1
|
Ji YW, Wen XY, Tang HP, Su WT, Xia ZY, Lei SQ. Necroptosis: a significant and promising target for intervention of cardiovascular disease. Biochem Pharmacol 2025; 237:116951. [PMID: 40268251 DOI: 10.1016/j.bcp.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Due to changes in dietary structures, population aging, and the exacerbation of metabolic risk factors, the incidence of cardiovascular disease continues to rise annually, posing a significant health burden worldwide. Cell death plays a crucial role in the onset and progression of cardiovascular diseases. As a regulated endpoint encountered by cells under adverse stress conditions, the execution of necroptosis is regulated by classicalpathways, the calmodulin-dependent protein kinases (CaMK) pathway, and mitochondria-dependent pathways, and implicated in various cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury (IRI), heart failure, diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, chemotherapy drug-induced cardiomyopathy, and abdominal aortic aneurysm (AAA). To further investigate potential therapeutic targets for cardiovascular diseases, we also analyzed the main molecules and their inhibitors involved in necroptosis in an effort to uncover insights for treatment.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Tangpradubkiat P, Chayanupatkul M, Werawatganone P, Somanawat K, Siriviriyakul P, Klaikeaw N, Werawatganon D. Gardenia jasminoides extract mitigates acetaminophen-induced liver damage in mice. BMC Complement Med Ther 2024; 24:371. [PMID: 39427207 PMCID: PMC11490086 DOI: 10.1186/s12906-024-04676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Acetaminophen (APAP)-induced hepatotoxicity is a potentially life-threatening condition. Gardenia jasminoides fruit extract (GJE), which contains geniposide (Gen) as its major active constituent, possesses anti-inflammatory and antioxidant properties and may help address the underlying pathogenesis of APAP-induced hepatotoxicity. This study aimed to evaluate the effects of GJE in a mouse model of APAP-induced hepatotoxicity. METHODS Twenty-four male ICR mice were divided into 4 groups (n = 6/group): [1] Control group, mice were given distilled water; [2] APAP group, mice received a single dose of 600 mg/kg APAP; [3] APAP + low-dose GJE group, mice received APAP followed 30 min later by 2 doses of low-dose GJE (0.44 g/kg/dose, containing Gen 100 mg/kg/dose) 8 h apart; [4] APAP + high-dose GJE group, mice received APAP followed by 2 doses of high-dose GJE (0.88 g/kg/dose, containing Gen 200 mg/kg/dose). All mice were euthanized 24 h after APAP administration. Liver tissue was used for histological examination and to measure glutathione (GSH) and malondialdehyde (MDA) levels. Serum was used to determine levels of ALT and inflammatory cytokines (tumor necrosis factor- α (TNF-α) and interleukin-6 (IL-6)). RESULTS Liver histopathology showed moderate to severe hepatic necroinflammation in the APAP group, whereas only mild necroinflammation was observed in both treatment groups. Serum ALT levels were significantly elevated in the APAP group compared to the control group but were significantly reduced after low- and high-dose GJE treatment. Serum TNF- α levels were significantly higher in the APAP group than in the control group and were significantly lower after high-dose GJE treatment (135.5 ± 477.2 vs. 35.5 ± 25.8 vs. 74.7 ± 47.2 vs. 41.4 ± 50.8 pg/mL, respectively). Serum IL-6 followed a similar pattern. Hepatic GSH levels were significantly lower in the APAP group compared to the control group but significantly increased after both low- and high-dose GJE treatment (19.9 ± 4.5 vs. 81.5 ± 12.4 vs. 71.4 ± 7.8 vs. 82.6 ± 6.6 nmol/mg protein, respectively). Conversely, hepatic MDA levels were significantly elevated in the APAP group compared with the control group but significantly decreased after high-dose GJE treatment (108.6 ± 201.5 vs. 40.5 ± 18.0 vs. 40.5 ± 16.8 nmol/mg protein, respectively). CONCLUSIONS Treatment with G. jasminoides fruit extract can alleviate APAP-induced hepatotoxicity, likely through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Peenaprapa Tangpradubkiat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pornpen Werawatganone
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanjana Somanawat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naruemon Klaikeaw
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
He Y, Yang T, Li J, Li K, Zhuang C, Zhang M, Li R, Zhao Y, Song Q, Jiang M, Mao S, Song XG, Guo Y, Li X, Tan F, Jitkaew S, Zhang W, Cai Z. Identification of a marine-derived sesquiterpenoid, Compound-8, that inhibits tumour necrosis factor-induced cell death by blocking complex II assembly. Br J Pharmacol 2024; 181:2443-2458. [PMID: 38555910 DOI: 10.1111/bph.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND AND PURPOSE Tumour necrosis factor (TNF) is a pleiotropic inflammatory cytokine that not only directly induces inflammatory gene expression but also triggers apoptotic and necroptotic cell death, which leads to tissue damage and indirectly exacerbates inflammation. Thus, identification of inhibitors for TNF-induced cell death has broad therapeutic relevance for TNF-related inflammatory diseases. In the present study, we isolated and identified a marine fungus-derived sesquiterpenoid, 9α,14-dihydroxy-6β-p-nitrobenzoylcinnamolide (named as Cpd-8), that inhibits TNF receptor superfamily-induced cell death by preventing the formation of cytosolic death complex II. EXPERIMENTAL APPROACH Marine sponge-associated fungi were cultured and the secondary metabolites were extracted to yield pure compounds. Cell viability was measured by ATP-Glo cell viability assay. The effects of Cpd-8 on TNF signalling pathway were investigated by western blotting, immunoprecipitation, and immunofluorescence assays. A mouse model of acute liver injury (ALI) was employed to explore the protection effect of Cpd-8, in vivo. KEY RESULTS Cpd-8 selectively inhibits TNF receptor superfamily-induced apoptosis and necroptosis. Cpd-8 prevents the formation of cytosolic death complex II and subsequent RIPK1-RIPK3 necrosome, while it has no effect on TNF receptor I (TNFR1) internalization and the formation of complex I in TNF signalling pathway. In vivo, Cpd-8 protects mice against TNF-α/D-GalN-induced ALI. CONCLUSION AND IMPLICATIONS A marine fungus-derived sesquiterpenoid, Cpd-8, inhibits TNF receptor superfamily-induced cell death, both in vitro and in vivo. This study not only provides a useful research tool to investigate the regulatory mechanisms of TNF-induced cell death but also identifies a promising lead compound for future drug development.
Collapse
Affiliation(s)
- Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Yang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Jiao Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Kaiying Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Chunlin Zhuang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Meng Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Ran Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yaxing Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qianqian Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Mengyuan Jiang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Shuichun Mao
- School of Pharmacy, Nanchang University, Nanchang, China
| | | | - Yufeng Guo
- Shanghai Power Hospital, Shanghai, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, UK
| | - Siriporn Jitkaew
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wen Zhang
- Tongji University School of Medicine, Shanghai, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Ningbo Institute of Marine Medicine, Peking University, Beijing, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Ye Z, Zhang N, Lei H, Yao H, Fu J, Zhang N, Xu L, Zhou G, Liu Z, Lv Y. Immunogenic necroptosis in liver diseases: mechanisms and therapeutic potential. J Mol Med (Berl) 2023; 101:1355-1363. [PMID: 37740787 DOI: 10.1007/s00109-023-02363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/25/2023]
Abstract
Necroptosis has received increasing attention and is extensively studied as a recently discovered mode of cell death distinct from necrosis and apoptosis. It is a programmed cell death with a necrotic morphology that occurs in various biological processes, including inflammation, immune response, embryonic development, and metabolic abnormalities. Necroptosis is indispensable in maintaining tissue homeostasis in vivo and closely correlates with the occurrence and development of various diseases. First, we outlined the etiology of necroptosis and how it affects the onset and development of prevalent liver diseases in this review. Additionally, we reviewed the therapeutic strategy by targeting the necroptosis pathway in related liver diseases. We conclude that the necroptosis signaling pathway is critical in the physiological control of liver diseases' onset, progression, and prognosis. It will likely be used as a therapeutic target in the future. Further research is required to determine the mechanisms governing the necroptosis signaling pathway and the effector molecules.
