1
|
Uddin J, Sharma A, Wu D, Tomar S, Ganesan V, Reichel PE, Thota LNR, Cabrera-Silva RI, Marella S, Idelman G, Tay HL, Raya-Sandino A, Reynolds MB, Elesela S, Haberman Y, Denson LA, Parkos CA, O’Riordan MX, Lukacs NW, O’Dwyer DN, Divanovic S, Nusrat A, Weaver TE, Hogan SP. STARD7 maintains intestinal epithelial mitochondria architecture, barrier integrity, and protection from colitis. JCI Insight 2024; 9:e172978. [PMID: 39576011 PMCID: PMC11601949 DOI: 10.1172/jci.insight.172978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Susceptibility to inflammatory bowel diseases (IBDs), Crohn's disease (CD), and ulcerative colitis (UC) is linked with loss of intestinal epithelial barrier integrity and mitochondria dysfunction. Steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain-containing protein 7 (STARD7) is a phosphatidylcholine-specific (PC-specific) lipid transfer protein that transports PC from the ER to the mitochondria, facilitating mitochondria membrane stabilization and respiration function. The aim of this study was to define the contribution of STARD7 in the regulation of the intestinal epithelial mitochondrial function and susceptibility to colitis. In silico analyses identified significantly reduced expression of STARD7 in patients with UC, which was associated with downregulation of metabolic function and a more severe disease phenotype. STARD7 was expressed in intestinal epithelial cells, and STARD7 knockdown resulted in deformed mitochondria and diminished aerobic respiration. Loss of mitochondria function was associated with reduced expression of tight junction proteins and loss of intestinal epithelial barrier integrity that could be recovered by AMPK activation. Stard7+/- mice were more susceptible to the development of DSS-induced and Il10-/- spontaneous models of colitis. STARD7 is critical for intestinal epithelial mitochondrial function and barrier integrity, and loss of STARD7 function increases susceptibility to IBD.
Collapse
Affiliation(s)
- Jazib Uddin
- Division of Experimental Pathology, Department of Pathology, and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ankit Sharma
- Division of Experimental Pathology, Department of Pathology, and
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sunil Tomar
- Division of Experimental Pathology, Department of Pathology, and
| | - Varsha Ganesan
- Division of Experimental Pathology, Department of Pathology, and
| | - Paula E. Reichel
- Division of Experimental Pathology, Department of Pathology, and
| | | | | | - Sahiti Marella
- Division of Experimental Pathology, Department of Pathology, and
| | - Gila Idelman
- Division of Experimental Pathology, Department of Pathology, and
| | - Hock L. Tay
- Division of Experimental Pathology, Department of Pathology, and
| | | | - Mack B. Reynolds
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Srikanth Elesela
- Division of Experimental Pathology, Department of Pathology, and
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, and
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lee A. Denson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Mary X.D. O’Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicholas W. Lukacs
- Division of Experimental Pathology, Department of Pathology, and
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David N. O’Dwyer
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Senad Divanovic
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Inflammation and Tolerance and
| | - Asma Nusrat
- Division of Experimental Pathology, Department of Pathology, and
| | - Timothy E. Weaver
- Divisions of Neonatology, Perinatal Biology, and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Simon P. Hogan
- Division of Experimental Pathology, Department of Pathology, and
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Nakajima A, Shibuya T, Yao T, Fujimura T, Murayama K, Okumura K, Nagahara A, Seko Y. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in Dextran Sulfate Sodium-Induced Murine Model of Ulcerative Colitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:539. [PMID: 38674185 PMCID: PMC11051726 DOI: 10.3390/medicina60040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress is implicated in the pathogenesis of various acute disorders including ischemia/reperfusion injury, ultraviolet/radiation burn, as well as chronic disorders such as dyslipidemia, atherosclerosis, diabetes mellitus, chronic renal disease, and inflammatory bowel disease (IBD). However, the precise mechanism involved remains to be clarified. We formerly identified a novel apoptosis-inducing humoral protein, in a hypoxia/reoxygenation-conditioned medium of cardiac myocytes, which proved to be 69th tyrosine-sulfated eukaryotic translation initiation factor 5A (eIF5A). We named this novel tyrosine-sulfated secreted form of eIF5A Oxidative Stress-Responsive Apoptosis-Inducing Protein (ORAIP). To investigate the role of ORAIP in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis (UC), we analyzed the effects of in vivo treatment with anti-ORAIP neutralizing monoclonal antibody (mAb) on the DSS-induced disease exacerbation. The body weight in anti-ORAIP mAb-treated group was significantly heavier than that in a mouse IgG-treated control group on day 8 of DSS-treatment ((85.21 ± 1.03%) vs. (77.38 ± 2.07%); (mean ± SE0, n = 5 each, p < 0.01, t-test). In vivo anti-ORAIP mAb-treatment also significantly suppressed the shortening of colon length as well as Disease Activity Index (DAI) score ((5.00 ± 0.44) vs. (8.20 ± 0.37); (mean ± SE), n = 5 each, p < 0.001, t-test) by suppressing inflammation of the rectal tissue and apoptosis of intestinal mucosal cells. These data reveal the pivotal role of ORAIP in DSS-induced oxidative stress involved in an animal model of UC.
Collapse
Affiliation(s)
- Akihito Nakajima
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takako Yao
- Division of Cardiovascular Medicine, Institute for Adult Diseases, Asahi Life Foundation, Tokyo 103-0002, Japan
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Kimie Murayama
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshinori Seko
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
3
|
Tian Y, Li X, Wang X, Pei ST, Pan HX, Cheng YQ, Li YC, Cao WT, Petersen JDD, Zhang P. Alkaline sphingomyelinase deficiency impairs intestinal mucosal barrier integrity and reduces antioxidant capacity in dextran sulfate sodium-induced colitis. World J Gastroenterol 2024; 30:1405-1419. [PMID: 38596488 PMCID: PMC11000083 DOI: 10.3748/wjg.v30.i10.1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology. Alkaline sphingomyelinase (alk-SMase) is specifically expressed by intestinal epithelial cells, and has been reported to play an anti-inflammatory role. However, the underlying mechanism is still unclear. AIM To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium (DSS)-induced colitis. METHODS Mice were administered 3% DSS drinking water, and disease activity index was determined to evaluate the status of colitis. Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran, and bacterial translocation was evaluated by measuring serum lipopolysaccharide. Intestinal epithelial cell ultrastructure was observed by electron microscopy. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA, respectively. Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels. RESULTS Compared to wild-type (WT) mice, inflammation and intestinal permeability in alk-SMase knockout (KO) mice were more severe beginning 4 d after DSS induction. The mRNA and protein levels of intestinal barrier proteins, including zonula occludens-1, occludin, claudin-3, claudin-5, claudin-8, mucin 2, and secretory immunoglobulin A, were significantly reduced on 4 d after DSS treatment. Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells. Furthermore, by day 4, mitochondria appeared swollen and degenerated. Additionally, compared to WT mice, serum malondialdehyde levels in KO mice were higher, and the antioxidant capacity was significantly lower. The expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment. mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased. Finally, colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone, which is an Nrf2 activator. CONCLUSION Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ye Tian
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Xin Li
- Medical Laboratory Science and Technology College, Harbin Medical University - Daqing Campus, Daqing 163000, Heilongjiang Province, China
| | - Xu Wang
- Department of Laboratory Diagnosis, Qiqihar Tuberculosis Control Center, Qiqihar 161000, Heilongjiang Province, China
| | - Si-Ting Pei
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Hong-Xin Pan
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Yu-Qi Cheng
- Medical Laboratory Science and Technology College, Harbin Medical University - Daqing Campus, Daqing 163000, Heilongjiang Province, China
| | - Yi-Chen Li
- Medical Laboratory Science and Technology College, Harbin Medical University - Daqing Campus, Daqing 163000, Heilongjiang Province, China
| | - Wen-Ting Cao
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Jin-Dong Ding Petersen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
- Department of Public Health, University of Copenhagen, Copenhagen 1353, Denmark
- Department of Public Health, University of Southern Denmark, Odense 5000, Denmark
| | - Ping Zhang
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
4
|
Wang K, Lu H, Zou M, Wang G, Zhao J, Huang X, Ren F, Hu H, Huang J, Min X. DegS protease regulates antioxidant capacity and adaptability to oxidative stress environment in Vibrio cholerae. Front Cell Infect Microbiol 2023; 13:1290508. [PMID: 38053530 PMCID: PMC10694293 DOI: 10.3389/fcimb.2023.1290508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Adaptation to oxidative stress is critical for survival of Vibrio cholerae in aquatic ecosystems and hosts. DegS activates the σE envelope stress response. We have previously revealed that DegS may be involved in regulating the oxidative stress response. In this study, we demonstrated that deletion of the degS gene attenuates the antioxidant capacity of V. cholerae. In addition, our results further revealed that the regulation of antioxidant capacity by DegS in V. cholerae could involve the cAMP-CRP complex, which regulates rpoS. XthA is an exonuclease that repairs oxidatively damaged cells and affects the bacterial antioxidant capacity. qRT-PCR showed that DegS, σE, cAMP, CRP, and RpoS positively regulate xthA gene transcription. XthA overexpression partially compensates for antioxidant deficiency in the degS mutant. These results suggest that DegS affects the antioxidant capacity of V.cholerae by regulating xthA expression via the cAMP-CRP-RpoS pathway. In a mouse intestinal colonization experiment, our data showed that V.cholerae degS, rpoE, and rpoS gene deletions were associated with significantly reduced resistance to oxidative stress and the ability to colonize the mouse intestine. In conclusion, these findings provide new insights into the regulation of antioxidant activity by V.cholerae DegS.
