay to evaluate PD-L1 expression in breast cancer and their association with clinicopathologic factors. Breast Cancer Res 2020; 22:69. [PMID: 32576238 PMCID: PMC7310491 DOI: 10.1186/s13058-020-01303-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the evaluation of PD-L1 expression to select patients for anti-PD-1/PD-L1 treatment, uniform guidelines that account for different immunohistochemistry assays, different cell types and different cutoff values across tumor types are lacking. Data on how different scoring methods compare in breast cancer are scant. METHODS Using FDA-approved 22C3 diagnostic immunohistochemistry assay, we retrospectively evaluated PD-L1 expression in 496 primary invasive breast tumors that were not exposed to anti-PD-1/PD-L1 treatment and compared three scoring methods (TC: invasive tumor cells; IC: tumor-infiltrating immune cells; TCIC: a combination of tumor cells and immune cells) in expression frequency and association with clinicopathologic factors. RESULTS In the entire cohort, positive PD-L1 expression was observed in 20% of patients by TCIC, 16% by IC, and 10% by TC, with a concordance of 87% between the three methods. In the triple-negative breast cancer patients, positive PD-L1 expression was observed in 35% by TCIC, 31% by IC, and 16% by TC, with a concordance of 76%. Associations between PD-L1 and clinicopathologic factors were investigated according to receptor groups and whether the patients had received neoadjuvant chemotherapy. The three scoring methods showed differences in their associations with clinicopathologic factors in all subgroups studied. Positive PD-L1 expression by IC was significantly associated with worse overall survival in patients with neoadjuvant chemotherapy and showed a trend for worse overall survival and distant metastasis-free survival in triple-negative patients with neoadjuvant chemotherapy. Positive PD-L1 expression by TCIC and TC also showed trends for worse survival in different subgroups. CONCLUSIONS Our findings indicate that the three scoring methods with a 1% cutoff are different in their sensitivity for PD-L1 expression and their associations with clinicopathologic factors. Scoring by TCIC is the most sensitive way to identify PD-L1-positive breast cancer by immunohistochemistry. As a prognostic marker, our study suggests that PD-L1 is associated with worse clinical outcome, most often shown by the IC score; however, the other scores may also have clinical implications in some subgroups. Large clinical trials are needed to test the similarities and differences of these scoring methods for their predictive values in anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Hua Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Michael Z Gilcrease
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Min Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Dawen Sui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hui Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hui Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jinxia Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Erika Resetkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Unit 85, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Serum PD-1/PD-L1 Levels, Tumor Expression and PD-L1 Somatic Mutations in HER2-Positive and Triple Negative Normal-Like Feline Mammary Carcinoma Subtypes. Cancers (Basel) 2020; 12:cancers12061386. [PMID: 32481540 PMCID: PMC7352561 DOI: 10.3390/cancers12061386] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment has gained great relevance due to its ability to regulate distinct checkpoints mediators, orchestrating tumor progression. Serum programmed cell death protein-1 (PD-1) and programmed death ligand-1 (PD-L1) levels were compared with healthy controls and with serum cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and tumor necrosis factor-alpha (TNF-α) levels in order to understand the role of PD-1/PD-L1 axis in cats with mammary carcinoma. PD-1 and PD-L1 expression was evaluated in tumor-infiltrating lymphocytes (TILs) and cancer cells, as the presence of somatic mutations. Results showed that serum PD-1 and PD-L1 levels were significantly higher in cats with HER2-positive (p = 0.017; p = 0.032) and triple negative (TN) normal-like mammary carcinomas (p = 0.004; p = 0.015), showing a strong positive correlation between serum CTLA-4 and TNF-α levels. In tumors, PD-L1 expression in cancer cells was significantly higher in HER2-positive samples than in TN normal-like tumors (p = 0.010), as the percentage of PD-L1-positive TILs (p = 0.037). PD-L1 gene sequencing identified two heterozygous mutations in exon 4 (A245T; V252M) and one in exon 5 (T267S). In summary, results support the use of spontaneous feline mammary carcinoma as a model for human breast cancer and suggest that the development of monoclonal antibodies may be a therapeutic strategy.
Collapse
|
33
|
Yaghoobi V, Martinez-Morilla S, Liu Y, Charette L, Rimm DL, Harigopal M. Advances in quantitative immunohistochemistry and their contribution to breast cancer. Expert Rev Mol Diagn 2020; 20:509-522. [PMID: 32178550 DOI: 10.1080/14737159.2020.1743178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Automated image analysis provides an objective, quantitative, and reproducible method of measurement of biomarkers. Image quantification is particularly well suited for the analysis of tissue microarrays which has played a major pivotal role in the rapid assessment of molecular biomarkers. Data acquired from grinding up bulk tissue samples miss spatial information regarding cellular localization; therefore, methods that allow for spatial cell phenotyping at high resolution have proven to be valuable in many biomarker discovery assays. Here, we focus our attention on breast cancer as an example of a tumor type that has benefited from quantitative biomarker studies using tissue microarray format.Areas covered: The history of immunofluorescence and immunohistochemistry and the current status of these techniques, including multiplexing technologies (spectral and non-spectral) and image analysis software will be addressed. Finally, we will turn our attention to studies that have provided proof-of-principle evidence that have been impacted from the use of these techniques.Expert opinion: Assessment of prognostic and predictive biomarkers on tissue sections and TMA using Quantitative immunohistochemistry is an important advancement in the investigation of biologic markers. The challenges in standardization of quantitative technologies for accurate assessment are required for adoption into routine clinical practice.