Collapse
Affiliation(s)
- Zirui Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hong Lei
- Shaanxi Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Huimin Yao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingya Fu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lexuan Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guxiang Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Zhao X, Yin F, Fu L, Ma Y, Ye L, Huang Y, Fan W, Gao W, Cai Y, Mou X. Garlic-derived exosome-like nanovesicles as a hepatoprotective agent alleviating acute liver failure by inhibiting CCR2/CCR5 signaling and inflammation. BIOMATERIALS ADVANCES 2023; 154:213592. [PMID: 37717364 DOI: 10.1016/j.bioadv.2023.213592] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Acute liver failure (ALF) is a life-threatening clinical syndrome mostly induced by viral infections or drug abuse. As a novel therapeutic adjuvant or delivery vehicle, plant-derived exosome-like nanovesicles (PELNVs) have been extensively studied in recent years. This study aimed to develop garlic-derived exosome-like nanovesicles (GaELNVs) in order to ameliorate liver injury induced by LPS/D-GalN in mice, inhibit inflammatory eruption and reduce inflammatory cells infiltration. The results showed that treatment with GaELNVs improved liver pathology and reduced the levels of soluble inflammatory mediators IL-6, IL-1β and TNF-α in the serum of ALF mice. GaELNVs reversed the upregulation of Cleaved Caspase-9, Cleaved Caspase-3, p53 and Bax expression and decreased Bcl2 activation caused by D-GalN/LPS, and inhibited NF-κB p65 expression and translocation to the nucleus. Meanwhile, treatment with GaELNVs resulted significant reduction in NLRP3 activation and Caspase-1 maturation, as well as decrease in the release of the inflammatory mediator IL-18. Additionally, an upregulation of the expression of proteins related to energy metabolism and autophagy occurrence including Foxo3a, Sirt1, and LC3-II was detected in the liver. Oral administration of GaELNVs also led to significant alteration in the expression of F4/80 and CD11b in the liver. Furthermore, the detection of chemokines in mouse liver tissue revealed that GaELNVs exhibited minimal reduction in the expression of CCL2, CCL3, CCL5 and CCL8. The decreased expression of CCR2 and CCR5 in the liver suggests that GaELNVs have the ability to decrease the recruitment of monocytes from the circulation to the liver. A reduction in the infiltration of F4/80loCD11bhi monocyte-derived macrophages into the liver was also observed. This study provides novel evidence that GaELNVs can ameliorate inflammatory eruptions and hinder the migration of circulating monocytes to the liver, as well as decrease macrophage infiltration by inhibiting CCR2/CCR5 signaling. Consequently, GaELNVs hold promise as a novel therapeutic agent for clinical management of liver disease.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Fang Yin
- Shanghai Engineering Research Center of Human Intestinal Microflora Function Development, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Luyi Ye
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Yilin Huang
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Weijiao Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Wenxue Gao
- Clinical Research Unit, Shanghai Tenth People's Hospital, Shanghai 200072, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
6
|
Jin C, Zongo AWS, Du H, Lu Y, Yu N, Nie X, Ma A, Ye Q, Xiao H, Meng X. Gardenia ( Gardenia jasminoides Ellis) fruit: a critical review of its functional nutrients, processing methods, health-promoting effects, comprehensive application and future tendencies. Crit Rev Food Sci Nutr 2023; 65:165-192. [PMID: 37882781 DOI: 10.1080/10408398.2023.2270530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Gardenia fruit (GF) is the mature fruit of Gardenia jasminoides Ellis, boasting a rich array of nutrients and phytochemicals. Over time, GF has been extensively utilized in both food and medicinal contexts. In recent years, numerous studies have delved into the chemical constituents of GF and their associated pharmacological activities, encompassing its phytochemical composition and health-promoting properties. This review aims to provide a critical and comprehensive summary of GF research, covering nutrient content, extraction technologies, and potential health benefits, offering new avenues for future investigations and highlighting its potential as an innovative food resource. Additionally, the review proposes novel industrial applications for GF, such as utilizing gardenia yellow/red/blue pigments in the food industry and incorporating it with other herbs in traditional Chinese medicine. By addressing current challenges in developing GF-related products, this work provides insights for potential applications in the cosmetics, food, and health products industries. Notably, there is a need for the development of more efficient extraction methods to harness the nutritional components of GF fully. Further research is needed to understand the specific molecular mechanisms underlying its bioactivities. Exploring advanced processing techniques to create innovative GF-derived products will show great promise for the future.
Collapse
Affiliation(s)
- Chengyu Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ashton Ma
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Phillips Academy Andover, Andover, MA, USA
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Li H, Niu X, Zhang D, Qu MH, Yang K. The role of the canonical nf-κb signaling pathway in the development of acute liver failure. Biotechnol Genet Eng Rev 2023; 39:775-795. [PMID: 36578157 DOI: 10.1080/02648725.2022.2162999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
As a clinical emergency with a high mortality rate, the treatment of acute liver failure has been paid attention to by society. At present, liver transplantation is the most effective treatment for acute liver failure, but there is still an insufficient supply of liver sources and a poor prognosis. In view of the current therapeutic development of this disease, more researchers have turned their attention to the research of drugs related to the NF-κB pathway. The NF-κB canonical pathway has been proven to play a role in a variety of diseases, regulating inflammation, apoptosis, and other physiological processes. More and more evidence shows that the NF-κB canonical pathway regulates the pathogenesis of acute liver failure. In this review, we will summarize the regulation process of the NF-κB canonical pathway on acute liver failure, and develop a new way to treat acute liver failure by targeting the components of the pathway.
Collapse
Affiliation(s)
- Hanyue Li
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Xiao Niu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Dajin Zhang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| | - Mei-Hua Qu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Kunning Yang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| |
Collapse
|
8
|
He Y, Zhang Y, Zhang J, Hu X. The Key Molecular Mechanisms of Sini Decoction Plus Ginseng Soup to Rescue Acute Liver Failure: Regulating PPARα to Reduce Hepatocyte Necroptosis? J Inflamm Res 2022; 15:4763-4784. [PMID: 36032938 PMCID: PMC9417306 DOI: 10.2147/jir.s373903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to investigate the improvement effect of Sini Decoction plus Ginseng Soup (SNRS) on the LPS/D-GalN-induced acute liver failure (ALF) mouse model and the molecular mechanism of the SNRS effect. Methods To study the protective effect of SNRS on ALF mice, the ICR mice were firstly divided into 4 groups: Control group (vehicle-treated), Model group (LPS/D-GalN), SNRS group (LPS/D-GalN+SNRS), and Silymarin group (LPS/D-GalN+Silymarin), the therapeutic drug was administered by gavage 48h, 24h before, and 10 min after LPS/D-GalN injection. On this basis, the peroxisome proliferator-activated receptor (PPAR) α agonist (WY14643) and inhibitor (GW6471) were added to verify whether the therapeutic mechanism of SNRS is related to its promoting effect on PPARα. The animals are grouped as follows: Control group (vehicle-treated), Model group (LPS/D-GalN+DMSO), SNRS group (LPS/D-GalN+SNRS+DMSO), Inhibitor group (LPS/D-GalN+GW6471), Agonist group (LPS/D-GalN+WY14643), and Inhibitor+SNRS group (LPS/D-GalN+GW6471+SNRS). Results The protective effect of SNRS on the ALF model is mainly reflected in the reduction of serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) as well as the ameliorated pathology of the liver tissue. The survival rate of ALF mice treated with SNRS was significantly increased. Further mechanism studies showed that SNRS significantly promoted the protein expression of PPARα and decreased the expression of necroptosis proteins (RIP3, MLKL, p-MLKL) in ALF mice. Reduced necroptosis resulted in decreased HMGB1 release, which in turn inhibited the activation of TLR4-JNK and NLRP3 inflammasome signaling pathways and the expression of NF-κB protein induced by LPS/D-GalN. The expression of CPT1A, a key enzyme involved in fatty acid β-oxidation, was found to be significantly up-regulated in the SNRS treated group, accompanied by an increased adenosine-triphosphate (ATP) level, which may be the relevant mechanism by which SNRS reduces necroptosis. Conclusion The potential therapeutic effect of SNRS on ALF may be through promoting the expression of PPARα and increasing the level of ATP in liver tissue, thereby inhibiting necroptosis of hepatocytes, reducing hepatocyte damage, and improving liver function.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.,Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yang Zhang
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Qiang R, Liu XZ, Xu JC. The Immune Pathogenesis of Acute-On-Chronic Liver Failure and the Danger Hypothesis. Front Immunol 2022; 13:935160. [PMID: 35911735 PMCID: PMC9329538 DOI: 10.3389/fimmu.2022.935160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a group of clinical syndromes related to severe acute liver function impairment and multiple-organ failure caused by various acute triggering factors on the basis of chronic liver disease. Due to its severe condition, rapid progression, and high mortality, it has received increasing attention. Recent studies have shown that the pathogenesis of ACLF mainly includes direct injury and immune injury. In immune injury, cytotoxic T lymphocytes (CTLs), dendritic cells (DCs), and CD4+ T cells accumulate in the liver tissue, secrete a variety of proinflammatory cytokines and chemokines, and recruit more immune cells to the liver, resulting in immune damage to the liver tissue, massive hepatocyte necrosis, and liver failure, but the key molecules and signaling pathways remain unclear. The “danger hypothesis” holds that in addition to the need for antigens, damage-associated molecular patterns (DAMPs) also play a very important role in the occurrence of the immune response, and this hypothesis is related to the pathogenesis of ACLF. Here, the research status and development trend of ACLF, as well as the mechanism of action and research progress on various DAMPs in ACLF, are summarized to identify biomarkers that can predict the occurrence and development of diseases or the prognosis of patients at an early stage.
