1
|
Leocádio VT, Miranda IL, Magalhães MHC, dos Santos Júnior VS, Goncalves JE, Oliveira RB, Maltarollo VG, Bastos RW, Goldman G, Johann S, Teixeira de Aguiar Peres N, Santos DDA. Thiazole Derivatives as Promising Candidates for Cryptococcosis Therapy. ACS Infect Dis 2025; 11:639-652. [PMID: 39918430 PMCID: PMC11915371 DOI: 10.1021/acsinfecdis.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
Cryptococcosis is a severe fungal infection primarily caused by two encapsulated yeasts: Cryptococcus neoformans and C. gattii. The most significant complication is cryptococcal meningitis, where the fungus crosses the blood-brain barrier, leading to a severe brain infection. Current treatments, which include amphotericin B and flucytosine or fluconazole, are often toxic and not very effective. Therefore, there is a pressing need for new antifungal agents. This study screened 30 thiazole derivatives for their antifungal activity against Cryptococcus and their toxicity to brain cells. Four compounds (RN86, RN88, RJ37, and RVJ42) showed particularly strong effects. These compounds reduced ergosterol levels in the fungal membrane and inhibited its ability to cross the blood-brain barrier. Notably, RN86 and RVJ42 improved survival rates in a mouse model of cryptococcosis by lowering the fungal load in the lungs and brain. These findings suggest that these derivatives could be promising treatments for pulmonary and neurocryptococcosis.
Collapse
Affiliation(s)
| | - Isabela L. Miranda
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Martha H. C. Magalhães
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - José Eduardo Goncalves
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Renata Barbosa Oliveira
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vinicius Gonçalves Maltarollo
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rafael Wesley Bastos
- Centro de
Biociências, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
- National
Institute of Science and Technology in Human Pathogenic Fungi, São Paulo14040-900,Brazil
| | - Gustavo Goldman
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903,Brazil
| | - Susana Johann
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - Daniel de Assis Santos
- Departamento
de Microbiologia, Universidade Federal de
Minas Gerais, Belo Horizonte 31270-901, Brazil
- National
Institute of Science and Technology in Human Pathogenic Fungi, São Paulo14040-900,Brazil
| |
Collapse
|
2
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2025; 599:599-644. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
3
|
An P, Tong Y, Mu R, Han L. Wnt-Regulated Therapeutics for Blood-Brain Barrier Modulation and Cancer Therapy. Bioconjug Chem 2025; 36:136-145. [PMID: 39680846 DOI: 10.1021/acs.bioconjchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The Wnt signaling pathway has a significant regulatory part in tissue development and homeostasis. Dysregulation of the Wnt signaling pathway has been associated with many diseases including cancers and various brain diseases, making this signaling pathway a promising therapeutic target for these diseases. In this review, we describe the roles of the Wnt signaling pathway in the blood-brain barrier (BBB) in intracranial tumors and peripheral tumors, from preclinical and clinical perspectives, introduce Wnt-regulated therapeutics including various types of drugs and nanomedicines as BBB modulators for brain-oriented drug delivery and as therapeutic drugs for cancer treatments, and finally discuss limitations and future perspectives for Wnt-regulated therapeutics.
Collapse
Affiliation(s)
- Pei An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Supti ST, Koehn LM, Newman SA, Pan Y, Nicolazzo JA. Iron Reduces the Trafficking of Fatty Acids from Human Immortalised Brain Microvascular Endothelial Cells Through Modulation of Fatty Acid Transport Protein 1 (FATP1/SLC27A1). Pharm Res 2024; 41:1631-1648. [PMID: 39044044 PMCID: PMC11362236 DOI: 10.1007/s11095-024-03743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Alzheimer's disease (AD) is associated with brain accumulation of amyloid-beta (Aβ) and neurofibrillary tangle formation, in addition to reduced brain docosahexaenoic acid (DHA) and increased brain iron levels. DHA requires access across the blood-brain barrier (BBB) to enter the brain, and iron has been shown to affect the expression and function of a number of BBB transporters. Therefore, this study aimed to assess the effect of iron on the expression and function of fatty acid binding protein 5 (FABP5) and fatty acid transport protein 1 (FATP1), both which mediate brain endothelial cell trafficking of DHA. METHODS The mRNA and protein levels of FABP5 and FATP1 in human cerebral microvascular endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively following ferric ammonium citrate (FAC) treatment (up to 750 µM, 72 h). The function of FABP5 and FATP1 was assessed via uptake and efflux of radiolabelled 3H-oleic acid and 14C-DHA. RESULTS FAC (500 µM, 72 h) had no impact on the expression of FABP5 at the protein and mRNA level in hCMEC/D3 cells, which was associated with a lack of effect on the uptake of 14C-DHA. FAC led to a 19.7% reduction in FATP1 protein abundance in hCMEC/D3 cells with no impact on mRNA levels, and this was associated with up to a 32.6% reduction in efflux of 14C-DHA. CONCLUSIONS These studies demonstrate a role of iron in down-regulating FATP1 protein abundance and function at the BBB, which may have implications on fatty acid access to the brain.
Collapse
Affiliation(s)
- Showmika T Supti
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Lamson NG, Pickering AJ, Wyckoff J, Ganesh P, Calle EA, Straehla JP, Hammond PT. Trafficking through the blood-brain barrier is directed by core and outer surface components of layer-by-layer nanoparticles. Bioeng Transl Med 2024; 9:e10636. [PMID: 39036092 PMCID: PMC11256136 DOI: 10.1002/btm2.10636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 07/23/2024] Open
Abstract
Drug-carrying nanoparticles are a promising strategy to deliver therapeutics into the brain, but their translation requires better characterization of interactions between nanomaterials and endothelial cells of the blood-brain barrier (BBB). Here, we use a library of 18 layer-by-layer electrostatically assembled nanoparticles (NPs) to independently assess the impact of NP core and surface materials on in vitro uptake, transport, and intracellular trafficking in brain endothelial cells. We demonstrate that NP core stiffness determines the magnitude of transport, while surface chemistry directs intracellular trafficking. Finally, we demonstrate that these factors similarly dictate in vivo BBB transport using intravital imaging through cranial windows in mice. We identify that hyaluronic acid surface chemistry increases transport across the BBB in vivo, and flow conditions are necessary to replicate this finding in vitro. Taken together, these findings highlight the importance of assay geometry, cell biology, and fluid flow in developing nanocarriers for delivery to the brain.
Collapse
Affiliation(s)
- Nicholas G. Lamson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Andrew J. Pickering
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jeffrey Wyckoff
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Priya Ganesh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Elizabeth A. Calle
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Joelle P. Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Pediatric OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Division of Pediatric Hematology/OncologyBoston Children's HospitalBostonMassachusettsUSA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
6
|
Xu M, Cheng Y, Meng R, Yang P, Chen J, Qiao Z, Wu J, Qian K, Li Y, Wang P, Zhou L, Wang T, Sheng D, Zhang Q. Enhancement of Microglia Functions by Developed Nano-Immuno-Synergist to Ameliorate Immunodeficiency for Malignant Glioma Treatment. Adv Healthc Mater 2023; 12:e2301861. [PMID: 37573475 DOI: 10.1002/adhm.202301861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Resident microglia are key factors in mediating immunity against brain tumors, but the microglia in malignant glioma are functionally impaired. Little immunotherapy is explored to restore microglial function against glioma. Herein, oleanolic acid (OA) (microglia "restorer") and D PPA-1 peptide (immune checkpoint blockade) are integrated on a nano-immuno-synergist (D PAM@OA) to work coordinately. The self-assembled OA core is coated with macrophage membrane for efficient blood-brain barrier penetration and microglia targeting, on which D PPA-1 peptide is attached via acid-sensitive bonds for specific release in tumor microenvironment. With the enhanced accumulation of the dual drugs in their respective action sites, D PAM@OA effectively promotes the recruitment and activation of effector T cells by inhibiting aberrant activation of Signal transducer and activator of transcription (STAT-3) pathway in microglia, and assists activated effector T cells in killing tumor cells by blocking elevated immune checkpoint proteins in malignant glioma. Eventually, as adjuvant therapy, the rationally designed nano-immuno-synergist hinders malignant glioma progression and recurrence with or without temozolomide. The work demonstrates the feasibility of a nano-formulation for microglia-based immunotherapy, which may provide a new direction for the treatment of brain tumors.