Collapse
Affiliation(s)
- Kaiying Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mei Zou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiajun Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoyu Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fangyu Ren
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huaqin Hu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
da Paz Martins AS, de Andrade KQ, de Araújo ORP, da Conceição GCM, da Silva Gomes A, Goulart MOF, Moura FA. Extraintestinal Manifestations in Induced Colitis: Controversial Effects of N-Acetylcysteine on Colon, Liver, and Kidney. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8811463. [PMID: 37577725 PMCID: PMC10423092 DOI: 10.1155/2023/8811463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) characterized by continuous inflammation in the colonic mucosa. Extraintestinal manifestations (EIM) occur due to the disruption of the intestinal barrier and increased permeability caused by redox imbalance, dysbiosis, and inflammation originating from the intestine and contribute to morbidity and mortality. The aim of this study is to investigate the effects of oral N-acetylcysteine (NAC) on colonic, hepatic, and renal tissues in mice with colitis induced by dextran sulfate sodium (DSS). Male Swiss mice received NAC (150 mg/kg/day) in the drinking water for 30 days before and during (DSS 5% v/v; for 7 days) colitis induction. On the 38th day, colon, liver, and kidney were collected and adequately prepared for the analysis of oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione reduced (GSH), glutathione oxidized (GSSG), malondialdehyde (MDA), and hydrogen peroxide (H2O2)) and inflammatory biomarkers (myeloperoxidase (MPO) -, tumor necrosis factor alpha - (TNF-α, and interleukin-10 (IL-10)). In colon, NAC protected the histological architecture. However, NAC did not level up SOD, in contrast, it increased MDA and pro-inflammatory effect (increased of TNF-α and decreased of IL-10). In liver, colitis caused both oxidative (MDA, SOD, and GSH) and inflammatory damage (IL-10). NAC was able only to increase GSH and GSH/GSSG ratio. Kidney was not affected by colitis; however, NAC despite increasing CAT, GSH, and GSH/GSSG ratio promoted lipid peroxidation (increased MDA) and pro-inflammatory action (decreased IL-10). Despite some beneficial antioxidant effects of NAC, the negative outcomes concerning irreversible oxidative and inflammatory damage in the colon, liver, and kidney confirm the nonsafety of the prophylactic use of this antioxidant in models of induced colitis, suggesting that additional studies are needed, and its use in humans not yet recommended for the therapeutic routine of this disease.
Collapse
Affiliation(s)
- Amylly Sanuelly da Paz Martins
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | | | | | | | - Amanda da Silva Gomes
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Fabiana Andréa Moura
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- College of Medicine, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| |
Collapse
|
6
|
Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae. PLoS Pathog 2023; 19:e1011250. [PMID: 36928244 PMCID: PMC10104298 DOI: 10.1371/journal.ppat.1011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/14/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As one of the most successful pathogenic organisms, Vibrio cholerae (V. cholerae) has evolved sophisticated regulatory mechanisms to overcome host stress. During long-term colonization by V. cholerae in adult mice, many spontaneous nonmotile mutants (approximately 10% at the fifth day post-infection) were identified. These mutations occurred primarily in conserved regions of the flagellar regulator genes flrA, flrC, and rpoN, as shown by Sanger and next-generation sequencing, and significantly increased fitness during colonization in adult mice. Intriguingly, instead of key genes in DNA repair systems (mutS, nfo, xthA, uvrA) or ROS and RNS scavenging systems (katG, prxA, hmpA), which are generally thought to be associated with bacterial mutagenesis, we found that deletion of the cyclin gene dps significantly increased the mutation rate (up to 53% at the fifth day post-infection) in V. cholerae. We further determined that the dpsD65A and dpsF46E point mutants showed a similar mutagenesis profile as the Δdps mutant during long-term colonization in mice, which strongly indicated that the antioxidative function of Dps directly contributes to the development of V. cholerae nonmotile mutants. Methionine metabolism pathway may be one of the mechanism for ΔflrA, ΔflrC and ΔrpoN mutant increased colonization in adult mice. Our results revealed a new phenotype in which V. cholerae fitness increases in the host gut via spontaneous production nonmotile mutants regulated by cyclin Dps, which may represent a novel adaptation strategy for directed evolution of pathogens in the host.
Collapse
|
7
|
Padoei F, Mamsharifi P, Hazegh P, Boroumand H, Ostadmohammady F, Abbaszadeh-Mashkani S, Banafshe HR, Matini AH, Ghaderi A, Dehkohneh SG. The therapeutic effect of N-acetylcysteine as an add-on to methadone maintenance therapy medication in outpatients with substance use disorders: A randomized, double-blind, placebo-controlled clinical trial. Brain Behav 2023; 13:e2823. [PMID: 36448959 PMCID: PMC9847617 DOI: 10.1002/brb3.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Patients with substance use disorders (SUD) under methadone maintenance therapy (MMT) are susceptible to a number of complications (psychological and metabolic disorders). Evidence studies have shown the roles of the glutamatergic system in addiction. N-Acetylcysteine (NAC) enhances extracellular glutamate, and is effective in the treatment of neuropsychiatric disorders. We assessed oral NAC as an add-on to MMT medication for the treatment of SUD. METHODS In the current randomized, double-blind, placebo-controlled clinical trial, outpatients with SUD under MMT who were 18-60 years old received 2400 mg/day NAC (n = 30) or placebo (n = 30) for 12 weeks. Psychological status and metabolic biomarkers were assessed at baseline and the end of the trial. RESULTS Compared with the placebo group, NAC treatment resulted in a significant improvement in depression score (β -2.36; 95% CI, -3.97, -0.76; p = .005), and anxiety score (β -1.82; 95% CI, -3.19, -0.44; p = .01). Furthermore, NAC treatment resulted in a significant elevation in total antioxidant capacity levels (β 72.28 mmol/L; 95% CI, 11.36, 133.19; p = .02), total glutathione (GSH) levels (β 81.84 μmol/L; 95% CI, 15.40, 148.28; p = .01), and a significant reduction in high-sensitivity C-reactive protein levels (β -0.89 mg/L; 95% CI, -1.50, -0.28; p = .005), and homeostasis model of assessment-insulin resistance (β -0.33; 95% CI, -0.65, -0.009; p = .04), compared with the placebo group. CONCLUSION In the current study, improvement in depression and anxiety symptoms as well as some metabolic profiles with NAC treatment for 12 weeks in outpatients with SUD under MMT was detected.
Collapse
Affiliation(s)
- Fateme Padoei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Peyman Mamsharifi
- Department of Psychology, Allameh Tabataba'i University, Tehran, Iran
| | - Pooya Hazegh
- Department of Psychiatry, Kashan University of Medical Sciences, Kashan, Iran
| | - Homa Boroumand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hassan Matini
- Department of Clinical Pathology, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ghaderi
- Department of Addiction studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran.,Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghadami Dehkohneh
- Department of Pharmacy, Acharya BM ready college of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Mohammadi E, Nikbakht F, Barati M, Roghani M, Vazifekhah S, Khanizadeh AM, Heidari Z. Protective effect of N-acetyl cysteine on the mitochondrial dynamic imbalance in temporal lobe epilepsy: Possible role of mTOR. Neuropeptides 2022; 96:102294. [PMID: 36270032 DOI: 10.1016/j.npep.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Understanding the underlying molecular mechanisms involved in epilepsy is critical for the development of more effective therapies. It is believed that mTOR (Mechanistic Target of Rapamycin kinases) activity and the mitochondrial dynamic balance change during epilepsy. mTOR affects mitochondrial fission by stimulating the translation of mitochondrial fission process 1 (MTFP1). In This study, the protective role of N-acetylcysteine was studied in temporal lobe epilepsy (TLE) through the regulation of mTOR and mitochondrial dynamic proteins. Rats received N-acetylcysteine (oral administration) seven days before induction of epilepsy, followed by one day after epilepsy. TLE was induced by microinjection of kainite into the left lateral ventricle. The total mTOR and Drp1 levels in the hippocampus were evaluated by western blotting. MFN1 was assessed using immunohistochemistry, and the expression of Fis.1 and MTFP1 (fission-related proteins) and OPA (fusion-related protein) were detected by real-time PCR. The mitochondrial membrane potential was measured by Rhodamin 123. The results showed that 72 h after induction of epilepsy, the mTOR protein level increased, and the balance of the mitochondrial dynamic was disturbed; however, oral administration of NAC decreased the mTOR protein level and improved the mitochondrial dynamic. These findings indicate that NAC plays a neuroprotective role in temporal lobe epilepsy, probably through decreasing the mTOR protein level, which can improve the imbalance in the mitochondrial dynamic.
Collapse
Affiliation(s)
- Ekram Mohammadi
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Barati
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Somayeh Vazifekhah
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Khanizadeh
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Heidari
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
El-Sayed SM, Nossier MI, Nossier AI. Faba beans with enhanced antioxidant activity ameliorate acetic acid-induced colitis in experimental rats. Food Funct 2022; 13:11865-11878. [PMID: 36317688 DOI: 10.1039/d2fo02782h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Faba beans are among the legumes that are of the greatest importance due to their high nutritional value. In addition to the essential nutrients that faba beans contain, they also contain bioactive compounds such as phenolics and flavonoids that are considered as potent natural antioxidants. Ulcerative colitis (UC) is an inflammatory bowel disease in which oxidative stress plays an essential role in the pathophysiology. The aim of the current study was to evaluate the antioxidant activity of faba bean seeds harvested from plants grown from seeds pre-treated with selenium, garlic husk extract and/or lemon peel extract and to evaluate their in vivo effects in a rat model of UC. 54 female rats were divided randomly into nine groups (n = 9). All groups were given the different tested treatments 14 days prior to UC induction using acetic acid (intra-rectal injection of 2 ml, 4% v/v in saline). Our results revealed that the treatment of faba bean seeds with a mixture of selenium, garlic husk extract and lemon peel extract before planting led to a significant increase in selenium, nitrogen, potassium, total protein, phenolic and flavonoid content in the harvested faba bean seeds with a subsequent enhancement of their antioxidant capacity. Consumption of such faba beans showed potential protective and therapeutic effects during experimental colitis by reducing colonic oxidative stress and increasing colonic antioxidant defense mechanisms. Further research is required to understand the mechanisms by which faba beans influence colitis, their effects on various inflammatory biomarkers and their impact on the severity of colitis in humans.
Collapse
Affiliation(s)
- Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Shoubra El-kheima, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Mona I Nossier
- Soil and Water Department, Faculty of Agriculture, Ain Shams University, Shoubra El-kheima, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Ahmed Ibrahim Nossier
- Department of Biochemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Postal, code: 77, Giza, Egypt.
| |
Collapse
|
10
|
High-fructose corn syrup promotes proinflammatory Macrophage activation via ROS-mediated NF-κB signaling and exacerbates colitis in mice. Int Immunopharmacol 2022; 109:108814. [DOI: 10.1016/j.intimp.2022.108814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
|
11
|
Byrne JD, Gallo D, Boyce H, Becker SL, Kezar KM, Cotoia AT, Feig VR, Lopes A, Csizmadia E, Longhi MS, Lee JS, Kim H, Wentworth AJ, Shankar S, Lee GR, Bi J, Witt E, Ishida K, Hayward A, Kuosmanen JLP, Jenkins J, Wainer J, Aragon A, Wong K, Steiger C, Jeck WR, Bosch DE, Coleman MC, Spitz DR, Tift M, Langer R, Otterbein LE, Traverso G. Delivery of therapeutic carbon monoxide by gas-entrapping materials. Sci Transl Med 2022; 14:eabl4135. [PMID: 35767653 DOI: 10.1126/scitranslmed.abl4135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.