Collapse
Affiliation(s)
- Rui Qiang
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xing-Zi Liu
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jun-Chi Xu
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People’s Hospital of Suzhou, Suzhou, China
- *Correspondence: Jun-Chi Xu,
| |
Collapse
|
10
|
Naringenin affords protection against lipopolysaccharide/D-galactosamine-induced acute liver failure: Role of autophagy. Arch Biochem Biophys 2022; 717:109121. [DOI: 10.1016/j.abb.2022.109121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
|
11
|
Bryś M, Urbańska K, Olas B. Novel Findings regarding the Bioactivity of the Natural Blue Pigment Genipin in Human Diseases. Int J Mol Sci 2022; 23:902. [PMID: 35055094 PMCID: PMC8776187 DOI: 10.3390/ijms23020902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Genipin is an important monoterpene iridoid compound isolated from Gardenia jasminoides J.Ellis fruits and from Genipa americana fruits, or genipap. It is a precursor of a blue pigment which may be attractive alternative to existing food dyes and it possesses various potential therapeutic properties such as anti-cancer, anti-diabetic and hepatoprotective activity. Biomedical studies also show that genipin may act as a neuroprotective drug. This review describes new aspects of the bioactivity of genipin against various diseases, as well as its toxicity and industrial applications, and presents its potential mechanism of action.
Collapse
Affiliation(s)
- Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
12
|
Abdel-Rafei MK, Thabet NM, El Tawel G, El Bakary NM, El Fatih NM, Sh Azab K. Role of leptin/STAT3 signaling and RIP-kinases in fucoxanthin influences on mice exposed to LPS and gamma radiation. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2008451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohamed K. Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Noura M. Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ghada El Tawel
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nermeen M. El Bakary
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Neama M. El Fatih
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Khaled Sh Azab
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
13
|
Oyster-Derived Tyr-Ala (YA) Peptide Prevents Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure by Suppressing Inflammatory, Apoptotic, Ferroptotic, and Pyroptotic Signals. Mar Drugs 2021; 19:md19110614. [PMID: 34822485 PMCID: PMC8624370 DOI: 10.3390/md19110614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Models created by the intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-GalN) have been widely used to study the pathogenesis of human acute liver failure (ALF) and drug development. Our previous study reported that oyster (Crassostrea gigas) hydrolysate (OH) had a hepatoprotective effect in LPS/D-GalN-injected mice. This study was performed to identify the hepatoprotective effect of the tyrosine-alanine (YA) peptide, the main component of OH, in a LPS/D-GalN-injected ALF mice model. We analyzed the effect of YA on previously known mechanisms of hepatocellular injury in the model. LPS/D-GalN-injected mice showed inflammatory, apoptotic, ferroptotic, and pyroptotic liver injury. The pre-administration of YA (10 mg/kg or 50 mg/kg) significantly reduced the liver damage factors. The hepatoprotective effect of YA was higher in the 50 mg/kg YA pre-administered group than in the 10 mg/kg YA pre-administered group. These results showed that YA had a hepatoprotective effect by reducing inflammation, apoptosis, ferroptosis, and pyroptosis in the LPS/D-GalN-injected ALF mouse model. We suggest that YA can be used as a functional peptide for the prevention of acute liver injury.
Collapse
|
14
|
Olas B, Białecki J, Urbańska K, Bryś M. The Effects of Natural and Synthetic Blue Dyes on Human Health: A Review of Current Knowledge and Therapeutic Perspectives. Adv Nutr 2021; 12:2301-2311. [PMID: 34245145 PMCID: PMC8634323 DOI: 10.1093/advances/nmab081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Blue synthetic dyes are widely used in many industries. Although they are approved for use as food dyes and in cosmetics and some medicines, their impacts on consumer health remain unknown. Some studies indicate that 2 synthetic dyes, Blue No. 1 and Blue No. 2, may have toxic effects. It has therefore been suggested that these should be replaced with natural dyes; however, despite being nontoxic and arguably healthier than synthetic dyes, these compounds are often unsuitable for use in food or drugs due to their instability. Nevertheless, among the natural blue pigments, anthocyanins and genipin offer particular health benefits, as they are associated with the prevention of cardiovascular disease and have anticancer, neuroprotective, anti-inflammatory, and antidiabetic properties. This review summarizes the effects of blue food and drug colorings on health and proposes that synthetic colors should be replaced with natural ones.
Collapse
Affiliation(s)
| | - Jacek Białecki
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karina Urbańska
- Medical University of Lodz, Faculty of Medicine, Lodz, Poland
| | - Magdalena Bryś
- University of Lodz, Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| |
Collapse
|
15
|
Dong R, Tian Q, Shi Y, Chen S, Zhang Y, Deng Z, Wang X, Yao Q, Han L. An Integrated Strategy for Rapid Discovery and Identification of Quality Markers in Gardenia Fructus Using an Omics Discrimination-Grey Correlation-Biological Verification Method. Front Pharmacol 2021; 12:705498. [PMID: 34248647 PMCID: PMC8264552 DOI: 10.3389/fphar.2021.705498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Gardenia Fructus (GF), a traditional Chinese medicine of Gardenia Ellis in Rubiaceae family, has the potential to clear heat and purge fire and has been widely used to treat multiple infection-related diseases. However, the quality markers (Q-Markers) of GF have not been revealed comprehensively. Methods: In this experiment, the transgenic zebrafish lines, Tg (l-fabp:EGFP) and Tg (lyz:EGFP), were used to evaluate two main kinds of traditional efficacies of GF, hepatoprotective and anti-inflammatory effects. All the GF samples from different production areas were tested their anti-liver injury and anti-inflammantory activities. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method (HPLC-Q-TOF/MS) was employed for herbal metabonomic analysis of GF samples. Gray correlation analysis (GCA) was utilized to screen out the components closely associated with the activities. Finally, the zebrafish model was applied to verify the bioactivity of the crucial components to determine the Q-Markers of GF. Results: The zebrafish models were established by inducing with hydrogen peroxide or copper sulfate and applied to quickly evaluate the hepatoprotective effect and inflammation of GF samples. 27 potentially active components for liver protection and 21 potentially active components with anti-inflammatory properties were identified by herbal metabolomic analysis based on HPLC-Q-TOF/MS. The GCA result showed that five of the 27 components were highly correlated with liver protection, 15 of the 21 components were highly correlated with anti-inflammatory activity. Among them, geniposide and crocin-1 were confirmed their bioactivities on zebrafish experiment to be responsible for the protective effects of GF against liver injury, and genipin-1-β-D-gentiobioside, quinic acid, gardenoside, d-glucuronic acid, l-malic acid, mannitol, rutin, and chlorogenic acid were confirmed to be responsible for the anti-inflammatory effects. Finally, according to the screening principles of Q-Markers, genipin-1-β-D-gentiobioside, geniposide, and gardenoside were preliminarily identified to be the Q-Markers of GF. Conclusion: This study established an effective research strategy of “Omics Discrimination-Grey Correlation-Biological Verification,” which enabled the rapid identification of key pharmacological components of GF. These markers have provided a scientific basis for constructing a modern quality evaluation system for GF.