Collapse
Affiliation(s)
- Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Jian Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zhen Qiao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
7
|
Mishra K, Rana R, Tripathi S, Siddiqui S, Yadav PK, Yadav PN, Chourasia MK. Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases. Neurochem Res 2023; 48:2936-2968. [PMID: 37278860 DOI: 10.1007/s11064-023-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.
Collapse
Affiliation(s)
- Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shourya Tripathi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prem N Yadav
- Division of Neuro Science & Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
8
|
Mihailova L, Shalabalija D, Zimmer A, Geskovski N, Makreski P, Petrushevska M, Simonoska Crcarevska M, Glavas Dodov M. Comparative Studies of the Uptake and Internalization Pathways of Different Lipid Nano-Systems Intended for Brain Delivery. Pharmaceutics 2023; 15:2082. [PMID: 37631296 PMCID: PMC10458318 DOI: 10.3390/pharmaceutics15082082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Lipid nano-systems were prepared and characterized in a series of well-established in vitro tests that could assess their interactions with the hCMEC/D3 and SH-SY5Y cell lines as a model for the blood-brain barrier and neuronal function, accordingly. The prepared formulations of nanoliposomes and nanostructured lipid carriers were characterized by z-average diameters of ~120 nm and ~105 nm, respectively, following a unimodal particle size distribution (PDI < 0.3) and negative Z-potential (-24.30 mV to -31.20 mV). Stability studies implied that the nano-systems were stable in a physiologically relevant medium as well as human plasma, except nanoliposomes containing poloxamer on their surface, where there was an increase in particle size of ~26%. The presence of stealth polymer tends to decrease the amount of adsorbed proteins onto a particle's surface, according to protein adsorption studies. Both formulations of nanoliposomes were characterized by a low cytotoxicity, while their cell viability was reduced when incubated with the highest concentration (100 μg/mL) of nanostructured lipid formulations, which could have been associated with the consumption of cellular energy, thus resulting in a reduction in metabolic active cells. The uptake of all the nano-systems in the hCMEC/D3 and SH-SY5Y cell lines was successful, most likely following ATP-dependent internalization, as well as transport via passive diffusion.
Collapse
Affiliation(s)
- Ljubica Mihailova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Dushko Shalabalija
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitatplatz 1/EG, A-8010 Graz, Austria
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 5, 1000 Skopje, North Macedonia;
| | - Marija Petrushevska
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 50 Divizija 6, 1000 Skopje, North Macedonia;
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia; (L.M.); (D.S.); (N.G.); (M.S.C.); (M.G.D.)
| |
Collapse
|
9
|
Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023; 15:pharmaceutics15020443. [PMID: 36839768 PMCID: PMC9966342 DOI: 10.3390/pharmaceutics15020443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.
Collapse
|
10
|
Shan S, Zhang Y, Zhao H, Zeng T, Zhao X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. CHEMOSPHERE 2022; 298:134261. [PMID: 35302003 DOI: 10.1016/j.chemosphere.2022.134261] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) have been well demonstrated as potential threats to the ecosystem, whereas the neurotoxicity of MPs in mammals remains to be elucidated. The current study was designed to investigate whether 50 nm polystyrene nanoplastics (PS-NPs) could pass through the blood-brain barrier (BBB), and to elucidate the underlying mechanisms and the following neurotoxic manifestation. In vivo study showed that PS-NPs (0.5-50 mg/kg. bw PS-NPs for 7 days) significantly induced the increase of permeability of BBB, and dose-dependently accumulated in the brain of mice. In addition, PS-NPs were found to be present in microglia, and induced microglia activation and neuron damage in the mouse brain. In vitro studies using the immortalized human cerebral microvascular endothelial cell (hCMEC/D3), the most commonly used cell model for BBB-related studies, revealed that PS-NPs could be internalized into cells, and caused reactive oxygen species (ROS) production, nuclear factor kappa-B (NF-κB) activation, tumor necrosis factors α (TNF-α) secretion, and necroptosis of hCMEC/D3 cells. Furthermore, PS-NPs exposure led to disturbance of the tight junction (TJ) formed by hCMEC/D3, as demonstrated by the decline of transendothelial electrical resistance (TEER) and decreased expression of occludin. Lastly, PS-NPs exposure resulted in the activation of murine microglia BV2 cells, and the cell medium of PS-NPs-exposed BV2 induced obvious damage to murine neuron HT-22 cells. Collectively, these results suggest that PS-NPs could pass through BBB and induce neurotoxicity in mammals probably by inducing activation of microglia.
Collapse
Affiliation(s)
- Shan Shan
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiwen Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Wang X, Wu C, Liu S, Peng D. Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives. Drug Deliv 2022; 29:1370-1383. [PMID: 35532094 PMCID: PMC9090367 DOI: 10.1080/10717544.2022.2069881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Brain cancer is the most aggressive one among various cancers. It has a drastic impact on people's lives because of the failure in treatment efficacy of the currently employed strategies. Various strategies used to relieve pain in brain cancer patients and to prolong survival time include radiotherapy, chemotherapy, and surgery. Nevertheless, several inevitable limitations are accompanied by such treatments due to unsatisfactory curative effects. Generally, the treatment of cancers is very challenging due to many reasons including drugs’ intrinsic factors and physiological barriers. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are the two additional hurdles in the way of therapeutic agents to brain tumors delivery. Combinatorial and targeted therapies specifically in cancer show a very promising role where nanocarriers’ based formulations are designed primarily to achieve tumor-specific drug release. A dual-targeting strategy is a versatile way of chemotherapeutics delivery to brain tumors that gets the aid of combined ligands and mediators that cross the BBB and reaches the target site efficiently. In contrast to single targeting where one receptor or mediator is targeted, the dual-targeting strategy is expected to produce a multiple-fold increase in therapeutic efficacy for cancer therapy, especially in brain tumors. In a nutshell, a dual-targeting strategy for brain tumors enhances the delivery efficiency of chemotherapeutic agents via penetration across the blood-brain barrier and enhances the targeting of tumor cells. This review article highlights the ongoing status of the brain tumor therapy enhanced by nanoparticle based delivery with the aid of dual-targeting strategies. The future perspectives in this regard have also been highlighted.
Collapse
Affiliation(s)
- Xiande Wang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, China
| | - Cheng Wu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shiming Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Deqing Peng
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
13
|
Mittal KR, Pharasi N, Sarna B, Singh M, Rachana, Haider S, Singh SK, Dua K, Jha SK, Dey A, Ojha S, Mani S, Jha NK. Nanotechnology-based drug delivery for the treatment of CNS disorders. Transl Neurosci 2022; 13:527-546. [PMID: 36741545 PMCID: PMC9883694 DOI: 10.1515/tnsci-2022-0258] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Approximately 6.8 million people die annually because of problems related to the central nervous system (CNS), and out of them, approximately 1 million people are affected by neurodegenerative diseases that include Alzheimer's disease, multiple sclerosis, epilepsy, and Parkinson's disease. CNS problems are a primary concern because of the complexity of the brain. There are various drugs available to treat CNS disorders and overcome problems with toxicity, specificity, and delivery. Barriers like the blood-brain barrier (BBB) are a challenge, as they do not allow therapeutic drugs to cross and reach their target. Researchers have been searching for ways to allow drugs to pass through the BBB and reach the target sites. These problems highlight the need of nanotechnology to alter or manipulate various processes at the cellular level to achieve the desired attributes. Due to their nanosize, nanoparticles are able to pass through the BBB and are an effective alternative to drug administration and other approaches. Nanotechnology has the potential to improve treatment and diagnostic techniques for CNS disorders and facilitate effective drug transfer. With the aid of nanoengineering, drugs could be modified to perform functions like transference across the BBB, altering signaling pathways, targeting specific cells, effective gene transfer, and promoting regeneration and preservation of nerve cells. The involvement of a nanocarrier framework inside the delivery of several neurotherapeutic agents used in the treatment of neurological diseases is reviewed in this study.
