1
|
Huang Q, Xu C, Deng F, He J, Li J, Qin P, Tan L. Association of maternal urinary pesticide metabolites with neonatal birth outcomes and the moderating effects of iodine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118261. [PMID: 40315750 DOI: 10.1016/j.ecoenv.2025.118261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Previous studies have demonstrated the effects of prenatal pesticide exposure on birth outcomes. How to mitigate the harmful effects of pesticide exposure is of great practical significance. The micronutrient iodine is a cornerstone for the growth and development of newborns and throughout their lifespan. In this study, we investigated the association of urinary pesticide metabolite and urinary iodine concentrations with neonatal birth weight, birth length, and ponderal index in 781 mother-newborn pairs. The indirect role of urinary iodine in the associations between urinary pesticide metabolites and neonatal birth indicators was assessed by moderation analysis. The geometric mean concentration of total pesticide metabolites was 10.32 μg/L and the median urinary iodine concentration was 192.63 μg/L among the pregnant women. The mean birth length and birth weight of the newborns were 49.82 cm and 3186.94 g, respectively. Restricted cubic spline analysis revealed significant non-linear associations of 2,4-dichlorophenoxyacetic acid and Trans-dichlorovinyl-dimethylcyclopropane carboxylic acid with birth weight. The Bayesian kernel-machine regression analysis did not show a significant overall effect of mixed pesticide exposure on neonatal birth outcomes, suggesting that the effects of individual metabolites may be more critical than overall pesticide exposure. The moderation analysis results showed that the impact of pesticide metabolites on the ponderal index varied from a significant negative to a non-significant or significant positive correlation as urinary iodine concentrations increased. The results demonstrated that ensuring adequate iodine levels may help mitigate the adverse effects of pesticide exposure on birth outcomes.
Collapse
Affiliation(s)
- Qinxin Huang
- School of Public Health, Southern Medical University, Guangzhou 510515, China; Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Conghui Xu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Juntao Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- School of Public Health, Southern Medical University, Guangzhou 510515, China; Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| |
Collapse
|
2
|
Gabur GD, Dumitrașcu AI, Teodosiu C, Cotea VV, Gabur I. Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides. TOXICS 2025; 13:408. [PMID: 40423487 DOI: 10.3390/toxics13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/10/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and anthropogenic sources. Traditional remediation techniques, such as chemical precipitation and ion exchange, are effective but often costly and challenging to apply at a large scale. In recent years, grape pomace-a winemaking by-product rich in bioactive compounds-has emerged as a promising, low-cost biosorbent for the removal of such pollutants. Its high adsorption capacity, environmental friendliness, and availability make it a strong candidate for water and food decontamination processes. This study evaluates grape pomace and its biochar as sustainable biosorbents for heavy metal removal from water and soil, examining their adsorption efficiency, adsorption mechanisms, environmental benefits, advantages, limitations, and perspectives for future industrial-scale applications.
Collapse
Affiliation(s)
- Georgiana-Diana Gabur
- Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| | - Anamaria-Ioana Dumitrașcu
- Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania
| | - Valeriu V Cotea
- Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| | - Iulian Gabur
- Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania
| |
Collapse
|
3
|
Kumari P, Lungu-Mitea S, Novák J, Hilscherová K. Advancing in vitro assessment of iodide uptake inhibition: integrating a novel biotransformation pretreatment step. Arch Toxicol 2025:10.1007/s00204-025-04034-y. [PMID: 40355721 DOI: 10.1007/s00204-025-04034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/19/2025] [Indexed: 05/14/2025]
Abstract
Thyroid hormones (TH) are essential for vertebrate development, growth, and metabolism. The increasing prevalence of anthropogenic chemicals with TH-disrupting potential highlights the urgent need for advanced methods to assess their impact on TH homeostasis. Inhibition of the sodium-iodide symporter (NIS) has been identified as a key molecular initiating event disrupting the TH system across species, with significant relevance for diagnostic and therapeutic applications in various carcinomas. This study presents in vitro bioassays for evaluating the effects of compounds on iodide uptake into cells, a critical step in TH production mediated by NIS. Two novel stably transfected human cell lines overexpressing human NIS were employed along with a rat thyroid cell model FRTL-5, using colorimetric Sandell-Kolthoff (SK) reaction for iodide detection. The results from 23 model compounds demonstrate comparability across various in vitro models and radioactivity-based assays. To enhance physiological relevance, an external biotransformation system (BTS) was integrated and optimized for live-cell compatibility without inducing cytotoxicity or interfering with the assay. Compounds identified as NIS inhibitors were evaluated using the BTS-augmented assay, which revealed that metabolic activity mitigated the inhibitory effects of some chemicals. The augmented assay exhibited strong concordance with in vivo and in silico biotransformation data. Protein sequence alignment confirmed high conservation of NIS functional domains across vertebrates, reinforcing the cross-species applicability of the findings. The SK-based NIS assay, with optional BTS integration, represents a sensitive, robust, and high-throughput amendable alternative to radioactivity-based methods, for characterizing the impacts of individual compounds and complex environmental mixtures on TH homeostasis.
