1
|
Karam M, Ortega-Gascó A, Tornero D. Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine. Int J Mol Sci 2025; 26:3275. [PMID: 40244116 PMCID: PMC11989304 DOI: 10.3390/ijms26073275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neuroinflammation is a complex immune response triggered by brain injury or pathological stimuli, and is highly exacerbated in neurodegenerative diseases. It plays a dual role in the central nervous system, promoting repair in acute stages while aggravating disease progression by contributing to neuronal loss, synaptic dysfunction, and glial dysregulation in chronic phases. Inflammatory responses are mainly orchestrated by microglia and infiltrated monocytes, which, when dysregulated, not only harm existing neurons, but also impair the survival and differentiation of neural stem and progenitor cells in the affected brain regions. Modulating neuroinflammation is crucial for harnessing its protective functions while minimizing its detrimental effects. Current therapeutic strategies focus on fine-tuning inflammatory responses through pharmacological agents, bioactive molecules, and stem cell-based therapies. These approaches aim to restore immune homeostasis, support neuroprotection, and promote regeneration in various neurological disorders. However, animal models sometimes fail to reproduce human-specific inflammatory responses in the brain. In this context, stem-cell-derived models provide a powerful tool to study neuroinflammatory mechanisms in a patient-specific and physiologically relevant context. These models facilitate high-throughput screening, personalized medicine, and the development of targeted therapies while addressing the limitations of traditional animal models, paving the way for more targeted and effective treatments.
Collapse
Affiliation(s)
- Marie Karam
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alba Ortega-Gascó
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
2
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Ma W, Zhao L, Xu B, Fariss RN, Redmond TM, Zou J, Wong WT, Li W. Human-induced pluripotent stem cell-derived microglia integrate into mouse retina and recapitulate features of endogenous microglia. eLife 2024; 12:RP90695. [PMID: 39514271 PMCID: PMC11587526 DOI: 10.7554/elife.90695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Wenxin Ma
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| | - Lian Zhao
- Genetic Engineering Core, National Eye InstituteBethesdaUnited States
| | - Biying Xu
- Immunoregulation Section, National Eye InstituteBethesdaUnited States
| | - Robert N Fariss
- Biological Imaging Core, National Eye InstituteBethesdaUnited States
| | - T Michael Redmond
- Molecular Mechanisms Section, National Eye InstituteBethesdaUnited States
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood InstituteBethesdaUnited States
| | | | - Wei Li
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| |
Collapse
|
4
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
6
|
Sakthivel PS, Scipioni L, Karam J, Keulen Z, Blurton-Jones M, Gratton E, Anderson AJ. Organelle phenotyping and multi-dimensional microscopy identify C1q as a novel regulator of microglial function. J Neurochem 2024; 168:3095-3107. [PMID: 39018376 PMCID: PMC11449638 DOI: 10.1111/jnc.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Microglia, the immune cells of the central nervous system, are dynamic and heterogenous cells. While single cell RNA sequencing has become the conventional methodology for evaluating microglial state, transcriptomics do not provide insight into functional changes, identifying a critical gap in the field. Here, we propose a novel organelle phenotyping approach in which we treat live human induced pluripotent stem cell-derived microglia (iMGL) with organelle dyes staining mitochondria, lipids, lysosomes and acquire data by live-cell spectral microscopy. Dimensionality reduction techniques and unbiased cluster identification allow for recognition of microglial subpopulations with single-cell resolution based on organelle function. We validated this methodology using lipopolysaccharide and IL-10 treatment to polarize iMGL to an "inflammatory" and "anti-inflammatory" state, respectively, and then applied it to identify a novel regulator of iMGL function, complement protein C1q. While C1q is traditionally known as the initiator of the complement cascade, here we use organelle phenotyping to identify a role for C1q in regulating iMGL polarization via fatty acid storage and mitochondria membrane potential. Follow up evaluation of microglia using traditional read outs of activation state confirm that C1q drives an increase in microglia pro-inflammatory gene production and migration, while suppressing microglial proliferation. These data together validate the use of a novel organelle phenotyping approach and enable better mechanistic investigation of molecular regulators of microglial state.
Collapse
Affiliation(s)
- Pooja S Sakthivel
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Lorenzo Scipioni
- Laboratory for Fluorescence Dynamics, Biomedical Engineering, University of California, Irvine, California, USA
| | - Josh Karam
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Zahara Keulen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Mathew Blurton-Jones
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders University of California, Irvine, California, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering, University of California, Irvine, California, USA
| | - Aileen J Anderson
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders University of California, Irvine, California, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, California, USA
| |
Collapse
|
7
|
De Bastiani MA, Bellaver B, Carello-Collar G, Zimmermann M, Kunach P, Lima-Filho RA, Forner S, Martini AC, Pascoal TA, Lourenco MV, Rosa-Neto P, Zimmer ER. Cross-species comparative hippocampal transcriptomics in Alzheimer's disease. iScience 2024; 27:108671. [PMID: 38292167 PMCID: PMC10824791 DOI: 10.1016/j.isci.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial pathology, with most cases having a sporadic origin. Recently, knock-in (KI) mouse models, such as the novel humanized amyloid-β (hAβ)-KI, have been developed to better resemble sporadic human AD. METHODS Here, we compared hippocampal publicly available transcriptomic profiles of transgenic (5xFAD and APP/PS1) and KI (hAβ-KI) mouse models with early- (EOAD) and late- (LOAD) onset AD patients. RESULTS The three mouse models presented more Gene Ontology biological processes terms and enriched signaling pathways in common with LOAD than with EOAD individuals. Experimental validation of consistently dysregulated genes revealed five altered in mice (SLC11A1, S100A6, CD14, CD33, and C1QB) and three in humans (S100A6, SLC11A1, and KCNK). Finally, we identified 17 transcription factors potentially acting as master regulators of AD. CONCLUSION Our cross-species analyses revealed that the three mouse models presented a remarkable similarity to LOAD, with the hAβ-KI being the more specific one.