Collapse
Affiliation(s)
- Khushi R. Mittal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Nandini Pharasi
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Bhavya Sarna
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Rachana
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Shazia Haider
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shalini Mani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
14
|
Arora S, Singh J. In vitro and in vivo optimization of liposomal nanoparticles based brain targeted vgf gene therapy. Int J Pharm 2021; 608:121095. [PMID: 34543617 PMCID: PMC8574129 DOI: 10.1016/j.ijpharm.2021.121095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022]
Abstract
Vgf (non-acronymic), a neurotrophin stimulated protein which plays a crucial role in learning, synaptic activity, and neurogenesis, is markedly downregulated in the brain of Alzheimer's disease (AD) patients. However, since vgf is a large polar protein, a safe and efficient gene delivery vector is critical for its delivery across the blood brain barrier (BBB). This research work demonstrates brain-targeted liposomal nanoparticles optimized for delivering plasmid encoding vgf across BBB and transfecting brain cells. Brain targeting was achieved by surface functionalization using glucose transporter-1 targeting ligand (mannose) and brain targeted cell-penetrating peptides (chimeric rabies virus glycoprotein fragment, rabies virus derived peptide, penetratin peptide, or CGNHPHLAKYNGT peptide). The ligands were conjugated to lipid via nucleophilic substitution reaction resulting in >75% binding efficiency. The liposomes were formed by film hydration technique demonstrating size <200 nm, positive zeta potential (15-20 mV), and polydispersity index <0.3. The bifunctionalized liposomes demonstrated ∼3 pg/µg protein vgf transfection across in vitro BBB, and ∼80 pg/mg protein in mice brain which was 1.5-2 fold (p < 0.05) higher compared to untreated control. The nanoparticles were also biocompatible in vitro and in vivo, suggesting a safe and efficient gene delivery system to treat AD.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
15
|
Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that accounts for about 60% of all diagnosed cases of dementia worldwide. Although there are currently several drugs marketed for its treatment, none are capable of slowing down or stopping the progression of AD. The role of the blood-brain barrier (BBB) plays a key role in the design of a successful treatment for this neurodegenerative disease. Nanosized particles have been proposed as suitable drug delivery systems to overcome BBB with the purpose of increasing bioavailability of drugs in the brain. Biodegradable poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) have been particularly regarded as promising drug delivery systems as they can be surface-tailored with functionalized molecules for site-specific targeting. In this review, a thorough discussion about the most recent functionalization strategies based on PLGA-NPs for AD and their mechanisms of action is provided, together with a description of AD pathogenesis and the role of the BBB in brain targeting.
Collapse
|
16
|
Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 2021; 9:2756-2784. [PMID: 33596293 DOI: 10.1039/d0tb02957b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications, such as drug delivery. This review aims at overviewing recent developments of inorganic nanoparticles (like porous or mesoporous silica particles) and different nano-clay materials (like montmorillonite, laponites or halloysite nanotubes) employed for overcoming the blood brain barrier (BBB) in the treatment and therapy of major brain diseases such as Alzheimer's, Parkinson's, glioma or amyotrophic lateral sclerosis. Recent strategies of crossing the BBB through invasive and not invasive administration routes by using different types of nanoparticles compared to nano-clays and inorganic particles are overviewed.
Collapse
Affiliation(s)
- Francesca Persano
- University of Salento, Department of Mathematics and Physics, Via Per Arnesano 73100, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Recent Advances in the Use of Lipid-Based Nanoparticles Against Glioblastoma Multiforme. Arch Immunol Ther Exp (Warsz) 2021; 69:8. [PMID: 33772646 DOI: 10.1007/s00005-021-00609-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. Although the overall incidence is less than 10 per 100,000 individuals, its poor prognosis and low survival rate make GBM a crucial public health issue. The main challenges for GBM treatment are related to tumor location and its complex and heterogeneous biology. In this sense, a broad range of nanoparticles with different sizes, architectures, and surface properties, have been engineered as brain drug delivery systems. Among them, lipid-based nanoparticles, such as liposomes, have been pointed out as promising materials to deliver antitumoral drugs to the central nervous system and thus, to improve brain drug targeting and therapeutic efficiency. Here, we describe the synthesis and general characteristics of lipid-based nanoparticles, as well as evidence in the past 5 years regarding their potential use to treat GBM.
Collapse
|
18
|
Fernandes F, Dias-Teixeira M, Delerue-Matos C, Grosso C. Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:563. [PMID: 33668341 PMCID: PMC7996241 DOI: 10.3390/nano11030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, 1649-028 Lisbon, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| |
Collapse
|
19
|
Jaimalai T, Meeroekyai S, Suree N, Prangkio P. Drug Delivery System Targeting CD4 + T Cells for HIV-1 Latency Reactivation Towards the Viral Eradication. J Pharm Sci 2020; 109:3013-3020. [PMID: 32593715 DOI: 10.1016/j.xphs.2020.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Development of a cure for HIV/AIDS has been a great challenge due to the establishment of the HIV-1 viral reservoir, mainly within resting CD4+ memory T cells. As a step towards a cure for HIV, this study aimed to develop an approach that reactivates HIV-1 latently infected cells by employing a drug delivery system using immunoliposomes targeting CD4+ T cells. The immunoliposomes were examined for physicochemical properties and determined for their potential stability. A histone deacetylase (HDAC) inhibitor SAHA was used as a model drug being encapsulated within the immunoliposomes that are conjugated with anti-CD4 antibodies. The immunoliposomes are effectively and specifically taken up by the CD4+ J-Lat 10.6 cells, and significantly less so by the CD4- ACH-2 cells. For HIV-1 latent cell reactivation, SAHA-encapsulated immunoliposomes (SAHA-IL) and SAHA-encapsulated liposomes (SAHA-LP) can reactivate HIV latency as effectively as SAHA compound alone. Additionally, a combination of SAHA-IL and a protein kinase C activator, bryostatin-1, also exhibits a synergistic effect on the reactivation. The developed system thus presents a viable option to become a promising approach for HIV-1 latency reversing treatment, a strategy towards developing a functional cure for HIV.
Collapse
Affiliation(s)
- Thanapak Jaimalai
- Graduate Program in Biotechnology, The Graduate School, Chiang Mai University, Chiang Mai, Thailand; Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Suthasinee Meeroekyai
- Graduate Program in Biotechnology, The Graduate School, Chiang Mai University, Chiang Mai, Thailand; Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttee Suree
- Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Panchika Prangkio
- Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.
| |
Collapse
|
20
|
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci 2020; 14:494. [PMID: 32581676 PMCID: PMC7297271 DOI: 10.3389/fnins.2020.00494] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders especially neurodegenerative disorders are the major challenge for public health and demand the great attention of researchers to protect people against them. In past few decades, different treatment strategies have been adopted, but their therapeutic efficacy are not enough and have only shown partial mitigation of symptoms. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) guard the CNS from harmful substances and pose as the major challenges in delivering drugs into CNS for treatment of CNS complications such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), stroke, epilepsy, brain tumors, multiple sclerosis (MS), and encephalitis, etc. Nanotechnology has come out as an exciting and promising new platform of treating neurological disorders and has shown great potential to overcome problems related to the conventional treatment approaches. Molecules can be nanoengineered to carry out multiple specific functions such as to cross the BBB, target specific cell or signaling pathway, respond to endogenous stimuli, and act as a vehicle for gene delivery, support nerve regeneration and cell survival. In present review, the role of nanocarrier systems such as liposomes, micelles, solid lipid nanoparticles (SLNPs), dendrimers, and nanoemulsions for delivery of various neurotherapeutic agents has been discussed, besides this, their mechanism of action, and nanoformulation of different neuroprotective agents like curcumin, edaravone, nerve growth factors in CNS disorders like Alzheimer’s, Parkinsonism, epilepsy, stroke, and brain tumors has been reviewed.