Collapse
Affiliation(s)
- James D Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Radiation Oncology Residency Program, Boston, MA 02114, USA.,Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah Boyce
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristi M Kezar
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Alicia T Cotoia
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Vivian R Feig
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Lopes
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jung Seung Lee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Intelligent Precision Healthcare Convergence, SKKU Institute of Convergence, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyunjoon Kim
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam J Wentworth
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ghee Rye Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianling Bi
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Emily Witt
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Keiko Ishida
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jacob Wainer
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Aya Aragon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaitlyn Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Steiger
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William R Jeck
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Dustin E Bosch
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Koyama Y, Kobayashi Y, Hirota I, Sun Y, Ohtsu I, Imai H, Yoshioka Y, Yanagawa H, Sumi T, Kobayashi H, Shimada S. A new therapy against ulcerative colitis via the intestine and brain using the Si-based agent. Sci Rep 2022; 12:9634. [PMID: 35688905 PMCID: PMC9187638 DOI: 10.1038/s41598-022-13655-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Ulcerative colitis (UC) is a non-specific inflammatory bowel disease that causes ulcers and erosions in the colonic mucosa and becomes chronic with cycles of amelioration and exacerbation. Because its exact etiology remains largely unclear, and the primary therapy is limited to symptomatic treatment, the development of new therapeutic agent for UC is highly desired. Because one of the disease pathogenesis is involvement of oxidative stress, it is likely that an appropriate antioxidant will be an effective therapeutic agent for UC. Our silicon (Si)-based agent, when ingested, allowed for stable and persistent generation of massive amounts of hydrogen in the gastrointestinal tract. We demonstrated the Si-based agent alleviated the mental symptom as well as the gastrointestinal symptoms, inflammation, and oxidation associated with dextran sodium sulfate-induced UC model through Hydrogen and antioxidant sulfur compounds. As the Si-based agent was effective in treating UC in the brain and large intestine of mice, it was considered to be capable of suppressing exacerbations and sustaining remission of UC.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| | | | - Ikuei Hirota
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuanjie Sun
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Iwao Ohtsu
- University of Tsukuba, Faculty of Life and Environmental Sciences, 108-2, Cooperative Research Building A, Ibaraki, 305-8577, Japan.,Euglena Co., Ltd., Tokyo, 408-0014, Japan
| | - Hiroe Imai
- University of Tsukuba, R&D Center for Tailor-Made-QOL, 108-2, Cooperative Research Building A, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT) and Osaka University, Osaka, 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan
| | - Hiroto Yanagawa
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuya Sumi
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | | | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
| |
Collapse
|
13
|
Zhou Y, Pu Q, Chen J, Hao G, Gao R, Ali A, Hsiao A, Stock AM, Goulian M, Zhu J. Thiol-based functional mimicry of phosphorylation of the two-component system response regulator ArcA promotes pathogenesis in enteric pathogens. Cell Rep 2021; 37:110147. [PMID: 34936880 PMCID: PMC8728512 DOI: 10.1016/j.celrep.2021.110147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic bacteria can rapidly respond to stresses such as reactive oxygen species (ROS) using reversible redox-sensitive oxidation of cysteine thiol (-SH) groups in regulators. Here, we use proteomics to profile reversible ROS-induced thiol oxidation in Vibrio cholerae, the etiologic agent of cholera, and identify two modified cysteines in ArcA, a regulator of global carbon oxidation that is phosphorylated and activated under low oxygen. ROS abolishes ArcA phosphorylation but induces the formation of an intramolecular disulfide bond that promotes ArcA-ArcA interactions and sustains activity. ArcA cysteines are oxidized in cholera patient stools, and ArcA thiol oxidation drives in vitro ROS resistance, colonization of ROS-rich guts, and environmental survival. In other pathogens, such as Salmonella enterica, oxidation of conserved cysteines of ArcA orthologs also promotes ROS resistance, suggesting a common role for ROS-induced ArcA thiol oxidation in modulating ArcA activity, allowing for a balance of expression of stress- and pathogenesis-related genetic programs.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qinqin Pu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guijuan Hao
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Afsar Ali
- Department of Environmental and Global Health, College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Yoneda J, Nishikawa S, Kurihara S. Oral administration of cystine and theanine attenuates 5-fluorouracil-induced intestinal mucositis and diarrhea by suppressing both glutathione level decrease and ROS production in the small intestine of mucositis mouse model. BMC Cancer 2021; 21:1343. [PMID: 34922485 PMCID: PMC8684148 DOI: 10.1186/s12885-021-09057-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chemotherapy is frequently used in cancer treatment; however, it may cause adverse events, which must be managed. Reactive oxygen species (ROS) have been reported to be involved in the induction of intestinal mucositis and diarrhea, which are common side effects of treatment with fluoropyrimidine 5-fluorouracil (5-FU). Our previous studies have shown that oral administration of cystine and theanine (CT) increases glutathione (GSH) production in vivo. In the present study, we hypothesized that CT might inhibit oxidative stress, including the overproduction of ROS, and attenuate 5-FU-induced mucositis and diarrhea. METHODS We investigated the inhibitory effect of CT administration on mucositis and diarrhea, as well as its mechanism, using a mouse model of 5-FU-induced intestinal mucositis. RESULTS CT administration suppressed 5-FU-induced diarrhea and weight loss in the studied mice. After 5-FU administration, the GSH level and the GSH/GSSG ratio in the small intestine mucosal tissue decreased compared to normal control group; but CT administration improved the GSH/GSSG ratio to normal control levels. 5-FU induced ROS production in the basal region of the crypt of the small intestine mucosal tissue, which was inhibited by CT. CT did not affect the antitumor effect of 5-FU. CONCLUSIONS CT administration suppressed intestinal mucositis and diarrhea in a mouse model. This finding might be associated with the antioxidant characteristics of CT, including the improved rate of GSH redox and the reduced rate of ROS production in the small intestine mucosal tissue. CT might be a suitable candidate for the treatment of gastrointestinal mucositis associated with chemotherapy.
Collapse
Affiliation(s)
- Junya Yoneda
- Research Institute For Bioscience Products & Fine Chemicals Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, 210-8681, Japan.
| | - Sachiko Nishikawa
- Research Institute For Bioscience Products & Fine Chemicals Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, 210-8681, Japan
| | - Shigekazu Kurihara
- Research Institute For Bioscience Products & Fine Chemicals Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, 210-8681, Japan
| |
Collapse
|
15
|
Geng Y, Yue Y, Guan Q, Ren Y, Guo L, Fan Y, Lu ZM, Shi JS, Xu ZH. Cereal Vinegar Sediment Alleviates Spontaneous Ulcerative Colitis in Il-10 Deficient Mice. Mol Nutr Food Res 2021; 65:e2001227. [PMID: 34699119 DOI: 10.1002/mnfr.202001227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/31/2021] [Indexed: 12/12/2022]
Abstract
SCOPE Cereal vinegar sediment (CVS) is precipitation generated during the preservation of vinegar. It has various functions such as anti-inflammatory, anti-tumor, hypoglycemic, and hypolipidemic. This study evaluates the effects of CVS on spontaneous colitis in Il-10-/- mice. METHODS AND RESULTS CVS (1 g kg-1 body weight) is administered to mice for 42 days. CVS alleviated epithelium damage, inhibited myeloperoxidase (MPO) activity and malondialdehyde (MDA) level, decreased gene expression of tumor necrosis factor (Tnf )-a, inducible nitric oxide synthase (Inos), Interleukin(Il-23) in colon tissues is found. CVS also inhibited secretion of IL-2, IL-6, IL-13, Granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GMCSF), Interferon (IFN)-γ, and Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted (RANTES) in serum. While CVS enhanced Regenerating Family Member 3 Gamma (Reg3γ), Mucin (Muc2, Muc3, and Muc4 gene expression, promoted intestinal epithelial cells to secrete Muc-2, and increased the content of acetic acid in intestinal tract of Il-10-/- mice. Additionally, CVS altered the composition of the gut microbiota by promoting the abundance of Akkermansia, Alistipes, and Lactobacillus, while inhibiting Desulfovibrio and Clostridium sensu stricto 1. These changes may be related to the regulation of steroid, fatty acids, and bile acid biosynthesis. CONCLUSION This study demonstrated that CVS ameliorates spontaneous ulcerative colitis in Il-10-/- mice, which suggests CVS supplementation may serve as a protective dietary nutrient against colitis.