Collapse
Affiliation(s)
- Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Giovanna Carello-Collar
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
| | - Maria Zimmermann
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 1A1, Canada
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Peter Kunach
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 1A1, Canada
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec H4H 1R3, Canada
- Douglas Hospital Research Centre, Montreal, Québec H4H 1R3, Canada
| | - Ricardo A.S. Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro 21941-902, Brazil
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Alessandra Cadete Martini
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro 21941-902, Brazil
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 1A1, Canada
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec H4H 1R3, Canada
- Douglas Hospital Research Centre, Montreal, Québec H4H 1R3, Canada
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
- Department of Pharmacology, ICBS, UFRGS, Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Department of Pharmacology, ICBS, UFRGS, Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
- Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, State of Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
8
|
Riviere-Cazaux C, Rajani K, Rahman M, Oh J, Brown DA, White JF, Himes BT, Jusue-Torres I, Rodriguez M, Warrington AE, Kizilbash SH, Elmquist WF, Burns TC. Methodological and analytical considerations for intra-operative microdialysis. Fluids Barriers CNS 2023; 20:94. [PMID: 38115038 PMCID: PMC10729367 DOI: 10.1186/s12987-023-00497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Microdialysis is a technique that can be utilized to sample the interstitial fluid of the central nervous system (CNS), including in primary malignant brain tumors known as gliomas. Gliomas are mainly accessible at the time of surgery, but have rarely been analyzed via interstitial fluid collected via microdialysis. To that end, we obtained an investigational device exemption for high molecular weight catheters (HMW, 100 kDa) and a variable flow rate pump to perform microdialysis at flow rates amenable to an intra-operative setting. We herein report on the lessons and insights obtained during our intra-operative HMW microdialysis trial, both in regard to methodological and analytical considerations. METHODS Intra-operative HMW microdialysis was performed during 15 clinically indicated glioma resections in fourteen patients, across three radiographically diverse regions in each patient. Microdialysates were analyzed via targeted and untargeted metabolomics via ultra-performance liquid chromatography tandem mass spectrometry. RESULTS Use of albumin and lactate-containing perfusates impacted subsets of metabolites evaluated via global metabolomics. Additionally, focal delivery of lactate via a lactate-containing perfusate, induced local metabolic changes, suggesting the potential for intra-operative pharmacodynamic studies via reverse microdialysis of candidate drugs. Multiple peri-operatively administered drugs, including levetiracetam, cefazolin, caffeine, mannitol and acetaminophen, could be detected from one microdialysate aliquot representing 10 min worth of intra-operative sampling. Moreover, clinical, radiographic, and methodological considerations for performing intra-operative microdialysis are discussed. CONCLUSIONS Intra-operative HMW microdialysis can feasibly be utilized to sample the live human CNS microenvironment, including both metabolites and drugs, within one surgery. Certain variables, such as perfusate type, must be considered during and after analysis. Trial registration NCT04047264.
Collapse
Affiliation(s)
- Cecile Riviere-Cazaux
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Karishma Rajani
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Masum Rahman
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Juhee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Desmond A Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jaclyn F White
- Department of Neurological Surgery, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ignacio Jusue-Torres
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | | | - Arthur E Warrington
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Romanos SG, Srinath A, Li Y, Xie B, Chen C, Li Y, Moore T, Bi D, Sone JY, Lightle R, Hobson N, Zhang D, Koskimäki J, Shen L, McCurdy S, Lai CC, Stadnik A, Piedad K, Carrión-Penagos J, Shkoukani A, Snellings D, Shenkar R, Sulakhe D, Ji Y, Lopez-Ramirez MA, Kahn ML, Marchuk DA, Ginsberg MH, Girard R, Awad IA. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res 2023; 14:513-529. [PMID: 35715588 PMCID: PMC9758276 DOI: 10.1007/s12975-022-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.
Collapse
Affiliation(s)
- Sharbel G Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yan Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dehua Bi
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Nick Hobson
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Sara McCurdy
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Catherine Chinhchu Lai
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Kristina Piedad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abdallah Shkoukani
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Daniel Snellings
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dinanath Sulakhe
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yuan Ji
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Shi C, Gottschalk WK, Colton CA, Mukherjee S, Lutz MW. Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1085577. [PMID: 37650081 PMCID: PMC10467016 DOI: 10.3389/fsysb.2023.1085577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The principles governing genotype-phenotype relationships are still emerging(1-3), and detailed translational as well as transcriptomic information is required to understand complex phenotypes, such as the pathogenesis of Alzheimer's disease. For this reason, the proteomics of Alzheimer disease (AD) continues to be studied extensively. Although comparisons between data obtained from humans and mouse models have been reported, approaches that specifically address the between-species statistical comparisons are understudied. Our study investigated the performance of two statistical methods for identification of proteins and biological pathways associated with Alzheimer's disease for cross-species comparisons, taking specific data analysis challenges into account, including collinearity, dimensionality reduction and cross-species protein matching. We used a human dataset from a well-characterized cohort followed for over 22 years with proteomic data available. For the mouse model, we generated proteomic data from whole brains of CVN-AD and matching control mouse models. We used these analyses to determine the reliability of a mouse model to forecast significant proteomic-based pathological changes in the brain that may mimic pathology in human Alzheimer's disease. Compared with LASSO regression, partial least squares discriminant analysis provided better statistical performance for the proteomics analysis. The major biological finding of the study was that extracellular matrix proteins and integrin-related pathways were dysregulated in both the human and mouse data. This approach may help inform the development of mouse models that are more relevant to the study of human late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Cathy Shi
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - W. Kirby Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol A. Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Cakir B, Kiral FR, Park IH. Advanced in vitro models: Microglia in action. Neuron 2022; 110:3444-3457. [PMID: 36327894 DOI: 10.1016/j.neuron.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
In the central nervous system (CNS), microglia carry out multiple tasks related to brain development, maintenance of brain homeostasis, and function of the CNS. Recent advanced in vitro model systems allow us to perform more detailed and specific analyses of microglial functions in the CNS. The development of human pluripotent stem cells (hPSCs)-based 2D and 3D cell culture methods, particularly advancements in brain organoid models, offers a better platform to dissect microglial function in various contexts. Despite the improvement of these methods, there are still definite restrictions. Understanding their drawbacks and benefits ensures their proper use. In this primer, we review current developments regarding in vitro microglial production and characterization and their use to address fundamental questions about microglial function in healthy and diseased states, and we discuss potential future improvements with a particular emphasis on brain organoid models.
Collapse
Affiliation(s)
- Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Kiral FR, Park IH. Human Down syndrome microglia are up for a synaptic feast. Cell Stem Cell 2022; 29:1007-1008. [PMID: 35803219 DOI: 10.1016/j.stem.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cell Stem Cell, Jin et al. report that human Down syndrome microglia exhibit enhanced synaptic engulfment and accelerated tau-induced cellular senescence in human-mouse chimeric brains. They show that inhibiting interferon signaling rescues both developmental and tau-associated phenotypes, rendering it a potential therapeutic target for Down syndrome.
Collapse
Affiliation(s)
- Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
McComish SF, MacMahon Copas AN, Caldwell MA. Human Brain-Based Models Provide a Powerful Tool for the Advancement of Parkinson’s Disease Research and Therapeutic Development. Front Neurosci 2022; 16:851058. [PMID: 35651633 PMCID: PMC9149087 DOI: 10.3389/fnins.2022.851058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 2–3% of the population over the age of 65. PD is characterised by the loss of dopaminergic neurons from the substantia nigra, leading to debilitating motor symptoms including bradykinesia, tremor, rigidity, and postural instability. PD also results in a host of non-motor symptoms such as cognitive decline, sleep disturbances and depression. Although existing therapies can successfully manage some motor symptoms for several years, there is still no means to halt progression of this severely debilitating disorder. Animal models used to replicate aspects of PD have contributed greatly to our current understanding but do not fully replicate pathological mechanisms as they occur in patients. Because of this, there is now great interest in the use of human brain-based models to help further our understanding of disease processes. Human brain-based models include those derived from embryonic stem cells, patient-derived induced neurons, induced pluripotent stem cells and brain organoids, as well as post-mortem tissue. These models facilitate in vitro analysis of disease mechanisms and it is hoped they will help bridge the existing gap between bench and bedside. This review will discuss the various human brain-based models utilised in PD research today and highlight some of the key breakthroughs they have facilitated. Furthermore, the potential caveats associated with the use of human brain-based models will be detailed.