Collapse
Affiliation(s)
- Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Archna Panghal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
21
|
Kang S, Duan W, Zhang S, Chen D, Feng J, Qi N. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics 2020; 10:4308-4322. [PMID: 32292496 PMCID: PMC7150489 DOI: 10.7150/thno.41322] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023] Open
Abstract
Rationale: The dual-targeted drug delivery system was designed for enhancing permeation of the blood-brain barrier (BBB) and providing an anti-glioma effect. As transferrin receptor (TfR) is over-expressed by the brain capillary endothelial (hCMEC/D3) and glioma cells, a mouse monoclonal antibody, RI7217, with high affinity and selectivity for TfR, was used to study the brain targeted drug delivery system. Muscone, an ingredient of traditional Chinese medicine (TCM) musk, was used as the "guide" drug to probe the permeability of the BBB for drug delivery into the cerebrospinal fluid. This study investigated the combined effects of TCM aromatic resuscitation and modern receptor-targeted technology by the use of muscone/RI7217 co-modified docetaxel (DTX) liposomes for enhanced drug delivery to the brain for anti-glioma effect. Methods: Cellular drug uptake from the formulations was determined using fluorescence microscopy and flow cytometry. The drug penetrating ability into tumor spheroids were visualized using confocal laser scanning microscopy (CLSM). In vivo glioma-targeting ability of formulations was evaluated using whole-body fluorescent imaging system. The survival curve study was performed to evaluate the anti-glioma effect of the formulations. Results: The results showed that muscone and RI7217 co-modified DTX liposomes enhanced uptake into both hCMEC/D3 and U87-MG cells, increased penetration to the deep region of U87-MG tumor spheroids, improved brain targeting in vivo and prolonged survival time of nude mice bearing tumor. Conclusion: Muscone and RI7217 co-modified DTX liposomes were found to show improved brain targeting and enhanced the efficacy of anti-glioma drug treatment in vivo.
Collapse
|
22
|
Ajikumar A, Long MB, Heath PR, Wharton SB, Ince PG, Ridger VC, Simpson JE. Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. Int J Mol Sci 2019; 20:E5227. [PMID: 31652502 PMCID: PMC6834153 DOI: 10.3390/ijms20205227] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.
Collapse
Affiliation(s)
- Anjana Ajikumar
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Merete B Long
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Victoria C Ridger
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
23
|
Marazioti A, Papadia K, Kannavou M, Spella M, Basta A, de Lastic AL, Rodi M, Mouzaki A, Samiotaki M, Panayotou G, Stathopoulos GT, Antimisiaris SG. Cellular Vesicles: New Insights in Engineering Methods, Interaction with Cells and Potential for Brain Targeting. J Pharmacol Exp Ther 2019; 370:772-785. [PMID: 31061141 DOI: 10.1124/jpet.119.257097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular vesicles (CVs) have been proposed as alternatives to exosomes for targeted drug delivery. CVs, prepared from human embryonic kidney 293 cells (HEK-293), C57BL/6 mouse B16F10 skin melanoma cells (B16F10), and immortalized human cerebral microvascular endothelial cells (hCMEC/D3) by liposome technology methods, were characterized for morphology, cytotoxicity, and cell uptake properties. CV brain-targeting potential was evaluated in vitro on the hCMEC/D3 blood-brain barrier (BBB) model, and in vivo/ex vivo. CV sizes were between 135 and 285 nm, and the ζ-potential was negative. The dehydration-rehydration method conferred highest calcein loading and latency to CVs compared with other methods. The increased calcein leakage from CVs when compared with liposomes indicated their poor integrity, which was increased by pegylation. The in vivo results confirmed lower liver uptake by PEG-CVs (compared with nonpegylated) proving that the calcein integrity test is useful for prediction of CV biodistribution, as used for liposomes. The cell uptake of homologous origin CVs was not always higher compared with that of non-homologous. Nevertheless, CVs from hCMEC/D3 demonstrated the highest BBB permeability (in vitro) compared with OX-26 targeted liposomes, and brain localization (in vivo). CVs from hCMEC/D3 cells grown in different media demonstrated decreased interaction with brain cells and brain localization. Significant differences in proteome of the two latter CV types were identified by proteomics, suggesting a potential methodology for identification of organotropism-determining CV components.
Collapse
Affiliation(s)
- A Marazioti
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - K Papadia
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Kannavou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Spella
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - A Basta
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - A-L de Lastic
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Rodi
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - A Mouzaki
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Samiotaki
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - G Panayotou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - G T Stathopoulos
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - S G Antimisiaris
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| |
Collapse
|
24
|
Phoolcharoen W, Banyard AC, Prehaud C, Selden D, Wu G, Birch CPD, Szeto TH, Lafon M, Fooks AR, Ma JKC. In vitro and in vivo evaluation of a single chain antibody fragment generated in planta with potent rabies neutralisation activity. Vaccine 2019; 37:4673-4680. [PMID: 29523449 PMCID: PMC6677913 DOI: 10.1016/j.vaccine.2018.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
Rabies causes more than 60,000 human deaths annually in areas where the virus is endemic. Importantly, rabies is one of the few pathogens for which there is no treatment following the onset of clinical disease with the outcome of infection being death in almost 100% of cases. Whilst vaccination, and the combination of vaccine and rabies immunoglobulin treatment for post-exposure administration are available, no tools have been identified that can reduce or prevent rabies virus replication once clinical disease has initiated. The search for effective antiviral molecules to treat those that have already developed clinical disease associated with rabies virus infection is considered one of the most important goals in rabies research. The current study assesses a single chain antibody molecule (ScFv) based on a monoclonal antibody that potently neutralises rabies in vitro as a potential therapeutic candidate. The recombinant ScFv was generated in Nicotiana benthamiana by transient expression, and was chemically conjugated (ScFv/RVG) to a 29 amino acid peptide, specific for nicotinic acetylcholine receptor (nAchR) binding in the CNS. This conjugated molecule was able to bind nAchR in vitro and enter neuronal cells more efficiently than ScFv. The ability of the ScFv/RVG to neutralise virus in vivo was assessed using a staggered administration where the molecule was inoculated either four hours before, two days after or four days after infection. The ScFv/RVG conjugate was evaluated in direct comparison with HRIG and a potential antiviral molecule, Favipiravir (also known as T-705) to indicate whether there was greater bioavailability of the ScFv in the brains of treated mice. The study indicated that the approach taken with the ScFv/RVG conjugate may have utility in the design and implementation of novel tools targetting rabies virus infection in the brain.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK; Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Colin P D Birch
- Biomathematics and Risk Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Tim H Szeto
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK.