Collapse
Affiliation(s)
- Rong Dong
- School of Pharmacy and Pharmaceutical Science, Shandong Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingping Tian
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yongping Shi
- School of Pharmacy and Pharmaceutical Science, Shandong Medical University and Shandong Academy of Medical Sciences, Jinan, China.,School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Taiyuan Maternity and Child Health Care Hospital, Taiyuan, China
| | - Shanjun Chen
- School of Pharmacy and Pharmaceutical Science, Shandong Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yougang Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong Medical University and Shandong Academy of Medical Sciences, Jinan, China.,School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Zhipeng Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Science, Shandong Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Science, Shandong Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liwen Han
- School of Pharmacy and Pharmaceutical Science, Shandong Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Khodayar MJ, Kalantari H, Khorsandi L, Ahangar N, Samimi A, Alidadi H. Taurine attenuates valproic acid-induced hepatotoxicity via modulation of RIPK1/RIPK3/MLKL-mediated necroptosis signaling in mice. Mol Biol Rep 2021; 48:4153-4162. [PMID: 34032977 DOI: 10.1007/s11033-021-06428-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
Valproic acid (VPA) is known as a common drug in seizure and bipolar disorders treatment. Hepatotoxicity is the most important complication of VPA. Taurine (Tau), an amino acid, has antioxidant effects. The present research was conducted to evaluate the protective mechanisms of Tau on VPA-induced liver injury, especially focusing on the necroptosis signaling pathway. The sixty-four male NMRI mice were divided into eight groups with eight animals per each. The experiment groups pretreated with Tau (250, 500, 1000 mg/kg) and necrostatine-1 (Nec-1, 1.8 mg/kg) and then VPA (500 mg/kg) was administered for 14 consecutive days. The extent of VPA-induced hepatotoxicity was confirmed by elevated ALP (alkaline phosphatase), AST (aspartate aminotransferase), ALT (alanine aminotransferase) levels, and histological changes as steatosis, accumulation of erythrocytes, and inflammation. Additionally, VPA significantly induced oxidative stress in the hepatic tissue by increasing ROS (reactive oxygen species) production and lipid peroxidation level along with decreasing GSH (glutathione). Hepatic TNF-α (tumor necrosis factor) level, mRNA and protein expression of RIPK1 (receptor-interacting protein kinase 1), RIPK3, and MLKL (mixed lineage kinase domain-like pseudokinase) were upregulated. Also, the phosphorylation of MLKL and RIPK3 increased in the VPA group. Tau could effectively reverse these events. Our data suggest which necroptosis has a key role in the toxicity of VPA through TNF-α-mediated RIPK1/RIPK3/MLKL signaling and oxidative stress. Our findings suggest that Tau protects the liver tissue against VPA toxicity via inhibiting necroptosis signaling pathway mediated by RIPK1/RIPK3/MLKL and suppressing oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Samimi
- Legal Medicine Research Center, Legal Medicine Organization, Legal Medicine Office of Khuzestan, Ahvaz, Iran
| | - Hadis Alidadi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res 2021; 35:4804-4833. [PMID: 33856730 DOI: 10.1002/ptr.7118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that induces caspase-1 activation and the downstream substrates involved with the processing and secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and tumor necrosis factor-α (TNF- α). The NLRP3 inflammasome is activated by a wide range of danger signals that derive from metabolic dysregulation. Activation of this complex often involves the adaptor ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. It has been shown that nutraceuticals and medicinal plants have antiinflammatory properties and could be used as complementary therapy in the treatment of several chronic diseases that are related to inflammation, for example, cardiovascular diseases and diabetes mellitus. Herb-based medicine has demonstrated protective effects against NLRP3 inflammasome activation. Therefore, this review focuses on the effects of nutraceuticals and bioactive compounds derived from medicinal plants on NLRP3 inflammasome activation and the possible mechanisms of action of these natural products. Thus, herb-based, natural products/compounds can be considered novel, practical, and accessible agents in chronic inflammatory diseases by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Khedmatgozar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Fakheran
- Dental Research Center, Department of Periodontics, Dental Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Xia Y, Wang P, Yan N, Gonzalez FJ, Yan T. Withaferin A alleviates fulminant hepatitis by targeting macrophage and NLRP3. Cell Death Dis 2021; 12:174. [PMID: 33574236 PMCID: PMC7878893 DOI: 10.1038/s41419-020-03243-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Fulminant hepatitis (FH) is an incurable clinical syndrome where novel therapeutics are warranted. Withaferin A (WA), isolated from herb Withania Somnifera, is a hepatoprotective agent. Whether and how WA improves D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced FH is unknown. This study was to evaluate the hepatoprotective role and mechanism of WA in GalN/LPS-induced FH. To determine the preventive and therapeutic effects of WA, wild-type mice were dosed with WA 0.5 h before or 2 h after GalN treatment, followed by LPS 30 min later, and then killed 6 h after LPS treatment. To explore the mechanism of the protective effect, the macrophage scavenger clodronate, autophagy inhibitor 3-methyladenine, or gene knockout mouse lines NLR family pyrin domain containing 3 (Nlrp3)-null, nuclear factor-erythroid 2-related factor 2 (Nrf2)-null, liver-specific AMP-activated protein kinase (Ampk)a1 knockout (Ampka1ΔHep) and liver-specific inhibitor of KB kinase β (Ikkb) knockout (IkkbΔHep) mice were subjected to GalN/LPS-induced FH. In wild-type mice, WA potently prevented GalN/LPS-induced FH and inhibited hepatic NLRP3 inflammasome activation, and upregulated NRF2 and autophagy signaling. Studies with Nrf2-null, Ampka1ΔHep, and IkkbΔHep mice demonstrated that the hepatoprotective effect was independent of NRF2, hepatic AMPKα1, and IκκB. Similarly, 3-methyladenine cotreatment failed to abolish the hepatoprotective effect of WA. The hepatoprotective effect of WA against GalN/LPS-induced FH was abolished after macrophage depletion, and partially reduced in Nlrp3-null mice. Consistently, WA alleviated LPS-induced inflammation partially dependent on the presence of NLRP3 in primary macrophage in vitro. Notably, WA potently and therapeutically attenuated GalN/LPS-induced hepatotoxicity. In conclusion, WA improves GalN/LPS-induced hepatotoxicity by targeting macrophage partially dependent on NLRP3 antagonism, while largely independent of NRF2 signaling, autophagy induction, and hepatic AMPKα1 and IκκB. These results support the concept of treating FH by pharmacologically targeting macrophage and suggest that WA has the potential to be repurposed for clinically treating FH as an immunoregulator.
Collapse
Affiliation(s)
- Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nana Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Duez H, Pourcet B. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Front Endocrinol (Lausanne) 2021; 12:630536. [PMID: 33716981 PMCID: PMC7947301 DOI: 10.3389/fendo.2021.630536] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of defense specialized in the clearing of invaders whether foreign elements like microbes or self-elements that accumulate abnormally including cellular debris. Inflammasomes are master regulators of the innate immune system, especially in macrophages, and are key sensors involved in maintaining cellular health in response to cytolytic pathogens or stress signals. Inflammasomes are cytoplasmic complexes typically composed of a sensor molecule such as NOD-Like Receptors (NLRs), an adaptor protein including ASC and an effector protein such as caspase 1. Upon stimulation, inflammasome complex components associate to promote the cleavage of the pro-caspase 1 into active caspase-1 and the subsequent activation of pro-inflammatory cytokines including IL-18 and IL-1β. Deficiency or overactivation of such important sensors leads to critical diseases including Alzheimer diseases, chronic inflammatory diseases, cancers, acute liver diseases, and cardiometabolic diseases. Inflammasomes are tightly controlled by a two-step activation regulatory process consisting in a priming step, which activates the transcription of inflammasome components, and an activation step which leads to the inflammasome complex formation and the subsequent cleavage of pro-IL1 cytokines. Apart from the NF-κB pathway, nuclear receptors have recently been proposed as additional regulators of this pathway. This review will discuss the role of nuclear receptors in the control of the NLRP3 inflammasome and the putative beneficial effect of new modulators of inflammasomes in the treatment of inflammatory diseases including colitis, fulminant hepatitis, cardiac ischemia-reperfusion and brain diseases.
