1
|
Smith ED, Jin K, Ferguson B, Tsan YC, DePalma SJ, Meisner J, Renberg A, Bedi K, Friedline S, Margulies KB, Baker BM, Helms AS. Desmoplakin Haploinsu/iciency Underlies Cell-Cell Adhesion Failure in DSP Cardiomyopathy and is Rescued by Transcriptional Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.01.657304. [PMID: 40502028 PMCID: PMC12157459 DOI: 10.1101/2025.06.01.657304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
Background Truncating variants in desmoplakin ( DSP tv), are a leading cause of arrhythmogenic cardiomyopathy (ACM), often presenting with early fibrosis and arrhythmias disproportionate to systolic dysfunction. DSP is critical for cardiac mechanical integrity, linking desmosomes to the cytoskeleton to withstand contractile forces. While loss-of-function is implicated, direct evidence, both for DSP haploinsufficiency in human hearts and for the impact of mechanical stress on cardiomyocyte adhesion, has been limited, leaving the pathogenic mechanism unclear. Methods We analyzed explanted human heart tissue from patients with DSP tv (N=3), titin truncating variants ( TTN tv, N=5), and controls (N=5) using RNA-sequencing and mass spectrometry. We generated human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) harboring patient-derived or CRISPR-Cas9 engineered DSP tv to model a range of DSP expression levels. Using a 2D cardiac muscle bundle (CMB) platform enabling live visualization of cell junctions, we developed an assay to assess cell-cell adhesion upon heightened contractile stress in response to the contractile agonist endothelin-1. CRISPR-interference (CRISPRi) was used to confirm the role of DSP loss, and CRISPR-activation (CRISPRa) was tested for therapeutic rescue. Results Compared to both control and TTN tv hearts, DSP tv human hearts exhibited reduced DSP at both the mRNA and protein level, as well as broadly disrupted desmosomal stoichiometry. Transcriptomic and proteomic analyses implicated cell adhesion, extracellular matrix, and inflammatory pathways. iPSC-CM models recapitulated DSP haploinsufficiency and desmosomal disruption. DSP tv CMBs showed normal baseline contractile function. However, they displayed marked cell-cell adhesion failure with contractile stress (75% failure vs. 8% in controls, p<0.001). Adhesion failure was prevented by the myosin inhibitor, mavacamten. CRISPRi-mediated DSP knockdown replicated this susceptibility to adhesion failure. Conversely, CRISPRa robustly increased DSP expression and rescued cell-cell adhesion failure in DSP tv CMBs (9% failure post-CRISPRa, p<0.001 vs. un-treated). Rescue occurred even when only the DSPII isoform was upregulated in a model with biallelic DSP transcript 1 loss of function. Conclusions DSP haploinsufficiency is the major cause of DSP cardiomyopathy with a primary consequence of conferring vulnerability to cardiomyocyte cell-cell adhesion failure under heightened contractile stress. Transcriptional activation of DSP reverses this defect in preclinical models, establishing proof-of-concept for a potential therapeutic strategy in DSP cardiomyopathy.
Collapse
Affiliation(s)
- Eric D. Smith
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Karen Jin
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brianna Ferguson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yao-Chang Tsan
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Meisner
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Renberg
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabrina Friedline
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Huo J, Yang HQ. Electrophysiological analysis of cardiac K ATP channel. BIOPHYSICS REPORTS 2025; 11:77-86. [PMID: 40308939 PMCID: PMC12035747 DOI: 10.52601/bpr.2024.240023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 05/02/2025] Open
Abstract
ATP-sensitive potassium (KATP) channels are integral components in excitable cells, particularly in cardiomyocytes, serving as critical regulators of cellular metabolism and electrical excitability. In instances of prolonged oxygen deprivation or heightened metabolic requirements, the opening of KATP channels enables potassium efflux by virtue of a diminished ATP/ADP ratio. This process aids in maintaining membrane potential stability, thereby mitigating excessive excitability and cellular contraction, ultimately contributing significantly to cardiac protection. The accurate isolation of intact single cardiomyocytes and the electrophysiological evaluation of KATP channels are pivotal processes in research on KATP channels in cardiomyocytes in vitro. Here, we present a comprehensive protocol not only for the efficient isolation of viable cardiomyocytes from the adult mouse through the Langendorff perfusion method, but also for the recording of KATP channel currents in single cardiomyocytes employing patch clamp technique.
Collapse
Affiliation(s)
- Jianyi Huo
- Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
3
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Vencato S, Romanato C, Rampazzo A, Calore M. Animal Models and Molecular Pathogenesis of Arrhythmogenic Cardiomyopathy Associated with Pathogenic Variants in Intercalated Disc Genes. Int J Mol Sci 2024; 25:6208. [PMID: 38892395 PMCID: PMC11172742 DOI: 10.3390/ijms25116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/β-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.
Collapse
Affiliation(s)
- Sara Vencato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Chiara Romanato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Alessandra Rampazzo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Martina Calore
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
5
|
Moazzen H, Bolaji MD, Leube RE. Desmosomes in Cell Fate Determination: From Cardiogenesis to Cardiomyopathy. Cells 2023; 12:2122. [PMID: 37681854 PMCID: PMC10487268 DOI: 10.3390/cells12172122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Desmosomes play a vital role in providing structural integrity to tissues that experience significant mechanical tension, including the heart. Deficiencies in desmosomal proteins lead to the development of arrhythmogenic cardiomyopathy (AC). The limited availability of preventative measures in clinical settings underscores the pressing need to gain a comprehensive understanding of desmosomal proteins not only in cardiomyocytes but also in non-myocyte residents of the heart, as they actively contribute to the progression of cardiomyopathy. This review focuses specifically on the impact of desmosome deficiency on epi- and endocardial cells. We highlight the intricate cross-talk between desmosomal proteins mutations and signaling pathways involved in the regulation of epicardial cell fate transition. We further emphasize that the consequences of desmosome deficiency differ between the embryonic and adult heart leading to enhanced erythropoiesis during heart development and enhanced fibrogenesis in the mature heart. We suggest that triggering epi-/endocardial cells and fibroblasts that are in different "states" involve the same pathways but lead to different pathological outcomes. Understanding the details of the different responses must be considered when developing interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Hoda Moazzen
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (M.D.B.); (R.E.L.)
| | | | | |
Collapse
|
6
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
7
|
Tsui H, van Kampen SJ, Han SJ, Meraviglia V, van Ham WB, Casini S, van der Kraak P, Vink A, Yin X, Mayr M, Bossu A, Marchal GA, Monshouwer-Kloots J, Eding J, Versteeg D, de Ruiter H, Bezstarosti K, Groeneweg J, Klaasen SJ, van Laake LW, Demmers JAA, Kops GJPL, Mummery CL, van Veen TAB, Remme CA, Bellin M, van Rooij E. Desmosomal protein degradation as an underlying cause of arrhythmogenic cardiomyopathy. Sci Transl Med 2023; 15:eadd4248. [PMID: 36947592 DOI: 10.1126/scitranslmed.add4248] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.
Collapse
Affiliation(s)
- Hoyee Tsui
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Sebastiaan Johannes van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Petra van der Kraak
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Xiaoke Yin
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Manuel Mayr
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Alexandre Bossu
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Gerard A Marchal
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Joep Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Judith Groeneweg
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Linda W van Laake
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| |
Collapse
|
8
|
Weng A, Rabin EE, Flozak AS, Chiarella SE, Aillon RP, Gottardi CJ. Alpha-T-catenin is expressed in peripheral nerves as a constituent of Schwann cell adherens junctions. Biol Open 2022; 11:bio059634. [PMID: 36420826 PMCID: PMC9793867 DOI: 10.1242/bio.059634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The adherens junction component, alpha-T-catenin (αTcat) is an established contributor to cardiomyocyte junction structure and function, but recent genomic studies link CTNNA3 polymorphisms to diseases with no clear cardiac underpinning, including asthma, autism and multiple sclerosis, suggesting causal contributions from a different cell-type. We show Ctnna3 mRNA is highly expressed in peripheral nerves (e.g. vagus and sciatic), where αTcat protein enriches at paranodes and myelin incisure adherens junctions of Schwann cells. We validate αTcat immunodetection specificity using a new Ctnna3-knock-out fluorescence reporter mouse line yet find no obvious Schwann cell loss-of-function morphology at the light microscopic level. CTNNA3/Ctnna3 mRNA is also abundantly detected in oligodendrocytes of the central nervous system via public databases, supporting a general role for αTcat in these unique cell-cell junctions. These data suggest that the wide range of diseases linked to CTNNA3 may be through its role in maintaining neuroglial functions of central and peripheral nervous systems. This article has a corresponding First Person interview with the co-first authors of the paper.