Collapse
Affiliation(s)
- Sarah F. McComish
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina N. MacMahon Copas
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Maeve A. Caldwell
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Maeve A. Caldwell,
| |
Collapse
|
14
|
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, Meyer FB, Graffeo CS, Lundgaard I, Burns TC. A clinical primer for the glymphatic system. Brain 2021; 145:843-857. [PMID: 34888633 DOI: 10.1093/brain/awab428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
The complex and dynamic system of fluid flow through the perivascular and interstitial spaces of the central nervous system has new-found implications for neurological diseases. Cerebrospinal fluid movement throughout the CNS parenchyma is more dynamic than could be explained via passive diffusion mechanisms alone. Indeed, a semi-structured glial-lymphatic (glymphatic) system of astrocyte-supported extracellular perivascular channels serves to directionally channel extracellular fluid, clearing metabolites and peptides to optimize neurologic function. Clinical studies of the glymphatic network has to date proven challenging, with most data gleaned from rodent models and post-mortem investigations. However, increasing evidence suggests that disordered glymphatic function contributes to the pathophysiology of CNS aging, neurodegenerative disease, and CNS injuries, as well as normal pressure hydrocephalus. Unlocking such pathophysiology could provide important avenues toward novel therapeutics. We here provide a multidisciplinary overview of glymphatics and critically review accumulating evidence regarding its structure, function, and hypothesized relevance to neurological disease. We highlight emerging technologies of relevance to the longitudinal evaluation of glymphatic function in health and disease. Finally, we discuss the translational opportunities and challenges of studying glymphatic science.
Collapse
Affiliation(s)
- Lucas P Carlstrom
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Ahmed Eltanahy
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Avital Perry
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Benjamin D Elder
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Fredric B Meyer
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Iben Lundgaard
- Departments of Experimental Medical Science, Lund University, Lund 228 11 Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund 228 11 Sweden
| | - Terry C Burns
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
15
|
Lee MJ, Wang C, Carroll MJ, Brubaker DK, Hyman BT, Lauffenburger DA. Computational Interspecies Translation Between Alzheimer's Disease Mouse Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM Receptor Agonist Signatures, Distinct From Influences of Aging. Front Neurosci 2021; 15:727784. [PMID: 34658769 PMCID: PMC8515135 DOI: 10.3389/fnins.2021.727784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Mouse models are vital for preclinical research on Alzheimer’s disease (AD) pathobiology. Many traditional models are driven by autosomal dominant mutations identified from early onset AD genetics whereas late onset and sporadic forms of the disease are predominant among human patients. Alongside ongoing experimental efforts to improve fidelity of mouse model representation of late onset AD, a computational framework termed Translatable Components Regression (TransComp-R) offers a complementary approach to leverage human and mouse datasets concurrently to enhance translation capabilities. We employ TransComp-R to integratively analyze transcriptomic data from human postmortem and traditional amyloid mouse model hippocampi to identify pathway-level signatures present in human patient samples yet predictive of mouse model disease status. This method allows concomitant evaluation of datasets across different species beyond observational seeking of direct commonalities between the species. Additional linear modeling focuses on decoupling disease signatures from effects of aging. Our results elucidated mouse-to-human translatable signatures associated with disease: excitatory synapses, inflammatory cytokine signaling, and complement cascade- and TYROBP-based innate immune activity; these signatures all find validation in previous literature. Additionally, we identified agonists of the Tyro3 / Axl / MerTK (TAM) receptor family as significant contributors to the cross-species innate immune signature; the mechanistic roles of the TAM receptor family in AD merit further dedicated study. We have demonstrated that TransComp-R can enhance translational understanding of relationships between AD mouse model data and human data, thus aiding generation of biological hypotheses concerning AD progression and holding promise for improved preclinical evaluation of therapies.
Collapse
Affiliation(s)
- Meelim J Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Molly J Carroll
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Douglas K Brubaker
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, United States
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
16
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
17
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
18
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
19
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
20
|
Narayan P, Reid S, Scotter EL, McGregor AL, Mehrabi NF, Singh-Bains MK, Glass M, Faull RLM, Snell RG, Dragunow M. Inconsistencies in histone acetylation patterns among different HD model systems and HD post-mortem brains. Neurobiol Dis 2020; 146:105092. [PMID: 32979507 DOI: 10.1016/j.nbd.2020.105092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in exon 1 of the huntingtin gene. Emerging evidence shows that additional epigenetic factors can modify disease phenotypes. Harnessing the ability of the epigenome to modify the disease for therapeutic purposes is therefore of interest. Epigenome modifiers, such as histone deacetylase inhibitors (HDACi), have improved pathology in a range of HD models. Yet in clinical trials, HDACi have failed to alleviate HD symptoms in patients. This study investigated potential reasons for the lack of translation of the therapeutic benefits of HDACi from lab to clinic. We analysed histone acetylation patterns of immuno-positive nuclei from brain sections and tissue microarrays from post-mortem human control and HD cases alongside several well-established HD models (OVT73 transgenic HD sheep, YAC128 mice, and an in vitro cell model expressing 97Q mutant huntingtin). Significant increases in histone H4 acetylation were observed in post-mortem HD cases, OVT73 transgenic HD sheep and in vitro models; these changes were absent in YAC128 mice. In addition, nuclear labelling for acetyl-histone H4 levels were inversely proportional to mutant huntingtin aggregate load in HD human cortex. Our data raise concerns regarding the utility of HDACi for the treatment of HD when regions of pathology exhibit already elevated histone acetylation patterns and emphasize the importance of searching for alternative epigenetic targets in future therapeutic strategies aiming to rescue HD phenotypes.
Collapse
Affiliation(s)
- Pritika Narayan
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Suzanne Reid
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Emma L Scotter
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| | - Ailsa L McGregor
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand.
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| | | | - Michelle Glass
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand.
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| | - Russell G Snell
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
21
|
Scheckel C, Imeri M, Schwarz P, Aguzzi A. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. eLife 2020; 9:62911. [PMID: 32960170 PMCID: PMC7527237 DOI: 10.7554/elife.62911] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are caused by PrPSc, a self-replicating pathologically misfolded protein that exerts toxicity predominantly in the brain. The administration of PrPSc causes a robust, reproducible and specific disease manifestation. Here, we have applied a combination of translating ribosome affinity purification and ribosome profiling to identify biologically relevant prion-induced changes during disease progression in a cell-type-specific and genome-wide manner. Terminally diseased mice with severe neurological symptoms showed extensive alterations in astrocytes and microglia. Surprisingly, we detected only minor changes in the translational profiles of neurons. Prion-induced alterations in glia overlapped with those identified in other neurodegenerative diseases, suggesting that similar events occur in a broad spectrum of pathologies. Our results suggest that aberrant translation within glia may suffice to cause severe neurological symptoms and may even be the primary driver of prion disease.