Collapse
|
20
|
Zou J, Wang SP, Wang YT, Wan JB. Regulation of the NLRP3 inflammasome with natural products against chemical-induced liver injury. Pharmacol Res 2020; 164:105388. [PMID: 33359314 DOI: 10.1016/j.phrs.2020.105388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The past decades have witnessed significant progress in understanding the process of sterile inflammation, which is dependent on a cytosolic complex termed the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome. Activation of NLRP3 inflammasome requires two steps, including the activation of Toll-like receptor (TLR) by its ligands, resulting in transcriptional procytokine and inflammasome component activation, and the assembly and activation of NLRP3 inflammasome triggered by various danger signals, leading to caspase-1 activation, which could subsequently cleave procytokines into their active forms. Metabolic disorders, ischemia and reperfusion, viral infection and chemical insults are common pathogenic factors of liver-related diseases that usually cause tissue damage and cell death, providing numerous danger signals for the activation of NLRP3 inflammasome. Currently, natural products have attracted much attention as potential agents for the prevention and treatment of liver diseases due to their multitargets and nontoxic natures. A great number of natural products have been shown to exhibit beneficial effects on liver injury induced by various chemicals through regulating NLRP3 inflammasome pathways. In this review, the roles of the NLRP3 inflammasome in chemical-induced liver injury (CILI) and natural products that exhibit beneficial effects in CILI through the regulation of inflammasomes were systematically summarized.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
21
|
Ma P, He P, Xu CY, Hou BY, Qiang GF, DU GH. Recent developments in natural products for white adipose tissue browning. Chin J Nat Med 2020; 18:803-817. [PMID: 33308601 DOI: 10.1016/s1875-5364(20)60021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/29/2022]
Abstract
Excess accumulation of white adipose tissue (WAT) causes obesity which is an imbalance between energy intake and energy expenditure. Obesity is a serious concern because it has been the leading causes of death worldwide, including diabetes, stroke, heart disease and cancer. Therefore, uncovering the mechanism of obesity and discovering anti-obesity drugs are crucial to prevent obesity and its complications. Browning, inducing white adipose tissue to brown or beige (brite) fat which is brown-like fat emerging in WAT, becomes an appealing therapeutic strategy for obesity and metabolic disorders. Due to lack of efficacy or intolerable side-effects, the clinical trials that promote brown adipose tissue (BAT) thermogenesis and browning of WAT have not been successful in humans. Obviously, more specific means still need to be developed to activate browning of white adipose tissue. In this review, we summarized seven kinds of natural products (alkaloids, flavonoids, terpenoids, long chain fatty acids, phenolic acids, else and extract) promoting white adipose tissue browning which can ameliorate the metabolic disorders, including obesity, dislipidemia, insulin resistance and diabetes. Since natural products are important drug sources and the browning property plays a significant role in not only obesity treatment but also in type 2 diabetes (T2DM) improvement, natural products of inducing browning may be an irreplaceable drug discovery orientation for obesity, diabetes and even other metabolic disorders.
Collapse
Affiliation(s)
- Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Guan-Hua DU
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
22
|
Fan X, Lin L, Cui B, Zhao T, Mao L, Song Y, Wang X, Feng H, Qingxiang Y, Zhang J, Jiang K, Cao X, Wang B, Sun C. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe. Pharmacol Res 2020; 159:104945. [PMID: 32454225 DOI: 10.1016/j.phrs.2020.104945] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Genipin is an aglycone derived from the geniposide, the most abundant iridoid glucoside constituent of Gardenia jasminoides Ellis. For decades, genipin is the focus of studies as a versatile compound in the treatment of various pathogenic conditions. In particularly, Gardenia jasminoides Ellis has long been used in traditional Chinese medicine for the prevention and treatment of liver disease. Mounting experimental data has proved genipin possesses therapeutic potential for cholestatic, septic, ischemia/reperfusion-triggered acute liver injury, fulminant hepatitis and NAFLD. This critical review is a reflection on the valuable lessons from decades of research regarding pharmacological activities of genipin. Of note, genipin represents choleretic effect by potentiating bilirubin disposal and enhancement of genes in charge of the efflux of a number of organic anions. The anti-inflammatory capability of genipin is mediated by suppression of the production and function of pro-inflammatory cytokines and inflammasome. Moreover, genipin modulates various transcription factor and signal transduction pathway. Genipin appears to trigger the upregulation of several key genes encoding antioxidant and xenobiotic-metabolizing enzymes. Furthermore, the medicinal impact of genipin extends to modulation of regulated cell death, including autophagic cell death, apoptosis, necroptosis and pyroptosis, and modulation of quality of cellular organelle. Another crucial effect of genipin appears to be linked to dual role in targeting uncoupling protein 2 (UCP2). As a typical UCP2-inhibiting compound, genipin could inhibit AMP-activated protein kinase or NF-κB in circumstance. On the contrary, reactive oxygen species production and cellular lipid deposits mediated by genipin through the upregulation of UCP2 is observed in liver steatosis, suggesting the precise role of genipin is disease-specific. Collectively, we comprehensively summarize the mechanisms and pathways associated with the hepatoprotective activity of genipin and discuss potential toxic impact. Notably, our focus is the direct medicinal effect of genipin itself, whereas its utility as a crosslinking agent in tissue engineering is out of scope for the current review. Further studies are therefore required to disentangle these complicated pharmacological properties to confer this natural agent a far greater potency.
Collapse
Affiliation(s)
- Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lin Lin
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Binxin Cui
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Tianming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lihong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Hongjuan Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Department of Nutriology, Tianjin Third Central Hospital, Jintang Road 83, Hedong District, Tianjin 300170, China
| | - Yu Qingxiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping DisTrict, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
23
|
Qian Z, Shuying W, Ranran D. Inhibitory effects of JQ1 on listeria monocytogenes-induced acute liver injury by blocking BRD4/RIPK1 axis. Biomed Pharmacother 2020; 125:109818. [PMID: 32106368 DOI: 10.1016/j.biopha.2020.109818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 01/16/2023] Open
Abstract
Listeria monocytogenes (LM) is a facultative intracellular bacterium that causes septicemia-associated acute hepatic injury. However, the pathogenesis of this process is still unclear, and there is still a lack of effective therapeutic strategy for the treatment of LM-induced liver injury. In this study, we attempted to explore the effects of necroptosis on bacterial-septicemia-associated hepatic disease and to explore the contribution of JQ1, a selective BRD4 inhibitor, to the suppression of necroptosis and inhibition of LM-triggered hepatic injury. The results indicated that hepatic BRD4 was primarily stimulated by LM both in vitro and in vivo, along with significantly up-regulated expression of receptor-interacting protein kinase (RIPK)-1, RIPK3, and p-mixed lineage kinase-like (MLKL), showing the elevated necroptosis. However, JQ1 treatment and RIPK1 knockout were found to significantly alleviate LM-induced acute liver injury. Histological alterations and cell death in hepatic samples in LM-infected mice were also alleviated by JQ1 administration or RIPK1 deletion. However, JQ1-improved hepatic injury by LM was abrogated by RIPK1 over-expression, suggesting that the protective effects of JQ1 took place mainly in an RIPK1-dependent manner. In addition, LM-evoked inflammatory response in liver tissues were also alleviated by JQ1, which was similar to the findings observed in mice lacking RIPK1. The anti-inflammatory effects of JQ1 were diminished by RIPK1 over-expression in LM-infected mice. Finally, both in vivo and in vitro experiments suggested that JQ1 dramatically improved hepatic mitochondrial dysfunction in LM-injected mice, but this effect was abolished by RIPK1 over-expression. In conclusion, these results indicated that suppressing BRD4 by JQ1 could ameliorate LM-associated liver injury by suppressing necroptosis, inflammation, and mitochondrial dysfunction by inhibiting RIPK1.
