1
|
Sharma S, Yadav PD, Cherian S. Comprehensive immunoinformatics and bioinformatics strategies for designing a multi-epitope based vaccine targeting structural proteins of Nipah virus. Front Immunol 2025; 16:1535322. [PMID: 40433372 PMCID: PMC12106399 DOI: 10.3389/fimmu.2025.1535322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/08/2025] [Indexed: 05/29/2025] Open
Abstract
Background Nipah virus (NiV) is characterized by recurring outbreaks and causes severe neurological impact, leading to increased mortality rates. Despite the severity of the disease, there is no proven post-exposure treatment available, emphasizing the critical need for the development of an effective vaccine. Objective This study was aimed at designing a multi-epitope based vaccine candidate based on an in-silico approach. Methods NiV's Structural proteins were screened for B and T-cell epitopes, assessing characteristics like antigenicity, immunogenicity, allergenicity, and toxicity. Two vaccine constructs (NiV_1 & 2) were designed using different adjuvants (Cholera toxin and Beta-defensin 3) and linkers and their predicted 3D structures were evaluated for interaction with Toll-Like Receptor TLR-3 using docking and molecular dynamics (MD) simulation studies. Finally, The potential expression of the vaccine construct in Escherichia coli (E. coli.) was verified by cloning it into the PET28a (+) vector and immune simulations were undertaken. Results The study identified 30 conserved, antigenic, immunogenic, non-allergenic, and non-toxic epitopes with a broad population coverage. Based on the stability of vaccine construct in MD simulations results, NiV_1 was considered for further analysis. In-silico immune simulations of NiV_1 indicated a substantial immunogenic response. Moreover, codon optimization and in-silico cloning validated the expressions of designed vaccine construct NiV_1 in E. coli. Conclusion The findings indicate that the NiV_1 vaccine construct has the potential to elicit both cellular and humoral immune responses. Additional in vitro and in vivo investigations are required to validate the computational observations.
Collapse
Affiliation(s)
| | | | - Sarah Cherian
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| |
Collapse
|
2
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang J, Zhao Z, Wang Q, Shi J, Wong DWC, Cheung JCW. Advancements in Nanoparticle-Based Adjuvants for Enhanced Tuberculosis Vaccination: A Review. Vaccines (Basel) 2024; 12:1335. [PMID: 39771997 PMCID: PMC11680411 DOI: 10.3390/vaccines12121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective vaccines. Nanoparticle-based adjuvants represent a promising approach to enhancing tuberculosis vaccine efficacy. This review focuses on the advantages of nanoparticulate-loaded vaccines, emphasizing their ability to improve antigen delivery, safety, and immunogenicity. We discuss the various types of nanoparticles and their unique physicochemical properties that contribute to improved antigen delivery and sustained immune activation. Additionally, we highlight the advantages of nanoparticle-based adjuvants in inducing strong cellular and humoral immunity, enhancing vaccine stability, and reducing adverse effects. Finally, we address current challenges and future perspectives in the application of these novel adjuvants, emphasizing their potential to transform TB vaccine strategies and ultimately contribute to better global health outcomes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Zian Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jingyu Shi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
4
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Omidian H, Gill EJ, Dey Chowdhury S, Cubeddu LX. Chitosan Nanoparticles for Intranasal Drug Delivery. Pharmaceutics 2024; 16:746. [PMID: 38931868 PMCID: PMC11206675 DOI: 10.3390/pharmaceutics16060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
This manuscript explores the use of nanostructured chitosan for intranasal drug delivery, targeting improved therapeutic outcomes in neurodegenerative diseases, psychiatric care, pain management, vaccination, and diabetes treatment. Chitosan nanoparticles are shown to enhance brain delivery, improve bioavailability, and minimize systemic side effects by facilitating drug transport across the blood-brain barrier. Despite substantial advancements in targeted delivery and vaccine efficacy, challenges remain in scalability, regulatory approval, and transitioning from preclinical studies to clinical applications. The future of chitosan-based nanomedicines hinges on advancing clinical trials, fostering interdisciplinary collaboration, and innovating in nanoparticle design to overcome these hurdles and realize their therapeutic potential.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (E.J.G.); (S.D.C.); (L.X.C.)
| | | | | | | |
Collapse
|
6
|
Saleemi MA, Zhang Y, Zhang G. Current Progress in the Science of Novel Adjuvant Nano-Vaccine-Induced Protective Immune Responses. Pathogens 2024; 13:441. [PMID: 38921739 PMCID: PMC11206999 DOI: 10.3390/pathogens13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vaccinations are vital as they protect us from various illness-causing agents. Despite all the advancements in vaccine-related research, developing improved and safer vaccines against devastating infectious diseases including Ebola, tuberculosis and acquired immune deficiency syndrome (AIDS) remains a significant challenge. In addition, some of the current human vaccines can cause adverse reactions in some individuals, which limits their use for massive vaccination program. Therefore, it is necessary to design optimal vaccine candidates that can elicit appropriate immune responses but do not induce side effects. Subunit vaccines are relatively safe for the vaccination of humans, but they are unable to trigger an optimal protective immune response without an adjuvant. Although different types of adjuvants have been used for the formulation of vaccines to fight pathogens that have high antigenic diversity, due to the toxicity and safety issues associated with human-specific adjuvants, there are only a few adjuvants that have been approved for the formulation of human vaccines. Recently, nanoparticles (NPs) have gain specific attention and are commonly used as adjuvants for vaccine development as well as for drug delivery due to their excellent immune modulation properties. This review will focus on the current state of adjuvants in vaccine development, the mechanisms of human-compatible adjuvants and future research directions. We hope this review will provide valuable information to discovery novel adjuvants and drug delivery systems for developing novel vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, College of Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.A.S.); (Y.Z.)