Collapse
Affiliation(s)
- Puja Kumari
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, Kotlarska 2, 625 00, Brno, Czech Republic
| | - Sebastian Lungu-Mitea
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, Kotlarska 2, 625 00, Brno, Czech Republic
- Department of Biology and Environmental Science, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Jiří Novák
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, Kotlarska 2, 625 00, Brno, Czech Republic
| | - Klára Hilscherová
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, Pavilion A29, Kotlarska 2, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Petrarca MH, Tfouni SAV. Endocrine-disrupting pesticides in infant formulas marketed in Brazil: Interference-free GC-MS analysis and early-life dietary exposure assessment. Food Res Int 2025; 208:116172. [PMID: 40263836 DOI: 10.1016/j.foodres.2025.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Endocrine-disrupting compounds (EDCs) include ubiquitous and persistent environmental contaminants that interfere with the endocrine system's functions. Many of these compounds are used as acaricides, fungicides, herbicides, and insecticides in agricultural fields worldwide. Considering the serious implications of exposure to EDCs in the first months of life and the few works on pesticide residues in infant formulas, the present research focused exclusively on endocrine-disrupting pesticides in infant formulas intended for babies below 1 year old available in the Brazilian market. An accurate, sensitive, and selective gas chromatography-mass spectrometry (GC-MS) method was successfully validated, and then, applied to infant formula samples. The limits of detection and quantification were low enough to meet the maximum residue level (MRL) of 10.0 μg/kg established for infant formula. Recoveries varied from 86.3 to 119.8 % and precision values, under repeatability and within-laboratory reproducibility, were ≤ 19.7 %. Another unique feature of the study was the detection and strategies to remove a potential matrix-interfering compound, which shared the same ions monitored for malathion in GC-MS analysis, thus preventing false positives. Among the 60 infant formula samples analysed, dimethoate, an organophosphate insecticide, was detected in five samples, with one soy-based infant formula exceeding the MRL. Based on a deterministic approach, the estimated daily intakes were within the acceptable daily intake (ADI) values and below the acute reference dose (ARfD), indicating no major health concerns.
Collapse
Affiliation(s)
- Mateus Henrique Petrarca
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos - ITAL, Avenida Brasil n 2880, 13070-178, Campinas, SP, Brazil.