Collapse
Affiliation(s)
- Vesal Yaghoobi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yuting Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lori Charette
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Dadiani M, Necula D, Kahana-Edwin S, Oren N, Baram T, Marin I, Morzaev-Sulzbach D, Pavlovski A, Balint-Lahat N, Anafi L, Wiemann S, Korner C, Gal-Yam EN, Avivi C, Kaufman B, Barshack I, Ben-Baruch A. TNFR2+ TILs are significantly associated with improved survival in triple-negative breast cancer patients. Cancer Immunol Immunother 2020; 69:1315-1326. [PMID: 32198536 DOI: 10.1007/s00262-020-02549-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
In view of the relatively limited efficacy of immunotherapies targeting the PD-1-PD-L1 axis in triple-negative breast cancer (TNBC) and of published reports on tumor-promoting roles of TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs), we determined the incidence of TNFR2+ TILs in TNBC patient tumors, their association with disease outcome and relations with PD-1+ TILs. Using a cohort of treatment-naïve TNBC patients with long follow-up (n = 70), we determined the presence of TNFR2+ TILs and PD-1+ TILs by immunohistochemistry. TILs (≥ 1% of cellular mass) and TNFR2+ TILs (≥ 1% of total TILs) were detected in 96% and 74% of tumors, respectively. The presence of TILs at > 5% of tumor cell mass ("Positive TILs"), as well as of positive TNFR2+ TILs (> 5%), was independently associated with good prognosis, and combination of both parameters demonstrated superior outcome relative to their lower levels. PD1+ TILs (> 5/hot spot) were detected in 63% of patients. High levels of PD-1+ TILs (> 20/hot spot) showed an unfavorable disease outcome, and in their presence, the favorable outcome of positive TNFR2+ TILs was ablated. Thus, TNFR2+ TILs are strongly connected to improved prognosis in TNBC; these findings suggest that TNFR2+ TILs have favorable effects in TNBC patients, unlike the tumor-promoting roles attributed to them in other cancer systems. Overall, our observations propose that the TNFR2+ TIL subset should not be targeted in the course of TNBC therapy; rather, its beneficial impacts may become into power when anti-PD-1 regimens-that may potentiate immune activities-are administered to TNBC patients.
Collapse
Affiliation(s)
- Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Daniela Necula
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Nino Oren
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tamir Baram
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Irina Marin
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Anya Pavlovski
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | | | - Liat Anafi
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Korner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Camila Avivi
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel
| | - Bella Kaufman
- Breast Oncology Institute, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Pathology Institute, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
35
|
Vranic S, Cyprian FS, Gatalica Z, Palazzo J. PD-L1 status in breast cancer: Current view and perspectives. Semin Cancer Biol 2019; 72:146-154. [PMID: 31883913 DOI: 10.1016/j.semcancer.2019.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022]
Abstract
Breast cancer was traditionally not considered a particularly immunogenic tumor. However, recent developments have shown that some aggressive triple-negative breast cancers are immunogenic, exhibit a resistance to chemotherapy and have a poor prognosis. These cancers have been shown to express molecules identified as targets for immunotherapy. Despite the advances, the challenges are many, and include identifying the patients that may benefit from immunotherapy. The best methods to analyze these samples and to evaluate immunogenicity are also major challenges. Therefore, the most accurate and reliable assessment of immune cells as potential targets is one of the most important aims in the current research in breast immunotherapy. In the present review, we briefly discuss the mechanisms of the regulation of checkpoint inhibitors (PD-1/PD-L1) in breast cancer and explore the predictive aspects in the PD-L1 testing.