| |
Collapse
|
7
|
Prasanna M, Varela Calvino R, Lambert A, Arista Romero M, Pujals S, Trottein F, Camberlein E, Grandjean C, Csaba N. Semisynthetic Pneumococcal Glycoconjugate Nanovaccine. Bioconjug Chem 2023; 34:1563-1575. [PMID: 37694903 PMCID: PMC10515484 DOI: 10.1021/acs.bioconjchem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Pneumococcal conjugate vaccines offer an excellent safety profile and high protection against the serotypes comprised in the vaccine. However, inclusion of protein antigens fromStreptococcus pneumoniaecombined with potent adjuvants and a suitable delivery system are expected to both extend protection to serotype strains not represented in the formulation and stimulate a broader immune response, thus more effective in young children, elderly, and immunocompromised populations. Along this line, nanoparticle (NP) delivery systems can enhance the immunogenicity of antigens by protecting them from degradation and increasing their uptake by antigen-presenting cells, as well as offering co-delivery with adjuvants. We report herein the encapsulation of a semisynthetic glycoconjugate (GC) composed of a synthetic tetrasaccharide mimicking theS. pneumoniae serotype 14 capsular polysaccharide (CP14) linked to the Pneumococcal surface protein A (PsaA) using chitosan NPs (CNPs). These GC-loaded chitosan nanoparticles (GC-CNPs) were not toxic to human monocyte-derived dendritic cells (MoDCs), showed enhanced uptake, and displayed better immunostimulatory properties in comparison to the naked GC. A comparative study was carried out in mice to evaluate the immune response elicited by the glycoconjugate-administered subcutaneously (SC), where the GC-CNPs displayed 100-fold higher IgG response as compared with the group treated with nonencapsulated GC. Overall, the study demonstrates the potential of this chitosan-based nanovaccine for efficient delivery of glycoconjugate antigens.
Collapse
Affiliation(s)
- Maruthi Prasanna
- Center
for Research in Molecular Medicine and Chronic Diseases, Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela 15706, Spain
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
- Department
of Biochemistry and Molecular Biology, University
of Santiago de Compostela, Santiago
de Compostela 15706, Spain
| | - Rubén Varela Calvino
- Department
of Biochemistry and Molecular Biology, University
of Santiago de Compostela, Santiago
de Compostela 15706, Spain
| | - Annie Lambert
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Maria Arista Romero
- Department
of Biological Chemistry, Institute for Advanced
Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - Sylvia Pujals
- Department
of Biological Chemistry, Institute for Advanced
Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - François Trottein
- Univ.
Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR
9017—CIIL—Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Emilie Camberlein
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Cyrille Grandjean
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Noemi Csaba
- Center
for Research in Molecular Medicine and Chronic Diseases, Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela 15706, Spain
| |
Collapse
|
8
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
9
|
Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine: A mini review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
11
|
Dmour I, Islam N. Recent advances on chitosan as an adjuvant for vaccine delivery. Int J Biol Macromol 2022; 200:498-519. [PMID: 34973993 DOI: 10.1016/j.ijbiomac.2021.12.129] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Chitosan (CS) is a natural polymer derived from chitin that has wide applications in drugs, vaccines, and antigen delivery. The distinctive mucoadhesive, biocompatibility, biodegradable, and less toxic properties of chitosan compared to the currently used vaccine adjuvants made it a promising candidate for use as an adjuvant/carrier in vaccine delivery. In addition, chitosan exhibits intrinsic immunomodulating properties making it a suitable adjuvant in preparing vaccines delivery systems. Nanoparticles (NPs) of chitosan and its derivatives loaded with antigen have been shown to induce cellular and humoral responses. Versatility in the physicochemical properties of chitosan can provide an excellent opportunity to engineer antigen-specific adjuvant/delivery systems. This review discusses the recent advances of chitosan and its derivatives as adjuvants in vaccine deliveryand the published literature in the last fifteen years. The impact of physicochemical properties of chitosan on vaccine formulation has been described in detail. Applications of chitosan and its derivatives, their physicochemical properties, and mechanisms in enhancing immune responses have been discussed. Finally, challenges and future aspects of chitosan use has been pointed out.
Collapse
Affiliation(s)
- Isra Dmour
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
12
|
Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. Intranasal COVID-19 vaccines: From bench to bed. EBioMedicine 2022; 76:103841. [PMID: 35085851 PMCID: PMC8785603 DOI: 10.1016/j.ebiom.2022.103841] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Currently licensed COVID-19 vaccines are all designed for intramuscular (IM) immunization. However, vaccination today failed to prevent the virus infection through the upper respiratory tract, which is partially due to the absence of mucosal immunity activation. Despite the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the next generation of COVID-19 vaccine is in demand and intranasal (IN) vaccination method has been demonstrated to be potent in inducing both mucosal and systemic immune responses. Presently, although not licensed, various IN vaccines against SARS-CoV-2 are under intensive investigation, with 12 candidates reaching clinical trials at different phases. In this review, we give a detailed description about current status of IN COVID-19 vaccines, including virus-vectored vaccines, recombinant subunit vaccines and live attenuated vaccines. The ongoing clinical trials for IN vaccines are highlighted. Additionally, the underlying mechanisms of mucosal immunity and potential mucosal adjuvants and nasal delivery devices are also summarized.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Çokçalışkan C, Tuncer-Göktuna P, Sareyyüpoğlu B, Türkoğlu T, Yıldız M, Deveci MNF, Aras-Uzun E, Arslan A, Kürkçü A, Uzunlu E, Asar E. Booster administration can make a difference in the antibody response to intradermal foot-and-mouth disease vaccination in cattle. Arch Virol 2022; 167:405-413. [PMID: 35034176 DOI: 10.1007/s00705-021-05273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 11/02/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically important viral disease of cloven-hoofed animals. Routine vaccination is one of the preferred methods of protection against this disease in endemic countries. For protective immunity against FMD, repeated immunizations with frequent administration are required. Intradermal immunization has many advantages over intramuscular administration of vaccines. In this study, a commercial tetravalent FMD vaccine adjuvanted with Montanide ISA 206 was administered to cattle via the intramuscular (2 mL [n = 10] and 0.5 mL [n = 9]) and intradermal (0.5 mL [n = 11]) routes. Booster doses were administered 28 days later using the same vaccine and routes. Serum samples were collected on days 0, 7, 14, and 28 post-vaccination (pv) and at 30 and 60 days post-booster. Homologous and heterologous virus neutralization tests and liquid-phase blocking and isotype ELISAs were used to measure the antibody response. The results showed that intradermal administration of quarter doses of the vaccine provides an equal or better virus neutralization antibody response than intramuscular administration of the same dose of vaccine after booster administration in cattle. This means that four times more cattle can be immunized with the same amount of vaccine using the intradermal route without compromising immunity.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey.