| | - Silvia Amelia Verdiani Tfouni
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos - ITAL, Avenida Brasil n 2880, 13070-178, Campinas, SP, Brazil
| |
Collapse
|
5
|
Apú N, Rommes F, Alvarado-Arias M, Méndez-Rivera M, Lizano-Fallas V. Endocrine-disrupting pesticide exposure relevant to reproductive health: a case study from Costa Rica. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:559. [PMID: 40237939 PMCID: PMC12003610 DOI: 10.1007/s10661-025-14011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Global pesticide use has increased significantly over the past decade, leading to greater exposure to contaminants and associated health risks. Endocrine-disrupting pesticides have gained attention due to their strong association with human reproductive impairments and rising global infertility rates. In Costa Rica, studies have reported reduced fertility among agricultural workers and a higher prevalence of male infertility in regions with intensive pesticide use. However, the prioritization of pesticides detected in human fluids, based on their potential impact on reproductive health, has not been conducted. Here, analyzing human biomonitoring studies in the country over the last 25 years, 13 pesticides were identified and prioritized. Mancozeb ranked highest (14.8%), followed by dieldrin (12.1%) and chlorothalonil (12.0%). Eight criteria were used for prioritization, with non-carcinogenic risk, reported reproductive effects, and endocrine disruptor classification as key factors. This comprehensive approach highlights how multiple criteria collectively inform pesticide prioritization in relation to reproductive health risks. The findings indicated that while Costa Rica is a regional leader in pesticide biomonitoring, significant gaps remain, including limited data on unstudied pesticides and general population exposures. Establishing robust biomonitoring programs and public health surveillance systems to generate updated data and support evidence-based prevention policies is recommended. Additionally, the results of this study provide a valuable framework for guiding future research on the potential effects of pesticide mixtures.
Collapse
Affiliation(s)
- Navilla Apú
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José, 2060, Costa Rica
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - François Rommes
- Département Agronomique, Haute Ėcole Charlemagne Huy, Huy, 4500, Belgium
| | - Maricruz Alvarado-Arias
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
6
|
Murthy MK. Environmental dynamics of pesticides: sources, impacts on amphibians, nanoparticles, and endophytic microorganism remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7860-7893. [PMID: 40069476 DOI: 10.1007/s11356-025-36216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Pesticides, which are widely used in agriculture, have elicited notable environmental concern because they persist and may be toxic. The environmental dynamics of pesticides were reviewed with a focus on their sources, impacts on amphibians, and imminent remediation options. Pesticides are directly applied in ecosystems, run off into water bodies, are deposited in the atmosphere, and often accumulate in the soil and water bodies. Pesticide exposure is particularly problematic for amphibians, which are sensitive indicators of the environment's health and suffer from physiological, behavioral, and developmental disruption that has "pushed them to the brink of extinction." Finally, this review discusses the nanoparticles that can be used to tackle pesticide pollution. However, nanoparticles with large surface areas and reactivity have the potential to degrade or adsorb pesticide residues during sustainable remediation processes. Symbiotic microbes living inside plants, known as endophytic microorganisms, can detoxify pesticides. Reducing pesticide bioavailability improves plant resilience by increasing the number of metabolizing microorganisms. Synergy between nanoparticle technology and endophytic microorganisms can mitigate pesticide contamination. Results show that Interdisciplinary research is necessary to improve the application of these strategies to minimize the ecological risk of pesticides. Eco-friendly remediation techniques that promote sustainable agricultural practices, while protecting amphibian populations and ecosystem health, have advanced our understanding of pesticide dynamics.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab - 140401, India.
| |
Collapse
|
7
|
Valverde D, Beal R, Gonçalves PFB, Borin AC. Excited state relaxation mechanisms of paracetamol and acetanilide. J Comput Chem 2025; 46:e27521. [PMID: 39495637 DOI: 10.1002/jcc.27521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024]
Abstract
The photochemical pathways of acetanilide and paracetamol were investigated using the XMS-CASPT2 quantum chemical method and the cc-pVDZ (correlation consistent polarized valence double- ζ ) basis set. In both compounds, the bright state is the second excited state, designated as a1 ( ππ * La) state. Through a detailed exploration of the potential energy profile and the conical intersection structure between the1 ( ππ * La) and ground states, we gained a better understanding of how cleavage might occur in both molecules upon photoexcitation. Other potential relaxation mechanisms, including crossings with the dark1 n π * and1 ( ππ * La) states, are also discussed in detail.