Collapse
Affiliation(s)
- Claudia Scheckel
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Marigona Imeri
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Osborne B, Bakula D, Ben Ezra M, Dresen C, Hartmann E, Kristensen SM, Mkrtchyan GV, Nielsen MH, Petr MA, Scheibye-Knudsen M. New methodologies in ageing research. Ageing Res Rev 2020; 62:101094. [PMID: 32512174 DOI: 10.1016/j.arr.2020.101094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Ageing is arguably the most complex phenotype that occurs in humans. To understand and treat ageing as well as associated diseases, highly specialised technologies are emerging that reveal critical insight into the underlying mechanisms and provide new hope for previously untreated diseases. Herein, we describe the latest developments in cutting edge technologies applied across the field of ageing research. We cover emerging model organisms, high-throughput methodologies and machine-driven approaches. In all, this review will give you a glimpse of what will be pushing the field onwards and upwards.
Collapse
Affiliation(s)
- Brenna Osborne
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ben Ezra
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Dresen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Esben Hartmann
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stella M Kristensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Malte H Nielsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
24
|
Wan YW, Al-Ouran R, Mangleburg CG, Perumal TM, Lee TV, Allison K, Swarup V, Funk CC, Gaiteri C, Allen M, Wang M, Neuner SM, Kaczorowski CC, Philip VM, Howell GR, Martini-Stoica H, Zheng H, Mei H, Zhong X, Kim JW, Dawson VL, Dawson TM, Pao PC, Tsai LH, Haure-Mirande JV, Ehrlich ME, Chakrabarty P, Levites Y, Wang X, Dammer EB, Srivastava G, Mukherjee S, Sieberts SK, Omberg L, Dang KD, Eddy JA, Snyder P, Chae Y, Amberkar S, Wei W, Hide W, Preuss C, Ergun A, Ebert PJ, Airey DC, Mostafavi S, Yu L, Klein HU, Carter GW, Collier DA, Golde TE, Levey AI, Bennett DA, Estrada K, Townsend TM, Zhang B, Schadt E, De Jager PL, Price ND, Ertekin-Taner N, Liu Z, Shulman JM, Mangravite LM, Logsdon BA. Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. Cell Rep 2020; 32:107908. [PMID: 32668255 PMCID: PMC7428328 DOI: 10.1016/j.celrep.2020.107908] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
We present a consensus atlas of the human brain transcriptome in Alzheimer's disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington's disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies.
Collapse
Affiliation(s)
- Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rami Al-Ouran
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl G Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Tom V Lee
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine Allison
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Mariet Allen
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | - Hui Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongkang Mei
- Neuroscience DPU, Shanghai R&D, GlaxoSmithKline, Shanghai, China
| | - Xiaoyan Zhong
- Neuroscience DPU, Shanghai R&D, GlaxoSmithKline, Shanghai, China
| | - Jungwoo Wren Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin & Diana Helis Henry Medical Research Foundations, New Orleans, LA 70130, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin & Diana Helis Henry Medical Research Foundations, New Orleans, LA 70130, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ping-Chieh Pao
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jean-Vianney Haure-Mirande
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E Ehrlich
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Paramita Chakrabarty
- Evelyn F. and William L. McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Yona Levites
- Evelyn F. and William L. McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Xue Wang
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; Mayo Clinic, Department of Health Sciences Research, Jacksonville, FL 32224, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | - Sandeep Amberkar
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK; Molecular Oncology Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, SK10 4TG, UK
| | - Wenbin Wei
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK; Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Winston Hide
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Ayla Ergun
- Translational Genome Sciences, Biogen, Cambridge, MA, USA
| | - Phillip J Ebert
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - David C Airey
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology and Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - David A Collier
- Eli Lilly & Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, UK
| | - Todd E Golde
- Evelyn F. and William L. McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Karol Estrada
- Translational Genome Sciences, Biogen, Cambridge, MA, USA
| | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - Nilüfer Ertekin-Taner
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; Mayo Clinic, Department of Neurology, Jacksonville, FL 32224, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
25
|
Nickels SL, Modamio J, Mendes-Pinheiro B, Monzel AS, Betsou F, Schwamborn JC. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Res 2020; 46:101870. [PMID: 32534166 DOI: 10.1016/j.scr.2020.101870] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
The study of human midbrain development and midbrain related diseases, like Parkinson's disease (PD), is limited by deficiencies in the currently available and validated laboratory models. Three dimensional midbrain organoids represent an innovative strategy to recapitulate some aspects of the complexity and physiology of the human midbrain. Nevertheless, also these novel organoid models exhibit some inherent weaknesses, including the presence of a necrotic core and batch-to-batch variability. Here we describe an optimized approach for the standardized generation of midbrain organoids that addresses these limitations, while maintaining key features of midbrain development like dopaminergic neuron and astrocyte differentiation. Moreover, we have established a novel time-efficient, fit for purpose analysis pipeline and provided proof of concept for its usage by investigating toxin induced PD.
Collapse
Affiliation(s)
- Sarah Louise Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health, L-3555 Dudelange, Luxembourg
| | - Jennifer Modamio
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Bárbara Mendes-Pinheiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Anna Sophia Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Fay Betsou
- Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health, L-3555 Dudelange, Luxembourg
| | - Jens Christian Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
26
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
27
|
Simanaviciute U, Ahmed J, Brown RE, Connor-Robson N, Farr TD, Fertan E, Gambles N, Garland H, Morton AJ, Staiger JF, Skillings EA, Trueman RC, Wade-Martins R, Wood NI, Wong AA, Grant RA. Recommendations for measuring whisker movements and locomotion in mice with sensory, motor and cognitive deficits. J Neurosci Methods 2020; 331:108532. [PMID: 31785300 DOI: 10.1016/j.jneumeth.2019.108532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Previous studies have measured whisker movements and locomotion to characterise mouse models of neurodegenerative disease. However, these studies have always been completed in isolation, and do not involve standardized procedures for comparisons across multiple mouse models and background strains. NEW METHOD We present a standard method for conducting whisker movement and locomotion studies, by carrying out qualitative scoring and quantitative measurement of whisker movements from high-speed video footage of mouse models of Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, Alzheimer's disease, Cerebellar Ataxia, Somatosensory Cortex Development and Ischemic stroke. RESULTS Sex, background strain, source breeder and genotype all affected whisker movements. All mouse models, apart from Parkinson's disease, revealed differences in whisker movements during locomotion. R6/2 CAG250 Huntington's disease mice had the strongest behavioural phenotype. Robo3R3-5-CKO and RIM-DKOSert mouse models have abnormal somatosensory cortex development and revealed significant changes in whisker movements during object exploration. COMPARISON WITH EXISTING METHOD(S) Our results have good agreement with past studies, which indicates the robustness and reliability of measuring whisking. We recommend that differences in whisker movements of mice with motor deficits can be captured in open field arenas, but that mice with impairments to sensory or cognitive functioning should also be filmed investigating objects. Scoring clips qualitatively before tracking will help to structure later analyses. CONCLUSIONS Studying whisker movements provides a quantitative measure of sensing, motor control and exploration. However, the effect of background strain, sex and age on whisker movements needs to be better understood.