| | - Pelin Tuncer-Göktuna
- Republic of Turkey, Ministry of Agriculture and Forestry, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Beyhan Sareyyüpoğlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Tunçer Türkoğlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Muhammet Yıldız
- Directorate-General for State Farms, Republic of Turkey, Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - M Nuri Fırat Deveci
- Directorate-General for State Farms, Republic of Turkey, Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - Eylem Aras-Uzun
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Abdullah Arslan
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Ayça Kürkçü
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Ergün Uzunlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Erdoğan Asar
- Republic of Turkey, Turkish Statistical Institute, Ankara, Turkey
| |
Collapse
|
14
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
15
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
16
|
Shin JH, Lee JH, Jeong SD, Noh JY, Lee HW, Song CS, Kim YC. C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin. Drug Deliv Transl Res 2021; 10:815-825. [PMID: 32141036 DOI: 10.1007/s13346-020-00728-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A microneedle is a biomedical device which consists of multiple micron scale needles. It is widely used in various fields to deliver drugs and vaccines to the skin effectively. However, when considering improved vaccine efficacy in microneedle vaccination, it is important to find an appropriate adjuvant that is able to be used in transdermal delivery. Herein, we demonstrated the applicability of c-di-GMP, which is a stimulator of interferon genes (STING) agonist, as an adjuvant for influenza microneedle vaccination. Thus, 2 and 10 μg of GMP with the influenza vaccine were coated onto a microneedle, and then, BALB/c mice were immunized with the coated microneedle to investigate the immunogenicity and protection efficacy of the influenza microneedle vaccination. As a result, the adjuvant groups had an enhanced IgG response, IgG subtypes and HI titer compared to the vaccine only group. In addition to the humoral immunity, the use of an adjuvant has also been shown to improve the cellular immune response. In a challenge study, adjuvant groups had a 100% survival rate and rapid weight recovery. Taken together, this study confirms that GMP is an effective adjuvant for influenza microneedle vaccination. Graphical abstract.
Collapse
Affiliation(s)
- Ju-Hyung Shin
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Ho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Seong Dong Jeong
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jin-Yong Noh
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Hyo Won Lee
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea.
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, Chen J, Luo M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front Cell Dev Biol 2021; 9:633776. [PMID: 34113610 PMCID: PMC8185206 DOI: 10.3389/fcell.2021.633776] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Faced with the challenges posed by infectious diseases and cancer, nucleic acid vaccines present excellent prospects in clinical applications. Compared with traditional vaccines, nucleic acid vaccines have the characteristics of high efficiency and low cost. Therefore, nucleic acid vaccines have potential advantages in disease prevention and treatment. However, the low immunogenicity and instability of nucleic acid vaccines have limited their development. Therefore, a large number of studies have been conducted to improve their immunogenicity and stability by improving delivery methods, thereby supporting progress and development for clinical applications. This article mainly reviews the advantages, disadvantages, mechanisms, delivery methods, and clinical applications of nucleic acid vaccines.
Collapse
Affiliation(s)
- Furong Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li X, Xing R, Xu C, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effect of chitosan and quaternary chitosan: A review of potential vaccine adjuvants. Carbohydr Polym 2021; 264:118050. [PMID: 33910752 DOI: 10.1016/j.carbpol.2021.118050] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/25/2022]
Abstract
Vaccines have always been the most effective preventive treatment. Advancements in the field of vaccine is inseparable from adjuvants. Adjuvants are substances added to vaccines to enhance immunogenicity and induce a stronger immune response. Chitosan fascinated considerable attention as vaccine adjuvant due to its unique physicochemical and biological properties. Many studies have shown that chitosan and its derivatives can effectively activate antigen-presenting cells and induce cytokine stimulation to produce an effective immune response and promote the balance of Th1/Th2 response. Among many derivatives, the quaternized chitosan performs better. This review presents the main factors affecting the adjuvant performance of chitosan and quaternized chitosan firstly. Then, we introduced not only the immune response they may cause, but also their metabolic research in detail. Furthermore, their future prospects are forecasted. Overall, chitosan and quaternized chitosan are both promising adjuvant materials, and quaternized chitosan shows greater potential.
Collapse
Affiliation(s)
- Xiaomin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
19
|
Kabiri M, Bolourian H, Dehghan S, Tafaghodi M. The dry powder formulation of mixed cross-linked dextran microspheres and tetanus toxoid-loaded trimethyl chitosan nanospheres as a potent adjuvant for nasal delivery system. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:116-122. [PMID: 33643579 PMCID: PMC7894627 DOI: 10.22038/ijbms.2020.49486.11313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/26/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The present study aimed to determine the immunoadjuvant efficacy of mixed cross-linked dextran microspheres (CDM) and tetanus toxoid (TT)-loaded trimethyl chitosan (TMC) nanospheres in dry powder form. MATERIALS AND METHODS The TMC nanoparticles (NPs) containing TT were produced using the ionic gelation method. Co-administration of TT-loaded TMC NPs and CDM as an absorption enhancer was performed to improve immunity against the antigen. Dry powder formulations were delivered via the nasal route in a rabbit model. RESULTS Among immunization groups, mixing of CDM with TT encapsulated in TMC NPs could elicit the highest titer of systemic IgG antibody. Furthermore, the addition of CDM to TT-loaded TMC enhanced the sIgA response relative to the TT solution. CONCLUSION The TMC NPs had a considerable effect on mucosal and systemic immunity against the TT antigen. Therefore, the CDM excipient can be utilized for nasal immunization to elevate systemic and mucosal responses.
Collapse
Affiliation(s)
- Mona Kabiri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haleh Bolourian
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solmaz Dehghan
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Center, Gilead Sciences, Foster City, USA
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Potaś J, Szymańska E, Basa A, Hafner A, Winnicka K. Tragacanth Gum/Chitosan Polyelectrolyte Complexes-Based Hydrogels Enriched with Xanthan Gum as Promising Materials for Buccal Application. MATERIALS 2020; 14:ma14010086. [PMID: 33375434 PMCID: PMC7795759 DOI: 10.3390/ma14010086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023]
Abstract
Polyelectrolyte complexes based on the electrostatic interactions between the polymers mixed are of increasing importance, therefore, the aim of this study was to develop hydrogels composed of anionic tragacanth gum and cationic chitosan with or without the addition of anionic xanthan gum as carriers for buccal drug delivery. Besides the routine quality tests evaluating the hydrogel’s applicability on the buccal mucosa, different methods directed toward the assessment of the interpolymer complexation process (e.g., turbidity or zeta potential analysis, scanning electron microscopy and Fourier-transform infrared spectroscopy) were employed. The addition of xanthan gum resulted in stronger complexation of chitosan that affected the hydrogel’s characteristics. The formation of a more viscous PEC hydrogel with improved mucoadhesiveness and mechanical strength points out the potential of such polymer combination in the development of buccal drug dosage forms.