| |
Collapse
|
25
|
Toth AE, Nielsen SSE, Tomaka W, Abbott NJ, Nielsen MS. The endo-lysosomal system of bEnd.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS 2019; 16:14. [PMID: 31142333 PMCID: PMC6542060 DOI: 10.1186/s12987-019-0134-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Brain endothelial cell-based in vitro models are among the most versatile tools in blood–brain barrier research for testing drug penetration to the central nervous system. Transcytosis of large pharmaceuticals across the brain capillary endothelium involves the complex endo-lysosomal system. This system consists of several types of vesicle, such as early, late and recycling endosomes, retromer-positive structures, and lysosomes. Since the endo-lysosomal system in endothelial cell lines of in vitro blood–brain barrier models has not been investigated in detail, our aim was to characterize this system in different models. Methods For the investigation, we have chosen two widely-used models for in vitro drug transport studies: the bEnd.3 mouse and the hCMEC/D3 human brain endothelial cell line. We compared the structures and attributes of their endo-lysosomal system to that of primary porcine brain endothelial cells. Results We detected significant differences in the vesicular network regarding number, morphology, subcellular distribution and lysosomal activity. The retromer-positive vesicles of the primary cells were distinct in many ways from those of the cell lines. However, the cell lines showed higher lysosomal degradation activity than the primary cells. Additionally, the hCMEC/D3 possessed a strikingly unique ratio of recycling endosomes to late endosomes. Conclusions Taken together our data identify differences in the trafficking network of brain endothelial cells, essentially mapping the endo-lysosomal system of in vitro blood–brain barrier models. This knowledge is valuable for planning the optimal route across the blood–brain barrier and advancing drug delivery to the brain. Electronic supplementary material The online version of this article (10.1186/s12987-019-0134-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| | - Simone S E Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Weronika Tomaka
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| |
Collapse
|
26
|
Tosi G, Pederzoli F, Belletti D, Vandelli MA, Forni F, Duskey JT, Ruozi B. Nanomedicine in Alzheimer's disease: Amyloid beta targeting strategy. PROGRESS IN BRAIN RESEARCH 2019; 245:57-88. [PMID: 30961872 DOI: 10.1016/bs.pbr.2019.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of Alzheimer's disease (AD) is up to today one of the most unsuccessful examples of biomedical science. Despite the high number of literature evidences detailing the multifactorial and complex etiopathology of AD, no cure is yet present on the market and the available treatments are only symptomatic. The reasons could be ascribed on two main factors: (i) lack of ability of the majority of drugs to cross the blood-brain barrier (BBB), thus excluding the brain for any successful therapy; (ii) lack of selectivity and specificity of drugs, decreasing the efficacy of even potent anti-AD drugs. The exploitation of specifically engineered nanomedicines planned to cross the BBB and to target the most "hot" site of action (i.e., β-amyloid) is one of the most interesting innovations in drug delivery and could reasonably represent an promising choice for possible treatments and even early-diagnosis of AD. In this chapter, we therefore outline the most talented approaches in AD treatment with a specific focus on the main advantages/drawbacks and future possible translation to clinic application.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Istituto di Ricerca Pediatrico "Città della Speranza", Padova, Italy
| | - Daniela Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Fondazione Umberto Veronesi, Milano, Italy
| | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
27
|
Sharma G, Sharma AR, Lee SS, Bhattacharya M, Nam JS, Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int J Pharm 2019; 559:360-372. [DOI: 10.1016/j.ijpharm.2019.01.056] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/13/2023]
|
28
|
Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK. Phyto-Therapeutic and Nanomedicinal Approaches to Cure Alzheimer's Disease: Present Status and Future Opportunities. Front Aging Neurosci 2018; 10:284. [PMID: 30405389 PMCID: PMC6205985 DOI: 10.3389/fnagi.2018.00284] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive inability manifested due to the accumulation of β-amyloid, formation of hyper phosphorylated neurofibrillary tangles, and a malfunctioned cholinergic system. The degeneration integrity of the neuronal network can appear long after the onset of the disease. Nanotechnology-based interventions have opened an exciting area via theranostics of AD in terms of tailored nanomedicine, which are able to target and deliver drugs across the blood-brain barrier (BBB). The exciting interface existing between medicinal plants and nanotechnology is an emerging marvel in medicine, which has delivered promising results in the treatment of AD. In order to assess the potential applications of the medicinal plants, their derived components, and various nanomedicinal approaches, a review of literature was deemed as necessary. In the present review, numerous phytochemicals and various feats in nanomedicine for the treatment of AD have been discussed mechanistically for the first time. Furthermore, recent trends in nanotechnology such as green synthesis of metal nanoparticles with reference to the treatment of AD have been elaborated. Foreseeing the recent progress, we hope that the interface of medicinal plants and nanotechnology will lead to highly effective theranostic strategies for the treatment of AD in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Nashmia Zia
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Department of Life Sciences and Chemistry, Faculty of Health, Jacobs University Bremen, Bremen, Germany
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
29
|
Amin M, Pourshohod A, Kheirollah A, Afrakhteh M, Gholami-Borujeni F, Zeinali M, Jamalan M. Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Piazzini V, Landucci E, Graverini G, Pellegrini-Giampietro DE, Bilia AR, Bergonzi MC. Stealth and Cationic Nanoliposomes as Drug Delivery Systems to Increase Andrographolide BBB Permeability. Pharmaceutics 2018; 10:pharmaceutics10030128. [PMID: 30104484 PMCID: PMC6161272 DOI: 10.3390/pharmaceutics10030128] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Andrographolide (AG) is a natural compound effective for the treatment of inflammation-mediated neurodegenerative disorders. The aim of this investigation was the preparation of liposomes to enhance the penetration into the brain of AG, by modifying the surface of the liposomes by adding Tween 80 (LPs-AG) alone or in combination with Didecyldimethylammonium bromide (DDAB) (CLPs-AG). (2) Methods: LPs-AG and CLPs-AG were physically and chemically characterized. The ability of liposomes to increase the permeability of AG was evaluated by artificial membranes (PAMPA) and hCMEC/D3 cells. (3) Results: Based on obtained results in terms of size, homogeneity, ζ-potential and EE%. both liposomes are suitable for parenteral administration. The systems showed excellent stability during a month of storage as suspensions or freeze-dried products. Glucose resulted the best cryoprotectant agent. PAMPA and hCMEC/D3 transport studies revealed that LPs-AG and CLPs-AG increased the permeability of AG, about an order of magnitude, compared to free AG without alterations in cell viability. The caveolae-mediated endocytosis resulted the main mechanism of up-take for both formulations. The presence of positive charge increased the cellular internalization of nanoparticles. (4) Conclusions: This study shows that developed liposomes might be ideal candidates for brain delivery of AG.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Giulia Graverini
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
31
|
Skouras A, Papadia K, Mourtas S, Klepetsanis P, Antimisiaris SG. Multifunctional doxorubicin-loaded magnetoliposomes with active and magnetic targeting properties. Eur J Pharm Sci 2018; 123:162-172. [PMID: 30041027 DOI: 10.1016/j.ejps.2018.07.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 01/30/2023]
Abstract
Multifunctional magnetoliposomes (MLs) with active and magnetic targeting potential are evaluated as platform systems for drug targeting applications. USPIO-encapsulating MLs are prepared by freeze drying/extrusion, decorated with one or two ligands for brain or cancer targeting (t-MLs), and actively loaded with Doxorubicin (DOX). MLs have mean diameters between 117 and 171 nm. Ligand attachment yields and DOX-loading efficiency are sufficiently high, 78-95% and 89-92%, respectively, while DOX loading and retention is not affected by co-entrapment of USPIOs, and USPIO loading/retention is not modulated by DOX. Attachment of ligands, also does not affect DOX or USPIO loading. Interestingly, MLs have high magnetophoretic mobility (MM) compared to free USPIOs, which is not affected by surface coating with PEG (up to 8 mol%), but is slightly reduced by Chol incorporation in their membrane, or when functional groups are immobilized on their surface. ML size, (directly related to number of USPIOs entrapped per vesicle), is the most important MM-determining factor. MM increases by 570% when ML size increases from 69 to 348 nm. Targeting potential of t-MLs is verified by enhanced: (i) transport across a cellular model of the blood-brain-barrier, and (ii) anti-proliferative effect towards B16 melanoma cells. The potential of further enhancing t-ML targeting magnetically is verified by additional enhancements of (i) and (ii), when experiments are performed under a permanent magnetic field.