Collapse
Affiliation(s)
- Anthea Weng
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Erik E. Rabin
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sergio E. Chiarella
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Raul Piseaux Aillon
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Cell & Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Scott L, Elídóttir K, Jeevaratnam K, Jurewicz I, Lewis R. Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis. Ann N Y Acad Sci 2022; 1515:105-119. [PMID: 35676231 PMCID: PMC9796457 DOI: 10.1111/nyas.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, "How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?" The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent-sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α-actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1-3 V square biphasic 50-ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| | | | | | | | - Rebecca Lewis
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
10
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
11
|
Yeruva S, Waschke J. Structure and regulation of desmosomes in intercalated discs: Lessons from epithelia. J Anat 2022; 242:81-90. [PMID: 35128661 PMCID: PMC9773171 DOI: 10.1111/joa.13634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
For electromechanical coupling of cardiomyocytes, intercalated discs (ICDs) are pivotal as highly specialized intercellular contact areas. ICD consists of adhesive contacts, such as desmosomes and adherens junctions (AJs) that are partially intermingled and thereby form an area composita to provide mechanical strength, as well as gap junctions (GJ) and sodium channels for excitation propagation. In contrast, in epithelia, mixed junctions with features of desmosomes and AJs are regarded as transitory primarily during the formation of desmosomes. The anatomy of desmosomes is defined by a typical ultrastructure with dense intracellular plaques anchoring the cadherin-type adhesion molecules to the intermediate filament cytoskeleton. Desmosomal diseases characterized by impaired adhesive and signalling functions of desmosomal contacts lead to arrhythmogenic cardiomyopathy when affecting cardiomyocytes and cause pemphigus when manifesting in keratinocytes or present as cardiocutaneous syndromes when both cell types are targeted by the disease, which underscores the high biomedical relevance of these cell contacts. Therefore, comparative analyses regarding the structure and regulation of desmosomal contacts in cardiomyocytes and epithelial cells are helpful to better understand disease pathogenesis. In this brief review, we describe the structural properties of ICD compared to epithelial desmosomes and suggest that mechanisms regulating adhesion may at least in part be comparable. Also, we discuss whether phenomena such as hyperadhesion or the bidirectional regulation of desmosomes to serve as signalling hubs in epithelial cells may also be relevant for ICD.
Collapse
Affiliation(s)
- Sunil Yeruva
- Ludwig‐Maximilian‐Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I – Vegetative AnatomieMunichGermany
| | - Jens Waschke
- Ludwig‐Maximilian‐Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I – Vegetative AnatomieMunichGermany
| |
Collapse
|
12
|
Beggs RR, Rao TC, Dean WF, Kowalczyk AP, Mattheyses AL. Desmosomes undergo dynamic architectural changes during assembly and maturation. Tissue Barriers 2022; 10:2017225. [PMID: 34983311 PMCID: PMC9621066 DOI: 10.1080/21688370.2021.2017225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Desmosomes are macromolecular cell-cell junctions critical for maintaining adhesion and resisting mechanical stress in epithelial tissue. Desmosome assembly and the relationship between maturity and molecular architecture are not well understood. To address this, we employed a calcium switch assay to synchronize assembly followed by quantification of desmosome nanoscale organization using direct Stochastic Optical Reconstruction Microscopy (dSTORM). We found that the organization of the desmoplakin rod/C-terminal junction changed over the course of maturation, as indicated by a decrease in the plaque-to-plaque distance, while the plaque length increased. In contrast, the desmoplakin N-terminal domain and plakoglobin organization (plaque-to-plaque distance) were constant throughout maturation. This structural rearrangement of desmoplakin was concurrent with desmosome maturation measured by E-cadherin exclusion and increased adhesive strength. Using two-color dSTORM, we showed that while the number of individual E-cadherin containing junctions went down with the increasing time in high Ca2+, they maintained a wider desmoplakin rod/C-terminal plaque-to-plaque distance. This indicates that the maturation state of individual desmosomes can be identified by their architectural organization. We confirmed these architectural changes in another model of desmosome assembly, cell migration. Desmosomes in migrating cells, closest to the scratch where they are assembling, were shorter, E-cadherin enriched, and had wider desmoplakin rod/C-terminal plaque-to-plaque distances compared to desmosomes away from the wound edge. Key results were demonstrated in three cell lines representing simple, transitional, and stratified epithelia. Together, these data suggest that there is a set of architectural programs for desmosome maturation, and we hypothesize that desmoplakin architecture may be a contributing mechanism to regulating adhesive strength.
Collapse
Affiliation(s)
- Reena R Beggs
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Pathogenesis, Diagnosis and Risk Stratification in Arrhythmogenic Cardiomyopathy. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease associated with sudden cardiac death (SCD). It is most frequently caused by mutations in genes encoding desmosomal proteins. However, there is growing evidence that ACM is not exclusively a desmosome disease but rather appears to be a disease of the connexoma. Fibroadipose replacement of the right ventricle (RV) had long been the hallmark of ACM, although biventricular involvement or predominant involvement of the left ventricle (LD-ACM) is increasingly found, raising the challenge of differential diagnosis with arrhythmogenic dilated cardiomyopathy (a-DCM). A-DCM, ACM, and LD-ACM are increasingly acknowledged as a single nosological entity, the hallmark of which is electrical instability. Our aim was to analyze the complex molecular mechanisms underlying arrhythmogenic cardiomyopathies, outlining the role of inflammation and autoimmunity in disease pathophysiology. Secondly, we present the clinical tools used in the clinical diagnosis of ACM. Focusing on the challenge of defining the risk of sudden death in this clinical setting, we present available risk stratification strategies. Lastly, we summarize the role of genetics and imaging in risk stratification, guiding through the appropriate patient selection for ICD implantation.
Collapse
|
14
|
Moazzen H, Venger K, Kant S, Leube RE, Krusche CA. Desmoglein 2 regulates cardiogenesis by restricting hematopoiesis in the developing murine heart. Sci Rep 2021; 11:21687. [PMID: 34737300 PMCID: PMC8569146 DOI: 10.1038/s41598-021-00996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Cardiac morphogenesis relies on intricate intercellular signaling. Altered signaling impacts cardiac function and is detrimental to embryonic survival. Here we report an unexpected regulatory role of the desmosomal cell adhesion molecule desmoglein 2 (Dsg2) on murine heart development. A large percentage of Dsg2-mutant embryos develop pericardial hemorrhage. Lethal myocardial rupture is occasionally observed, which is not associated with loss of cardiomyocyte contact but with expansion of abnormal, non-myocyte cell clusters within the myocardial wall. Two types of abnormal cell clusters can be distinguished: Type A clusters involve endocard-associated, round-shaped CD31+ cells, which proliferate and invade the myocardium. They acquire Runx1- and CD44-positivity indicating a shift towards a hematopoietic phenotype. Type B clusters expand subepicardially and next to type A clusters. They consist primarily of Ter119+ erythroid cells with interspersed Runx1+/CD44+ cells suggesting that they originate from type A cell clusters. The observed pericardial hemorrhage is caused by migration of erythrocytes from type B clusters through the epicardium and rupture of the altered cardiac wall. Finally, evidence is presented that structural defects of Dsg2-depleted cardiomyocytes are primary to the observed pathogenesis. We propose that cardiomyocyte-driven paracrine signaling, which likely involves Notch1, directs subsequent trans-differentiation of endo- and epicardial cells. Together, our observations uncover a hitherto unknown regulatory role of Dsg2 in cardiogenesis.
Collapse
Affiliation(s)
- Hoda Moazzen
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Kateryna Venger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Claudia A Krusche
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Zhang K, Cloonan PE, Sundaram S, Liu F, Das SL, Ewoldt JK, Bays JL, Tomp S, Toepfer CN, Marsiglia JDC, Gorham J, Reichart D, Eyckmans J, Seidman JG, Seidman CE, Chen CS. Plakophilin-2 truncating variants impair cardiac contractility by disrupting sarcomere stability and organization. SCIENCE ADVANCES 2021; 7:eabh3995. [PMID: 34652945 PMCID: PMC8519574 DOI: 10.1126/sciadv.abh3995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/25/2021] [Indexed: 05/10/2023]
Abstract
Progressive loss of cardiac systolic function in arrhythmogenic cardiomyopathy (ACM) has recently gained attention as an important clinical consideration in managing the disease. However, the mechanisms leading to reduction in cardiac contractility are poorly defined. Here, we use CRISPR gene editing to generate human induced pluripotent stem cells (iPSCs) that harbor plakophilin-2 truncating variants (PKP2tv), the most prevalent ACM-linked mutations. The PKP2tv iPSC–derived cardiomyocytes are shown to have aberrant action potentials and reduced systolic function in cardiac microtissues, recapitulating both the electrical and mechanical pathologies reported in ACM. By combining cell micropatterning with traction force microscopy and live imaging, we found that PKP2tvs impair cardiac tissue contractility by destabilizing cell-cell junctions and in turn disrupting sarcomere stability and organization. These findings highlight the interplay between cell-cell adhesions and sarcomeres required for stabilizing cardiomyocyte structure and function and suggest fundamental pathogenic mechanisms that may be shared among different types of cardiomyopathies.