Collapse
Affiliation(s)
- Joanna Potaś
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (E.S.)
| | - Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (E.S.)
| | - Anna Basa
- Department of Physical Chemistry, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Anita Hafner
- Department of Pharmaceutical Technology, University of Zagreb, Domagojeva 2, 10000 Zagreb, Croatia;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (E.S.)
- Correspondence: ; Tel.: +48-85-748-56-15
| |
Collapse
|
21
|
Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2020; 7:1765-1779. [DOI: 10.1021/acsbiomaterials.0c01291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Cossette
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Sean H. Kelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
22
|
An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers (Basel) 2020; 12:polym12122878. [PMID: 33266285 PMCID: PMC7759937 DOI: 10.3390/polym12122878] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Chitosan, a chitin-derivative polysaccharide, known for its non-toxicity, biocompatibility and biodegradability, presents limited applications due to its low solubility in neutral or basic pH medium. Quaternization stands out as an alternative to modify this natural polymer, aiming to improve its solubility over a wide pH range and, consequently, expand its range of applications. Quaternization occurs by introducing a quaternary ammonium moiety onto or outside the chitosan backbone, via chemical reactions with primary amino and hydroxyl groups, under vast experimental conditions. The oldest and most common forms of quaternized chitosan involve N,N,N-trimethyl chitosan (TMC) and N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) and, more recently, quaternized chitosan by insertion of pyridinium or phosphonium salts. By modifying chitosan through the insertion of a quaternary moiety, permanent cationic charges on the polysaccharide backbone are achieved and properties such as water solubility, antimicrobial activity, mucoadhesiveness and permeability are significantly improved, enabling the application mainly in the biomedical and pharmaceutical areas. In this review, the main quaternized chitosan compounds are addressed in terms of their structure, properties, synthesis routes and applications. In addition, other less explored compounds are also presented, involving the main findings and future prospects regarding the field of quaternized chitosans.
Collapse
|
23
|
Potaś J, Szymańska E, Winnicka K. Challenges in developing of chitosan – Based polyelectrolyte complexes as a platform for mucosal and skin drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
25
|
Walter F, Winter E, Rahn S, Heidland J, Meier S, Struzek AM, Lettau M, Philipp LM, Beckinger S, Otto L, Möller JL, Helm O, Wesch D, Scherließ R, Sebens S. Chitosan nanoparticles as antigen vehicles to induce effective tumor specific T cell responses. PLoS One 2020; 15:e0239369. [PMID: 32997691 PMCID: PMC7526875 DOI: 10.1371/journal.pone.0239369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer vaccinations sensitize the immune system to recognize tumor-specific antigens de novo or boosting preexisting immune responses. Dendritic cells (DCs) are regarded as the most potent antigen presenting cells (APCs) for induction of (cancer) antigen-specific CD8+ T cell responses. Chitosan nanoparticles (CNPs) used as delivery vehicle have been shown to improve anti-tumor responses. This study aimed at exploring the potential of CNPs as antigen delivery system by assessing activation and expansion of antigen-specific CD8+ T cells by DCs and subsequent T cell-mediated lysis of pancreatic ductal adenocarcinoma (PDAC) cells. As model antigen the ovalbumin-derived peptide SIINFEKL was chosen. Using imaging cytometry, intracellular uptake of FITC-labelled CNPs of three different sizes and qualities (90/10, 90/20 and 90/50) was demonstrated in DCs and in pro- and anti-inflammatory macrophages to different extents. While larger particles (90/50) impaired survival of all APCs, small CNPs (90/10) were not toxic for DCs. Internalization of SIINFEKL-loaded but not empty 90/10-CNPs promoted a pro-inflammatory phenotype of DCs indicated by elevated expression of pro-inflammatory cytokines. Treatment of murine DC2.4 cells with SIINFEKL-loaded 90/10-CNPs led to a marked MHC-related presentation of SIINFEKL and enabled DC2.4 cells to potently activate SIINFEKL-specific CD8+ OT-1 T cells finally leading to effective lysis of the PDAC cell line Panc-OVA. Overall, our study supports the suitability of CNPs as antigen vehicle to induce potent anti-tumor immune responses by activation and expansion of tumor antigen-specific CD8+ T cells.
Collapse
Affiliation(s)
- Frederik Walter
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Elsa Winter
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Sascha Rahn
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Judith Heidland
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Saskia Meier
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Anna-Maria Struzek
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, Kiel University and UKSH Campus Kiel, Kiel, Germany
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Silje Beckinger
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Lilli Otto
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Julia Luisa Möller
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Ole Helm
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Kiel University and UKSH Campus Kiel, Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
26
|
Zhao J, Li J, Jiang Z, Tong R, Duan X, Bai L, Shi J. Chitosan, N,N,N-trimethyl chitosan (TMC) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC): The potential immune adjuvants and nano carriers. Int J Biol Macromol 2020; 154:339-348. [DOI: 10.1016/j.ijbiomac.2020.03.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
|
27
|
Li Z, He Y, Deng L, Zhang ZR, Lin Y. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J Mater Chem B 2019; 8:216-225. [PMID: 31803892 DOI: 10.1039/c9tb02061f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microneedle (MN) arrays offer an alternative approach to hypodermic injection via syringe needles. In this work, polyvinylpyrrolidone (PVP)-based fast dissolving MN arrays were developed in which the needle tips were loaded with chitosan nanoparticles (NPs) for coencapsulation of a model antigen, ovalbumin (OVA), and an adjuvant, CpG oligodeoxynucleotides (CpG). After insertion into the skin, these MN arrays fully dissolved within 3 min to release antigen and adjuvant co-loaded NPs rapidly in the epidermal layer. Positively charged chitosan was proven to be an excellent carrier for negatively charged OVA and CpG, which formed nanocomplexes via simple electrostatic interactions and greatly enhanced the uptake efficiency of OVA in DC2.4 dendritic cells. Vaccination studies in mice further demonstrated that chitosan NPs effectively accumulated in peripheral lymph nodes, thus inducing greatly enhanced immune responses compared to those of free OVA. The antibody dose-response curve further demonstrated that MN immunization achieved comparable levels of immune responses as compared to conventional subcutaneous injections in a more convenient and less invasive way. Overall, a PVP-based fast dissolving MN array with chitosan NPs represents a promising and robust platform system for efficient transcutaneous vaccine delivery.