Collapse
Affiliation(s)
- Zhao Qian
- Department of Emergency, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Wang Shuying
- Department of Emergency, Shanxian Central Hospital, Shanxian County, Shandong Province, 274300, China
| | - Ding Ranran
- Department of Intensive Care Unit, Jining NO.1 People's Hospital, Jining City, Shandong Province, 272000, China.
| |
Collapse
|
24
|
Zhao T, Zhang Y, Mu S, Park JP, Bu H, Leng X, Wang S. Protective effects of genipin on ethanol-induced acute gastric injury in mice by inhibiting NLRP3 inflammasome activation. Eur J Pharmacol 2020; 867:172800. [DOI: 10.1016/j.ejphar.2019.172800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022]
|
25
|
Li Y, Zhu X, Zhang M, Tong H, Su L. Heatstroke-induced hepatocyte exosomes promote liver injury by activating the NOD-like receptor signaling pathway in mice. PeerJ 2019; 7:e8216. [PMID: 31875151 PMCID: PMC6925953 DOI: 10.7717/peerj.8216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background Liver injury is a common and important clinical issue of severe heat stress (HS), which has toxic effects and promotes subsequent multiple organ failure. The pathogenesis of HS-induced liver injury has not been fully elucidated. Passively injured hepatocytes also drive liver injury. Exosomes, extracellular vesicles secreted by hepatocytes as “danger signals,” mediate the intercellular transportation of diverse functional protein cargoes and modulate the biological processes of target cells. However, whether hepatocyte exosomes are involved in HS-induced liver injury has not been reported. The purpose of the current study was to clarify the release of hepatocyte exosomes under HS conditions and to explore their role in mediating HS-induced liver injury. Methods HS was induced in hepatocytes or mice by hyperthermic treatment at 43.0 °C for 1 h. Exosomes from control and HS-exposed hepatocytes were isolated by standard differential ultracentrifugation. The hepatocyte exosomes were characterized, and the differentially expressed proteins of the control and HS exosomes were identified by isobaric tags for relative and absolute quantitation (iTRAQ) mass spectrometry and subjected to Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Recipient hepatocytes were treated with control or HS exosomes, whereas in vivo, the exosomes were infused into mice. The internalization of HS hepatocyte exosomes by hepatocytes or the liver was tracked. The effect of HS exosomes on the activation of the NOD-like receptor signaling pathway and liver injury was demonstrated in vitro and in vivo. Results HS induced an increase in the release of exosomes from hepatocytes, which were internalized by recipient liver cells in vitro and taken up by the liver in vivo. HS significantly changed the proteomic profiles of hepatocyte exosomes based on the iTRAQ analysis. The KEGG pathway analysis revealed the enrichment of proteins associated with injury and inflammatory signaling pathways, especially the NOD-like receptor signaling pathway, the activity of which was upregulated. Subsequently, the capacity of HS hepatocyte exosomes to activate the NOD-like receptor signaling pathway was verified and found to aggrevate liver damage and inflammation in vitro and in vivo. Conclusions This study is the first preliminary study to demonstrate the induction of acute liver injury by hepatic exosomes in the setting of severe HS and reveals potentially related pathways. These results provide a basis for future research and the identification of new targets for clinical intervention.
Collapse
Affiliation(s)
- Yue Li
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Xintao Zhu
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Ming Zhang
- Department of Intensive Care Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Huasheng Tong
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Lei Su
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
26
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Wang Y, Zhao T, Deng Y, Hou L, Fan X, Lin L, Zhao W, Jiang K, Sun C. Genipin Ameliorates Carbon Tetrachloride-Induced Liver Injury in Mice via the Concomitant Inhibition of Inflammation and Induction of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3729051. [PMID: 31885784 PMCID: PMC6927019 DOI: 10.1155/2019/3729051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023]
Abstract
Genipin, as the most effective ingredient of various traditional medications, encompasses antioxidative, anti-inflammatory, and antibacterial capacities. More recently, it is suggested that genipin protects against septic liver damage by restoring autophagy. The purpose of the current study was to explore the protective effect of genipin against carbon tetrachloride- (CCl4-) induced acute liver injury (ALI) and its underlying molecular machinery. Our results indicated that treatment with genipin significantly reduced CCl4-induced hepatotoxicity by ameliorating histological liver changes, decreasing the aspartate aminotransferase and alanine transaminase levels, alleviating the secretion of inflammatory cytokines, and promoting autophagic flux. Moreover, genipin effectively induced the conversion of LC3 and inhibition of p62 accumulation. The liver expressions of ATG5, ATG7, and ATG12 were significantly increased by genipin pretreatment in the ALI mice model. This protective effect may be mediated by the inhibition of mTOR and the activation of p38 MAPK signaling pathways. Meanwhile, genipin attenuated CCl4-induced inflammatory response by inhibiting the NF-κB and STAT3 signaling pathway. In addition, pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or inhibition of p38 MAPK by SB203580 abolished the hepatoprotective effect of genipin. Taken together, our study implicates that genipin has a protective potential against CCl4-induced hepatotoxicity, which might be strongly associated with the induction of autophagy and the attenuation of inflammatory response.
Collapse
Affiliation(s)
- Ya Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Gastroenterology, Shanxi Academy of Medical Sciences Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Tianming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - You Deng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lijun Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lin Lin
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wei Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
28
|
Hortelano S, González-Cofrade L, Cuadrado I, de Las Heras B. Current status of terpenoids as inflammasome inhibitors. Biochem Pharmacol 2019; 172:113739. [PMID: 31786260 DOI: 10.1016/j.bcp.2019.113739] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
Increasing evidence supports NLRP3 inflammasome as a new target to control inflammation. Dysregulation of NLRP3 inflammasome has been reported to be involved in the pathogenesis of several human inflammatory diseases. However, no NLRP3 inflammasome inhibitors are available in clinic. Terpenoids are natural products with multi-target activities against inflammation. Recent studies have revealed that these compounds are capable of inhibiting the activation of NLRP3 inflammasome in several mouse models of NLRP3 inflammasome-related pathogenesis. Thus, terpenoids represent an interesting pharmacological approach for the treatment of inflammatory diseases as they are endowed with a dual mechanism of inhibition of NF-KB transcription factor and inflammasome activation, both critically involved in their anti-inflammatory effects. This work provides an overview of the current knowledge on the therapeutic potential of terpenoids as NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain.
| | - Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
29
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
30
|
Zhang B, Li MD, Yin R, Liu Y, Yang Y, Mitchell-Richards KA, Nam JH, Li R, Wang L, Iwakiri Y, Chung D, Robert ME, Ehrlich BE, Bennett AM, Yu J, Nathanson MH, Yang X. O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCI Insight 2019; 4:127709. [PMID: 31672932 DOI: 10.1172/jci.insight.127709] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase-KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology and
| | - Min-Dian Li
- Department of Cellular and Molecular Physiology and
| | - Ruonan Yin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuyang Liu
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Yunfan Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rui Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Physiology and Neurobiology and.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology and.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anton M Bennett
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | | | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology and.,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Necroptosis signaling in liver diseases: An update. Pharmacol Res 2019; 148:104439. [PMID: 31476369 DOI: 10.1016/j.phrs.2019.104439] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
The apoptosis alternate cell death pathways are extensively studied in recent years and their significance has been well recognized. With identification of newer cell death pathways, the therapeutic opportunities to modulate cell death have indeed further extended. Necroptosis, among other apoptosis alternate pathways, has been immensely studied recently in different hepatic disease models. Receptor-interacting protein 1 (RIPK1), RIPK3 and mixed lineage kinase domain like (MLKL) seemed to be the key players to mediate necroptosis pathway. Initially, necroptosis seemed to be following the typical pathway. But recently diverse pathways and outcomes have been observed. With recent studies reporting diverse outcomes, the necroptosis signalling has become a lot more interesting and intricate. The typical RIPK1 signalling followed by RIPK3 and MLKL might not always be strictly followed. Although, necroptosis signalling has been intensively investigated in various disease conditions; however, there is still a need to further elaborate and understand the unique scaffolding and kinase properties and other signalling interactions of necroptosis signalling molecules.