Collapse
Affiliation(s)
- Ugne Simanaviciute
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK; School of Biological Sciences, Manchester University, Manchester, M13 9PL, UK
| | - Jewel Ahmed
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Natalie Connor-Robson
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Tracy D Farr
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Nikki Gambles
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK; Public Health Institute, Liverpool John Moores University, Liverpool, L2 2QP, UK
| | - Huw Garland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Göttingen, 37075, Germany
| | - Elizabeth A Skillings
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Rebecca C Trueman
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Nigel I Wood
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Aimee A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Robyn A Grant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| |
Collapse
|
28
|
Hasselmann J, Blurton-Jones M. Human iPSC-derived microglia: A growing toolset to study the brain's innate immune cells. Glia 2020; 68:721-739. [PMID: 31926038 DOI: 10.1002/glia.23781] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in the generation of microglia from human induced pluripotent stem cells (iPSCs) have provided exciting new approaches to examine and decipher the biology of microglia. As these techniques continue to evolve to encompass more complex in situ and in vivo paradigms, so too have they begun to yield novel scientific insight into the genetics and function of human microglia. As such, researchers now have access to a toolset comprised of three unique "flavors" of iPSC-derived microglia: in vitro microglia (iMGs), organoid microglia (oMGs), and xenotransplanted microglia (xMGs). The goal of this review is to discuss the variety of research applications that each of these techniques enables and to highlight recent discoveries that these methods have begun to uncover. By presenting the research paradigms in which each model has been successful, as well as the key benefits and limitations of each approach, it is our hope that this review will help interested researchers to incorporate these techniques into their studies, collectively advancing our understanding of human microglia biology.
Collapse
Affiliation(s)
- Jonathan Hasselmann
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California.,Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| |
Collapse
|
29
|
Ghandhi SA, Smilenov L, Shuryak I, Pujol-Canadell M, Amundson SA. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci Rep 2019; 9:19434. [PMID: 31857640 PMCID: PMC6923394 DOI: 10.1038/s41598-019-55982-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
The mouse (Mus musculus) is an extensively used model of human disease and responses to stresses such as ionizing radiation. As part of our work developing gene expression biomarkers of radiation exposure, dose, and injury, we have found many genes are either up-regulated (e.g. CDKN1A, MDM2, BBC3, and CCNG1) or down-regulated (e.g. TCF4 and MYC) in both species after irradiation at ~4 and 8 Gy. However, we have also found genes that are consistently up-regulated in humans and down-regulated in mice (e.g. DDB2, PCNA, GADD45A, SESN1, RRM2B, KCNN4, IFI30, and PTPRO). Here we test a hematopoietically humanized mouse as a potential in vivo model for biodosimetry studies, measuring the response of these 14 genes one day after irradiation at 2 and 4 Gy, and comparing it with that of human blood irradiated ex vivo, and blood from whole body irradiated mice. We found that human blood cells in the hematopoietically humanized mouse in vivo environment recapitulated the gene expression pattern expected from human cells, not the pattern seen from in vivo irradiated normal mice. The results of this study support the use of hematopoietically humanized mice as an in vivo model for screening of radiation response genes relevant to humans.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Lubomir Smilenov
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Monica Pujol-Canadell
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
30
|
Preuss TM. Critique of Pure Marmoset. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:92-107. [PMID: 31416070 PMCID: PMC6711801 DOI: 10.1159/000500500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
The common marmoset, a New World (platyrrhine) monkey, is currently being fast-tracked as a non-human primate model species, especially for genetic modification but also as a general-purpose model for research on the brain and behavior bearing on the human condition. Compared to the currently dominant primate model, the catarrhine macaque monkey, marmosets are notable for certain evolutionary specializations, including their propensity for twin births, their very small size (a result of phyletic dwarfism), and features related to their small size (rapid development and relatively short lifespan), which result in these animals yielding experimental results more rapidly and at lower cost. Macaques, however, have their own advantages. Importantly, macaques are more closely related to humans (which are also catarrhine primates) than are marmosets, sharing approximately 20 million more years of common descent, and are demonstrably more similar to humans in a variety of genomic, molecular, and neurobiological characteristics. Furthermore, the very specializations of marmosets that make them attractive as experimental subjects, such as their rapid development and short lifespan, are ways in which marmosets differ from humans and in which macaques more closely resemble humans. These facts warrant careful consideration of the trade-offs between convenience and cost, on the one hand, and biological realism, on the other, in choosing between non-human primate models of human biology. Notwithstanding the advantages marmosets offer as models, prudence requires continued commitment to research on macaques and other primate species.
Collapse
Affiliation(s)
- Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA,
| |
Collapse
|
31
|
Abstract
Prion diseases are progressive, incurable and fatal neurodegenerative conditions. The term 'prion' was first nominated to express the revolutionary concept that a protein could be infectious. We now know that prions consist of PrPSc, the pathological aggregated form of the cellular prion protein PrPC. Over the years, the term has been semantically broadened to describe aggregates irrespective of their infectivity, and the prion concept is now being applied, perhaps overenthusiastically, to all neurodegenerative diseases that involve protein aggregation. Indeed, recent studies suggest that prion diseases (PrDs) and protein misfolding disorders (PMDs) share some common disease mechanisms, which could have implications for potential treatments. Nevertheless, the transmissibility of bona fide prions is unique, and PrDs should be considered as distinct from other PMDs.