Collapse
Affiliation(s)
- Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Subramanian Sundaram
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jennifer L. Bays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samuel Tomp
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
16
|
Cheng Z, Wylie A, Ferris C, Ingvartsen KL, Wathes DC. Effect of diet and nonesterified fatty acid levels on global transcriptomic profiles in circulating peripheral blood mononuclear cells in early lactation dairy cows. J Dairy Sci 2021; 104:10059-10075. [PMID: 34147225 DOI: 10.3168/jds.2021-20136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
After calving, lipid mobilization caused by increased nutrient demands for lactation leads to elevated circulating concentrations of nonesterified fatty acids (NEFA). Excessive NEFA levels have previously been identified as a major risk factor for postpartum immunosuppression. The aim of this study was to investigate changes in global transcriptomic gene expression of peripheral blood mononuclear cells (PBMC) in dairy cows offered different early lactation diets (high concentrate, n = 7; medium, n = 8; or low, n = 9) and with differing circulating levels of NEFA. Cows were classified as having NEFA concentrations of either <500 µM (low, n = 6), 500 to 750 µM (medium, n = 8) or >750 µM (high, n = 10) at 14 d in milk. Plasma urea concentrations were greater for cows on the high concentrate diet but β-hydroxybutyrate and glucose concentrations did not differ significantly between either dietary treatments or NEFA groups. Cows with high NEFA weighed more at drying off and suffered greater body condition score loss after calving. The PBMC were isolated at 14 d in milk, and RNA was extracted for RNA sequencing. Differential gene expression was analyzed with DESeq2 with q-value for false discovery rate control followed by Gene Ontology Enrichment. Although there were no differentially expressed genes associated with lactation diet, 304 differentially expressed genes were identified between cows with high and low circulating NEFA, with 118 upregulated and 186 downregulated. Gene Ontology enrichment analysis demonstrated that biological adhesion and immune system process were foremost among various PBMC functions which were altered relating to body defenses and immunity. High NEFA concentrations were associated with inhibited cellular adhesion function by downregulating 20 out of 26 genes (by up to 17-fold) related to this process. Medium NEFA concentrations altered a similar set of functions as high NEFA, but with smaller enrichment scores. Localization and immune system process were most significant, with biological adhesion ranking only eleventh. Our results demonstrated that increased circulating NEFA concentrations, but not diet, were associated with immune system processes in PBMC in early lactation cows. Leukocyte cell-to-cell adhesion was inhibited when the NEFA concentration exceeded 750 µM, which would reduce the efficiency of diapedesis and so contribute to decreased body defense mechanisms and predispose animals to infection.
Collapse
Affiliation(s)
- Z Cheng
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom.
| | - A Wylie
- Agri-Food and Biosciences Institute, Newforge Lane, Upper Malone Road, Belfast BT9 5PX, United Kingdom
| | - C Ferris
- Agri-Food and Biosciences Institute, Newforge Lane, Upper Malone Road, Belfast BT9 5PX, United Kingdom
| | - K L Ingvartsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - D C Wathes
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | | |
Collapse
|
17
|
Scott L, Jurewicz I, Jeevaratnam K, Lewis R. Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis. Bioengineering (Basel) 2021; 8:80. [PMID: 34207645 PMCID: PMC8228669 DOI: 10.3390/bioengineering8060080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is currently the top global cause of death, however, research into new therapies is in decline. Tissue engineering is a solution to this crisis and in combination with the use of carbon nanotubes (CNTs), which have drawn recent attention as a biomaterial, could facilitate the development of more dynamic and complex in vitro models. CNTs' electrical conductivity and dimensional similarity to cardiac extracellular proteins provide a unique opportunity to deliver scaffolds with stimuli that mimic the native cardiac microenvironment in vitro more effectively. This systematic review aims to evaluate the use and efficacy of CNTs for cardiac tissue scaffolds and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Three databases were searched: PubMed, Scopus, and Web of Science. Papers resulting from these searches were then subjected to analysis against pre-determined inclusion and quality appraisal criteria. From 249 results, 27 manuscripts met the criteria and were included in this review. Neonatal rat cardiomyocytes were most commonly used in the experiments, with multi-walled CNTs being most common in tissue scaffolds. Immunofluorescence was the experimental technique most frequently used, which was employed for the staining of cardiac-specific proteins relating to contractile and electrophysiological function.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Izabela Jurewicz
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Rebecca Lewis
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| |
Collapse
|
18
|
Myospryn deficiency leads to impaired cardiac structure and function and schizophrenia-associated symptoms. Cell Tissue Res 2021; 385:675-696. [PMID: 34037836 DOI: 10.1007/s00441-021-03447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
The desmin-associated protein myospryn, encoded by the cardiomyopathy-associated gene 5 (CMYA5), is a TRIM-like protein associated to the BLOC-1 (Biogenesis of Lysosomes Related Organelles Complex 1) protein dysbindin. Human myospryn mutations are linked to both cardiomyopathy and schizophrenia; however, there is no evidence of a direct causative link of myospryn to these diseases. Therefore, we sought to unveil the role of myospryn in heart and brain. We have genetically inactivated the myospryn gene by homologous recombination and demonstrated that myospryn null hearts have dilated phenotype and compromised cardiac function. Ultrastructural analyses revealed that the sarcomere organization is not obviously affected; however, intercalated disk (ID) integrity is impaired, along with mislocalization of ID and sarcoplasmic reticulum (SR) protein components. Importantly, cardiac and skeletal muscles of myospryn null mice have severe mitochondrial defects with abnormal internal vacuoles and extensive cristolysis. In addition, swollen SR and T-tubules often accompany the mitochondrial defects, strongly implying a potential link of myospryn together with desmin to SR- mitochondrial physical and functional cross-talk. Furthermore, given the reported link of human myospryn mutations to schizophrenia, we performed behavioral studies, which demonstrated that myospryn-deficient male mice display disrupted startle reactivity and prepulse inhibition, asocial behavior, decreased exploratory behavior, and anhedonia. Brain neurochemical and ultrastructural analyses revealed prefrontal-striatal monoaminergic neurotransmitter defects and ultrastructural degenerative aberrations in cerebellar cytoarchitecture, respectively, in myospryn-deficient mice. In conclusion, myospryn is essential for both cardiac and brain structure and function and its deficiency leads to cardiomyopathy and schizophrenia-associated symptoms.
Collapse
|
19
|
Ben-Haim Y, Asimaki A, Behr ER. Brugada syndrome and arrhythmogenic cardiomyopathy: overlapping disorders of the connexome? Europace 2021; 23:653-664. [PMID: 33200179 DOI: 10.1093/europace/euaa277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) and Brugada syndrome (BrS) are inherited diseases characterized by an increased risk for arrhythmias and sudden cardiac death. Possible overlap between the two was suggested soon after the description of BrS. Since then, various studies focusing on different aspects have been published pointing to similar findings in the two diseases. More recent findings on the structure of the cardiac cell-cell junctions may unite the pathophysiology of both diseases and give further evidence to the theory that they may in part be variants of the same disease spectrum. In this review, we aim to summarize the studies indicating the pathophysiological, genetic, structural, and electrophysiological overlap between ACM and BrS.
Collapse
Affiliation(s)
- Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Angeliki Asimaki
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Elijah R Behr
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Ghidoni A, Elliott PM, Syrris P, Calkins H, James CA, Judge DP, Murray B, Barc J, Probst V, Schott JJ, Song JP, Hauer RNW, Hoorntje ET, van Tintelen JP, Schulze-Bahr E, Hamilton RM, Mittal K, Semsarian C, Behr ER, Ackerman MJ, Basso C, Parati G, Gentilini D, Kotta MC, Mayosi BM, Schwartz PJ, Crotti L. Cadherin 2-Related Arrhythmogenic Cardiomyopathy: Prevalence and Clinical Features. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003097. [PMID: 33566628 DOI: 10.1161/circgen.120.003097] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the right and left ventricle, often causing ventricular dysfunction and life-threatening arrhythmias. Variants in desmosomal genes account for up to 60% of cases. Our objective was to establish the prevalence and clinical features of ACM stemming from pathogenic variants in the nondesmosomal cadherin 2 (CDH2), a novel genetic substrate of ACM. METHODS A cohort of 500 unrelated patients with a definite diagnosis of ACM and no disease-causing variants in the main ACM genes was assembled. Genetic screening of CDH2 was performed through next-generation or Sanger sequencing. Whenever possible, cascade screening was initiated in the families of CDH2-positive probands, and clinical evaluation was performed. RESULTS Genetic screening of CDH2 led to the identification of 7 rare variants: 5, identified in 6 probands, were classified as pathogenic or likely pathogenic. The previously established p.D407N pathogenic variant was detected in 2 additional probands. Probands and family members with pathogenic/likely pathogenic variants in CDH2 were clinically evaluated, and along with previously published cases, altogether contributed to the identification of gene-specific features (13 cases from this cohort and 11 previously published, for a total of 9 probands and 15 family members). Ventricular arrhythmic events occurred in most CDH2-positive subjects (20/24, 83%), while the occurrence of heart failure was rare (2/24, 8.3%). Among probands, sustained ventricular tachycardia and sudden cardiac death occurred in 5/9 (56%). CONCLUSIONS In this worldwide cohort of previously genotype-negative ACM patients, the prevalence of probands with CDH2 pathogenic/likely pathogenic variants was 1.2% (6/500). Our data show that this cohort of CDH2-ACM patients has a high incidence of ventricular arrhythmias, while evolution toward heart failure is rare.