Collapse
Affiliation(s)
- Zhilin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yingju He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yunzhu Lin
- Department of Pharmacy, West China Second University Hospital and Evidence-Based Pharmacy Center and Key Laboratory of Birth Defects and Related Diseases of Woman and Children, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Application of Chitosan in Bone and Dental Engineering. Molecules 2019; 24:molecules24163009. [PMID: 31431001 PMCID: PMC6720623 DOI: 10.3390/molecules24163009] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility, but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied and widely used in biopharmaceutical and biomedical applications for several decades. In this review, we summarize the current chitosan-based applications for bone and dental engineering. Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances neovascularization in vivo.
Collapse
|
29
|
Marasini N, Kaminskas LM. Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible? Drug Dev Ind Pharm 2019; 45:882-894. [PMID: 30767591 DOI: 10.1080/03639045.2019.1583758] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary infections are the most common cause of death globally. However, the development of mucosal vaccines that provide protective immunity against respiratory pathogens are limited. In contrast to needle-based vaccines, efficient vaccines that are delivered via noninvasive mucosal routes (such as via the lungs and nasal passage) produce both antigen-specific local mucosal IgA and systemic IgG protective antibodies. One major challenge in the development of pulmonary vaccines using subunit antigens however, is the production of optimal immune responses. Subunit vaccines therefore rely upon use of adjuvants to potentiate immune responses. While the lack of suitable mucosal adjuvants has hindered progress in the development of efficient pulmonary vaccines, particle-based systems can provide an alternative approach for the safe and efficient delivery of subunit vaccines. In particular, the rational engineering of particulate vaccines with optimal physicochemical characteristics can produce long-term protective immunity. These protect antigens against enzymatic degradation, target antigen presenting cells and initiate optimal humoral and cellular immunity. This review will discuss our current understanding of pulmonary immunology and developments in fabricating particle characteristics that may evoke potent and durable pulmonary immunity.
Collapse
Affiliation(s)
- Nirmal Marasini
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| | - Lisa M Kaminskas
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| |
Collapse
|
30
|
Gheibi Hayat SM, Darroudi M. Nanovaccine: A novel approach in immunization. J Cell Physiol 2019; 234:12530-12536. [PMID: 30633361 DOI: 10.1002/jcp.28120] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023]
Abstract
Despite great advances in the field of vaccination, there are still needs for novel and effective vaccines because still no effective vaccines have been produced for some diseases such as malaria, acquired immune deficiency syndrome (AIDS), and tuberculosis. Furthermore, many of the existing vaccines have disadvantages such as failure to stimulate completely the immune system, in vivo instability, high toxicity, the need for cold chain, and multiple administrations. Nanotechnology has been raised as a powerful tool for solving these problems in this regard. Generally, nanovaccines are a new generation of vaccines using nanoparticles (NPs) as carriers and/or adjuvants. Due to the similar scale (size) between the NPs and pathogens, the immune system can be stimulated well, resulting in triggered cellular and humoral immunity responses. Other benefits of the nanovaccines include their better stability in blood flow to increase the shelf life in blood, enhanced immune system stimulation, no need for booster doses, no need to maintain the cold chain, and ability to create active targeting. In addition, nanovaccines have raised the hope to treat diseases such as rheumatoid arthritis, AIDS, malaria, and chronic autoimmune, and so forth.
Collapse
Affiliation(s)
- Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Darroudi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Malik A, Gupta M, Gupta V, Gogoi H, Bhatnagar R. Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. Int J Nanomedicine 2018; 13:7959-7970. [PMID: 30538470 PMCID: PMC6260144 DOI: 10.2147/ijn.s165876] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The application of natural carbohydrate polysaccharides for antigen delivery and its adjuvanation potential has garnered interest in the scientific community in the recent years. These biomaterials are considered favorable candidates for adjuvant development due to their desirable properties like enormous bioavailability, non-toxicity, biodegradability, stability, affordability, and immunostimulating ability. Chitosan is the one such extensively studied natural polymer which has been appreciated for its excellent applications in pharmaceuticals. Trimethyl chitosan (TMC), a derivative of chitosan, possesses these properties. In addition it has the properties of high aqueous solubility, high charge density, mucoadhesive, permeation enhancing (ability to cross tight junction), and stability over a range of ionic conditions which makes the spectrum of its applicability much broader. It has also been seen to perform analogously to alum, complete Freund’s adjuvant, incomplete Freund’s adjuvant, and cyclic guanosine monophosphate adjuvanation, which justifies its role as a potent adjuvant. Although many review articles detailing the applications of chitosan in vaccine delivery are available, a comprehensive review of the applications of TMC as an adjuvant is not available to date. This article provides a comprehensive overview of structural and chemical properties of TMC which affect its adjuvant characteristics; the efficacy of various delivery routes for TMC antigen combination; and the recent advances in the elucidation of its mechanism of action.