Collapse
|
32
|
Tian X, Liu H, Qiao S, Yin H, Chen M, Hu P, Wang Y, Peng H, Liu F, Pan G, Huang C. Exploration of the hepatoprotective chemical base of an orally administered herbal formulation (YCHT) in normal and CCl 4-intoxicated liver injury rats. Part 2: Hepatic disposition in vivo and hepatoprotective activity in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:161-172. [PMID: 30802610 DOI: 10.1016/j.jep.2019.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yin-Chen-Hao Tang (YCHT) has been a very popular, hepatoprotective three-herb formula with an unclear chemical base. AIM OF THIS STUDY To reveal the hepatoprotective chemical base of oral-dosed YCHT, we bridged the hepatic disposition of six compounds in vivo and their hepatoprotection in vitro. MATERIALS AND METHODS In vivo, following the oral administration of YCHT in normal and CCl4-induced liver injury rats, the determinations of chlorogenic acid, 4-hydroxyacetophenone, geniposide, genipin, rhein and emodin were conducted in the portal vein plasma, the liver, and the systemic plasma. In vitro, the hepatoprotective activities of these compounds were determined in the CCl4-induced HepG2 cells. RESULTS Consistent with the highest content in YCHT, geniposide had the highest exposure in vivo. Inconsistent with the negligible content, rhein, 4-hydroxyacetophenone, emodin and genipin showed substantial hepatic accumulations. In contrast, chlorogenic acid, an ingredient that has a high content in YCHT, elicited no hepatic exposure. In normal rats, the hepatic disposition prevented the compounds entering into the systemic plasma from the portal vein plasma by 44.9-100%, except for rhein. CCl4-induced liver injury caused a decreased hepatic exposure of 4-hydroxyacetophenone, rhein and emodin by 50%. In vitro, all six compounds exerted the hepatoprotection by increasing cell viability, decreasing hepatic marker enzymes and inhibiting lipid peroxidation at varying levels. CONCLUSION Geniposide, rhein, emodin, 4-hydroxyacetophenone and genipin directly resisted liver injury in oral-dosed YCHT, while chlorogenic acid likely played an indirect role. This study proved that YCHT exerted hepatoprotection through multiple components and multiple actions. However, close attention should be paid to the possible side effects and oral dosage of YCHT in clinics.
Collapse
Affiliation(s)
- Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shida Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai Ke Road Zhangjiang, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Fuzzati-Armentero MT, Cerri S, Blandini F. Peripheral-Central Neuroimmune Crosstalk in Parkinson's Disease: What Do Patients and Animal Models Tell Us? Front Neurol 2019; 10:232. [PMID: 30941089 PMCID: PMC6433876 DOI: 10.3389/fneur.2019.00232] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
The brain is no longer considered an immune privileged organ and neuroinflammation has long been associated with Parkinson's disease. Accumulating evidence demonstrates that innate and adaptive responses take place in the CNS. The extent to which peripheral immune alterations impacts on the CNS, or vice and versa, is, however, still a matter of debate. Gaining a better knowledge of the molecular and cellular immune dysfunctions present in these two compartments and clarifying their mutual interactions is a fundamental step in understanding and preventing Parkinson's disease (PD) pathogenesis. This review provides an overview of the current knowledge on inflammatory processes evidenced both in PD patients and in toxin-induced animal models of the disease. It discusses differences and similarities between human and animal studies in the context of neuroinflammation and immune responses and how they have guided therapeutic strategies to slow down disease progression. Future longitudinal studies are necessary and can help gain a better understanding on peripheral-central nervous system crosstalk to improve therapeutic strategies for PD.
Collapse
|
34
|
Liu J, Lu YF, Wu Q, Xu SF, Shi FG, Klaassen CD. Oleanolic acid reprograms the liver to protect against hepatotoxicants, but is hepatotoxic at high doses. Liver Int 2019; 39:427-439. [PMID: 30079536 DOI: 10.1111/liv.13940] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is a triterpenoid that exists widely in fruits, vegetables and medicinal herbs. OA is included in some dietary supplements and is used as a complementary and alternative medicine (CAM) in China, India, Asia, the USA and European countries. OA is effective in protecting against various hepatotoxicants, and one of the protective mechanisms is reprogramming the liver to activate the nuclear factor erythroid 2-related factor 2 (Nrf2). OA derivatives, such as CDDO-Im and CDDO-Me, are even more potent Nrf2 activators. OA has recently been shown to also activate the Takeda G-protein-coupled receptor (TGR5). However, whereas a low dose of OA is hepatoprotective, higher doses and long-term use of OA can produce liver injury, characterized by cholestasis. This paradoxical hepatotoxic effect occurs not only for OA, but also for other OA-type triterpenoids. Dose and length of time of OA exposure differentiate the ability of OA to produce hepatoprotection vs hepatotoxicity. Hepatotoxicity produced by herbs is increasingly recognized and is of global concern. Given the appealing nature of OA in dietary supplements and its use as an alternative medicine around the world, as well as the development of OA derivatives (CDDO-Im and CDDO-Me) as therapeutics, it is important to understand not only that they program the liver to protect against hepatotoxic chemicals, but also how they produce hepatotoxicity.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas
| | - Yuan-Fu Lu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Shang-Fu Xu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Fu-Guo Shi
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas
| |
Collapse
|
35
|
Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M, Edry-Botzer L, Munitz A, Croker BA, Gerlic M. Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J 2019; 286:507-522. [PMID: 30576068 DOI: 10.1111/febs.14738] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/10/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022]
Abstract
Interleukin-33 (IL-33) is a pro-inflammatory cytokine that plays a significant role in inflammatory diseases by activating immune cells to induce type 2 immune responses upon its release. Although IL-33 is known to be released during tissue damage, its exact release mechanism is not yet fully understood. Previously, we have shown that cleaved IL-33 can be detected in the plasma and epithelium of Ripk1-/- neonates, which succumb to systemic inflammation driven by spontaneous receptor-interacting protein kinase-3 (RIPK3)-dependent necroptotic cell death, shortly after birth. Thus, we hypothesized that necroptosis, a RIPK3/mixed lineage kinase-like protein (MLKL)-dependent, caspase-independent cell death pathway controls IL-33 release. Here, we show that necroptosis directly induces the release of nuclear IL-33 in its full-length form. Unlike the necroptosis executioner protein, MLKL, which was released in its active phosphorylated form in extracellular vesicles, IL-33 was released directly into the supernatant. Importantly, full-length IL-33 released in response to necroptosis was found to be bioactive, as it was able to activate basophils and eosinophils. Finally, the human and murine necroptosis inhibitor, GW806742X, blocked necroptosis and IL-33 release in vitro and reduced eosinophilia in Aspergillus fumigatus extract-induced asthma in vivo, an allergic inflammation model that is highly dependent on IL-33. Collectively, these data establish for the first time, necroptosis as a direct mechanism for IL-33 release, a finding that may have major implications in type 2 immune responses.
Collapse
Affiliation(s)
- Inbar Shlomovitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ziv Erlich
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Mary Speir
- Division of Hematology/Oncology, Boston Children's Hospital, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sefi Zargarian
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Noam Baram
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Maya Engler
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Liat Edry-Botzer
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
36
|
Sebti Y, Ferri L, Zecchin M, Beauchamp J, Mogilenko D, Staels B, Duez H, Pourcet B. The LPS/D-Galactosamine-Induced Fulminant Hepatitis Model to Assess the Role of Ligand-Activated Nuclear Receptors on the NLRP3 Inflammasome Pathway In Vivo. Methods Mol Biol 2019; 1951:189-207. [PMID: 30825154 DOI: 10.1007/978-1-4939-9130-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The NLRP3 inflammasome is a cellular sensor of danger signals such as extracellular ATP or abnormally accumulating molecules like crystals. Activation of NLRP3 by such compounds triggers a sterile inflammatory response that may be involved in numerous pathologies including rheumatoid arthritis, atherosclerosis, diabetes, and Alzheimer's disease. A better understanding of the mechanisms that govern NLRP3 inflammasome activation is an important step toward the development of novel therapeutic strategies to dampen over-activation of the immune system. Recent findings demonstrate that ligand-activated nuclear receptors regulate the NLRP3 inflammasome pathway, thus representing possible therapeutic targets. It is therefore important to assess the potential of these putative targets in the regulation of the NLRP3 inflammasome activation in the most appropriate pathophysiological models. Fulminant hepatitis (FH) results from massive hepatocyte apoptosis, hemorrhagic necrosis, and inflammation. Low doses of LPS in combination with the specific hepatotoxic agent D-galactosamine (D-GalN) promote liver injury in mice and induce the production of inflammatory cytokines associated with increased NLRP3 protein and caspase 1 activity, thus recapitulating the clinical picture of FH in humans. We provide a simple method to examine the involvement of nuclear receptors in NLRP3-driven fulminant hepatitis, consisting in the induction of FH, in the isolation of liver macrophages, and in the extraction and analysis of RNA content.
Collapse
Affiliation(s)
- Yasmine Sebti
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Lise Ferri
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mathilde Zecchin
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Justine Beauchamp
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Denis Mogilenko
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Hélène Duez
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France
- UNIV LILLE, Lille, France
- INSERM UMR 1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Benoit Pourcet
- European Genomic Institute for Diabetes (E.G.I.D.), Lille, France.
- UNIV LILLE, Lille, France.
- INSERM UMR 1011, Lille, France.
- CHU Lille, Lille, France.