Collapse
Affiliation(s)
- Claudia Scheckel
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Bartoletti-Stella A, Corrado P, Mometto N, Baiardi S, Durrenberger PF, Arzberger T, Reynolds R, Kretzschmar H, Capellari S, Parchi P. Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease. Mol Neurobiol 2018; 56:5009-5024. [PMID: 30446946 DOI: 10.1007/s12035-018-1421-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regulation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). Taken together, these results confirm and expand previous microarray expression profile data in sCJD. Most significantly, they also demonstrate the involvement of the endosomal-lysosomal system. Since the latter is a common pathogenic pathway linking together diseases, such as Alzheimer's and Parkinson's, it might be the focus of future studies aimed to identify new therapeutic targets in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy
| | - Patrizia Corrado
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Nicola Mometto
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Simone Baiardi
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Pascal F Durrenberger
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Hans Kretzschmar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy. .,Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy. .,Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
33
|
Gupta K, Burns TC. Radiation-Induced Alterations in the Recurrent Glioblastoma Microenvironment: Therapeutic Implications. Front Oncol 2018; 8:503. [PMID: 30467536 PMCID: PMC6236021 DOI: 10.3389/fonc.2018.00503] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a median survival of just over 1 year, despite best available treatment including radiotherapy (RT). Impacts of prior brain RT on recurrent tumors are poorly understood, though increasing evidence suggests RT-induced changes in the brain microenvironment contribute to recurrent GBM aggressiveness. The tumor microenvironment impacts malignant cells directly and indirectly through stromal cells that support tumor growth. Changes in extracellular matrix (ECM), abnormal vasculature, hypoxia, and inflammation have been reported to promote tumor aggressiveness that could be exacerbated by prior RT. Prior radiation may have long-term impacts on microglia and brain-infiltrating monocytes, leading to lasting alterations in cytokine signaling and ECM. Tumor-promoting CNS injury responses are recapitulated in the tumor microenvironment and augmented following prior radiation, impacting cell phenotype, proliferation, and infiltration in the CNS. Since RT is vital to GBM management, but substantially alters the tumor microenvironment, we here review challenges, knowledge gaps, and therapeutic opportunities relevant to targeting pro-tumorigenic features of the GBM microenvironment. We suggest that insights from RT-induced changes in the tumor microenvironment may provide opportunities to target mechanisms, such as cellular senescence, that may promote GBM aggressiveness amplified in previously radiated microenvironment.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
34
|
Tasaki S, Gaiteri C, Mostafavi S, De Jager PL, Bennett DA. The Molecular and Neuropathological Consequences of Genetic Risk for Alzheimer's Dementia. Front Neurosci 2018; 12:699. [PMID: 30349450 PMCID: PMC6187226 DOI: 10.3389/fnins.2018.00699] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's dementia commonly impacts the health of older adults and lacks any preventative therapy. While Alzheimer's dementia risk has a substantial genetic component, the specific molecular mechanisms and neuropathologies triggered by most of the known genetic variants are unclear. Resultantly, they have shown limited influence on drug development portfolios to date. To facilitate our understanding of the consequences of Alzheimer's dementia susceptibility variants, we examined their relationship to a wide range of clinical, molecular and neuropathological features. Because the effect size of individual variants is typically small, we utilized a polygenic (overall) risk approach to identify the global impact of Alzheimer's dementia susceptibility variants. Under this approach, each individual has a polygenic risk score (PRS) that we related to clinical, molecular and neuropathological phenotypes. Applying this approach to 1,272 individuals who came to autopsy from one of two longitudinal aging cohorts, we observed that an individual's PRS was associated with cognitive decline and brain pathologies including beta-amyloid, tau-tangles, hippocampal sclerosis, and TDP-43, MIR132, four proteins including VGF, IGFBP5, and STX1A, and many chromosomal regions decorated with acetylation on histone H3 lysine 9 (H3K9Ac). While excluding the APOE/TOMM40 region (containing the single largest genetic risk factor for late-onset Alzheimer's dementia) in the calculation of the PRS resulted in a slightly weaker association with the molecular signatures, results remained significant. These PRS-associated brain pathologies and molecular signatures appear to mediate genetic risk, as they attenuated the association of the PRS with cognitive decline. Notably, the PRS induced changes in H3K9Ac throughout the genome, implicating it in large-scale chromatin changes. Thus, the PRS for Alzheimer's dementia (AD-PRS) showed effects on diverse clinical, molecular, and pathological systems, ranging from the epigenome to specific proteins. These convergent targets of a large number of genetic risk factors for Alzheimer's dementia will help define the experimental systems and models needed to test therapeutic targets, which are expected to be broadly effective in the aging population that carries diverse genetic risks for Alzheimer's dementia.
Collapse
Affiliation(s)
- Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Sara Mostafavi
- Department of Statistics, Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Philip L. De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, United States
- Cell Circuits Program, Broad Institute, Cambridge, MA, United States
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
35
|
Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S, Maracaja-Coutinho V, Abarzua S, van Zundert B, Verdugo R, Manque P, Hetz C. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol Aging 2018; 64:123-138. [DOI: 10.1016/j.neurobiolaging.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
36
|
Segatto NV, Remião MH, Schachtschneider KM, Seixas FK, Schook LB, Collares T. The Oncopig Cancer Model as a Complementary Tool for Phenotypic Drug Discovery. Front Pharmacol 2017; 8:894. [PMID: 29259556 PMCID: PMC5723300 DOI: 10.3389/fphar.2017.00894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The screening of potential therapeutic compounds using phenotypic drug discovery (PDD) is being embraced once again by researchers and pharmaceutical companies as an approach to enhance the development of new effective therapeutics. Before the genomics and molecular biology era and the consecutive emergence of targeted-drug discovery approaches, PDD was the most common platform used for drug discovery. PDD, also known as phenotypic screening, consists of screening potential compounds in either in vitro cellular or in vivo animal models to identify compounds resulting in a desirable phenotypic change. Using this approach, the biological targets of the compounds are not taken into consideration. Suitable animal models are crucial for the continued validation and discovery of new drugs, as compounds displaying promising results in phenotypic in vitro cell-based and in vivo small animal model screenings often fail in clinical trials. Indeed, this is mainly a result of differential anatomy, physiology, metabolism, immunology, and genetics between humans and currently used pre-clinical small animal models. In contrast, pigs are more predictive of therapeutic treatment outcomes in humans than rodents. In addition, pigs provide an ideal platform to study cancer due to their similarities with humans at the anatomical, physiological, metabolic, and genetic levels. Here we provide a mini-review on the reemergence of PDD in drug development, highlighting the potential of porcine cancer models for improving pre-clinical drug discovery and testing. We also present precision medicine based genetically defined swine cancer models developed to date and their potential as biomedical models.
Collapse
Affiliation(s)
- Natalia V. Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Mariana H. Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Fabiana K. Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
37
|
Zhao B, Lu Q, Cheng Y, Belcher JM, Siew ED, Leaf DE, Body SC, Fox AA, Waikar SS, Collard CD, Thiessen-Philbrook H, Ikizler TA, Ware LB, Edelstein CL, Garg AX, Choi M, Schaub JA, Zhao H, Lifton RP, Parikh CR. A Genome-Wide Association Study to Identify Single-Nucleotide Polymorphisms for Acute Kidney Injury. Am J Respir Crit Care Med 2017; 195:482-490. [PMID: 27576016 DOI: 10.1164/rccm.201603-0518oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Acute kidney injury is a common and severe complication of critical illness and cardiac surgery. Despite significant attempts at developing treatments, therapeutic advances to attenuate acute kidney injury and expedite recovery have largely failed. OBJECTIVES Identifying genetic loci associated with increased risk of acute kidney injury may reveal novel pathways for therapeutic development. METHODS We conducted an exploratory genome-wide association study to identify single-nucleotide polymorphisms associated with genetic susceptibility to in-hospital acute kidney injury. MEASUREMENTS AND MAIN RESULTS We genotyped 609,508 single-nucleotide polymorphisms and performed genotype imputation in 760 acute kidney injury cases and 669 controls. We then evaluated polymorphisms that showed the strongest association with acute kidney injury in a replication patient population containing 206 cases with 1,406 controls. We observed an association between acute kidney injury and four single-nucleotide polymorphisms at two independent loci on metaanalysis of discovery and replication populations. These include rs62341639 (metaanalysis P = 2.48 × 10-7; odds ratio [OR], 0.64; 95% confidence interval [CI], 0.55-0.76) and rs62341657 (P = 3.26 × 10-7; OR, 0.65; 95% CI, 0.55-0.76) on chromosome 4 near APOL1-regulator IRF2, and rs9617814 (metaanalysis P = 3.81 × 10-6; OR, 0.70; 95% CI, 0.60-0.81) and rs10854554 (P = 6.53 × 10-7; OR, 0.67; 95% CI, 0.57-0.79) on chromosome 22 near acute kidney injury-related gene TBX1. CONCLUSIONS Our findings reveal two genetic loci that are associated with acute kidney injury. Additional studies should be conducted to functionally evaluate these loci and to identify other common genetic variants contributing to acute kidney injury.