Collapse
Affiliation(s)
- Yan Geng
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanjia Yue
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Qijie Guan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yilin Ren
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lin Guo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yifei Fan
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
16
|
Morsy MA, Khalaf HM, Rifaai RA, Bayoumi AMA, Khalifa EMMA, Ibrahim YF. Canagliflozin, an SGLT-2 inhibitor, ameliorates acetic acid-induced colitis in rats through targeting glucose metabolism and inhibiting NOX2. Biomed Pharmacother 2021; 141:111902. [PMID: 34328119 DOI: 10.1016/j.biopha.2021.111902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease is defined as chronic noninfectious inflammation of the gastrointestinal tract, including ulcerative colitis and Crohn's disease. Its incidence and predominance have increased globally, with no effective agents for preventing its recurrence or treatment until now. AIM The current study aimed to investigate the possible role of canagliflozin (CANA), a sodium-glucose co-transporter-2 inhibitor (SGLT-2), to prevent and treat acetic acid (AA)-induced colitis in a rat model. METHODS Colitis was induced in male Wistar rats by intrarectal instillation of 1 ml of 4% (v/v) AA. Rats were treated orally with either CANA (30 mg/kg/day, p.o.) for 10 days before or after colitis induction or sulfasalazine (360 mg/kg/day, p.o.) for 10 days before colitis induction. RESULTS AA resulted in a significant increase in disease activity index, colonic weight over length ratio, colon macroscopic damage score, and histological signs of colitis. All of these effects were significantly decreased by CANA administration. Additionally, CANA markedly inhibited AA-induced oxidative stress and inflammatory responses by significantly reducing the up-regulated levels in malondialdehyde, total nitrite, NF-κB, interleukin-1β, and TNF-α, and significantly increasing the down-regulated levels in reduced glutathione, superoxide dismutase, and interleukin-10. CANA significantly inhibited caspase-3 level while rescued survivin expression in colons. Finally, CANA reduced the elevated levels of pyruvic acid and G6PDH activity, as well as the levels of p22phox and NOX2 in the AA-induced colitis. CONCLUSION Our findings provide novel evidence that CANA has protective and therapeutic effects against AA-induced colitis by the impact of its antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Hanaa M Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Rehab A Rifaai
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Esraa M M A Khalifa
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, El-Minia 61111, Egypt
| | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
17
|
Masnadi Shirazi K, Sotoudeh S, Masnadi Shirazi A, Moaddab SY, Nourpanah Z, Nikniaz Z. Effect of N-acetylcysteine on remission maintenance in patients with ulcerative colitis: A randomized, double-blind controlled clinical trial. Clin Res Hepatol Gastroenterol 2021; 45:101532. [PMID: 33067169 DOI: 10.1016/j.clinre.2020.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The use of antioxidant agents is suggested as a complementary therapy in UC patients for the prevention of flares. Considering the potent antioxidant activity of N-acetylcysteine (NAC), in the present study we aimed to assess the effect of this supplement on remission maintenance in patients with ulcerative colitis (UC). METHODS In the present double-blind randomized controlled clinical trial, 168 volunteer UC patients who were on high dose corticosteroid and Mesalamine for flare-up management, were recruited. The patients received 800 mg NAC or placebo for 16 weeks. Simultaneously, the prednisolone dose was tapered. The patients were followed up six more weeks post-intervention. The primary efficacy of the treatment was remaining in remission. The secondary outcomes were the endoscopic relapse, serum level of hs-CRP, hemoglobin, and fecal calprotectin level. RESULTS During 22 weeks follow up, 25 patients experienced relapses, six of them were in the NAC group and 19 of them were in the placebo group. There was a significant difference between the NAC and placebo groups regarding the relapse-free period (P = 0.007). Compared with the NAC group, significantly more patients in the placebo group had an endoscopic relapse (p < 0.001). At the end of the intervention period (16 weeks) and 6 weeks post-intervention, the mean fecal calprotectin, serum erythrocyte sedimentation rate, and hs-CRP levels were significantly lower in the NAC group compared with the placebo group (p < 0.05). CONCLUSION The findings indicated that NAC had a significantly more positive effect on the maintenance of remission compared with placebo in UC patients that were in the steroid-tapering phase of therapy.
Collapse
Affiliation(s)
- Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sotoudeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seyyed-Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Nourpanah
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Riffelmacher T, Giles DA, Zahner S, Dicker M, Andreyev AY, McArdle S, Perez-Jeldres T, van der Gracht E, Murray MP, Hartmann N, Tumanov AV, Kronenberg M. Metabolic activation and colitis pathogenesis is prevented by lymphotoxin β receptor expression in neutrophils. Mucosal Immunol 2021; 14:679-690. [PMID: 33568785 PMCID: PMC8075978 DOI: 10.1038/s41385-021-00378-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTβR), which binds LIGHT, also led to aggravated colitis pathogenesis. Here, we aimed to determine the cell type(s) requiring LTβR and the mechanism critical for exacerbation of colitis. Specific deletion of LTβR in neutrophils (LTβRΔN), but not in several other cell types, was sufficient to induce aggravated colitis and colonic neutrophil accumulation. Mechanistically, RNA-Seq analysis revealed LIGHT-induced suppression of cellular metabolism, and mitochondrial function, that was dependent on LTβR. Functional studies confirmed increased mitochondrial mass and activity, associated with excessive mitochondrial ROS production and elevated glycolysis at steady-state and during colitis. Targeting these metabolic changes rescued exacerbated disease severity. Our results demonstrate that LIGHT signals to LTβR on neutrophils to suppress metabolic activation and thereby prevents exacerbated immune pathogenesis during colitis.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Sonja Zahner
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Alexander Y Andreyev
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | | | | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, USA
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Lee H, Lee JS, Cho HJ, Lee YJ, Kim ES, Kim SK, Nam TG, Jeong BS, Kim JA. Antioxidant Analogue 6-Amino-2,4,5-Trimethylpyridin-3-ol Ameliorates Experimental Colitis in Mice. Dig Dis Sci 2021; 66:1022-1033. [PMID: 32361923 DOI: 10.1007/s10620-020-06267-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxidative stress has been suggested to be a factor contributing to the disease severity of inflammatory bowel disease (IBD). BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, is reported to significantly inhibit the generation of reactive oxygen species (ROS) in vitro. However, whether this molecule affects intestinal inflammation is largely unknown. We aimed to investigate the effect of BJ-1108 on dextran sulfate sodium (DSS)-induced experimental colitis in mice. METHODS Colitis was induced in mice with DSS, and disease severity was estimated by evaluating body weight, colon length, histology, immune cell infiltration, and intestinal permeability. We examined the protective effects of BJ-1108 on barrier function using Caco-2 cells. Last, we estimated the impact of BJ-1108 on the phosphorylation of NF-kB, PI3K/AKT, and mitogen-activated protein kinases. RESULTS Mice treated with BJ-1108 exhibited improved disease severity, as indicated by evaluations of body weight, histological scores, spleen weight, and infiltrates of T cells and macrophages. The administration of BJ-1108 inhibited the colonic mRNA expression of IL-6 and IL-1β in vivo. Additionally, BJ-1108 limited intestinal permeability and enhanced the expression of tight junction (TJ) proteins such as claudin-1 and claudin-3 in the DSS-induced colitis model. In an in vitro model using Caco-2 cells, BJ-1108 ameliorated cytokine-induced ROS generation in a dose-dependent manner and remarkably recovered barrier dysfunction as estimated by evaluating transepithelial electrical resistance and TJ protein expression. BJ-1108 suppressed the NF-kB/ERK/PI3K pathway. CONCLUSIONS This study demonstrated that BJ-1108 ameliorated intestinal inflammation in an experimental colitis mouse model, suggesting possible therapeutic implications for IBD.
Collapse
Affiliation(s)
- Hoyul Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea.,Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Joon Seop Lee
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Hyun Jung Cho
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Yu-Jeong Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea. .,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.
| | - Sung Kook Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Tae-Gyu Nam
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | | | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
20
|
Irrazabal T, Thakur BK, Croitoru K, Martin A. Preventing Colitis-Associated Colon Cancer With Antioxidants: A Systematic Review. Cell Mol Gastroenterol Hepatol 2021; 11:1177-1197. [PMID: 33418102 PMCID: PMC7907812 DOI: 10.1016/j.jcmgh.2020.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) patients have an increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Several studies have shown that IBD patients have signs of increased oxidative damage, which could be a result of genetic and environmental factors such as an excess in oxidant molecules released during chronic inflammation, mitochondrial dysfunction, a failure in antioxidant capacity, or oxidant promoting diets. It has been suggested that chronic oxidative environment in the intestine leads to the DNA lesions that precipitate colon carcinogenesis in IBD patients. Indeed, several preclinical and clinical studies show that different endogenous and exogenous antioxidant molecules are effective at reducing oxidation in the intestine. However, most clinical studies have focused on the short-term effects of antioxidants in IBD patients but not in CAC. This review article examines the role of oxidative DNA damage as a possible precipitating event in CAC in the context of chronic intestinal inflammation and the potential role of exogenous antioxidants to prevent these cancers.
Collapse
Affiliation(s)
| | - Bhupesh K Thakur
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Department of Medicine, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
The Protective Role of Probiotics against Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8884583. [PMID: 33488940 PMCID: PMC7803265 DOI: 10.1155/2020/8884583] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide and a major global public health problem. With the rapid development of the economy, the incidence of CRC has increased linearly. Accumulating evidence indicates that changes in the gut microenvironment, such as undesirable changes in the microbiota composition, provide favorable conditions for intestinal inflammation and shaping the tumor growth environment, whereas administration of certain probiotics can reverse this situation to a certain extent. This review summarizes the roles of probiotics in the regulation of CRC, such as enhancing the immune barrier, regulating the intestinal immune state, inhibiting pathogenic enzyme activity, regulating CRC cell proliferation and apoptosis, regulating redox homeostasis, and reprograming intestinal microbial composition. Abundant studies have provided a theoretical foundation for the roles of probiotics in CRC prevention and treatment, but their mechanisms of action remain to be investigated, and further clinical trials are warranted for the application of probiotics in the target population.
Collapse
|
22
|
Mancini NL, Rajeev S, Jayme TS, Wang A, Keita ÅV, Workentine ML, Hamed S, Söderholm JD, Lopes F, Shutt TE, Shearer J, McKay DM. Crohn's Disease Pathobiont Adherent-Invasive E coli Disrupts Epithelial Mitochondrial Networks With Implications for Gut Permeability. Cell Mol Gastroenterol Hepatol 2020; 11:551-571. [PMID: 32992049 PMCID: PMC7797367 DOI: 10.1016/j.jcmgh.2020.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function. METHODS Monolayers of human colon-derived epithelial cell lines were exposed to E coli-LF82 or commensal E coli and RNA sequence analysis, mitochondrial function (adenosine triphosphate synthesis) and dynamics (mitochondrial network imaging, immunoblotting for fission and fusion proteins), and epithelial permeability (transepithelial resistance, flux of fluorescein isothiocyanate-dextran and bacteria) were assessed. RESULTS E coli-LF82 significantly affected epithelial expression of ∼8600 genes, many relating to mitochondrial function. E coli-LF82-infected epithelia showed swollen mitochondria, reduced mitochondrial membrane potential and adenosine triphosphate, and fragmentation of the mitochondrial network: events not observed with dead E coli-LF82, medium from bacterial cultures, or control E coli. Treatment with Mitochondrial Division Inhibitor 1 (Mdivi1, inhibits dynamin-related peptide 1, guanosine triphosphatase principally responsible for mitochondrial fission) or P110 (prevents dynamin-related peptide 1 binding to mitochondrial fission 1 protein) partially reduced E coli-LF82-induced mitochondrial fragmentation in the short term. E coli-LF82-infected epithelia showed loss of the long isoform of optic atrophy factor 1, which mediates mitochondrial fusion. Mitochondrial Division Inhibitor 1 reduced the magnitude of E coli-LF82-induced increased transepithelial flux of fluorescein isothiocyanate dextran. By 8 hours after infection, increased cytosolic cytochrome C and DNA fragmentation were apparent without evidence of caspase-3 or apoptosis inducing factor activation. CONCLUSIONS Epithelial mitochondrial fragmentation caused by E coli-LF82 could be targeted to maintain cellular homeostasis and mitigate infection-induced loss of epithelial barrier function. Data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession numbers GSE154121 and GSE154122 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154121).