Collapse
Affiliation(s)
- Athanasios Skouras
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece
| | - Pavlos Klepetsanis
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece; Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26506, Patras, Greece
| | - Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece; Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26506, Patras, Greece.
| |
Collapse
|
32
|
Phoolcharoen W, Prehaud C, van Dolleweerd CJ, Both L, da Costa A, Lafon M, Ma JK. Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1331-1339. [PMID: 28273388 PMCID: PMC5595719 DOI: 10.1111/pbi.12719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/12/2017] [Accepted: 03/01/2017] [Indexed: 05/03/2023]
Abstract
The biomedical applications of antibody engineering are developing rapidly and have been expanded to plant expression platforms. In this study, we have generated a novel antibody molecule in planta for targeted delivery across the blood-brain barrier (BBB). Rabies virus (RABV) is a neurotropic virus for which there is no effective treatment after entry into the central nervous system. This study investigated the use of a RABV glycoprotein peptide sequence to assist delivery of a rabies neutralizing single-chain antibody (ScFv) across an in cellulo model of human BBB. The 29 amino acid rabies virus peptide (RVG) recognizes the nicotinic acetylcholine receptor (nAchR) at neuromuscular junctions and the BBB. ScFv and ScFv-RVG fusion proteins were produced in Nicotiana benthamiana by transient expression. Both molecules were successfully expressed and purified, but the ScFv expression level was significantly higher than that of ScFv-RVG fusion. Both ScFv and ScFv-RVG fusion molecules had potent neutralization activity against RABVin cellulo. The ScFv-RVG fusion demonstrated increased binding to nAchR and entry into neuronal cells, compared to ScFv alone. Additionally, a human brain endothelial cell line BBB model was used to demonstrate that plant-produced ScFv-RVGP fusion could translocate across the cells. This study indicates that the plant-produced ScFv-RVGP fusion protein was able to cross the in celluloBBB and neutralize RABV.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
- Pharmacognosy and Pharmaceutical BotanyFaculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
| | - Christophe Prehaud
- Unité de Neuroimmunologie ViraleDépartement de VirologieInstitut PasteurParisFrance
| | - Craig J. van Dolleweerd
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
| | - Leonard Both
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
| | - Anaelle da Costa
- Unité de Neuroimmunologie ViraleDépartement de VirologieInstitut PasteurParisFrance
| | - Monique Lafon
- Unité de Neuroimmunologie ViraleDépartement de VirologieInstitut PasteurParisFrance
| | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt. George's Hospital Medical SchoolUniversity of LondonLondonUK
| |
Collapse
|
33
|
Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol Res 2017; 124:146-155. [DOI: 10.1016/j.phrs.2017.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 02/05/2023]
|
34
|
Sahin A, Yoyen-Ermis D, Caban-Toktas S, Horzum U, Aktas Y, Couvreur P, Esendagli G, Capan Y. Evaluation of brain-targeted chitosan nanoparticles through blood–brain barrier cerebral microvessel endothelial cells. J Microencapsul 2017; 34:659-666. [DOI: 10.1080/02652048.2017.1375039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Adem Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Digdem Yoyen-Ermis
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Secil Caban-Toktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Utku Horzum
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yesim Aktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Patrick Couvreur
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University Paris-Sud XI, Châtenay-Malabry, France
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yilmaz Capan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
35
|
Johnsen KB, Burkhart A, Melander F, Kempen PJ, Vejlebo JB, Siupka P, Nielsen MS, Andresen TL, Moos T. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep 2017; 7:10396. [PMID: 28871203 PMCID: PMC5583399 DOI: 10.1038/s41598-017-11220-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/16/2017] [Indexed: 01/23/2023] Open
Abstract
Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain.
Collapse
Affiliation(s)
- Kasper Bendix Johnsen
- Laboratory for Neurobiology, Biomedicine, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Nanomedicine and Theranostics, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Annette Burkhart
- Laboratory for Neurobiology, Biomedicine, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Fredrik Melander
- Center for Nanomedicine and Theranostics, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Paul Joseph Kempen
- Center for Nanomedicine and Theranostics, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Jonas Bruun Vejlebo
- Center for Nanomedicine and Theranostics, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Piotr Siupka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Thomas Lars Andresen
- Center for Nanomedicine and Theranostics, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Torben Moos
- Laboratory for Neurobiology, Biomedicine, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
36
|
Fernández-Moriano C, González-Burgos E, Iglesias I, Lozano R, Gómez-Serranillos MP. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLoS One 2017; 12:e0182933. [PMID: 28813475 PMCID: PMC5558939 DOI: 10.1371/journal.pone.0182933] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/26/2017] [Indexed: 12/19/2022] Open
Abstract
Background Ginseng (Panax sp.) is a drug with multiple pharmacological actions that has been largely used in traditional medicines for the treatment of many health problems. In the therapy of neurodegenerative disorders, it has been employed due to its capacity to strengthen mental processes by enhancing cognitive performance and psychological function. Current work aimed at evaluating the adaptogenic potential of Rb1 and Rg1 against oxidative-stress mediated degeneration in a model of nervous cells. Methods Oxidative stress and mitochondrial dysfunction were achieved by exposing SH-SY5Y cells to the mitochondrial complex I inhibitor rotenone. The cytoprotective activity of pre-treatments with ginsenosides Rb1 and Rg1 against rotenone was assessed by determining biochemical markers regarding oxidative stress (ROS scavenging, glutathione and lipid peroxidation levels, SOD activity and Nrf2 activation) and apoptosis-related alterations (mitochondrial membrane potential, calcium levels, aconitase activity and pro/antiapoptotic proteins). Their capacity to cross the blood brain barrier was also estimated. Results At their optimal doses, ginsenosides Rb1 and Rg1 significantly ameliorated redox status within the cells; they reduced ROS and TBARS levels and improved the glutathione system, as well as they enhanced SOD activity and Nrf2 pathway activation. They protected neuronal cells against MMP loss, calcium homeostasis disruption and aconitase inhibition. Consequently, apoptotic cell death was attenuated by the pre-treatment with ginsenosides, as evidenced by the reduction in caspase-3 and Bax, and the increase in Bcl-2 expressions; also, lower levels of cytochrome C were found in the cytosol. Poor BBB permeation was demonstrated for both ginsenosides. Conclusions In conclusion, ginsenosides Rb1 and Rg1 exhibit neuroprotective potential which is achieved, at least in part, via mitochondrial protection and the plausible involvement of Nrf2 pathway activation. Our results contribute to validate the traditional use of ginseng for cognitive-enhancing purposes and provide basis to encourage further research on the potential of ginsenosides in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Elena González-Burgos
- Department of Pharmacology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Irene Iglesias
- Department of Pharmacology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Rafael Lozano
- Department of Inorganic Chemistry, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - M. Pilar Gómez-Serranillos
- Department of Pharmacology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
37
|
Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. J Control Release 2017; 260:61-77. [PMID: 28549949 DOI: 10.1016/j.jconrel.2017.05.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
Abstract
In this modern era, with the help of various advanced technologies, medical science has overcome most of the health-related issues successfully. Though, some diseases still remain unresolved due to various physiological barriers. One such condition is Alzheimer; a neurodegenerative disorder characterized by progressive memory impairment, behavioral abnormalities, mood swing and disturbed routine activities of the person suffering from. It is well known to all that the brain is entirely covered by a protective layer commonly known as blood brain barrier (BBB) which is responsible to maintain the homeostasis of brain by restricting the entry of toxic substances, drug molecules, various proteins and peptides, small hydrophilic molecules, large lipophilic substances and so many other peripheral components to protect the brain from any harmful stimuli. This functionally essential structure creates a major hurdle for delivery of any drug into the brain. Still, there are some provisions on BBB which facilitate the entry of useful substances in the brain via specific mechanisms like passive diffusion, receptor-mediated transcytosis, carrier-mediated transcytosis etc. Another important factor for drug transport is the selection of a suitable drug delivery systems like, liposome, which is a novel drug carrier system offering a potential approach to resolving this problem. Its unique phospholipid bilayer structure (similar to physiological membrane) had made it more compatible with the lipoidal layer of BBB and helps the drug to enter the brain. The present review work focused on various surface modifications with functional ligand (like lactoferrin, transferrin etc.) and carrier molecules (such as glutathione, glucose etc.) on the liposomal structure to enhance its brain targeting ability towards the successful treatment of Alzheimer disease.