Collapse
Affiliation(s)
- Bixiao Zhao
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Qiongshi Lu
- 2 Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Yuwei Cheng
- 3 Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Justin M Belcher
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,6 Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
| | - Edward D Siew
- 7 Division of Nephrology and Hypertension and.,8 Vanderbilt Center for Kidney Disease, and.,9 Vanderbilt Integrated Program for Acute Kidney Injury Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Simon C Body
- 11 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Amanda A Fox
- 12 Department of Anesthesiology and Pain Management and.,13 McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Charles D Collard
- 14 Department of Anesthesiology, Baylor St. Luke's Medical Center and the Texas Heart Institute, Houston, Texas
| | - Heather Thiessen-Philbrook
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,15 Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - T Alp Ikizler
- 7 Division of Nephrology and Hypertension and.,8 Vanderbilt Center for Kidney Disease, and.,9 Vanderbilt Integrated Program for Acute Kidney Injury Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- 16 Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | | | - Amit X Garg
- 15 Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada.,18 Division of Nephrology, Department of Medicine and Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada.,19 Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada; and
| | - Murim Choi
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | | | - Hongyu Zhao
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,2 Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Richard P Lifton
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,20 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Chirag R Parikh
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,6 Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
| | | |
Collapse
|
38
|
Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Möller T, Wes PD, Sogayar MC, Laman JD, den Dunnen W, Pasqualucci CA, Oba-Shinjo SM, Boddeke EWGM, Marie SKN, Eggen BJL. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 2017; 20:1162-1171. [PMID: 28671693 DOI: 10.1038/nn.4597] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
Abstract
Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, Fcγ and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently.
Collapse
Affiliation(s)
- Thais F Galatro
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Ilia D Vainchtein
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paula R Sola
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana M Veras
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tulio F Pereira
- Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil.,Chemistry Institute, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Renata E P Leite
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey, USA
| | - Paul D Wes
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey, USA
| | - Mari C Sogayar
- Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Jon D Laman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wilfred den Dunnen
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlos A Pasqualucci
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Erik W G M Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Suely K N Marie
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil.,Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
39
|
Martínez M, Sorzano COS, Pascual-Montano A, Carazo JM. Gene signature associated with benign neurofibroma transformation to malignant peripheral nerve sheath tumors. PLoS One 2017; 12:e0178316. [PMID: 28542306 PMCID: PMC5443557 DOI: 10.1371/journal.pone.0178316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
Benign neurofibromas, the main phenotypic manifestations of the rare neurological disorder neurofibromatosis type 1, degenerate to malignant tumors associated to poor prognosis in about 10% of patients. Despite efforts in the field of (epi)genomics, the lack of prognostic biomarkers with which to predict disease evolution frustrates the adoption of appropriate early therapeutic measures. To identify potential biomarkers of malignant neurofibroma transformation, we integrated four human experimental studies and one for mouse, using a gene score-based meta-analysis method, from which we obtained a score-ranked signature of 579 genes. Genes with the highest absolute scores were classified as promising disease biomarkers. By grouping genes with similar neurofibromatosis-related profiles, we derived panels of potential biomarkers. The addition of promoter methylation data to gene profiles indicated a panel of genes probably silenced by hypermethylation. To identify possible therapeutic treatments, we used the gene signature to query drug expression databases. Trichostatin A and other histone deacetylase inhibitors, as well as cantharidin and tamoxifen, were retrieved as putative therapeutic means to reverse the aberrant regulation that drives to malignant cell proliferation and metastasis. This in silico prediction corroborated reported experimental results that suggested the inclusion of these compounds in clinical trials. This experimental validation supported the suitability of the meta-analysis method used to integrate several sources of public genomic information, and the reliability of the gene signature associated to the malignant evolution of neurofibromas to generate working hypotheses for prognostic and drug-responsive biomarkers or therapeutic measures, thus showing the potential of this in silico approach for biomarker discovery.
Collapse
Affiliation(s)
- Marta Martínez
- Biocomputing Unit, Nacional Center for Biotechnology (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Carlos O. S. Sorzano
- Biocomputing Unit, Nacional Center for Biotechnology (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Bioengineering Lab., Universidad CEU San Pablo, Campus Urb. Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Alberto Pascual-Montano
- Biocomputing Unit, Nacional Center for Biotechnology (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Jose M. Carazo
- Biocomputing Unit, Nacional Center for Biotechnology (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
40
|
Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, Jaeger BN, O'Connor C, Fitzpatrick C, Pasillas MP, Pena M, Adair A, Gonda DD, Levy ML, Ransohoff RM, Gage FH, Glass CK. An environment-dependent transcriptional network specifies human microglia identity. Science 2017; 356:science.aal3222. [PMID: 28546318 DOI: 10.1126/science.aal3222] [Citation(s) in RCA: 819] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Abstract
Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases.