Collapse
Affiliation(s)
- Nicole L Mancini
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy S Jayme
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Samira Hamed
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Surgery, County Council of Östergötland, Linköping, Sweden
| | - Fernando Lopes
- Institute of Parasitology, Faculty of Agriculture and Environmental Sciences, Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Timothy E Shutt
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Vincent G, Novak EA, Siow VS, Cunningham KE, Griffith BD, Comerford TE, Mentrup HL, Stolz DB, Loughran P, Ranganathan S, Mollen KP. Nix-Mediated Mitophagy Modulates Mitochondrial Damage During Intestinal Inflammation. Antioxid Redox Signal 2020; 33:1-19. [PMID: 32103677 PMCID: PMC7262642 DOI: 10.1089/ars.2018.7702] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: Mitochondrial stress and dysfunction within the intestinal epithelium are known to contribute to the pathogenesis of inflammatory bowel disease (IBD). However, the importance of mitophagy during intestinal inflammation remains poorly understood. The primary aim of this study was to investigate how the mitophagy protein BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L/NIX) mitigates mitochondrial damage during intestinal inflammation in the hopes that these data will allow us to target mitochondrial health in the intestinal epithelium as an adjunct to immune-based treatment strategies. Results: In the intestinal epithelium of patients with ulcerative colitis, we found that NIX was upregulated and targeted to the mitochondria. We obtained similar findings in wild-type mice undergoing experimental colitis. An increase in NIX expression was found to depend on stabilization of hypoxia-inducible factor-1 alpha (HIF1α), which binds to the Nix promoter region. Using the reactive oxygen species (ROS) scavenger MitoTEMPO, we were able to attenuate disease and inhibit both HIF1α stabilization and subsequent NIX expression, suggesting that mitochondrially derived ROS are crucial to initiating the mitophagic response during intestinal inflammation. We subjected a global Nix-/- mouse to dextran sodium sulfate colitis and found that these mice developed worse disease. In addition, Nix-/- mice were found to exhibit increased mitochondrial mass, likely due to the inability to clear damaged or dysfunctional mitochondria. Innovation: These results demonstrate the importance of mitophagy within the intestinal epithelium during IBD pathogenesis. Conclusion: NIX-mediated mitophagy is required to maintain intestinal homeostasis during inflammation, highlighting the impact of mitochondrial damage on IBD progression.
Collapse
Affiliation(s)
- Garret Vincent
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth A Novak
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vei Shaun Siow
- Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kellie E Cunningham
- Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Heather L Mentrup
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Kevin P Mollen
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Li S, Takasu C, Lau H, Robles L, Vo K, Farzaneh T, Vaziri ND, Stamos MJ, Ichii H. Dimethyl Fumarate Alleviates Dextran Sulfate Sodium-Induced Colitis, through the Activation of Nrf2-Mediated Antioxidant and Anti-inflammatory Pathways. Antioxidants (Basel) 2020; 9:antiox9040354. [PMID: 32344663 PMCID: PMC7222424 DOI: 10.3390/antiox9040354] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress and chronic inflammation play critical roles in the pathogenesis of ulcerative colitis (UC) and inflammatory bowel diseases (IBD). A previous study has demonstrated that dimethyl fumarate (DMF) protects mice from dextran sulfate sodium (DSS)-induced colitis via its potential antioxidant capacity, and by inhibiting the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. This study aims to clarify the nuclear factor erythroid 2-related factor 2/antioxidant responsive element (Nrf2/ARE) pathway pharmacological activation and anti-inflammatory effect by DMF, through focusing on other crucial antioxidant enzymes and inflammatory mediator, including glutamate-cysteine ligase catalytic subunit (GCLC), glutathione peroxidase (GPX) and cyclooxygenase-2 (COX-2), in a DSS-induced colitis mouse model. The oral administration of DMF attenuated the shortening of colons and alleviated colonic inflammation. Furthermore, the expression of key antioxidant enzymes, including GCLC and GPX, in the colonic tissue were significantly increased by DMF administration. In addition, protein expression of the inflammatory mediator, COX-2, was reduced by DMF administration. Our results suggest that DMF alleviates DSS-induced colonic inflammatory damage, likely via up-regulating GCLC and GPX and down-regulating COX-2 protein expression in colonic tissue.
Collapse
Affiliation(s)
- Shiri Li
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Chie Takasu
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Hien Lau
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Lourdes Robles
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Kelly Vo
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Ted Farzaneh
- Department of Pathology, University of California, Irvine, CA 92868, USA;
| | | | - Michael J. Stamos
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
- Correspondence: ; Tel.: +1-714-456-8590; Fax: +1-714-456-8796
| |
Collapse
|
25
|
Perturbed Mitochondrial Dynamics Is a Novel Feature of Colitis That Can Be Targeted to Lessen Disease. Cell Mol Gastroenterol Hepatol 2020; 10:287-307. [PMID: 32298841 PMCID: PMC7327843 DOI: 10.1016/j.jcmgh.2020.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Mitochondria exist in a constantly remodelling network, and excessive fragmentation can be pathophysiological. Mitochondrial dysfunction can accompany enteric inflammation, but any contribution of altered mitochondrial dynamics (ie, fission/fusion) to gut inflammation is unknown. We hypothesized that perturbed mitochondrial dynamics would contribute to colitis. METHODS Quantitative polymerase chain reaction for markers of mitochondrial fission and fusion was applied to tissue from dextran sodium sulfate (DSS)-treated mice. An inhibitor of mitochondrial fission, P110 (prevents dynamin related protein [Drp]-1 binding to mitochondrial fission 1 protein [Fis1]) was tested in the DSS and di-nitrobenzene sulfonic acid (DNBS) models of murine colitis, and the impact of DSS ± P110 on intestinal epithelial and macrophage mitochondria was assessed in vitro. RESULTS Analysis of colonic tissue from mice with DSS-colitis revealed increased mRNA for molecules associated with mitochondrial fission (ie, Drp1, Fis1) and fusion (optic atrophy factor 1) and increased phospho-Drp1 compared with control. Systemic delivery of P110 in prophylactic or treatment regimens reduced the severity of DSS- or DNBS-colitis and the subsequent hyperalgesia in DNBS-mice. Application of DSS to epithelial cells or macrophages caused mitochondrial fragmentation. DSS-evoked perturbation of epithelial cell energetics and mitochondrial fragmentation, but not cell death, were ameliorated by in vitro co-treatment with P110. CONCLUSIONS We speculate that the anti-colitic effect of systemic delivery of the anti-fission drug, P110, works at least partially by maintaining enterocyte and macrophage mitochondrial networks. Perturbed mitochondrial dynamics can be a feature of intestinal inflammation, the suppression of which is a potential novel therapeutic direction in inflammatory bowel disease.
Collapse
|
26
|
Sharba S, Navabi N, Padra M, Persson JA, Quintana-Hayashi MP, Gustafsson JK, Szeponik L, Venkatakrishnan V, Sjöling Å, Nilsson S, Quiding-Järbrink M, Johansson MEV, Linden SK. Interleukin 4 induces rapid mucin transport, increases mucus thickness and quality and decreases colitis and Citrobacter rodentium in contact with epithelial cells. Virulence 2019; 10:97-117. [PMID: 30665337 PMCID: PMC6363059 DOI: 10.1080/21505594.2019.1573050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Citrobacter rodentium infection is a murine model for pathogenic intestinal Escherichia coli infection. C. rodentium infection causes an initial decrease in mucus layer thickness, followed by an increase during clearance. We aimed to identify the cause of these changes and to utilize this naturally occurring mucus stimulus to decrease pathogen impact and inflammation. We identified that mucin production and speed of transport from Golgi to secretory vesicles at the apical surface increased concomitantly with increased mucus thickness. Of the cytokines differentially expressed during increased mucus thickness, IFN-γ and TNF-α decreased the mucin production and transport speed, whereas IL-4, IL-13, C. rodentium and E. coli enhanced these aspects. IFN-γ and TNF-α treatment in combination with C. rodentium and pathogenic E. coli infection negatively affected mucus parameters in vitro, which was relieved by IL-4 treatment. The effect of IL-4 was more pronounced than that of IL-13, and in wild type mice, only IL-4 was present. Increased expression of Il-4, Il-4-receptor α, Stat6 and Spdef during clearance indicate that this pathway contributes to the increase in mucin production. In vivo IL-4 administration initiated 10 days after infection increased mucus thickness and quality and decreased colitis and pathogen contact with the epithelium. Thus, during clearance of infection, the concomitant increase in IL-4 protects and maintains goblet cell function against the increasing levels of TNF-α and IFN-γ. Furthermore, IL-4 affects intestinal mucus production, pathogen contact with the epithelium and colitis. IL-4 treatment may thus have therapeutic benefits for mucosal healing.