Collapse
|
38
|
Papadia K, Giannou AD, Markoutsa E, Bigot C, Vanhoute G, Mourtas S, Van der Linded A, Stathopoulos GT, Antimisiaris SG. Multifunctional LUV liposomes decorated for BBB and amyloid targeting - B. In vivo brain targeting potential in wild-type and APP/PS1 mice. Eur J Pharm Sci 2017; 102:180-187. [DOI: 10.1016/j.ejps.2017.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
|
39
|
Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MAN, Pereira MC. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer's Disease. Molecules 2017; 22:E277. [PMID: 28208831 PMCID: PMC6155722 DOI: 10.3390/molecules22020277] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
The aggregation of amyloid-β peptide (Aβ) has been linked to the formation of neuritic plaques, which are pathological hallmarks of Alzheimer's disease (AD). Various natural compounds have been suggested as therapeutics for AD. Among these compounds, resveratrol has aroused great interest due to its neuroprotective characteristics. Here, we provide evidence that grape skin and grape seed extracts increase the inhibition effect on Aβ aggregation. However, after intravenous injection, resveratrol is rapidly metabolized into both glucuronic acid and sulfate conjugations of the phenolic groups in the liver and intestinal epithelial cells (within less than 2 h), which are then eliminated. In the present study, we show that solid lipid nanoparticles (SLNs) functionalized with an antibody, the anti-transferrin receptor monoclonal antibody (OX26 mAb), can work as a possible carrier to transport the extract to target the brain. Experiments on human brain-like endothelial cells show that the cellular uptake of the OX26 SLNs is substantially more efficient than that of normal SLNs and SLNs functionalized with an unspecific antibody. As a consequence, the transcytosis ability of these different SLNs is higher when functionalized with OX-26.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Ana Duarte
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, Porto 4050-313, Portugal.
| | - Joana Fontes Queiroz
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, Porto 4050-313, Portugal.
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, Porto 4050-313, Portugal.
| | - Emmanuel Sevin
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens F-62300, France.
| | - Laurence Fenart
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens F-62300, France.
| | - Fabien Gosselet
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens F-62300, France.
| | - Manuel A N Coelho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| | - Maria Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto 4500-465, Portugal.
| |
Collapse
|
40
|
Papadia K, Markoutsa E, Mourtas S, Giannou AD, La Ferla B, Nicotra F, Salmona M, Klepetsanis P, Stathopoulos GT, Antimisiaris SG. Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept. Eur J Pharm Sci 2017; 101:140-148. [PMID: 28193538 DOI: 10.1016/j.ejps.2017.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/24/2022]
Abstract
Multifunctional LUV liposomes (mf-LIPs) were developed, having a curcumin-lipid ligand (TREG) with affinity towards amyloid species, together with ligands to target the transferrin and the LDL receptors of the blood-brain-barrier (BBB), on their surface. mf-LIPs were evaluated for their brain targeting, on hCMEC/D3 monolayers, and for their ability to inhibit Aβ-peptide aggregation. The transport of mf-LIP across hCMEC/D3 monolayers was similar to that of BBB-LIPs, indicating that the presence of TREG on their surface does not reduce their brain targeting potential. Likewise, mf-LIP inhibitory effect on Aβ aggregation was similar to that of LIPs functionalized only with TREG, proving that the presence of brain targeting ligands does not reduce the functionality of the amyloid-specific ligand. Addition of the curcumin-lipid in some liposome types was found to enhance their integrity and reduce the effect of serum proteins on their interaction with brain endothelial cells. Finally, preliminary in vivo results confirm the in vitro findings. Concluding, the current results reveal the potential of the specific curcumin-lipid derivative as a component of multifunctional LIPs with efficient brain targeting capability, intended to act as a theragnostic system for AD.
Collapse
Affiliation(s)
- Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26510, Greece
| | - Eleni Markoutsa
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26510, Greece
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26510, Greece
| | - Anastassios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio 26504, Greece
| | - Barabara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza dellaScienza 2, 20126 Milan, Italy
| | - Fransesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza dellaScienza 2, 20126 Milan, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Istituto di RicercheFarmacologiche "Mario Negri", Milan, Italy
| | - Pavlos Klepetsanis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26510, Greece; Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26504, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio 26504, Greece; Comprehensive Pneumology Center (CPC), Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München (DZL), Munich, Bavaria 81377, Germany
| | - Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26510, Greece; Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26504, Greece.
| |
Collapse
|
41
|
Biemans EALM, Jäkel L, de Waal RMW, Kuiperij HB, Verbeek MM. Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood-brain barrier. J Neurosci Res 2016; 95:1513-1522. [PMID: 27726164 PMCID: PMC5484315 DOI: 10.1002/jnr.23964] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease and cerebral amyloid angiopathy are characterized by accumulation of amyloid-β (Aβ) at the cerebrovasculature due to decreased clearance at the blood-brain barrier (BBB). However, the exact mechanism of Aβ clearance across this barrier has not been fully elucidated. The hCMEC/D3 cell line has been characterized as a valid model for the BBB. In this study we evaluated the use of this model to study Aβ clearance across the BBB, with an emphasis on brain-to-blood directional permeability. Barrier integrity of hCMEC/D3 monolayers was confirmed for large molecules in both the apical to basolateral and the reverse direction. However, permeability for smaller molecules was substantially higher, especially in basolateral to apical direction, and barrier formation for Aβ was completely absent in this direction. In addition, hCMEC/D3 cells failed to develop a high TEER, possibly caused by incomplete formation of tight junctions. We conclude that the hCMEC/D3 model has several limitations to study the cerebral clearance of Aβ. Therefore, the model needs further characterization before this cell system can be generally applied as a model to study cerebral Aβ clearance. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elisanne A L M Biemans
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Robert M W de Waal
- Radboud University Medical Center, Department of Pathology, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
43
|
Papadia K, Markoutsa E, Antimisiaris SG. How do the physicochemical properties of nanoliposomes affect their interactions with the hCMEC/D3 cellular model of the BBB? Int J Pharm 2016; 509:431-438. [PMID: 27286634 DOI: 10.1016/j.ijpharm.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022]
Abstract
Nanosized liposomes composed of 1,2-distearoyl-sn-glycerol-3-phosphatidylcholine (DSPC), cholesterol and polyethylene glycol-conjugated phospholipid (PEG), incorporating FITC-dextran (FITC) and in some cases also Rhodamine-conjugated phospholipid (RHO) (as labels) were constructed by the thin film hydration method, followed by extrusion; membranes with pore diameters from 50 to 400nm were used, while charged vesicles were produced by partially replacing DSPC with 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DSPG). The uptake of liposomes by hCMED/D3 cells was evaluated by measuring FITC in cells, and their permeability across cell monolayers was evaluated, by measuring the FI of liposome associated-FITC and RHO in the receiving side of a monolayer-transwell system. Results prove that liposome size has a significant effect on their uptake and permeability (for both charged and non-charged vesicles). The effect of liposome charge on cell uptake was slight (but significant), however charge (in the range from -2 to -16mV) did not significantly affect vesicle permeability; a significant decrease was only demonstrated for the liposome with the highest charge.
Collapse
Affiliation(s)
- Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Eleni Markoutsa
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| |
Collapse
|
44
|
Maussang D, Rip J, van Kregten J, van den Heuvel A, van der Pol S, van der Boom B, Reijerkerk A, Chen L, de Boer M, Gaillard P, de Vries H. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 20:59-69. [PMID: 27986226 DOI: 10.1016/j.ddtec.2016.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
The blood-brain barrier (BBB) represents a major obstacle for the delivery and development of drugs curing brain pathologies. However, this biological barrier presents numerous endogenous specialized transport systems that can be exploited by engineered nanoparticles to enable drug delivery to the brain. In particular, conjugation of glutathione (GSH) onto PEGylated liposomes (G-Technology®) showed to safely enhance delivery of encapsulated drugs to the brain. Yet, understanding of the mechanism of action remains limited and full mechanistic understanding will aid in the further optimization of the technology. In order to elucidate the mechanism of brain targeting by GSH-PEG liposomes, we here demonstrate that the in vivo delivery of liposomal ribavirin is increased in brain extracellular fluid according to the extent of GSH conjugation onto the liposomes. In vitro, using the hCMEC/D3 human cerebral microvascular endothelial (CMEC) cell line, as well as primary bovine and porcine CMEC (and in contrast to non-brain derived endothelial and epithelial cells), we show that liposomal uptake occurs through the process of endocytosis and that the brain-specific uptake is also glutathione conjugation-dependent. Interestingly, the uptake mechanism is an active process that is temperature-, time- and dose-dependent. Finally, early endocytosis events rely on cytoskeleton remodeling, as well as dynamin- and clathrin-dependent endocytosis pathways. Overall, our data demonstrate that the glutathione-dependent uptake mechanism of the G-Technology involves a specific endocytosis pathway indicative of a receptor-mediated mechanism, and supports the benefit of this drug delivery technology for the treatment of devastating brain diseases.