Collapse
Affiliation(s)
- Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
36
|
Barrow-McGee R, Procter J, Owen J, Woodman N, Lombardelli C, Kothari A, Kovacs T, Douek M, George S, Barry PA, Ramsey K, Gibson A, Buus R, Holgersen E, Natrajan R, Haider S, Shattock MJ, Gillett C, Tutt AN, Pinder SE, Naidoo K. Real-time ex vivo perfusion of human lymph nodes invaded by cancer (REPLICANT): a feasibility study. J Pathol 2019; 250:262-274. [PMID: 31755096 PMCID: PMC7065097 DOI: 10.1002/path.5367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023]
Abstract
Understanding how breast cancer (BC) grows in axillary lymph nodes (ALNs), and refining how therapies might halt that process, is clinically important. However, modelling the complex ALN microenvironment is difficult, and no human models exist at present. We harvested ALNs from ten BC patients, and perfused them at 37 °C ex vivo for up to 24 h. Controlled autologous testing showed that ALNs remain viable after 24 h of ex vivo perfusion: haematoxylin and eosin-stained histological appearance and proliferation (by Ki67 immunohistochemistry) did not change significantly over time for any perfused ALN compared with a control from time-point zero. Furthermore, targeted gene expression analysis (NanoString PanCancer IO360 panel) showed that only 21/750 genes were differentially expressed between control and perfused ALNs (|log2 FC| > 1 and q < 0.1): none were involved in apoptosis and metabolism, but rather all 21 genes were involved in immune function and angiogenesis. During perfusion, tissue acid-base balance remained stable. Interestingly, the flow rate increased (p < 0.001) in cancer-replaced (i.e. metastasis occupied more than 90% of the surface area on multiple levels) compared to cancer-free nodes (i.e. nodes with no metastasis on multiple sections). CXCL11 transcripts were significantly more abundant in cancer-replaced nodes, while CXCL12 transcripts were significantly more abundant in cancer-free nodes. These cytokines were also detected in the circulating perfusate. Monoclonal antibodies (nivolumab and trastuzumab) were administered into a further three ALNs to confirm perfusion efficacy. These drugs saturated the nodes; nivolumab even induced cancer cell death. Normothermic ALN perfusion is not only feasible but sustains the tumour microenvironment ex vivo for scientific investigation. This model could facilitate the identification of actionable immuno-oncology targets. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rachel Barrow-McGee
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Julia Procter
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Julie Owen
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Natalie Woodman
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Cristina Lombardelli
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | | | - Tibor Kovacs
- Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Michael Douek
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Comprehensive Cancer Centre, London, UK
| | - Simi George
- Department of Cellular Pathology, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | | | - Amy Gibson
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Richard Buus
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK.,Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, UK
| | - Erle Holgersen
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Syed Haider
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Michael J Shattock
- British Heart Foundation Centre of Research Excellence, King's College London, St Thomas' Hospital, London, UK
| | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Andrew Nj Tutt
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK
| | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Comprehensive Cancer Centre, London, UK
| | - Kalnisha Naidoo
- Toby Robins Breast Cancer Now Research Centre, Breast Cancer Research Division, The Institute of Cancer Research, London, UK.,Department of Cellular Pathology, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Jiang C, Cao S, Li N, Jiang L, Sun T. PD-1 and PD-L1 correlated gene expression profiles and their association with clinical outcomes of breast cancer. Cancer Cell Int 2019; 19:233. [PMID: 31516390 PMCID: PMC6734479 DOI: 10.1186/s12935-019-0955-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Immunotherapies that targeting programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) have obtained prominent success in breast cancer (BC). However, not all the patients benefit from the antibody therapy. This study aimed to identify PD-1/PD-L1 correlated genes and pathways as well as investigate their potential as prognostic marker in BC. Materials and methods By analysing transcriptional data of BC from TCGA, we identified PD-1 and PD-L1 correlated genes by WGCNA analysis and explored the biological process as well as pathways they enriched. Co-expression analysis were performed for PD-1/PD-L1 with immune infiltration and checkpoints. The prognostic value of PD-1 and PD-L1 were also investigated. Results PD-1 and PD-L1 expression showed significant difference in different molecular subtypes and stages. PD-1 correlated genes enriched in T cell activation, lymphocyte activation, leukocyte migration while PD-L1 correlated genes demonstrated enrichment including T cell apoptotic process, tolerance induction and cytolysis. Immune infiltration analysis suggested that PD-1 and PD-L1 were related with Neutrophils (r = 0.65, r = 0.48) and Fibroblasts (r = 0.59, r = 0.47). For immune checkpoints analysis, PD-1 was associated with HLA-A (r = 0.804) and INPP5D (r = 0.782) while PD-L1 correlated with CTLA4 (r = 0.843) and CD27 (r = 0.823). PD-1 was associated favorable survival of BC (HR = 0.67, P = 0.012) while PD-L1 did not demonstrate significant association with BC prognosis (HR = 0.85, P = 0.313). Conclusion PD-1 and PD-L1 correlated genes participated in biological process including T cell activation, lymphocyte activation, leukocyte migration, T cell apoptotic process, tolerance induction and cytolysis. PD-1/PD-L1 expression also demonstrated relation with immune infiltration and immune checkpoints. High PD-1 expression predicted better survival of breast cancer patients.
Collapse
Affiliation(s)
- Cui Jiang
- 1Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| | - SunRun Cao
- 2Institute of Translational Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110001 Liaoning People's Republic of China
| | - Na Li
- 2Institute of Translational Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110001 Liaoning People's Republic of China
| | - Lei Jiang
- 1Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| | - Tao Sun
- 1Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| |
Collapse
|