Collapse
Affiliation(s)
- Alice Ghidoni
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Perry M Elliott
- Center for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.M.E., P.S.)
| | - Petros Syrris
- Center for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.M.E., P.S.)
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, SC (D.P.J.)
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Julien Barc
- Université de Nantes (J.B.), CNRS, Inserm, l'Institut du Thorax, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes (V.P., J.J.S.), CNRS, Inserm, l'Institut du Thorax, France.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.)
| | - Jean Jacques Schott
- Université de Nantes, CHU Nantes (V.P., J.J.S.), CNRS, Inserm, l'Institut du Thorax, France
| | - Jiang-Ping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.-P.S.)
| | - Richard N W Hauer
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Cardiology (R.N.W.H.), University Medical Center Utrecht
| | - Edgar T Hoorntje
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (E.T.H.)
| | - J Peter van Tintelen
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Genetics (J.P.v.T.), University Medical Center Utrecht
| | - Eric Schulze-Bahr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (E.S.-B.)
| | | | - Kirti Mittal
- Hospital for Sick Children, Toronto, ON, Canada (R.M.H., K.M.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, NSW, Australia (C.S.)
| | - Elijah R Behr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Cardiology Clinical Academic Group, Institute of Molecular and Clinical Sciences, St George's University of London, St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.)
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.J.A.)
| | - Cristina Basso
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University and Hospital of Padua, Italy (C.B.)
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan (G.P., L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (G.P., L.C.)
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit (D.G.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Italy (D.G.)
| | - Maria-Christina Kotta
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Bongani M Mayosi
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, Groote Schuur Hospital and Division of Cardiology, Faculty of Health Sciences, University of Cape Town, South Africa (B.M.M.)
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.)
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Istituto Auxologico Italiano, IRCCS, Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan (G.P., L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (G.P., L.C.)
| |
Collapse
|
21
|
House A, Atalla I, Lee EJ, Guvendiren M. Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000022. [PMID: 33709087 PMCID: PMC7942203 DOI: 10.1002/anbr.202000022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heart disease is one of the leading causes of death in the world. There is a growing demand for in vitro cardiac models that can recapitulate the complex physiology of the cardiac tissue. These cardiac models can provide a platform to better understand the underlying mechanisms of cardiac development and disease and aid in developing novel treatment alternatives and platforms towards personalized medicine. In this review, a summary of engineered cardiac platforms is presented. Basic design considerations for replicating the heart's microenvironment are discussed considering the anatomy of the heart. This is followed by a detailed summary of the currently available biomaterial platforms for modeling the heart tissue in vitro. These in vitro models include 2D surface modified structures, 3D molded structures, porous scaffolds, electrospun scaffolds, bioprinted structures, and heart-on-a-chip devices. The challenges faced by current models and the future directions of in vitro cardiac models are also discussed. Engineered in vitro tissue models utilizing patients' own cells could potentially revolutionize the way we develop treatment and diagnostic alternatives.
Collapse
Affiliation(s)
- Andrew House
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Iren Atalla
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Eun Jung Lee
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
22
|
Sun Y, Lee SM, Ku BJ, Moon MJ. Fine structure of the intercalated disc and cardiac junctions in the black widow spider Latrodectus mactans. Appl Microsc 2020; 50:20. [PMID: 33580457 PMCID: PMC7818339 DOI: 10.1186/s42649-020-00040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
Arthropods have an open circulatory system with a simple tubular heart, so it has been estimated that the contractile pumping structure of the cardiac muscle will be less efficient than that of vertebrates. Nevertheless, certain arthropods are known to have far superior properties and characteristics than vertebrates, so we investigated the fine structural features of intercalated discs and cardiac junctions of cardiac muscle cells in the black widow spider Latrodectus mactans. Characteristically, the spider cardiac muscle has typical striated features and represents a functional syncytium that supports multiple connections to adjacent cells by intercalated discs. Histologically, the boundary lamina of each sarcolemma connects to the basement membrane to form an elastic sheath, and the extracellular matrix allows the cells to be anchored to other tissues. Since the intercalated disc is also part of sarcolemma, it contains gap junctions for depolarization and desmosomes that keep the fibers together during cardiac muscle contraction. Furthermore, fascia adherens and macula adherens (desmosomes) were also identified as cell junctions in both sarcolemma and intercalated discs. To enable the coordinated heartbeat of the cardiac muscle, the muscle fibers have neuronal innervations by multiple axons from the motor ganglion.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Seung-Min Lee
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Bon-Jin Ku
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Myung-Jin Moon
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea.
| |
Collapse
|
23
|
Shoykhet M, Trenz S, Kempf E, Williams T, Gerull B, Schinner C, Yeruva S, Waschke J. Cardiomyocyte adhesion and hyperadhesion differentially require ERK1/2 and plakoglobin. JCI Insight 2020; 5:140066. [PMID: 32841221 PMCID: PMC7526536 DOI: 10.1172/jci.insight.140066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a heart disease often caused by mutations in genes coding for desmosomal proteins, including desmoglein-2 (DSG2), plakoglobin (PG), and desmoplakin (DP). Therapy is based on symptoms and limiting arrhythmia, because the mechanisms by which desmosomal components control cardiomyocyte function are largely unknown. A new paradigm could be to stabilize desmosomal cardiomyocyte adhesion and hyperadhesion, which renders desmosomal adhesion independent from Ca2+. Here, we further characterized the mechanisms behind enhanced cardiomyocyte adhesion and hyperadhesion. Dissociation assays performed in HL-1 cells and murine ventricular cardiac slice cultures allowed us to define a set of signaling pathways regulating cardiomyocyte adhesion under basal and hyperadhesive conditions. Adrenergic signaling, activation of PKC, and inhibition of p38MAPK enhanced cardiomyocyte adhesion, referred to as positive adhesiotropy, and induced hyperadhesion. Activation of ERK1/2 paralleled positive adhesiotropy, whereas adrenergic signaling induced PG phosphorylation at S665 under both basal and hyperadhesive conditions. Adrenergic signaling and p38MAPK inhibition recruited DSG2 to cell junctions. In PG-deficient mice with an AC phenotype, only PKC activation and p38MAPK inhibition enhanced cardiomyocyte adhesion. Our results demonstrate that cardiomyocyte adhesion can be stabilized by different signaling mechanisms, which are in part offset in PG-deficient AC. Desmosome mediated cardiomyocyte adhesion, crucial in the pathology of arrhythmogenic cardiomyopathy, is differentially regulated by multiple signaling mechanisms that depend either on ERK1/2 or plakoglobin.
Collapse
Affiliation(s)
- Maria Shoykhet
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Trenz
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ellen Kempf
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Camilla Schinner
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sunil Yeruva
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
24
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
25
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
26
|
Schinner C, Olivares-Florez S, Schlipp A, Trenz S, Feinendegen M, Flaswinkel H, Kempf E, Egu DT, Yeruva S, Waschke J. The inotropic agent digitoxin strengthens desmosomal adhesion in cardiac myocytes in an ERK1/2-dependent manner. Basic Res Cardiol 2020; 115:46. [PMID: 32556797 PMCID: PMC7299919 DOI: 10.1007/s00395-020-0805-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/05/2020] [Indexed: 01/28/2023]
Abstract
Desmosomal proteins are components of the intercalated disc and mediate cardiac myocyte adhesion. Enhancement of cardiac myocyte cohesion, referred to as "positive adhesiotropy", was demonstrated to be a function of sympathetic signaling and to be relevant for a sufficient inotropic response. We used the inotropic agent digitoxin to investigate the link between inotropy and adhesiotropy. In contrast to wild-type hearts, digitoxin failed to enhance pulse pressure in perfused mice hearts lacking the desmosomal protein plakoglobin which was paralleled with abrogation of plaque thickening indicating that positive inotropic response requires intact desmosomal adhesion. Atomic force microscopy revealed that digitoxin increased the binding force of the adhesion molecule desmoglein-2 at cell-cell contact areas. This was paralleled by enhanced cardiac myocyte cohesion in both HL-1 cardiac myocytes and murine cardiac slices as determined by dissociation assays as well as by accumulation of desmosomal proteins at cell-cell contact areas. However, total protein levels or cytoskeletal anchorage were not affected. siRNA-mediated depletion of desmosomal proteins abrogated increase of cell cohesion demonstrating that intact desmosomal adhesion is required for positive adhesiotropy. Mechanistically, digitoxin caused activation of ERK1/2. In line with this, inhibition of ERK1/2 signaling abrogated the effects of digitoxin on cell-cell adhesion and desmosomal reorganization. These results show that the positive inotropic agent digitoxin enhances cardiac myocyte cohesion with reorganization of desmosomal proteins in an ERK1/2-dependent manner. Desmosomal adhesion seems to be important for a sufficient positive inotropic response of digitoxin treatment, which can be of medical relevance for the treatment of heart failure.