Collapse
Affiliation(s)
- S Sharba
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - N Navabi
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - M Padra
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - J A Persson
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - M P Quintana-Hayashi
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - J K Gustafsson
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - L Szeponik
- b Department of Microbiology and Immunology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - V Venkatakrishnan
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Å Sjöling
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - S Nilsson
- d Department of Pathology & Genetics, Sahlgrenska Academy , University of Gothenburg , Sweden.,e Department of Mathematical Sciences , Chalmer University of Technology , Gothenburg , Sweden
| | - M Quiding-Järbrink
- b Department of Microbiology and Immunology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - M E V Johansson
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - S K Linden
- a Department of Medical Biochemistry and Cell Biology , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
27
|
Zhang H, Li Y, Chen Y, Zhang L, Wang T. N-Acetylcysteine protects against intrauterine growth retardation-induced intestinal injury via restoring redox status and mitochondrial function in neonatal piglets. Eur J Nutr 2018; 58:3335-3347. [PMID: 30535793 DOI: 10.1007/s00394-018-1878-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Intrauterine growth retardation (IUGR) is detrimental to the intestinal development of neonates, yet satisfactory treatment strategies remain limited. This study was, therefore, conducted using neonatal piglets as a model to investigate the potential of N-acetylcysteine (NAC) to alleviate intestinal damage caused by IUGR. METHODS Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected and then fed a basal milk diet (NBW-CON and IUGR-CON groups) or a basal milk diet supplemented with 1.2 g NAC per kg of diet (IUGR-NAC group) from 7 to 21 days of age (n = 7). Parameters associated with the severity of intestinal injury, villus morphology and ultrastructural structure, redox status, and mitochondrial function were analyzed. RESULTS Compared with the NBW-CON piglets, the IUGR-CON piglets exhibited decreased villus height and greater numbers of apoptotic cells in jejunum, along with the increases in malondialdehyde and protein carbonyl concentrations and a decreased adenosine triphosphate (ATP) content. Treatment with NAC significantly increased jejunal superoxide dismutase activity, reduced glutathione: oxidized glutathione ratio, and the mRNA abundance of nuclear respiratory factor 2, heme oxygenase 1, and superoxide dismutase 2 in the IUGR-NAC piglets compared with the IUGR-CON piglets. In addition, NAC improved the efficiency of mitochondrial oxidative metabolism and ATP generation, ameliorated mitochondrial swelling, and inhibited the overproduction of mitochondrial superoxide anion in the jejunal mucosa. CONCLUSIONS Dietary supplementation of NAC shows promise for attenuating the early intestinal injury of young piglets with IUGR, probably through its antioxidant action to restore redox status and mitochondrial function.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, People's Republic of China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Gadolinium chloride attenuates acetic acid-evoked colitis in mice by reducing neutrophil infiltration and pro-oxidative enzyme activity. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:299-311. [PMID: 30483861 DOI: 10.1007/s00210-018-1592-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022]
Abstract
This study investigated the potential of gadolinium chloride (GdCl3), an inhibitor of kupffer cells on the myeloperoxidase (MPO) function, both in vivo on colon inflammation model and in vitro on thioglycollate-elicited peritoneal neutrophils. Colon inflammation was induced in mice (n = 7) by 4% acetic acid (AA) enema. GdCl3 (10 mg/kg) treatment was given 24 h before AA challenge. Clinical changes during the protocol were scored. Colons were segmented into distal and proximal parts for histological and biochemical assessment. Furthermore, myeloperoxidase (MPO) enzymes were extracted and analyzed by western blot. Short-term GdCl3 treatment inhibited dose-dependently superoxide anion (O2·-), alkaline phosphatase (ALP), and MPO release and promoted neutrophil apoptosis. In vivo, low-dose GdCl3 improved colitis scores and inhibited acute phagocyte recruitment and colon damage within the mucosa as revealed by the decrease in MPO, nitric oxide (NO), and malondialdehyde (MDA) levels. At the same time, GdCl3 restored catalase (CAT), superoxide dismutase (SOD) activities, and reduced glutathione (GSH) levels, thus reversing the MDA/GSH ratio in both distal and proximal colons. Compared to proximal, distal colon was more altered and displayed higher pathological manifestations. Lastly, the induction of apoptosis and regulation of the major nitrosative and oxidative functions of neutrophils by GdCl3 suggests its consideration as a beneficial tool in attenuating colon inflammation.
Collapse
|
29
|
Vinpocetine Ameliorates Acetic Acid-Induced Colitis by Inhibiting NF-κB Activation in Mice. Inflammation 2018; 41:1276-1289. [PMID: 29633103 DOI: 10.1007/s10753-018-0776-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The idiopathic inflammatory bowel diseases (IBD) comprise two types of chronic intestinal disorders: Crohn's disease and ulcerative colitis. Recruited neutrophils and macrophages contribute to intestinal tissue damage via production of ROS and NF-κB-dependent pro-inflammatory cytokines. The introduction of anti-TNF-α therapies in the treatment of IBD patients was a seminal advance. This therapy is often limited by a loss of efficacy due to the development of adaptive immune response, underscoring the need for novel therapies targeting similar pathways. Vinpocetine is a nootropic drug and in addition to its antioxidant effect, it is known to have anti-inflammatory and analgesic properties, partly by inhibition of NF-κB and downstream cytokines. Therefore, the present study evaluated the effect of the vinpocetine in a model of acid acetic-induced colitis in mice. Treatment with vinpocetine reduced edema, MPO activity, microscopic score and macroscopic damage, and visceral mechanical hyperalgesia. Vinpocetine prevented the reduction of colonic levels of GSH, ABTS radical scavenging ability, and normalized levels of anti-inflammatory cytokine IL-10. Moreover, vinpocetine reduced NF-κB activation and thereby NF-κB-dependent pro-inflammatory cytokines IL-1β, TNF-α, and IL-33 in the colon. Thus, we demonstrate for the first time that vinpocetine has anti-inflammatory, antioxidant, and analgesic effects in a model of acid acetic-induced colitis in mice and deserves further screening to address its suitability as an approach for the treatment of IBD.
Collapse
|
30
|
Lyophilized açaí pulp (Euterpe oleracea Mart) attenuates colitis-associated colon carcinogenesis while its main anthocyanin has the potential to affect the motility of colon cancer cells. Food Chem Toxicol 2018; 121:237-245. [DOI: 10.1016/j.fct.2018.08.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
|
31
|
Wang H, Xing X, Wang J, Pang B, Liu M, Larios-Valencia J, Liu T, Liu G, Xie S, Hao G, Liu Z, Kan B, Zhu J. Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 2018; 14:e1007413. [PMID: 30376582 PMCID: PMC6226196 DOI: 10.1371/journal.ppat.1007413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/09/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms. Cholera is a devastating diarrheal disease that is still endemic to many developing nations, with the worst outbreak in history having occurred recently in Yemen. Vibrio cholerae, the causative agent of cholera, transitions from aquatic reservoirs to the human gastrointestinal tract, where it expresses virulence factors to facilitate colonization of the small intestines and to combat host innate immune effectors, such as reactive oxygen species (ROS). We applied a genome-wide transposon screen (Tn-seq) and identified that deletion of mutS, which is part of DNA mismatch repair system, drastically increased colonization in ROS-rich mice. The deletion of mutS led to the accumulation of catalase-overproducing mutants and a high frequency rugose phenotype when exposed to ROS selective pressures in vivo. Additionally, ROS elevated mutation frequency in wildtype, both in vitro and in vivo. Our data imply that V. cholerae may modulate mutation frequency as a temporal adaptive strategy to overcome oxidative stress and to enhance infectivity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JH)
| | - Xiaolin Xing
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jipeng Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Tao Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Ge Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Saijun Xie
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Guijuan Hao
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Zhi Liu
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
- * E-mail: (HW); (JH)
| |
Collapse
|
32
|
Singh AK, Hertzberger RY, Knaus UG. Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis. Redox Biol 2018; 16:11-20. [PMID: 29471162 PMCID: PMC5835490 DOI: 10.1016/j.redox.2018.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disease of the gastrointestinal tract, characterized by cycles of acute flares, recovery and remission phases. Treatments for accelerating tissue restitution and prolonging remission are scarce, but altering the microbiota composition to promote intestinal homeostasis is considered a safe, economic and promising approach. Although probiotic bacteria have not yet fulfilled fully their promise in clinical trials, understanding the mechanism of how they exert beneficial effects will permit devising improved therapeutic strategies. Here we probe if one of the defining features of lactobacilli, the ability to generate nanomolar H2O2, contributes to their beneficial role in colitis. H2O2 generation by wild type L. johnsonii was modified by either deleting or overexpressing the enzymatic H2O2 source(s) followed by orally administering the bacteria before and during DSS colitis. Boosting luminal H2O2 concentrations within a physiological range accelerated recovery from colitis, while significantly exceeding this H2O2 level triggered bacteraemia. This study supports a role for increasing H2O2 within the physiological range at the epithelial barrier, independently of the enzymatic source and/or delivery mechanism, for inducing recovery and remission in IBD.
Collapse
Affiliation(s)
- Ashish K Singh
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rosanne Y Hertzberger
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; NIZO Food Research, Ede, The Netherlands
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
33
|
Zheng W, Zhang QE, Cai DB, Yang XH, Qiu Y, Ungvari GS, Ng CH, Berk M, Ning YP, Xiang YT. N-acetylcysteine for major mental disorders: a systematic review and meta-analysis of randomized controlled trials. Acta Psychiatr Scand 2018; 137:391-400. [PMID: 29457216 DOI: 10.1111/acps.12862] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This systematic review and meta-analysis of randomized controlled trials (RCTs) examined the efficacy and safety of adjunctive N-acetylcysteine (NAC), an antioxidant drug, in treating major depressive disorder (MDD), bipolar disorder, and schizophrenia. METHODS The PubMed, Cochrane Library, PsycINFO, CNKI, CBM, and WanFang databases were independently searched and screened by two researchers. Standardized mean differences (SMDs), risk ratios, and their 95% confidence intervals (CIs) were computed. RESULTS Six RCTs (n = 701) of NAC for schizophrenia (three RCTs, n = 307), bipolar disorder (two RCTs, n = 125), and MDD (one RCT, n = 269) were identified and analyzed as separate groups. Adjunctive NAC significantly improved total psychopathology (SMD = -0.74, 95% CI: -1.43, -0.06; I2 = 84%, P = 0.03) in schizophrenia, but it had no significant effect on depressive and manic symptoms as assessed by the Young Mania Rating Scale in bipolar disorder and only a small effect on major depressive symptoms. Adverse drug reactions to NAC and discontinuation rates between the NAC and control groups were similar across the three disorders. CONCLUSIONS Adjunctive NAC appears to be a safe treatment that has efficacy for schizophrenia, but not for bipolar disorder or MDD. Further higher quality RCTs are warranted to determine the role of adjunctive NAC in the treatment of major psychiatric disorders.