Collapse
Affiliation(s)
- Anshu Malik
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Vatika Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Himanshu Gogoi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| |
Collapse
|
32
|
Malik A, Gupta M, Mani R, Gogoi H, Bhatnagar R. Trimethyl Chitosan Nanoparticles Encapsulated Protective Antigen Protects the Mice Against Anthrax. Front Immunol 2018; 9:562. [PMID: 29616046 PMCID: PMC5870345 DOI: 10.3389/fimmu.2018.00562] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Anthrax is an era old deadly disease against which there are only two currently available licensed vaccines named anthrax vaccine adsorbed and precipitated (AVP). Though they can provide a protective immunity, their multiple side-effects owing to their ill-defined composition and presence of toxic proteins (LF and EF) of Bacillus anthracis, the causative organism of anthrax, in the vaccine formulation makes their widespread use objectionable. Hence, an anthrax vaccine that contains well-defined and controlled components would be highly desirable. In this context, we have evaluated the potential of various vaccine formulations comprising of protective antigen (PA) encapsulated trimethyl-chitosan nanoparticles (TMC-PA) in conjunction with either CpG-C ODN 2395 (CpG) or Poly I:C. Each formulation was administered via three different routes, viz., subcutaneous (SC), intramuscular (IM), and intraperitoneal in female BALB/c mice. Irrespective of the route of immunization, CpG or Poly I:C adjuvanted TMC-PA nanoparticles induced a significantly higher humoral response (total serum IgG and its isotypes viz., IgG1, IgG2a, and IgG2b), compared to their CpG or Poly I:C PA counterparts. This clearly demonstrates the synergistic behavior of CpG and Poly I:C with TMC nanoparticles. The adjuvant potential of TMC nanoparticles could be observed in all the three routes as the TMC-PA nanoparticles by themselves induced IgG titers (1-1.5 × 105) significantly higher than both CpG PA and Poly I:C PA groups (2-8 × 104). The effect of formulations on T-helper (Th) cell development was assessed by quantifying the Th1-dependant (TNF-α, IFN-γ, and IL-2), Th2-dependant (IL-4, IL-6, and IL-10), and Th17-type (IL-17A) cytokines. Adjuvanation with CpG and Poly I:C, the TMC-PA nanoparticles triggered a Th1 skewed immune response, as suggested by an increase in the levels of total IgG2a along with IFN-γ cytokine production. Interestingly, the TMC-PA group showed a Th2-biased immune response. Upon challenge with the B. anthracis Ames strain, CpG and Poly I:C adjuvanted TMC-PA nanoparticles immunized via the SC and IM routes showed the highest protective efficacy of ~83%. Altogether, the results suggest that CpG or Poly I:C adjuvanted, PA-loaded TMC nanoparticles could be used as an effective, non-toxic, second generation subunit-vaccine candidate against anthrax.
Collapse
Affiliation(s)
- Anshu Malik
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Mani
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Himanshu Gogoi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
33
|
Abkar M, Fasihi-Ramandi M, Kooshki H, Sahebghadam Lotfi A. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine 2017; 12:8769-8778. [PMID: 29263667 PMCID: PMC5732559 DOI: 10.2147/ijn.s149774] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Brucellosis is a group of closely associated zoonotic bacterial illnesses caused by members of the genus Brucella. B. melitensis Omp31 is a promising candidate for a subunit vaccine against brucellosis. This study surveyed the immunogenicity of Omp31 alone and with incomplete Freund’s adjuvant (Omp31-IFA) and N-trimethyl chitosan (TMC/Omp31) nanoparticles (NPs), as well as the effect of Omp31 immunization route on immunological responses and protection. After expression and purification, the recombinant Omp31 (rOmp31) was loaded onto TMC NPs by ionic gelation. The particle size, loading efficiency and in vitro release of the NPs were examined. Omp31-IFA was administered intraperitoneally, while TMC/Omp31 NPs were administered orally and intraperitoneally. According to the antibody subclasses and cytokine profile, intraperitoneal immunization by Omp31-IFA and TMC/Omp31 NPs induced T helper 1 (Th1) and Th1–Th2 immune responses, respectively. On the other hand, oral immunization with TMC/Omp31 NPs elicited a mixed Th1–Th17 immune response. Data obtained from the cell proliferation assay showed that vaccination with Omp31 stimulated a vigorous antigen-specific cell proliferative response, which could be further increased after oral immunization with TMC/Omp31 NPs. Vaccinated groups of mice when challenged with B. melitensis 16M were found to be significantly protected in the orally administered group in comparison with the intraperitoneally immunized mice. Results of this study indicated that the reason for high protection after oral vaccination can be via elicited Th17 response.
Collapse
Affiliation(s)
- Morteza Abkar
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz
| | | | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Turning the screw even further to increase microparticle retention and ocular bioavailability of associated drugs: The bioadhesion goal. Int J Pharm 2017; 531:167-178. [DOI: 10.1016/j.ijpharm.2017.08.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
|
35
|
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017; 530:128-138. [PMID: 28698066 DOI: 10.1016/j.ijpharm.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
Nasal administration of vaccines is convenient for the potential stimulation of mucosal and systemic immune protection. Moreover the easy accessibility of the intranasal route renders it optimal for pandemic vaccination. Nanoparticles have been identified as ideal delivery systems and adjuvants for vaccine application. Heterogeneous protocols have been used for animal studies. This complicates the understanding of the formulation influence on the immune response and the comparison of the different nanoparticles approaches developed. Moreover anatomical and immunological differences between rodents and humans provide an additional hurdle in the rational development of nasal nanovaccines. This review will give a comprehensive expertise of the state of the art in nasal nanovaccines in animals and humans focusing on the nanomaterial used.
Collapse
Affiliation(s)
- B Bernocchi
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France
| | - R Carpentier
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France.
| | - D Betbeder
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France; University of Artois, 62000 Arras, France
| |
Collapse
|
36
|
Kammona O, Bourganis V, Karamanidou T, Kiparissides C. Recent developments in nanocarrier-aided mucosal vaccination. Nanomedicine (Lond) 2017; 12:1057-1074. [PMID: 28440707 DOI: 10.2217/nnm-2017-0015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To date, most of the licensed vaccines for mucosal delivery are based on live-attenuated viruses which carry the risk of regaining their pathogenicity. Therefore, the development of efficient nonviral vectors allowing the induction of potent humoral and cell-mediated immunity is regarded as an imperative scientific challenge as well as a commercial breakthrough for the pharma industries. For a successful translation to the clinic, such nanocarriers should protect the antigens from mucosal enzymes, facilitate antigen uptake by microfold cells and allow the copresentation of robust, safe for human use, mucosal adjuvants to antigen-presenting cells. Finally, the developed formulations should exhibit accuracy regarding the administered dose, a major drawback of mucosal vaccines in comparison with parenteral ones.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| | - Vassilis Bourganis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Theodora Karamanidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece.,Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
37
|
Kulkarni AD, Patel HM, Surana SJ, Vanjari YH, Belgamwar VS, Pardeshi CV. N,N,N-Trimethyl chitosan: An advanced polymer with myriad of opportunities in nanomedicine. Carbohydr Polym 2017; 157:875-902. [DOI: 10.1016/j.carbpol.2016.10.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
|
38
|
Tu Y, Wang X, Lu Y, Zhang H, Yu Y, Chen Y, Liu J, Sun Z, Cui L, Gao J, Zhong Y. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret. Int J Nanomedicine 2016; 11:5549-5561. [PMID: 27822034 PMCID: PMC5087780 DOI: 10.2147/ijn.s109552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.