Collapse
Affiliation(s)
- Camilla Schinner
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Silvana Olivares-Florez
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Angela Schlipp
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sebastian Trenz
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Manouk Feinendegen
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Heinrich Flaswinkel
- Department of Biology II, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ellen Kempf
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Desalegn Tadesse Egu
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sunil Yeruva
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
27
|
Yeruva S, Kempf E, Egu DT, Flaswinkel H, Kugelmann D, Waschke J. Adrenergic Signaling-Induced Ultrastructural Strengthening of Intercalated Discs via Plakoglobin Is Crucial for Positive Adhesiotropy in Murine Cardiomyocytes. Front Physiol 2020; 11:430. [PMID: 32508670 PMCID: PMC7253624 DOI: 10.3389/fphys.2020.00430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
Intercalated discs (ICDs), which connect adjacent cardiomyocytes, are composed of desmosomes, adherens junctions (AJs) and gap junctions (GJs). Previous data demonstrated that adrenergic signaling enhances cardiac myocyte cohesion, referred to as positive adhesiotropy, via PKA-mediated phosphorylation of plakoglobin (PG). However, it was unclear whether positive adhesiotropy caused ultrastructural modifications of ICDs. Therefore, we further investigated the role of PG in adrenergic signaling-mediated ultrastructural changes in the ICD of cardiomyocytes. Quantitative transmission electron microscopy (TEM) analysis of ICD demonstrated that cAMP elevation caused significant elongation of area composita and thickening of the ICD plaque, paralleled by enhanced cardiomyocyte cohesion, in WT but not PG-deficient cardiomyocytes. STED microscopy analysis supported that cAMP elevation ex vivo enhanced overlap of desmoglein-2 (Dsg2) and N-cadherin (N-cad) staining in ICDs of WT but not PG-deficient cardiomyocytes. For dynamic analyses, we utilized HL-1 cardiomyocytes, in which cAMP elevation induced translocation of Dsg2 and PG but not of N-cad to cell junctions. Nevertheless, depletion of N-cad but not of Dsg2 resulted in a decrease in basal cell cohesion whereas positive adhesiotropy was abrogated in monolayers depleted for either Dsg2 or N-cad. In the WT mice, ultrastrutural changes observed after cAMP elevation were paralleled by phosphorylation of PG at serine 665. Our data demonstrate that in murine hearts adrenergic signaling enhanced N-cad and Dsg2 in the ICD paralleled by ultrastrutural strengthening of ICDs and that effects induced by positive adhesiotropy were strictly dependent on Pg.
Collapse
Affiliation(s)
- Sunil Yeruva
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ellen Kempf
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Desalegn Tadesse Egu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
28
|
Poller W, Haas J, Klingel K, Kühnisch J, Gast M, Kaya Z, Escher F, Kayvanpour E, Degener F, Opgen-Rhein B, Berger F, Mochmann HC, Skurk C, Heidecker B, Schultheiss HP, Monserrat L, Meder B, Landmesser U, Klaassen S. Familial Recurrent Myocarditis Triggered by Exercise in Patients With a Truncating Variant of the Desmoplakin Gene. J Am Heart Assoc 2020; 9:e015289. [PMID: 32410525 PMCID: PMC7660888 DOI: 10.1161/jaha.119.015289] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Variants of the desmosomal protein desmoplakin are associated with arrhythmogenic cardiomyopathy, an important cause of ventricular arrhythmias in children and young adults. Disease penetrance of desmoplakin variants is incomplete and variant carriers may display noncardiac, dermatologic phenotypes. We describe a novel cardiac phenotype associated with a truncating desmoplakin variant, likely causing mechanical instability of myocardial desmosomes. Methods and Results In 2 young brothers with recurrent myocarditis triggered by physical exercise, screening of 218 cardiomyopathy‐related genes identified the heterozygous truncating variant p.Arg1458Ter in desmoplakin. Screening for infections yielded no evidence of viral or nonviral infections. Myosin and troponin I autoantibodies were detected at high titers. Immunohistology failed to detect any residual DSP protein in endomyocardial biopsies, and none of the histologic criteria of arrhythmogenic cardiomyopathy were fulfilled. Cardiac magnetic resonance imaging revealed no features associated with right ventricular arrhythmogenic cardiomyopathy, but multifocal subepicardial late gadolinium enhancement was present in the left ventricles of both brothers. Screening of adult cardiomyopathy cohorts for truncating variants identified the rare genetic variants p.Gln307Ter, p.Tyr1391Ter, and p.Tyr1512Ter, suggesting that over subsequent decades critical genetic/exogenous modifiers drive pathogenesis from desmoplakin truncations toward different end points. Conclusions The described novel phenotype of familial recurrent myocarditis associated with a desmoplakin truncation in adolescents likely represents a serendipitously revealed subtype of arrhythmogenic cardiomyopathy. It may be caused by a distinctive adverse effect of the variant desmoplakin upon the mechanical stability of myocardial desmosomes. Variant screening is advisable to allow early detection of patients with similar phenotypes.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany
| | - Jan Haas
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology Department of Pathology University Hospital Tübingen Germany
| | - Jirko Kühnisch
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany
| | - Martina Gast
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Felicitas Escher
- Department of Cardiology Campus Virchow Klinikum Universitätsmedizin Berlin Germany.,Institute for Clinical Diagnostics and Therapy (IKDT) Berlin Germany
| | - Elham Kayvanpour
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Franziska Degener
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany
| | - Bernd Opgen-Rhein
- Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | - Felix Berger
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | | | - Carsten Skurk
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Bettina Heidecker
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | | | | | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany.,Department of Genetics Stanford University School of Medicine Palo Alto CA
| | - Ulf Landmesser
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Berlin Institute of Health Berlin Germany
| | - Sabine Klaassen
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| |
Collapse
|
29
|
Sun Y, Kim HJ, Moon MJ. Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata. Appl Microsc 2020; 50:9. [PMID: 33580431 PMCID: PMC7818301 DOI: 10.1186/s42649-020-00030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
The fine structural characteristics of cardiac muscle cells and its myofibril organization in the orb web spider N. clavata were examined by transmission electron microscopy. Although myofibril striations are not remarkable as those of skeletal muscles, muscle fibers contain multiple myofibrils, abundant mitochondria, extensive sarcoplasmic reticulum and transverse tubules (T-tubules). Myofibrils are divided into distinct sarcomeres defined by Z-lines with average length of 2.0 μm, but the distinction between the A-band and the I-bands is not clear due to uniform striations over the length of the sarcomeres. Dyadic junction which consisted of a single T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum is found mainly at the A-I level of sarcomere. Each cell is arranged to form multiple connections with neighboring cells through the intercalated discs. These specialized junctions include three types of intercellular junctions: gap junctions, fascia adherens and desmosomes for heart function. Our transmission electron microscopy (TEM) observations clearly show that spider's cardiac muscle contraction is controlled by neurogenic rather than myogenic mechanism since each cardiac muscle fiber is innervated by a branch of motor neuron through neuromuscular junctions.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Hyo-Jeong Kim
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea
| | - Myung-Jin Moon
- Department of Biological Sciences, Dankook University, 119 Dandae-ro, Cheonan, 31116, South Korea.
| |
Collapse
|
30
|
Schinner C, Erber BM, Yeruva S, Schlipp A, Rötzer V, Kempf E, Kant S, Leube RE, Mueller TD, Waschke J. Stabilization of desmoglein-2 binding rescues arrhythmia in arrhythmogenic cardiomyopathy. JCI Insight 2020; 5:130141. [PMID: 32376797 DOI: 10.1172/jci.insight.130141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 04/08/2020] [Indexed: 12/28/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a genetic disease causing arrhythmia and sudden cardiac death with only symptomatic therapy available at present. Mutations of desmosomal proteins, including desmoglein-2 (Dsg2) and plakoglobin (Pg), are the major cause of AC and have been shown to lead to impaired gap junction function. Recent data indicated the involvement of anti-Dsg2 autoantibodies in AC pathogenesis. We applied a peptide to stabilize Dsg2 binding similar to a translational approach to pemphigus, which is caused by anti-desmoglein autoantibodies. We provide evidence that stabilization of Dsg2 binding by a linking peptide (Dsg2-LP) is efficient to rescue arrhythmia in an AC mouse model immediately upon perfusion. Dsg2-LP, designed to cross-link Dsg2 molecules in proximity to the known binding pocket, stabilized Dsg2-mediated interactions on the surface of living cardiomyocytes as revealed by atomic force microscopy and induced Dsg2 oligomerization. Moreover, Dsg2-LP rescued disrupted cohesion induced by siRNA-mediated Pg or Dsg2 depletion or l-tryptophan, which was applied to impair overall cadherin binding. Dsg2-LP rescued connexin-43 mislocalization and conduction irregularities in response to impaired cardiomyocyte cohesion. These results demonstrate that stabilization of Dsg2 binding by Dsg2-LP can serve as a novel approach to treat arrhythmia in patients with AC.