Collapse
Affiliation(s)
- W Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Q-E Zhang
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - D-B Cai
- Clinics of Chinese Medicine, the First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - X-H Yang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Y Qiu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - G S Ungvari
- The University of Notre Dame Australia/Graylands Hospital, Perth, WA, Australia
| | - C H Ng
- Department of Psychiatry, University of Melbourne, Melbourne, Vic., Australia
| | - M Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Vic., Australia.,Orygen, The Centre of Excellence in Youth Mental Health, Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Vic., Australia
| | - Y-P Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Y-T Xiang
- Unit of Psychiatry, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
34
|
Maarman GJ. Natural Antioxidants as Potential Therapy, and a Promising Role for Melatonin Against Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:161-178. [PMID: 29047086 DOI: 10.1007/978-3-319-63245-2_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma and serum samples, and lung/heart tissue of pulmonary hypertension (PH) patients and animal models of PH display elevated oxidative stress. Moreover, the severity of PH and levels of oxidative stress increase concurrently, which suggests that oxidative stress could be utilized as a biomarker for PH progression. Accumulating evidence has well established that oxidative stress is also key role player in the development of PH. Preclinical studies have demonstrated that natural antioxidants improved PH condition, and, therefore, antioxidant therapy has been proposed as a potential therapeutic strategy against PH. These natural antioxidants include medicinal plant extracts and compounds such as resveratrol and melatonin. Recent studies suggest that melatonin provides health benefit against PH, by enhancing antioxidant capacity, increasing vasodilation, counteracting lung and cardiac fibrosis, and stunting right ventricular (RV) hypertrophy/failure. This chapter comprehensively reviews and discusses a variety of natural antioxidants and their efficacy in modulating experimental PH. This chapter also demonstrates that antioxidant therapy remains a therapeutic strategy for PH, and particularly identifies melatonin as a safe, cost-effective, and promising antioxidant therapy.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University, Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
35
|
Moulahoum H, Boumaza BMA, Ferrat M, Djerdjouri B. Arsenic trioxide exposure accelerates colon preneoplasic aberrant crypt foci induction regionally through mitochondrial dysfunction. Toxicol Res (Camb) 2018; 7:182-190. [PMID: 30090573 DOI: 10.1039/c7tx00213k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022] Open
Abstract
Arsenic poisoning is a worldwide problem. Thus, we studied the effects of arsenic trioxide (ATO) administration on a 1,2-dimethylhydrazine (DMH)-induced preneoplasic colon carcinogenesis model. Mice were separated into four study groups; the control group received only vehicles. The ATO group received daily a 2.5 mg kg-1 dose for 4 weeks. The DMH group received DMH (20 mg kg-1) twice in two weeks. The third group (D-ATO) had the same as the DMH group with ATO administration starting at week 10. At the end of 14 weeks, colons from sacrificed mice were taken, segmented into distal and proximal and subjected to aberrant crypt foci (ACF), aberrant crypt (AC) counting, alcian blue, H&E and Hoechst histological study and lastly oxidative stress marker analysis as well as mitochondrial swelling assessment. Data showed a significant increase in ACF and AC after DMH treatment, which was further increased after ATO addition. A perturbed histological structure was observed and loss of mucin producing cells in the colon tissue was observed. An important impact on the distal colon compared to the proximal one was noticed. The oxidative stress balance showed a similar pattern with an increase in MPO, NO/l-ornithine balance and MDA, while a decrease was observed in the antioxidant enzymes (CAT, SOD and GSH). In all parameters analyzed, the distal colons showed higher values than proximal. Furthermore, histological cell death analysis in combination with mitochondrial permeability pore opening suggested ATO contribution in the pathological effect. Our study has shown that ATO administration accelerated colon cancer development suggesting the heaviness of such treatments and the need to explore combinations and cycle type formulas.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria . .,Ege University , Faculty of Science , Biochemistry Department , 35100 Bornova , İzmir , Turkey
| | - Belkacem Mohamed Amine Boumaza
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria .
| | - Meriem Ferrat
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria .
| | - Bahia Djerdjouri
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria .
| |
Collapse
|
36
|
Betulinic acid alleviates dextran sulfate sodium-induced colitis and visceral pain in mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:285-297. [PMID: 29279966 DOI: 10.1007/s00210-017-1455-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
|
37
|
Vignal C, Pichavant M, Alleman LY, Djouina M, Dingreville F, Perdrix E, Waxin C, Ouali Alami A, Gower-Rousseau C, Desreumaux P, Body-Malapel M. Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part Fibre Toxicol 2017; 14:46. [PMID: 29166940 PMCID: PMC5700563 DOI: 10.1186/s12989-017-0227-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
Abstract
Background Air pollution is a recognized aggravating factor for pulmonary diseases and has notably deleterious effects on asthma, bronchitis and pneumonia. Recent studies suggest that air pollution may also cause adverse effects in the gastrointestinal tract. Accumulating experimental evidence shows that immune responses in the pulmonary and intestinal mucosae are closely interrelated, and that gut-lung crosstalk controls pathophysiological processes such as responses to cigarette smoke and influenza virus infection. Our first aim was to collect urban coarse particulate matter (PM) and to characterize them for elemental content, gastric bioaccessibility, and oxidative potential; our second aim was to determine the short-term effects of urban coarse PM inhalation on pulmonary and colonic mucosae in mice, and to test the hypothesis that the well-known antioxidant N-acetyl-L-cysteine (NAC) reverses the effects of PM inhalation. Results The collected PM had classical features of urban particles and possessed oxidative potential partly attributable to their metal fraction. Bioaccessibility study confirmed the high solubility of some metals at the gastric level. Male mice were exposed to urban coarse PM in a ventilated inhalation chamber for 15 days at a concentration relevant to episodic elevation peak of air pollution. Coarse PM inhalation induced systemic oxidative stress, recruited immune cells to the lung, and increased cytokine levels in the lung and colon. Concomitant oral administration of NAC reversed all the observed effects relative to the inhalation of coarse PM. Conclusions Coarse PM-induced low-grade inflammation in the lung and colon is mediated by oxidative stress and deserves more investigation as potentiating factor for inflammatory diseases. Electronic supplementary material The online version of this article (10.1186/s12989-017-0227-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cécile Vignal
- Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Univ. Lille, F-59000, Lille, France
| | - Muriel Pichavant
- Inserm U1019, CNRS UMR 8204, Institut Pasteur de Lille- CIIL - Center for Infection and Immunity of Lille, Univ. Lille, F-59000, Lille, France
| | - Laurent Y Alleman
- SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, IMT Lille Douai, Univ. Lille, 59000, Lille, France
| | - Madjid Djouina
- Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Univ. Lille, F-59000, Lille, France
| | - Florian Dingreville
- Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Univ. Lille, F-59000, Lille, France
| | - Esperanza Perdrix
- SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, IMT Lille Douai, Univ. Lille, 59000, Lille, France
| | - Christophe Waxin
- Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Univ. Lille, F-59000, Lille, France
| | - Adil Ouali Alami
- Inserm U1019, CNRS UMR 8204, Institut Pasteur de Lille- CIIL - Center for Infection and Immunity of Lille, Univ. Lille, F-59000, Lille, France
| | - Corinne Gower-Rousseau
- Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Univ. Lille, F-59000, Lille, France
| | - Pierre Desreumaux
- Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Univ. Lille, F-59000, Lille, France
| | - Mathilde Body-Malapel
- Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Univ. Lille, F-59000, Lille, France.
| |
Collapse
|
38
|
Liu Y, Wang X, Hu CAA. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease. Nutrients 2017; 9:nu9090920. [PMID: 28832517 PMCID: PMC5622680 DOI: 10.3390/nu9090920] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/06/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes both ulcerative colitis and Crohn’s disease, is a chronic relapsing inflammation of the gastrointestinal tract, and is difficult to treat. The pathophysiology of IBD is multifactorial and not completely understood, but genetic components, dysregulated immune responses, oxidative stress, and inflammatory mediators are known to be involved. Animal models of IBD can be chemically induced, and are used to study etiology and to evaluate potential treatments of IBD. Currently available IBD treatments can decrease the duration of active disease but because of their adverse effects, the search for novel therapeutic strategies that can restore intestinal homeostasis continues. This review summarizes and discusses what is currently known of the effects of amino acids on the reduction of inflammation, oxidative stress, and cell death in the gut when IBD is present. Recent studies in animal models have identified dietary amino acids that improve IBD, but amino acid supplementation may not be adequate to replace conventional therapy. The animal models used in dietary amino acid research in IBD are described.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiuying Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
39
|
Precancerous ACF induction affects their regional distribution forsaking oxidative stress implication in 1,2-dimethylhydrazine-induced colon carcinogenesis model. Inflammopharmacology 2017; 26:457-468. [DOI: 10.1007/s10787-017-0377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/12/2017] [Indexed: 01/28/2023]
|
40
|
Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4535194. [PMID: 28744337 PMCID: PMC5506473 DOI: 10.1155/2017/4535194] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ziling Wang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
41
|
Xia X, Larios-Valencia J, Liu Z, Xiang F, Kan B, Wang H, Zhu J. OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. PLoS One 2017; 12:e0171201. [PMID: 28151956 PMCID: PMC5289545 DOI: 10.1371/journal.pone.0171201] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae’s transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.
Collapse
Affiliation(s)
- Xiaoyun Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zhi Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Fu Xiang
- College of Life Sciences, Huanggang Normal University, Huanggang, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JZ)
| | - Jun Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HW); (JZ)
| |
Collapse
|
42
|
Inflammatory Bowel Diseases. GASTROINTESTINAL TISSUE 2017. [DOI: 10.1016/b978-0-12-805377-5.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
N-Acetyl-L-cysteine Protects the Enterocyte against Oxidative Damage by Modulation of Mitochondrial Function. Mediators Inflamm 2016; 2016:8364279. [PMID: 28003713 PMCID: PMC5149690 DOI: 10.1155/2016/8364279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 10/23/2016] [Indexed: 11/30/2022] Open
Abstract
The neonatal small intestine is susceptible to damage caused by oxidative stress. This study aimed to evaluate the protective role of antioxidant N-acetylcysteine (NAC) in intestinal epithelial cells against oxidative damage induced by H2O2. IPEC-J2 cells were cultured in DMEM-H with NAC and H2O2. After 2-day incubation, IPEC-J2 cells were collected for analysis of DNA synthesis, antioxidation capacity, mitochondrial respiration, and cell apoptosis. The results showed that H2O2 significantly decreased (P < 0.05) proliferation rate, mitochondrial respiration, and antioxidation capacity and increased cell apoptosis and the abundance of associated proteins, including cytochrome C, Bcl-XL, cleaved caspase-3, and total caspase-3. NAC supplementation remarkably increased (P < 0.05) proliferation rate, antioxidation capacity, and mitochondrial bioenergetics but decreased cell apoptosis. These findings indicate that NAC might rescue the intestinal injury induced by H2O2.