- Institut Pasteur de Lille, Lille, France.
| |
Collapse
|
37
|
Wang G, Jin S, Ling X, Li Y, Hu Y, Zhang Y, Huang Y, Chen T, Lin J, Ning Z, Meng Y, Li X. Proteomic Profiling of LPS-Induced Macrophage-Derived Exosomes Indicates Their Involvement in Acute Liver Injury. Proteomics 2018; 19:e1800274. [PMID: 30474914 DOI: 10.1002/pmic.201800274] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/25/2018] [Indexed: 12/21/2022]
Abstract
Exosomes are typically involved in cellular communication and signaling. Macrophages play a key role in lipopolysaccharide (LPS)-induced sepsis. However, the molecular comparison of exosomes derived from LPS-induced macrophage has not been well analyzed. The macrophage-exosomes are validated and the protein composition of those exosomes are investigated by isobaric tags for relative and absolute quantification (iTRAQ) mass spectrometry. A total of 5056 proteins are identified in macrophage-exosomes. We discovered 341 increased proteins and 363 reduced proteins in LPS-treated macrophage-exosomes compared with control exosomes. In addition, gene ontology analysis demonstrates that macrophage-exosomes proteins are mostly linked to cell, organelle, extracellular region, and membrane. The bioinformatics analysis also indicates that these proteins are mainly involved in cellular process, single-organism process, metabolic process, and biological regulation. Among these 341 upregulated proteins, Kyoto Encyclopedia of Genes and Genomes analysis reveals that 22 proteins are involved in the NOD-like receptor signaling pathway. Finally, hepatocytes can uptake macrophage-exosomes and subsequently NLRP3 inflammasome is activated in vitro and in vivo. These data emphasize the fundamental importance of macrophage-exosomes in sepsis-induced liver injury. Therefore, the iTRAQ proteomic strategy brings new insights into macrophage-derived exosomes. It may improve our understanding of macrophage-exosomes' functions and their possible use as therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Guozhen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyi Jin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuguang Ling
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Hu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yijie Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayi Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Department of Emergency Medicine, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zuowei Ning
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
38
|
|
39
|
Lee YS, Park KM, Yu L, Kwak HH, Na HJ, Kang KS, Woo HM. Necroptosis Is a Mechanism of Death in Mouse Induced Hepatocyte-Like Cells Reprogrammed from Mouse Embryonic Fibroblasts. Mol Cells 2018; 41:639-645. [PMID: 29991669 PMCID: PMC6078850 DOI: 10.14348/molcells.2018.2353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/13/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
Liver transplantation is recommended for patients with liver failure, but liver donors are limited. This necessitates the development of artificial livers, and hepatocytes are necessary to develop such artificial livers. Although induced hepatocyte-like cells are used in artificial livers, the characteristics of mouse induced hepatocyte-like cells (miHeps) reprogrammed with embryonic fibroblasts have not yet been clarified. Therefore, this study investigated the mechanisms underlying the survival, function, and death of miHeps. miHeps showed decreased cell viability, increased cytotoxicity, decreased hepatic function, and albumin and urea secretion at passage 14. Addition of necrostatin-1 (NEC-1) to miHeps inhibited necrosome formation and reactive oxygen species generation and increased cell survival. However, NEC-1 did not affect the hepatic function of miHeps. These results provide a basis for development of artificial livers using hepatocytes.
Collapse
Affiliation(s)
- Yun-Suk Lee
- Hauul Bio Incorporation, Chuncheon 24398,
Korea
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644,
Korea
| | - Lina Yu
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Ho-Hyun Kwak
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Hee-Jun Na
- Hauul Bio Incorporation, Chuncheon 24398,
Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826,
Korea
| | - Heung-Myong Woo
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
40
|
Qiao C, Zhang Q, Jiang Q, Zhang T, Chen M, Fan Y, Ding J, Lu M, Hu G. Inhibition of the hepatic Nlrp3 protects dopaminergic neurons via attenuating systemic inflammation in a MPTP/p mouse model of Parkinson's disease. J Neuroinflammation 2018; 15:193. [PMID: 29966531 PMCID: PMC6029067 DOI: 10.1186/s12974-018-1236-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/25/2018] [Indexed: 01/16/2023] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disorder with progressive loss of dopaminergic (DA) neurons. Systemic inflammation is shown to initiate and exacerbate DA neuronal degeneration in the substantia nigra. The infiltration and transformation of immune cells from the peripheral tissues are detected in and around the affected brain regions of PD patients. Our previous studies demonstrated the crucial role that microglial Nod-like receptor protein (NLRP) 3 inflammasome plays in the pathogenesis of PD. Nevertheless, the direct linkage between peripheral inflammation and DA neuron death remains obscure. Methods In the present study, we detected the NLRP3 expressions in the midbrain, liver, and bone marrow-derived macrophages in response to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) acute and chronic challenge. We then used a tail vein injection of Nlrp3-siRNA wrapped with lentivirus to explore the potential influence of hepatic NLRP3 inflammasome-mediated inflammation on neuronal injury in a mouse model of PD via immunohistochemistry, ELISA, and Western blotting analysis. Results We showed that siNlrp3 downregulated the NLRP3 protein expression and inhibited the activation of NLRP3 inflammasomes in mice livers. The tail vein injection of LV3-siNlrp3 reduced the liver pro-inflammatory cytokine production, which subsequently alleviated MPTP-triggered microglial activation and DA neuron loss in the midbrain. These findings indicated that inhibition of hepatic NLRP3 inflammasome weakens inflammatory cytokines spreading into the brain and delays the progress of neuroinflammation and DA neuronal degeneration. Conclusion This study gives us an insight into the direct linkage between liver inflammation and DA neuron damage in the pathogenesis of PD and provides the potential target of NLRP3 for developing novel drugs for PD therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Qiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Department of Clinical Pharmacy, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Qingling Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ting Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
41
|
Biotransformation of Geniposide into Genipin by Immobilized Trichoderma reesei and Conformational Study of Genipin. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2079195. [PMID: 29850488 PMCID: PMC5925029 DOI: 10.1155/2018/2079195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
Trichoderma reesei QM9414, Trichoderma viride 3.316, Aspergillus niger M85, and Aspergillus niger M92 were screened for hydrolyzing geniposide into genipin. T. reesei was selected according to the β-glucosidase activity of the fermentation broths using geniposide as a substrate. T. reesei was immobilized by embedding method using sodium alginate as the carrier. Geniposide was hydrolyzed by immobilized T. reesei at 28°C (200 rpm) for 34 h, and the yield of genipin was 89%. The product was purified and identified by UV, IR, EIMS, and 1H-NMR. Since there were two sets of signals in 1H-NMR spectra, a series of experiments were performed and verified that the existence of two conformations was the main reason. Generally, biotransformation of geniposide into genipin by immobilized T. reesei provides a promising solution to the genipin production.
Collapse
|
42
|
Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Billon C, Delhaye S, Vanhoutte J, Mayeuf-Louchart A, Thorel Q, Haas J, Eeckhoute J, Dombrowicz D, Duhem C, Boulinguiez A, Lancel S, Sebti Y, Burris T, Staels B, Duez H. Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology 2018; 154:1449-1464.e20. [PMID: 29277561 PMCID: PMC5892845 DOI: 10.1053/j.gastro.2017.12.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway. METHODS We collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1-/- mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1β (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow-derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow-derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1-/- mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1-/- mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. RESULTS In peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)-this regulation required NR1D1. Primary macrophages from Nr1d1-/- mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control). CONCLUSIONS In studies of Nr1d1-/- mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice.
Collapse
Affiliation(s)
- B Pourcet
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - M Zecchin
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - L Ferri
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Beauchamp
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - S Sitaula
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA. The Scripps Research Institute, Jupiter, FL, USA
| | - C Billon
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA. The Scripps Research Institute, Jupiter, FL, USA
| | - S Delhaye
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Vanhoutte
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - A Mayeuf-Louchart
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Q Thorel
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Haas
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Eeckhoute
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - D Dombrowicz
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - C Duhem
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - A Boulinguiez
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - S Lancel
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Y Sebti
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - T Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA. The Scripps Research Institute, Jupiter, FL, USA
| | - B Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - H Duez
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France,Correspondence should be addressed to Hélène Duez, UMR1011, Institut Pasteur de Lille, 1 rue Calmette, F-59019 Lille, France. Tel: +33(0)3 2087 7793,
| |
Collapse
|