Collapse
Affiliation(s)
- Camilla Schinner
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Markus Erber
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sunil Yeruva
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Angela Schlipp
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Vera Rötzer
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ellen Kempf
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Julius-Maximilians-Universität, Würzburg, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
31
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
32
|
Calore M, Lorenzon A, Vitiello L, Poloni G, Khan MAF, Beffagna G, Dazzo E, Sacchetto C, Polishchuk R, Sabatelli P, Doliana R, Carnevale D, Lembo G, Bonaldo P, De Windt L, Braghetta P, Rampazzo A. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation. Cardiovasc Res 2020; 115:739-751. [PMID: 30304392 DOI: 10.1093/cvr/cvy253] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (AC) is one of the most common inherited cardiomyopathies, characterized by progressive fibro-fatty replacement in the myocardium. Clinically, AC manifests itself with ventricular arrhythmias, syncope, and sudden death and shows wide inter- and intra-familial variability. Among the causative genes identified so far, those encoding for the desmosomal proteins plakophilin-2 (PKP2), desmoplakin (DSP), and desmoglein-2 (DSG2) are the most commonly mutated. So far, little is known about the molecular mechanism(s) behind such a varied spectrum of phenotypes, although it has been shown that the causative mutations not only lead to structural abnormalities but also affect the miRNA profiling of cardiac tissue. Here, we aimed at studying the pathogenic effects of a nonsense mutation of the desmoglein-2 gene, both at the structural level and in terms of miRNA expression pattern. METHODS AND RESULTS We generated transgenic mice with cardiomyocyte-specific overexpression of a FLAG-tagged human desmoglein-2 harbouring the Q558* nonsense mutation found in an AC patient. The hearts of these mice showed signs of fibrosis, decrease in desmosomal size and number, and reduction of the Wnt/β-catenin signalling. Genome-wide RNA-Seq performed in Tg-hQ hearts and non-transgenic hearts revealed that 24 miRNAs were dysregulated in transgenic animals. Further bioinformatic analyses for selected miRNAs suggested that miR-217-5p, miR-499-5p, and miR-708-5p might be involved in the pathogenesis of the disease. CONCLUSION Down-regulation of the canonical Wnt/β-catenin signalling might be considered a common key event in the AC pathogenesis. We identified the miRNA signature in AC hearts, with miR-708-5p and miR-217-5p being the most up-regulated and miR-499-5p the most down-regulated miRNAs. All of them were predicted to be involved in the regulation of the Wnt/β-catenin pathway and might reveal the potential pathophysiology mechanisms of AC, as well as be useful as therapeutic targets for the disease.
Collapse
Affiliation(s)
- Martina Calore
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy.,Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, MD Maastricht, The Netherlands
| | - Alessandra Lorenzon
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Libero Vitiello
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy.,Italian Inter-University Institute of Myology, Padua, Italy
| | - Giulia Poloni
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Mohsin A F Khan
- Department of Experimental Cardiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Giorgia Beffagna
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Emanuela Dazzo
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Claudia Sacchetto
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Patrizia Sabatelli
- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Roberto Doliana
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Leon De Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, MD Maastricht, The Netherlands
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Alessandra Rampazzo
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| |
Collapse
|
33
|
Zimmer SE, Kowalczyk AP. The desmosome as a model for lipid raft driven membrane domain organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183329. [PMID: 32376221 DOI: 10.1016/j.bbamem.2020.183329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol. These domains participate in membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current state of the desmosome field and put forward new hypotheses for the role of lipid rafts in desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that differential lipid raft affinity of intercellular junction proteins is a central driving force in the organization of the epithelial apical junctional complex.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Dermatology, Emory University, Atlanta, GA 30322, United States of America.
| |
Collapse
|
34
|
Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR, Espinosa HD, Janmey PA, Green KJ. Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network. J Cell Sci 2020; 133:jcs228031. [PMID: 32179593 PMCID: PMC7097224 DOI: 10.1242/jcs.228031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.
Collapse
Affiliation(s)
- Joshua A Broussard
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Avinash Jaiganesh
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hoda Zarkoob
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen J Green
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
35
|
Sattar Y, Abdullah HM, Neisani Samani E, Myla M, Ullah W. Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: An Updated Review of Diagnosis and Management. Cureus 2019; 11:e5381. [PMID: 31616612 PMCID: PMC6786836 DOI: 10.7759/cureus.5381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a condition caused by the replacement of the normal right ventricular myocardium with fibrofatty tissue. ARVC/D can present with a variety of clinical conditions including right ventricular dysfunction, ventricular tachyarrhythmias, sudden cardiac arrest, and sudden cardiac death (SCD). Since the first report of ARVC/D in 1982, many advances have been made in the diagnosis, genetic findings for pathology, and treatment. The 2010 International Task Force diagnostic criteria distinguish between major and minor criteria and focus on gross structural changes, microscopic changes, repolarization defects, conduction defects, arrhythmias, and family history. Implantable cardiac defibrillators and catheter ablation of the endocardium and epicardium with electromagnetic mapping have emerged as successful tools in the treatment and prevention of ventricular tachyarrhythmias and SCD. This review discusses the pathophysiology, genetics, diagnosis, and treatment advances in ARVC/D.
Collapse
Affiliation(s)
- Yasar Sattar
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Madhura Myla
- Cardiology, University of New Mexico, New Mexico, USA
| | - Waqas Ullah
- Internal Medicine, Abington Hospital-Jefferson Health, Abington, USA
| |
Collapse
|
36
|
Abreu-Velez AM, Upegui-Zapata YA, Valencia-Yepes CA, Upegui-Quiceno E, Jiménez-Echavarría AM, Niño-Pulido CD, Smoller BR, Howard MS. Involvement of the Areae Compositae of the Heart in Endemic Pemphigus Foliaceus. Dermatol Pract Concept 2019; 9:181-186. [PMID: 31384490 DOI: 10.5826/dpc.0903a02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background A new variant of endemic pemphigus foliaceus in El Bagre (El Bagre-EPF), Colombia, South America, shares features with Senear-Usher syndrome and occurs in an endemic fashion. Patients affected by El Bagre-EPF have heterogeneous antigenic reactivity not only to the skin but to other organs, including the heart. Here we test for autoantibodies to the areae compositae of the heart (structure consisting of typical desmosomal amalgamated fascia adherens molecules) and evaluate any possible clinical correlation. Methods A case-control study comparing 45 patients and 45 controls from the endemic area, matched by demographics including age, gender, weight, work activities, and comorbidities, was performed. Direct and indirect immunofluorescence, immunohistochemistry, confocal microscopic studies, and echocardiogram studies were completed. Results The main clinical abnormally seen in the El Bagre-EPF patients was left ventricular hypertrophy in 15/45 patients, compared with no such findings in the control population (P < 0.1). Seventy percent of El Bagre-EPF patients and none of the controls displayed polyclonal autoreactivity using different immunoglobulins and complement to the areae compositae of the heart using different methods and antibodies (P < 0.1). Conclusions Patients affected by El Bagre-EPF demonstrated autoantibodies to the areae compositae of the heart. This finding was associated with left ventricular hypertrophic cardiomyopathy. The areae compositae may play a role in cell junction tension and the El Bagre-EPF patients' autoantibodies possibly disrupting these junctions and thereby contributing to the left ventricular hypertrophy.