Collapse
|
44
|
Colonic and Hepatic Modulation by Lipoic Acid and/or N-Acetylcysteine Supplementation in Mild Ulcerative Colitis Induced by Dextran Sodium Sulfate in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4047362. [PMID: 27957238 PMCID: PMC5124475 DOI: 10.1155/2016/4047362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Lipoic acid (LA) and N-acetylcysteine (NAC) are antioxidant and anti-inflammatory agents that have not yet been tested on mild ulcerative colitis (UC). This study aims to evaluate the action of LA and/or NAC, on oxidative stress and inflammation markers in colonic and hepatic rat tissues with mild UC, induced by dextran sodium sulfate (DSS) (2% w/v). LA and/or NAC (100 mg·kg·day-1, each) were given, once a day, in the diet, in a pretreatment phase (7 days) and during UC induction (5 days). Colitis induction was confirmed by histological and biochemical analyses (high performance liquid chromatography, spectrophotometry, and Multiplex®). A redox imbalance occurred before an immunological disruption in the colon. NAC led to a decrease in hydrogen peroxide (H2O2), malondialdehyde (MDA) levels, and myeloperoxidase activity. In the liver, DSS did not cause damage but treatments with both antioxidants were potentially harmful, with LA increasing MDA and LA + NAC increasing H2O2, tumor necrosis factor alpha, interferon gamma, and transaminases. In summary, NAC exhibited the highest colonic antioxidant and anti-inflammatory activity, while LA + NAC caused hepatic damage.
Collapse
|
45
|
Minarini A, Ferrari S, Galletti M, Giambalvo N, Perrone D, Rioli G, Galeazzi GM. N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects. Expert Opin Drug Metab Toxicol 2016; 13:279-292. [PMID: 27766914 DOI: 10.1080/17425255.2017.1251580] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION N-acetylcysteine (NAC) is widely known for its role as a mucolytic and as an antidote to paracetamol overdose. There is increasing interest in the use of NAC in the treatment of several psychiatric disorders. The rationale for the administration of NAC in psychiatric conditions is based on its role as a precursor to the antioxidant glutathione, and its action as a modulating agent of glutamatergic, dopaminergic, neurotropic and inflammatory pathways. Areas covered: This study reviews the available data regarding the use of NAC in different psychiatric disorders including substance use disorders, autism, obsessive-compulsive spectrum disorders, schizophrenia, depression, bipolar disorder. Promising results were found in trials testing the use of NAC, mainly as an add-on treatment, in cannabis use disorder in young people, depression in bipolar disorder, negative symptoms in schizophrenia, and excoriation (skin-picking) disorder. Despite initial optimism, recent findings regarding NAC efficacy in autism have been disappointing. Expert opinion: These preliminary positive results require further confirmation in larger samples and with longer follow-ups. Given its high tolerability and wide availability, NAC represents an important target to investigate in the field of new adjunctive treatments for psychiatric conditions.
Collapse
Affiliation(s)
- Alessandro Minarini
- a Department of Diagnostic-Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Silvia Ferrari
- a Department of Diagnostic-Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Martina Galletti
- a Department of Diagnostic-Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Nina Giambalvo
- a Department of Diagnostic-Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Daniela Perrone
- a Department of Diagnostic-Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Giulia Rioli
- a Department of Diagnostic-Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Gian Maria Galeazzi
- a Department of Diagnostic-Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
46
|
Liu Z, Wang H, Zhou Z, Sheng Y, Naseer N, Kan B, Zhu J. Thiol-based switch mechanism of virulence regulator AphB modulates oxidative stress response in Vibrio cholerae. Mol Microbiol 2016; 102:939-949. [PMID: 27625149 DOI: 10.1111/mmi.13524] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 11/30/2022]
Abstract
Bacterial pathogens display versatile gene expression to adapt to changing surroundings. For example, Vibrio cholerae, the causative agent of cholera, utilizes distinct genetic programs to combat reactive oxygen species (ROS) in aquatic environments or during host infection. We previously reported that the virulence activator AphB in V. cholerae is involved in ROS resistance. Here by performing a genetic screen, we show that AphB represses ROS resistance gene ohrA, which is also repressed by another regulator, OhrR. Reduced forms of both AphB and OhrR directly bind to the ohrA promoter and repress its expression, whereas organic hydroperoxides such as cumene hydroperoxide (CHP) deactivate AphB and OhrR. OhrA is critical for V. cholerae adult mouse colonization but is dispensable when the mice are treated with antioxidants. Furthermore, similar to our previous finding that AphB and OhrR exhibit different reduction rates during the shift from oxic to anoxic environments, we found that AphB is also oxidized more slowly than OhrR under peroxide stress or exposure to oxygen. This differential regulation optimizes the expression of ohrA and contributes to V. cholerae's ability to survive in a variety of environmental niches that contain different levels of ROS.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhigang Zhou
- Division of Microbiology, Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ying Sheng
- Department of Microbiology, Nanjing Agricultural University, Nanjing, 210095, China.,Division of Bacterial Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Nawar Naseer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Biao Kan
- Division of Bacterial Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
47
|
Li Y, Shen L, Luo H. Luteolin ameliorates dextran sulfate sodium-induced colitis in mice possibly through activation of the Nrf2 signaling pathway. Int Immunopharmacol 2016; 40:24-31. [PMID: 27569028 DOI: 10.1016/j.intimp.2016.08.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Luteolin has a reputation for being a safe and effective natural antioxidant that has strong radical scavenging and cell protective properties. The role of oxidative stress in inflammatory bowel disease (IBD) has been well established and is increasingly highlighted. Thus, we studied the protective effect of luteolin administration in a mouse model of experimental colitis. METHODS Experimental acute colitis was induced by administering 3% dextran sulfate sodium (DSS) in the drinking water of mice for 7days. The disease activity index (DAI); colon length; histological assessment; mRNA levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), heme oxygenase-1 (HO-1), and NADP(H): quinone oxidoreductase 1 (NQO-1); protein expression of Nrf2 and inducible nitric oxide synthase (iNOS); colon malondialdehyde (MDA) levels; and the activity levels of colonic superoxide dismutase (SOD) and catalase (CAT) were examined. RESULTS Luteolin (20 and 50mg/kg) significantly attenuated the DAI, colon shortening and histological damage. In addition, luteolin administration effectively decreased the expression of inflammatory mediators, such as iNOS, TNF-α and IL-6. Luteolin also decreased the colonic content of MDA. The activities of colonic SOD and CAT and the levels of Nrf2 and its downstream targets, HO-1 and NQO1, were elevated by luteolin treatment. CONCLUSION These observations indicate that luteolin may suppress experimental colitis through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yue Li
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lei Shen
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hesheng Luo
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Bounaama A, Enayat S, Ceyhan MS, Moulahoum H, Djerdjouri B, Banerjee S. Ethanolic Extract of Bark fromSalix aegyptiacaAmeliorates 1,2-dimethylhydrazine-induced Colon Carcinogenesis in Mice by Reducing Oxidative Stress. Nutr Cancer 2016; 68:495-506. [DOI: 10.1080/01635581.2016.1152379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Bendjersi FZ, Tazerouti F, Belkhelfa-Slimani R, Djerdjouri B, Meklati BY. Phytochemical composition of the Algerian Laurus nobilis L. leaves extracts obtained by solvent-free microwave extraction and investigation of their antioxidant activity. JOURNAL OF ESSENTIAL OIL RESEARCH 2016. [DOI: 10.1080/10412905.2015.1129992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Bonnot O, Cohen D, Thuilleaux D, Consoli A, Cabal S, Tauber M. Psychotropic treatments in Prader-Willi syndrome: a critical review of published literature. Eur J Pediatr 2016; 175:9-18. [PMID: 26584571 DOI: 10.1007/s00431-015-2670-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Prader-Willi syndrome (PWS) is a rare genetic syndrome. The phenotype includes moderate to intellectual disability, dysmorphia, obesity, and behavioral disturbances (e.g., hetero and self-injurious behaviors, hyperphagia, psychosis). Psychotropic medications are widely prescribed in PWS for symptomatic control. We conducted a systematic review of published literature to examine psychotropic medications used in PWS. MEDLINE was searched to identify articles published between January 1967 and December 2014 using key words related to pharmacological treatments and PWS. Articles with original data were included based on a standardized four-step selection process. The identification of studies led to 241 records. All selected articles were evaluated for case descriptions (PWS and behavioral signs) and treatment (type, titration, efficiency, and side effects). Overall, 102 patients were included in these studies. Treatment involved risperidone (three reports, n = 11 patients), fluoxetine (five/n = 6), naltrexone (two/n = 2), topiramate (two/n = 16), fluvoxamine (one/n = 1), mazindol (one/n = 2), N-acetyl cysteine (one/n = 35), rimonabant (one/n = 15), and fenfluramine (one/n = 15). CONCLUSION We identified promising treatment effects with topiramate for self-injury and impulsive/aggressive behaviors, risperidone for psychotic symptoms associated with uniparental disomy (UPD), and N-acetyl cysteine for skin picking. The pharmacological approach of behavioral impairment in PWS has been poorly investigated to date. Further randomized controlled studies are warranted. WHAT IS KNOWN Behavioral disturbances in Prader-Willi syndrome including aggressive reactions, skin picking, and hyperphagia might be very difficult to manage. Antipsychotic drugs are widely prescribed, but weight gain and increased appetite are their major side effects. WHAT IS NEW Topiramate might be efficient for self-injury and impulsive/aggressive behaviors, N-acetyl cysteine is apromising treatment for skin picking and Antidepressants are indicated for OCD symptoms. Risperidone is indicated in case of psychotic symptoms mainly associated with uniparental disomy.
Collapse
Affiliation(s)
- O Bonnot
- Child and Adolescent Psychiatry Department, LPL-University Hospital Nantes and GDR 3557, Psychiatric Institute, 7 quai Moncousu, Nantes, F-44 000, France.
| | - D Cohen
- Child and Adolescent Psychiatry Department, Groupe Hospitalier Pitie Salpetriere, APHP, Paris & Centre for Rare Diseases with Psychiatric Symptoms, APHP, 47 boulevard de l'hôpital, Paris, 75013, France.
| | - D Thuilleaux
- Rare Disease with Psychiatric Symptoms Department, Hôpital Mari, APHP, Route de la Corniche, Hendaye, 64700, France.
| | - A Consoli
- Child and Adolescent Psychiatry Department, Groupe Hospitalier Pitie Salpetriere, APHP, Paris & Centre for Rare Diseases with Psychiatric Symptoms, APHP, 47 boulevard de l'hôpital, Paris, 75013, France.
| | - S Cabal
- Child and Adolescent Psychiatry Department, CHU de Toulouse, Toulouse, France.
| | - M Tauber
- Pediatric Department, University Hospital Toulouse & Rare Disease Center for Prader Willi Syndrome, CHU de Toulouse, Toulouse, France.
| |
Collapse
|