Collapse
Affiliation(s)
- Ye Tu
- Department of Medical Affairs, East Hospital, Tongji University School of Medicine; Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - Xinxia Wang
- Department of Pharmacy, East Hospital of Hepatobiliary Surgery
| | - Ying Lu
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - He Zhang
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - Yuan Yu
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - Yan Chen
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - Junjie Liu
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - Zhiguo Sun
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - Lili Cui
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Jing Gao
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| | - Yanqiang Zhong
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University
| |
Collapse
|
39
|
Yu W, Hu T. Conjugation with an Inulin–Chitosan Adjuvant Markedly Improves the Immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 Fusion Protein. Mol Pharm 2016; 13:3626-3635. [DOI: 10.1021/acs.molpharmaceut.6b00138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weili Yu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Hu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Bhavsar C, Momin M, Gharat S, Omri A. Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opin Drug Deliv 2016; 14:1189-1204. [DOI: 10.1080/17425247.2017.1241230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chintan Bhavsar
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
41
|
Bae HD, Lee J, Jin XH, Lee K. Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery. Mol Pharm 2016; 13:3196-205. [PMID: 27454469 DOI: 10.1021/acs.molpharmaceut.6b00408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nasal vaccination offers a promising alternative to intramuscular (i.m.) vaccination because it can induce both mucosal and systemic immunity. However, its major drawback is poor absorption of large antigens in the nasal epithelium. Protein transduction domains (PTDs), also called cell-penetrating peptides, have been proposed as vehicles for nasal delivery of therapeutic peptides and proteins. Here, we evaluated the potential of a mutant PTD derived from translationally controlled tumor protein (designated TCTP-PTD 13) as an antigen carrier for nasal vaccines. We first compared the l- and d-forms of TCTP-PTD 13 isomers (l- or d-TCTP-PTD 13) as antigen carriers. Studies in mice demonstrated that nasally administered mixtures of the model antigen ovalbumin (OVA) and d-TCTP-PTD 13 induced higher plasma IgG titers and secretory IgA levels in nasal washes than nasally administered OVA alone, OVA/l-TCTP-PTD 13, or i.m.-injected OVA. Plasma IgG subclass responses (IgG1 and IgG2a) of mice nasally administered OVA/d-TCTP-PTD 13 showed that the predominant IgG subclass was IgG1, indicating a Th2-biased immune response. We also used synthetic CpG oligonucleotides (CpG) as a Th1 immune response-inducing adjuvant. Nasally administered CpG plus OVA/d-TCTP-PTD 13 was superior in eliciting systemic and mucosal immune responses compared to those induced by nasally administered OVA/d-TCTP-PTD 13. Furthermore, the OVA/CpG/d-TCTP-PTD 13 combination skewed IgG1 and IgG2a profiles of humoral immune responses toward a Th1 profile. These findings suggest that TCTP-derived PTD is a suitable vehicle to efficiently carry antigens and to induce more powerful antigen-specific immune responses and a more balanced Th1/Th2 response when combined with a DNA adjuvant.
Collapse
Affiliation(s)
- Hae-Duck Bae
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| | - Xing-Hai Jin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| |
Collapse
|
42
|
Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation. Mar Drugs 2016; 14:md14050090. [PMID: 27187418 PMCID: PMC4882564 DOI: 10.3390/md14050090] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.
Collapse
|
43
|
Jirawutthiwongchai J, Klaharn IY, Hobang N, Mai-ngam K, Klaewsongkram J, Sereemaspun A, Chirachanchai S. Chitosan-phenylalanine-mPEG nanoparticles: From a single step water-based conjugation to the potential allergen delivery system. Carbohydr Polym 2016; 141:41-53. [DOI: 10.1016/j.carbpol.2015.12.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
|
44
|
Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother 2016; 12:1070-9. [PMID: 26752023 DOI: 10.1080/21645515.2015.1114195] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity.
Collapse
Affiliation(s)
- Fei Su
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,b Department of Veterinary Medicine, College of Animal Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Girishchandra B Patel
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Songhua Hu
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Wangxue Chen
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,c Department of Biology, Brock University , St. Catharines , Ontario , Canada
| |
Collapse
|
45
|
Schully KL, Bell MG, Prouty AM, Gallovic MD, Gautam S, Peine KJ, Sharma S, Bachelder EM, Pesce JT, Elberson MA, Ainslie KM, Keane-Myers A. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis. Int J Pharm 2015; 495:849-61. [PMID: 26428631 DOI: 10.1016/j.ijpharm.2015.09.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Melioidosis, a potentially lethal disease of humans and animals, is caused by the soil-dwelling bacterium Burkholderia pseudomallei. Due to B. pseudomallei's classification as a Tier 1 Select Agent, there is substantial interest in the development of an effective vaccine. Yet, despite decades of research, no effective target, adjuvant or delivery vehicle capable of inducing protective immunity against B. pseudomallei infection has been identified. We propose a microparticulate delivery vehicle comprised of the novel polymer acetalated dextran (Ac-DEX). Ac-DEX is an acid-sensitive biodegradable carrier that can be fabricated into microparticles (MPs) that are relatively stable at pH 7.4, but rapidly degrade after phagocytosis by antigen presenting cells where the pH can drop to 5.0. As compared to other biomaterials, this acid sensitivity has been shown to enhance cross presentation of subunit antigens. To evaluate this platform as a delivery system for a melioidosis vaccine, BALB/c mice were vaccinated with Ac-DEX MPs separately encapsulating B. pseudomallei whole cell lysate and the toll-like receptor (TLR) 7/8 agonist resiquimod. This vaccine elicited a robust antibody response that included both Th1 and Th2 immunity. Following lethal intraperitoneal challenge with B. pseudomallei 1026b, vaccinated mice demonstrated a significant delay to time of death compared to untreated mice. The formulation, however, demonstrated incomplete protection indicating that lysate protein offers limited value as an antigen. Nevertheless, our Ac-DEX MPs may offer an effective delivery vehicle for a subunit B. psuedomallei vaccine.