Collapse
Affiliation(s)
| | - Yulieth A Upegui-Zapata
- PECET Group, Pharmaceutical Sciences, Medical Research Institute, School of Medicine, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Bruce R Smoller
- Departments of Pathology and Laboratory Medicine & Dermatology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
37
|
Schinner C, Erber BM, Yeruva S, Waschke J. Regulation of cardiac myocyte cohesion and gap junctions via desmosomal adhesion. Acta Physiol (Oxf) 2019; 226:e13242. [PMID: 30582290 DOI: 10.1111/apha.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
AIMS Mutations in desmosomal proteins can induce arrhythmogenic cardiomyopathy with life-threatening arrhythmia. Previous data demonstrated adrenergic signalling to be important to regulate desmosomal cohesion in cardiac myocytes. Here, we investigated how signalling pathways including adrenergic signalling, PKC and SERCA regulate desmosomal adhesion and how this controls gap junctions (GJs) in cardiac myocytes. METHODS Immunostaining, Western blot, dissociation assay and multi-electrode array were applied in HL-1 cardiac myocytes to evaluate localization, expression and function of desmosomal and GJ components. cAMP levels were determined by ELISA. RESULTS Activation of PKC by PMA or adrenergic signalling increased cell cohesion and desmoglein-2 and desmoplakin localization at cell-cell junctions, whereas tryptophan (Trp) treatment to inhibit cadherin binding or inhibition of SERCA by thapsigargin reduced cell cohesion, while cAMP elevation rescued this effect. Despite no changes in protein expression, accumulation of GJ protein connexin-43 was detectable at cell-cell contacts in parallel to increased cohesion. Disruption of cell cohesion by Trp, PMA or thapsigargin impaired conduction of excitation comparable to GJ inhibition. cAMP elevation was effective to improve arrhythmia after Trp treatment. Weakened cell cohesion by Trp or depletion of desmoglein-2 or plakoglobin blocked signalling via the β1-adrenergic receptor. Moreover, silencing of desmosomal proteins increased arrhythmia and reduced conduction velocity, which were rescued by cAMP elevation. CONCLUSION These data demonstrate the interplay of GJs, desmosomes and the β1-adrenergic receptor with regulation of their function by cell cohesion, adrenergic and PKC signalling or SERCA inhibition. These results support the identification of new targets to treat arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Camilla Schinner
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
- Department of Biomedicine; University of Basel; Basel Switzerland
| | - Bernd M. Erber
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
| | - Sunil Yeruva
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
| | - Jens Waschke
- Faculty of Medicine; Ludwig-Maximilians-Universität (LMU) Munich; Munich Germany
| |
Collapse
|
38
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient's age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
39
|
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:e301-e372. [PMID: 31078652 DOI: 10.1016/j.hrthm.2019.05.007] [Citation(s) in RCA: 506] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic disorder of the myocardium not secondary to ischemic, hypertensive, or valvular heart disease. ACM incorporates a broad spectrum of genetic, systemic, infectious, and inflammatory disorders. This designation includes, but is not limited to, arrhythmogenic right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left ventricular noncompaction. The ACM phenotype overlaps with other cardiomyopathies, particularly dilated cardiomyopathy with arrhythmia presentation that may be associated with ventricular dilatation and/or impaired systolic function. This expert consensus statement provides the clinician with guidance on evaluation and management of ACM and includes clinically relevant information on genetics and disease mechanisms. PICO questions were utilized to evaluate contemporary evidence and provide clinical guidance related to exercise in arrhythmogenic right ventricular cardiomyopathy. Recommendations were developed and approved by an expert writing group, after a systematic literature search with evidence tables, and discussion of their own clinical experience, to present the current knowledge in the field. Each recommendation is presented using the Class of Recommendation and Level of Evidence system formulated by the American College of Cardiology and the American Heart Association and is accompanied by references and explanatory text to provide essential context. The ongoing recognition of the genetic basis of ACM provides the opportunity to examine the diverse triggers and potential common pathway for the development of disease and arrhythmia.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- Le Bonheur Children's Hospital, Memphis, Tennessee; University of Tennessee Health Science Center, Memphis, Tennessee
| | - William J McKenna
- University College London, Institute of Cardiovascular Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | - N A Mark Estes
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wei Hua
- Fu Wai Hospital, Beijing, China
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Roy M John
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, South Carolina
| | - Roberto Keegan
- Hospital Privado Del Sur, Buenos Aires, Argentina; Hospital Español, Bahia Blanca, Argentina
| | | | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | - Frank I Marcus
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia G Priori
- University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); ICS Maugeri, IRCCS, Pavia, Italy
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - J Peter van Tintelen
- University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Utrecht University Medical Center Utrecht, University of Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | |
Collapse
|
40
|
Kant S, Freytag B, Herzog A, Reich A, Merkel R, Hoffmann B, Krusche CA, Leube RE. Desmoglein 2 mutation provokes skeletal muscle actin expression and accumulation at intercalated discs in murine hearts. J Cell Sci 2019; 132:jcs.199612. [PMID: 30659114 DOI: 10.1242/jcs.199612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/30/2018] [Indexed: 01/05/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is an incurable progressive disease that is linked to mutations in genes coding for components of desmosomal adhesions that are localized to the intercalated disc region, which electromechanically couples adjacent cardiomyocytes. To date, the underlying molecular dysfunctions are not well characterized. In two murine AC models, we find an upregulation of the skeletal muscle actin gene (Acta1), which is known to be a compensatory reaction to compromised heart function. Expression of this gene is elevated prior to visible morphological alterations and clinical symptoms, and persists throughout pathogenesis with an additional major rise during the chronic disease stage. We provide evidence that the increased Acta1 transcription is initiated through nuclear activation of the serum response transcription factor (SRF) by its transcriptional co-activator megakaryoblastic leukemia 1 protein (MKL1, also known as MRTFA). Our data further suggest that perturbed desmosomal adhesion causes Acta1 overexpression during the early stages of the disease, which is amplified by transforming growth factor β (TGFβ) release from fibrotic lesions and surrounding cardiomyocytes during later disease stages. These observations highlight a hitherto unknown molecular AC pathomechanism.
Collapse
Affiliation(s)
- Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Benjamin Freytag
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Antonia Herzog
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Reich
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7, Biomechanics, 52428 Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7, Biomechanics, 52428 Jülich, Germany
| | - Claudia A Krusche
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
41
|
Li Y, Merkel CD, Zeng X, Heier JA, Cantrell PS, Sun M, Stolz DB, Watkins SC, Yates NA, Kwiatkowski AV. The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics. J Cell Sci 2019; 132:jcs.221606. [PMID: 30630894 PMCID: PMC6382013 DOI: 10.1242/jcs.221606] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
The junctional complexes that couple cardiomyocytes must transmit the mechanical forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) connects the actomyosin networks of neighboring cardiomyocytes and is required for proper heart function. Yet little is known about the molecular composition of the cardiomyocyte AJ or how it is organized to function under mechanical load. Here, we define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble stable AJs along intercellular contacts with organizational and structural hallmarks similar to mature contacts. We combine quantitative mass spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors comprise primarily adaptor and adhesion proteins that promote junction specialization. Our results provide novel insight into the cardiomyocyte AJ and offer a proteomic atlas for defining the molecular complexes that regulate cardiomyocyte intercellular adhesion. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Chelsea D Merkel
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Jonathon A Heier
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Adam V Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
42
|
The cell-cell junctions of mammalian testes: II. The lamellar smooth muscle monolayer cells of the peritubular wall are laterally connected by vertical adherens junctions-a novel architectonic cell-cell junction system. Cell Tissue Res 2018; 375:451-482. [PMID: 30591979 DOI: 10.1007/s00441-018-2968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The testes of sexually mature males of six mammalian species (men, bulls, boars, rats, mice, guinea pigs) have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations. In these tissues, the peritubular walls represent lamellar encasement structures wrapped around the seminiferous tubules as a bandage system of extracellular matrix layers, alternating with monolayers of very flat polyhedral "lamellar smooth muscle cells" (LSMCs), the number of which varies in different species from 1 to 5 or 6. These LSMCs are complete SMCs containing smooth muscle α-actin (SMA), myosin light and heavy chains, α-actinin, tropomyosin, smoothelin, intermediate-sized filament proteins desmin and/or vimentin, filamin, talin, dystrophin, caldesmon, calponin, and protein SM22α, often also cytokeratins 8 and 18. In the monolayers, the LSMCs are connected by adherens junctions (AJs) based on cadherin-11, in some species also with P-cadherin and/or E-cadherin, which are anchored in cytoplasmic plaques containing β-catenin and other armadillo proteins, in some species also striatin family proteins, protein myozap and/or LUMA. The LSMC cytoplasm is rich in myofilament bundles, which in many regions are packed in paracrystalline arrays, as well as in "dense bodies," "focal adhesions," and caveolae. In addition to some AJ-like end-on-end contacts, the LSMCs are laterally connected by numerous vertical AJ-like junctions located in variously sized and variously shaped, overlapping (alter super alterum) lamelliform cell protrusions. Consequently, the LSMCs of the peritubular wall monolayers are SMCs sensu stricto which are laterally connected by a novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.