Collapse
Affiliation(s)
- David Maussang
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands; Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Jaap Rip
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Joan van Kregten
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Angelique van den Heuvel
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Susanne van der Pol
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Burt van der Boom
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Arie Reijerkerk
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Linda Chen
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Marco de Boer
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Pieter Gaillard
- to-BBB technologies BV (now 2-BBB Medicines BV), J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands.
| | - Helga de Vries
- Blood-Brain Barrier Research Group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
45
|
Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, Cui Y, Savina IN, Mikhalovska LI, Sandeman SR, Howel CA, Mikhalovsky SV. Nano carriers for drug transport across the blood-brain barrier. J Drug Target 2016; 25:17-28. [PMID: 27126681 DOI: 10.1080/1061186x.2016.1184272] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.
Collapse
Affiliation(s)
- Xinming Li
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China.,b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - John Tsibouklis
- b School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - Tingting Weng
- c Department of Chemical Engineering , Guangdong Petroleum and Chemical Technology Institute , Foshan , China
| | - Buning Zhang
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guoqiang Yin
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Guangzhu Feng
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Yingde Cui
- a School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , PR China
| | - Irina N Savina
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Lyuba I Mikhalovska
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Susan R Sandeman
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Carol A Howel
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK
| | - Sergey V Mikhalovsky
- d School of Pharmacy and Biomolecular Science , University of Brighton , Brighton , UK.,e School of Engineering , Nazarbayev Uiversity , Astana , Kazakhstan
| |
Collapse
|
46
|
Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment. Colloids Surf B Biointerfaces 2016; 145:8-13. [PMID: 27131092 DOI: 10.1016/j.colsurfb.2016.04.041] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 12/27/2022]
Abstract
During the last few decades, relevant efforts have been reported to design nanocarriers for drug transport through the blood brain barrier (BBB). New drugs, such as peptide iAβ5, capable to inhibit the aggregates associated with Alzheimeŕs disease (AD) are being tested but the most frequent drawback is to reach the brain in the desired concentrations due to the low BBB permeability-surface area. Our approach, as a proof of concept to improve drug transport through the BBB, is based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles with surface functionalized with anti-transferrin receptor monoclonal antibody (OX26) and anti-Aβ (DE2B4) to deliver encapsulated iAβ5 into the brain. Porcine brain capillary endothelial cells (PBCECs) were used as a BBB model to evaluate the system efficacy and toxicity. The uptake of immune nanoparticles with a controlled delivery of the peptide iAβ5 was substantially increased compared to the nanoparticles (NPs) without monoclonal antibody functionalization.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Bárbara Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Gert Fricker
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Manuel A N Coelho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Sandra Rocha
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Maria Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
47
|
Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release 2016; 222:32-46. [DOI: 10.1016/j.jconrel.2015.11.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
|
48
|
Gibbs JH, Wang H, Bhupathiraju NVSDK, Fronczek FR, Smith KM, Vicente MGH. Synthesis and properties of a series of carboranyl-BODIPYs. J Organomet Chem 2015; 798:209-213. [PMID: 26688595 PMCID: PMC4681003 DOI: 10.1016/j.jorganchem.2015.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of four BODIPYs containing one or two ortho- or para-carborane clusters were synthesized using palladium(0)-catalyzed Suzuki cross-coupling or nucleophilic substitution reactions, at the 2,6- or the 8-positions of halogenated boron dipyrromethenes (BODIPYs). The spectroscopic, structural (including one X-ray) and in vitro BBB permeability of the BODIPYs using hCMEC/D3 brain endothelial cells were investigated.
Collapse
Affiliation(s)
- Jaime H Gibbs
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Haijun Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M Graça H Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
49
|
Loureiro JA, Gomes B, Coelho MAN, do Carmo Pereira M, Rocha S. Immunoliposomes doubly targeted to transferrin receptor and to α-synuclein. Future Sci OA 2015; 1:FSO71. [PMID: 28031922 PMCID: PMC5137902 DOI: 10.4155/fso.15.71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 01/06/2023] Open
Abstract
AIM The present study was designed to test the cellular uptake of PEGylated liposomes targeted to transferrin receptor and to α-synuclein by a cell model of the blood-brain barrier (BBB). MATERIALS & METHODS PEGylated immunoliposomes were prepared with anti-transferrin receptor OX26 and anti-α-synuclein LB509 antibodies to overcome the BBB in Parkinson's disease. RESULTS The doubly targeted immunoliposomes bind to transferrin receptor and to α-synuclein protein, as assessed by ELISA assays. We establish that 40% of an encapsulated tested drug (epigallocatechin-3-gallate) is released in a time frame of 44 h, which is reasonable for sustained release. The cellular uptake of doubly targeted immunoliposomes in cultured brain endothelial cells hCMEC/D3 was two-times more efficient than that of PEGylated liposomes. CONCLUSION Immunoliposomes targeted to BBB receptors and to α-synuclein could potentially enable the transport of drugs across the BBB and reach one of the drug targets in Parkinson's disease.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Bárbara Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Manuel AN Coelho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Sandra Rocha
- Department of Biology & Biological Engineering, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
50
|
Kafa H, Wang JTW, Rubio N, Venner K, Anderson G, Pach E, Ballesteros B, Preston JE, Abbott NJ, Al-Jamal KT. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 2015; 53:437-52. [PMID: 25890741 PMCID: PMC4407899 DOI: 10.1016/j.biomaterials.2015.02.083] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 02/01/2023]
Abstract
Carbon nanotubes (CNTs) are a novel nanocarriers with interesting physical and chemical properties. Here we investigate the ability of amino-functionalized multi-walled carbon nanotubes (MWNTs-NH3(+)) to cross the Blood-Brain Barrier (BBB) in vitro using a co-culture BBB model comprising primary porcine brain endothelial cells (PBEC) and primary rat astrocytes, and in vivo following a systemic administration of radiolabelled f-MWNTs. Transmission Electron microscopy (TEM) confirmed that MWNTs-NH3(+) crossed the PBEC monolayer via energy-dependent transcytosis. MWNTs-NH3(+) were observed within endocytic vesicles and multi-vesicular bodies after 4 and 24 h. A complete crossing of the in vitro BBB model was observed after 48 h, which was further confirmed by the presence of MWNTs-NH3(+) within the astrocytes. MWNT-NH3(+) that crossed the PBEC layer was quantitatively assessed using radioactive tracers. A maximum transport of 13.0 ± 1.1% after 72 h was achieved using the co-culture model. f-MWNT exhibited significant brain uptake (1.1 ± 0.3% injected dose/g) at 5 min after intravenous injection in mice, after whole body perfusion with heparinized saline. Capillary depletion confirmed presence of f-MWNT in both brain capillaries and parenchyma fractions. These results could pave the way for use of CNTs as nanocarriers for delivery of drugs and biologics to the brain, after systemic administration.
Collapse
Affiliation(s)
- Houmam Kafa
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Noelia Rubio
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Kerrie Venner
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Elzbieta Pach
- ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Belén Ballesteros
- ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Jane E Preston
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|