Collapse
Affiliation(s)
- K L Schully
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M G Bell
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - A M Prouty
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M D Gallovic
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - S Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - K J Peine
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - S Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - E M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J T Pesce
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M A Elberson
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - K M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - A Keane-Myers
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| |
Collapse
|
46
|
Marć MA, Domínguez-Álvarez E, Gamazo C. Nucleic acid vaccination strategies against infectious diseases. Expert Opin Drug Deliv 2015; 12:1851-65. [PMID: 26365499 DOI: 10.1517/17425247.2015.1077559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Gene vaccines are an interesting and emerging alternative for the prevention of infectious diseases, as well as in the treatment of other pathologies including cancer, allergies, autoimmune diseases, or even drug dependencies. When applied to the target organism, these vaccines induce the expression of encoded antigens and elicit the corresponding immune response, with the potential ability of being able to induce antibody-, helper T cell-, and cytotoxic T cell-mediated immune responses. AREAS COVERED Special attention is paid to the variety of adjuvants that may be co-administered to enhance and/or to modulate immune responses, and to the methods of delivery. Finally, this article reviews the efficacy data of gene vaccines against infectious diseases released from current clinical trials. EXPERT OPINION Taken together, this approach will have a major impact on future strategies for the prevention of infectious diseases. Better-designed nucleic acid constructs, novel delivery technologies, as well as the clarification of the mechanisms for antigen presentation will improve the potential applications of this vaccination strategy against microbial pathogens.
Collapse
Affiliation(s)
- Małgorzata Anna Marć
- a 1 Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry , Medyczna 9, PL 30-688 Cracow, Poland
| | - Enrique Domínguez-Álvarez
- b 2 Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs , Medyczna 9, PL 30-688 Cracow, Poland
| | - Carlos Gamazo
- c 3 University of Navarra, Institute of Tropical Health (ISTUN), Department of Microbiology and Parasitology , Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
47
|
Abstract
Immunotherapy is a promising treatment modality for cancer as it can promote specific and durable anti-cancer responses. However, limitations to current approaches remain. Therapeutics administered as soluble injections often require high doses and frequent re-dosing, which can result in systemic toxicities. Soluble bolus-based vaccine formulations typically elicit weak cellular immune responses, limiting their use for cancer. Current methods for ex vivo T cell expansion for adoptive T cell therapies are suboptimal, and achieving high T cell persistence and sustained functionality with limited systemic toxicity following transfer remains challenging. Biomaterials can play important roles in addressing some of these limitations. For example, nanomaterials can be employed as vehicles to deliver immune modulating payloads to specific tissues, cells, and cellular compartments with minimal off-target toxicity, or to co-deliver antigen and danger signal in therapeutic vaccine formulations. Alternatively, micro-to macroscale materials can be employed as devices for controlled molecular and cellular delivery, or as engineered microenvironments for recruiting and programming immune cells in situ. Recent work has demonstrated the potential for combining cancer immunotherapy and biomaterials, and the application of biomaterials to cancer immunotherapy is likely to enable the development of effective next-generation platforms. This review discusses the application of engineered materials for the delivery of immune modulating agents to the tumor microenvironment, therapeutic cancer vaccination, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Alexander S. Cheung
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J. Mooney
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
48
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 560] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
49
|
Cordeiro AS, Alonso MJ, de la Fuente M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol Adv 2015; 33:1279-93. [PMID: 26049133 PMCID: PMC7127432 DOI: 10.1016/j.biotechadv.2015.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022]
Abstract
Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain; Nano-oncologicals Lab, Translational Medical Oncology group, Health Research Institute of Santiago de Compostela (IDIS), University Hospital Complex of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-oncologicals Lab, Translational Medical Oncology group, Health Research Institute of Santiago de Compostela (IDIS), University Hospital Complex of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain.
| |
Collapse
|
50
|
Dai C, Kang H, Yang W, Sun J, Liu C, Cheng G, Rong G, Wang X, Wang X, Jin Z, Zhao K. O-2'-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr Polym 2015; 130:280-9. [PMID: 26076628 DOI: 10.1016/j.carbpol.2015.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 12/31/2022]
Abstract
A novel complex chitosan derivative, O-2'-hydroxypropyltrimethyl ammonium chloride chitosan (O-2'-HACC), was synthesized and used to make nanoparticles as a delivery vehicle for live attenuated Newcastle disease vaccine. We found that O-2'-HACC had high antimicrobial activity, low toxicity, and a high safety level. Newcastle disease virus (NDV) was then encapsulated in the O-2'-HACC nanoparticles (NDV/La Sota-O-2'-HACC-NPs) by the ionic crosslinking method, and the properties of the resulting nanoparticles were determined by transmission electron microscopy, Zeta potential analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and X-ray diffraction. NDV/La Sota-O-2'-HACC-NPs had regular spherical morphologies and high stability, with an encapsulation efficiency of 95.68 ± 2.2% and a loading capacity of 58.75 ± 4.03%. An in vitro release assay indicated that release of NDV from NDV/La Sota-O-2'-HACC-NPs occurred slowly. Specific pathogen-free chickens immunized with NDV/La Sota-O-2'-HACC-NPs intranasally had much stronger cellular, humoral and mucosal immune responses than did those immunized intramuscularly or with live attenuated Newcastle disease vaccine. NDV/La Sota-O-2'-HACC-NPs are a novel drug delivery carrier with immense potential in medical applications.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China; Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, Heilongjiang University, Harbin 150080, China
| | - Hong Kang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Wanqiu Yang
- Harbin Pharmaceutical Group Bio-Vaccine Co., Ltd., Harbin 150069, China
| | - Jinyan Sun
- Animal Husbandry Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chunlong Liu
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guogang Cheng
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, Heilongjiang University, Harbin 150080, China
| | - Guangyu Rong
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Xiaohua Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Xin Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, Heilongjiang University, Harbin 150080, China
| | - Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|