Collapse
|
43
|
Galata Z, Kloukina I, Kostavasili I, Varela A, Davos CH, Makridakis M, Bonne G, Capetanaki Y. Amelioration of desmin network defects by αB-crystallin overexpression confers cardioprotection in a mouse model of dilated cardiomyopathy caused by LMNA gene mutation. J Mol Cell Cardiol 2018; 125:73-86. [PMID: 30342008 DOI: 10.1016/j.yjmcc.2018.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
The link between the cytoplasmic desmin intermediate filaments and those of nuclear lamins serves as a major integrator point for the intracellular communication between the nucleus and the cytoplasm in cardiac muscle. We investigated the involvement of desmin in the cardiomyopathy caused by the lamin A/C gene mutation using the LmnaH222P/H222P mouse model of the disease. We demonstrate that in these mouse hearts desmin loses its normal Z disk and intercalated disc localization and presents aggregate formation along with mislocalization of basic intercalated disc protein components, as well as severe structural abnormalities of the intercalated discs and mitochondria. To address the extent by which the observed desmin network defects contribute to the progression of LmnaH222P/H222P cardiomyopathy, we investigated the consequences of desmin-targeted approaches for the disease treatment. We showed that cardiac-specific overexpression of the small heat shock protein αΒ-Crystallin confers cardioprotection in LmnaH222P/H222P mice by ameliorating desmin network defects and by attenuating the desmin-dependent mislocalization of basic intercalated disc protein components. In addition, αΒ-Crystallin overexpression rescues the intercalated disc, mitochondrial and nuclear defects of LmnaH222P/H222P hearts, as well as the abnormal activation of ERK1/2. Consistent with that, by generating the LmnaH222P/H222PDes+/- mice, we showed that the genetically decreased endogenous desmin levels have cardioprotective effects in LmnaH222P/H222P hearts since less desmin is available to form dysfunctional aggregates. In conclusion, our results demonstrate that desmin network disruption, disorganization of intercalated discs and mitochondrial defects are a major mechanism contributing to the progression of this LMNA cardiomyopathy and can be ameliorated by αΒ-Crystallin overexpression.
Collapse
Affiliation(s)
- Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Aimilia Varela
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Constantinos H Davos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Gisѐle Bonne
- Sorbonne Université, INSERM UMRS-974, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece.
| |
Collapse
|
44
|
Favre B, Begré N, Bouameur JE, Lingasamy P, Conover GM, Fontao L, Borradori L. Desmoplakin interacts with the coil 1 of different types of intermediate filament proteins and displays high affinity for assembled intermediate filaments. PLoS One 2018; 13:e0205038. [PMID: 30286183 PMCID: PMC6171917 DOI: 10.1371/journal.pone.0205038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/04/2022] Open
Abstract
The interaction of intermediate filaments (IFs) with the cell-cell adhesion complexes desmosomes is crucial for cytoskeletal organization and cell resilience in the epidermis and heart. The intracellular desmosomal protein desmoplakin anchors IFs to the cell adhesion complexes predominantly via its four last carboxy-terminal domains (C-terminus). However, it remains unclear why the C-terminus of desmoplakin interacts with different IF types or if there are different binding affinities for each type of IFs that may influence the stability of cell-specific adhesion complexes. By yeast three-hybrid and fluorescence binding assays, we found that the coiled-coil 1 of the conserved central rod domain of the heterodimeric cytokeratins (Ks) 5 and 14 (K5/K14) was required for their interaction with the C-terminus of desmoplakin, while their unique amino head- and C-tail domains were dispensable. Similar findings were obtained in vitro with K1/K10, and the type III IF proteins desmin and vimentin. Binding assays testing the C-terminus of desmoplakin with assembled K5/K14 and desmin IFs yielded an apparent affinity in the nM range. Our findings reveal that the same conserved domain of IF proteins binds to the C-terminus of desmoplakin, which may help explain the previously reported broad binding IF-specificity to desmoplakin. Our data suggest that desmoplakin high-affinity binding to diverse IF proteins ensures robust linkages of IF cytoskeleton and desmosomes that maintain the structural integrity of cellular adhesion complexes. In summary, our results give new insights into the molecular basis of the IF-desmosome association.
Collapse
Affiliation(s)
- Bertrand Favre
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Nadja Begré
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jamal-Eddine Bouameur
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Prakash Lingasamy
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gloria M. Conover
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lionel Fontao
- Department of Dermatology, Geneva University Hospitals, Geneva, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
45
|
Abstract
Activation of the electrical signal and its transmission as a depolarizing wave in the whole heart requires highly organized myocyte architecture and cell-cell contacts. In addition, complex trafficking and anchoring intracellular machineries regulate the proper surface expression of channels and their targeting to distinct membrane domains. An increasing list of proteins, lipids, and second messengers can contribute to the normal targeting of ion channels in cardiac myocytes. However, their precise roles in the electrophysiology of the heart are far from been extensively understood. Nowadays, much effort in the field focuses on understanding the mechanisms that regulate ion channel targeting to sarcolemma microdomains and their organization into macromolecular complexes. The purpose of the present section is to provide an overview of the characterized partners of the main cardiac sodium channel, NaV1.5, involved in regulating the functional expression of this channel both in terms of trafficking and targeting into microdomains.
Collapse
|
46
|
Manring HR, Dorn LE, Ex-Willey A, Accornero F, Ackermann MA. At the heart of inter- and intracellular signaling: the intercalated disc. Biophys Rev 2018; 10:961-971. [PMID: 29876873 PMCID: PMC6082301 DOI: 10.1007/s12551-018-0430-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Proper cardiac function requires the synchronous mechanical and electrical coupling of individual cardiomyocytes. The intercalated disc (ID) mediates coupling of neighboring myocytes through intercellular signaling. Intercellular communication is highly regulated via intracellular signaling, and signaling pathways originating from the ID control cardiomyocyte remodeling and function. Herein, we present an overview of the inter- and intracellular signaling that occurs at and originates from the intercalated disc in normal physiology and pathophysiology. This review highlights the importance of the intercalated disc as an integrator of signaling events regulating homeostasis and stress responses in the heart and the center of several pathophysiological processes mediating the development of cardiomyopathies.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Aidan Ex-Willey
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
47
|
Genetics of and pathogenic mechanisms in arrhythmogenic right ventricular cardiomyopathy. Biophys Rev 2018; 10:973-982. [PMID: 29995277 DOI: 10.1007/s12551-018-0437-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease, associated with a high risk of sudden cardiac death. ARVC has been termed a 'disease of the desmosome' based on the fact that in many cases, it is caused by mutations in genes encoding desmosomal proteins at the specialised intercellular junctions between cardiomyocytes, the intercalated discs. Desmosomes maintain the structural integrity of the ventricular myocardium and are also implicated in signal transduction pathways. Mutated desmosomal proteins are thought to cause detachment of cardiac myocytes by the loss of cellular adhesions and also affect signalling pathways, leading to cell death and substitution by fibrofatty adipocytic tissue. However, mutations in desmosomal proteins are not the sole cause for ARVC as mutations in non-desmosomal genes were also implicated in its pathogenesis. This review will consider the pathology, genetic basis and mechanisms of pathogenesis for ARVC.
Collapse
|
48
|
Sorgen PL, Trease AJ, Spagnol G, Delmar M, Nielsen MS. Protein⁻Protein Interactions with Connexin 43: Regulation and Function. Int J Mol Sci 2018; 19:E1428. [PMID: 29748463 PMCID: PMC5983787 DOI: 10.3390/ijms19051428] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Connexins are integral membrane building blocks that form gap junctions, enabling direct cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of a regular beating rhythm. A number of connexin interacting proteins have been described and are known gap junction regulators either through direct effects (e.g., kinases) or the formation of larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners can be categorized as either proteins promoting coupling by stimulating forward trafficking and channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation. While some interactions have only been implied through co-localization using immunohistochemistry, others have been confirmed by biophysical methods that allow detection of a direct interaction. Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and the scope of this review is to summarize our current knowledge of their functional and regulatory roles. The significance of these interactions is further exemplified by demonstrating their importance at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
49
|
Chiarella SE, Rabin EE, Ostilla LA, Flozak AS, Gottardi CJ. αT-catenin: A developmentally dispensable, disease-linked member of the α-catenin family. Tissue Barriers 2018; 6:e1463896. [PMID: 29746206 PMCID: PMC6179130 DOI: 10.1080/21688370.2018.1463896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
α-Catenins are actin-filament binding proteins and critical subunits of the cadherin-catenin cell-cell adhesive complex. They are found in nominally-defined epithelial (E), neural (N), and testis (T) forms transcribed from three distinct genes. While most of α-catenin research has focused on the developmentally essential founding member, αE-catenin, this review discusses recent studies on αT-catenin (CTNNA3), a developmentally dispensable isoform that is emerging as relevant to cardiac, allergic and neurological diseases.
Collapse
Affiliation(s)
- Sergio E. Chiarella
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Erik E. Rabin
- Department of Medicine
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL
| | - Lorena A. Ostilla
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Annette S. Flozak
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Cara J. Gottardi
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
50
|
Basso C, Pilichou K, Bauce B, Corrado D, Thiene G. Diagnostic Criteria, Genetics, and Molecular Basis of Arrhythmogenic Cardiomyopathy. Heart Fail Clin 2018. [DOI: 10.1016/j.hfc.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|