Collapse
Affiliation(s)
- David Gosselin
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Dylan Skola
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Nicole G Coufal
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Inge R Holtman
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA.,Department of Neuroscience, section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Baptiste N Jaeger
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Carolyn O'Connor
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Conor Fitzpatrick
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Martina P Pasillas
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Monique Pena
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Amy Adair
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - David D Gonda
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA. .,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| |
Collapse
|
41
|
Burns TC, Awad AJ, Li MD, Grant GA. Radiation-induced brain injury: low-hanging fruit for neuroregeneration. Neurosurg Focus 2017; 40:E3. [PMID: 27132524 DOI: 10.3171/2016.2.focus161] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain radiation is a fundamental tool in neurooncology to improve local tumor control, but it leads to profound and progressive impairments in cognitive function. Increased attention to quality of life in neurooncology has accelerated efforts to understand and ameliorate radiation-induced cognitive sequelae. Such progress has coincided with a new understanding of the role of CNS progenitor cell populations in normal cognition and in their potential utility for the treatment of neurological diseases. The irradiated brain exhibits a host of biochemical and cellular derangements, including loss of endogenous neurogenesis, demyelination, and ablation of endogenous oligodendrocyte progenitor cells. These changes, in combination with a state of chronic neuroinflammation, underlie impairments in memory, attention, executive function, and acquisition of motor and language skills. Animal models of radiation-induced brain injury have demonstrated a robust capacity of both neural stem cells and oligodendrocyte progenitor cells to restore cognitive function after brain irradiation, likely through a combination of cell replacement and trophic effects. Oligodendrocyte progenitor cells exhibit a remarkable capacity to migrate, integrate, and functionally remyelinate damaged white matter tracts in a variety of preclinical models. The authors here critically address the opportunities and challenges in translating regenerative cell therapies from rodents to humans. Although valiant attempts to translate neuroprotective therapies in recent decades have almost uniformly failed, the authors make the case that harnessing human radiation-induced brain injury as a scientific tool represents a unique opportunity to both successfully translate a neuroregenerative therapy and to acquire tools to facilitate future restorative therapies for human traumatic and degenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Ahmed J Awad
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York;,Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine; and
| | - Matthew D Li
- Stanford University School of Medicine, Stanford, California
| | - Gerald A Grant
- Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
42
|
Readhead B, Haure-Mirande JV, Zhang B, Haroutunian V, Gandy S, Schadt EE, Dudley JT, Ehrlich ME. Molecular systems evaluation of oligomerogenic APP(E693Q) and fibrillogenic APP(KM670/671NL)/PSEN1(Δexon9) mouse models identifies shared features with human Alzheimer's brain molecular pathology. Mol Psychiatry 2016; 21:1099-111. [PMID: 26552589 PMCID: PMC4862938 DOI: 10.1038/mp.2015.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022]
Abstract
Identification and characterization of molecular mechanisms that connect genetic risk factors to initiation and evolution of disease pathophysiology represent major goals and opportunities for improving therapeutic and diagnostic outcomes in Alzheimer's disease (AD). Integrative genomic analysis of the human AD brain transcriptome holds potential for revealing novel mechanisms of dysfunction that underlie the onset and/or progression of the disease. We performed an integrative genomic analysis of brain tissue-derived transcriptomes measured from two lines of mice expressing distinct mutant AD-related proteins. The first line expresses oligomerogenic mutant APP(E693Q) inside neurons, leading to the accumulation of amyloid beta (Aβ) oligomers and behavioral impairment, but never develops parenchymal fibrillar amyloid deposits. The second line expresses APP(KM670/671NL)/PSEN1(Δexon9) in neurons and accumulates fibrillar Aβ amyloid and amyloid plaques accompanied by neuritic dystrophy and behavioral impairment. We performed RNA sequencing analyses of the dentate gyrus and entorhinal cortex from each line and from wild-type mice. We then performed an integrative genomic analysis to identify dysregulated molecules and pathways, comparing transgenic mice with wild-type controls as well as to each other. We also compared these results with datasets derived from human AD brain. Differential gene and exon expression analysis revealed pervasive alterations in APP/Aβ metabolism, epigenetic control of neurogenesis, cytoskeletal organization and extracellular matrix (ECM) regulation. Comparative molecular analysis converged on FMR1 (Fragile X Mental Retardation 1), an important negative regulator of APP translation and oligomerogenesis in the post-synaptic space. Integration of these transcriptomic results with human postmortem AD gene networks, differential expression and differential splicing signatures identified significant similarities in pathway dysregulation, including ECM regulation and neurogenesis, as well as strong overlap with AD-associated co-expression network structures. The strong overlap in molecular systems features supports the relevance of these findings from the AD mouse models to human AD.
Collapse
Affiliation(s)
- B Readhead
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J-V Haure-Mirande
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B Zhang
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V Haroutunian
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
| | - S Gandy
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, New York, NY, USA
- Center for Cognitive Health and NFL Neurological Care, Department of Neurology, New York, NY, USA
| | - E E Schadt
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J T Dudley
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M E Ehrlich
- Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Gaiteri C, Mostafavi S, Honey CJ, De Jager PL, Bennett DA. Genetic variants in Alzheimer disease - molecular and brain network approaches. Nat Rev Neurol 2016; 12:413-27. [PMID: 27282653 PMCID: PMC5017598 DOI: 10.1038/nrneurol.2016.84] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models.
Collapse
Affiliation(s)
- Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina Street, Chicago, Illinois 60612, USA
| | - Sara Mostafavi
- Department of Statistics, and Medical Genetics; Centre for Molecular and Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christopher J Honey
- Department of Psychology, University of Toronto, 100 St. George Street, 4th Floor Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 75 Francis Street, Boston MA 02115, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina Street, Chicago, Illinois 60612, USA
| |
Collapse
|
44
|
Marciani DJ. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies. J Neurochem 2016; 137:687-700. [PMID: 26990863 DOI: 10.1111/jnc.13608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines.
Collapse
|
45
|
Onos KD, Sukoff Rizzo SJ, Howell GR, Sasner M. Toward more predictive genetic mouse models of Alzheimer's disease. Brain Res Bull 2015; 122:1-11. [PMID: 26708939 DOI: 10.1016/j.brainresbull.2015.12.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023]
Abstract
Genetic mouse models for Alzheimer's disease (AD) have been widely used to understand aspects of the biology of the disease, but have had limited success in translating these findings to the clinic. In this review, we discuss the benefits and limitations of existing genetic models and recent advances in technologies (including high throughput sequencing and genome editing) that promise more predictive models. We summarize widely used biomarkers and behavioral tests for mouse models of AD and highlight best practices that will maximize translatability of preclinical findings.
Collapse
Affiliation(s)
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA, United States.
| | | |
Collapse
|
46
|
Burns TC, Verfaillie CM. From mice to mind: Strategies and progress in translating neuroregeneration. Eur J Pharmacol 2015; 759:90-100. [PMID: 25814255 DOI: 10.1016/j.ejphar.2015.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/18/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Decisions about what experimental therapies are advanced to clinical trials are based almost exclusively on findings in preclinical animal studies. Over the past 30 years, animal models have forecast the success of hundreds of neuroprotective pharmacological therapies for stroke, Alzheimer׳s disease, spinal cord injury, traumatic brain injury and amyotrophic lateral sclerosis. Yet almost without exception, all have failed. Rapid advances in stem cell technologies have raised new hopes that these neurological diseases may one day be treatable. Still, how can neuroregenerative therapies be translated into clinical realities if available animal models are such poor surrogates of human disease? To address this question we discuss human and rodent neurogenesis, evaluate mechanisms of action for cellular therapies and describe progress in translating neuroregeneration to date. We conclude that not only are appropriate animal models critical to the development of safe and effective therapies, but that the multiple mechanisms of stem cell-mediated therapies may be particularly well suited to the mechanistically diverse nature of central nervous system diseases in mice and man.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, USA.
| | | |
Collapse
|