Collapse
Affiliation(s)
- Danillo Valverde
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Roiney Beal
- Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | | | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Yilmaz B, Erdogan CS, Sandal S, Kelestimur F, Carpenter DO. Obesogens and Energy Homeostasis: Definition, Mechanisms of Action, Exposure, and Adverse Effects on Human Health. Neuroendocrinology 2024; 115:72-100. [PMID: 39622213 DOI: 10.1159/000542901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Obesity is a major risk factor for noncommunicable diseases and is associated with a reduced life expectancy of up to 20 years, as well as with other consequences such as unemployment and increased economic burden for society. It is a multifactorial disease, and physiopathology of obesity involves dysregulated calorie utilization and energy balance, disrupted homeostasis of appetite and satiety, lifestyle factors including sedentary lifestyle, lower socioeconomic status, genetic predisposition, epigenetics, and environmental factors. Some endocrine-disrupting chemicals (EDCs) have been proposed as "obesogens" that stimulate adipogenesis leading to obesity. In this review, definition of obesogens, their adverse effects, underlying mechanisms, and metabolic implications will be updated and discussed. SUMMARY Disruption of lipid homeostasis by EDCs involves multiple mechanisms including increase in the number and size of adipocytes, disruption of endocrine-regulated adiposity and metabolism, alteration of hypothalamic regulation of appetite, satiety, food preference and energy balance, and modification of insulin sensitivity in the liver, skeletal muscle, pancreas, gastrointestinal system, and the brain. At a cellular level, obesogens can exert their endocrine disruptive effects by interfering with peroxisome proliferator-activated receptors and steroid receptors. Human exposure to chemical obesogens mainly occurs by ingestion and, to some extent, by inhalation and dermal uptake, usually in an unconscious manner. Persistent pollutants are lipophilic features; thus, they bioaccumulate in adipose tissue. KEY MESSAGES Although there are an increasing number of reports studying the effects of obesogens, their mechanisms of action remain to be elucidated. In addition, epidemiological studies are needed in order to evaluate human exposure to obesogens.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Clinical Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - David O Carpenter
- Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
9
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Coleman AL, Edmands S. Phylogeny predicts sensitivity in aquatic animals for only a minority of chemicals. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:921-936. [PMID: 39037520 PMCID: PMC11399186 DOI: 10.1007/s10646-024-02791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
There are substantial gaps in our empirical knowledge of the effects of chemical exposure on aquatic life that are unlikely to be filled by traditional laboratory toxicity testing alone. One possible alternative of generating new toxicity data is cross-species extrapolation (CSE), a statistical approach in which existing data are used to predict the effect of a chemical on untested species. Some CSE models use relatedness as a predictor of chemical sensitivity, but relatively little is known about how strongly shared evolutionary history influences sensitivity across all chemicals. To address this question, we conducted a survey of phylogenetic signal in the toxicity data from aquatic animal species for a large set of chemicals using a phylogeny inferred from taxonomy. Strong phylogenetic signal was present in just nine of thirty-six toxicity datasets, and there were no clear shared properties among those datasets with strong signal. Strong signal was rare even among chemicals specifically developed to target insects, meaning that these chemicals may be equally lethal to non-target taxa, including chordates. When signal was strong, distinct patterns of sensitivity were evident in the data, which may be informative when assembling toxicity datasets for regulatory use. Although strong signal does not appear to manifest in aquatic toxicity data for most chemicals, we encourage additional phylogenetic evaluations of toxicity data in order to guide the selection of CSE tools and as a means to explore the patterns of chemical sensitivity across the broad diversity of life.
Collapse
Affiliation(s)
- Alice L Coleman
- University of Southern California Department of Biological Sciences, Los Angeles, CA, USA.
| | - Suzanne Edmands
- University of Southern California Department of Biological Sciences, Los Angeles, CA, USA
| |
Collapse
|
12
|
Chen R, Liu T, Deng D, Huang L, Min M, Xiao X. Review: Progress towards research on the toxicology of pyrimethanil. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109940. [PMID: 38777003 DOI: 10.1016/j.cbpc.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Pyrimethanil is a persistent environmental pollutant that poses a significant threat to human health. In this review, we summarize the fungicidal mechanism of pyrimethanil and its toxicological effects on aquatic organisms and mammals, as well as its impact on growth and development as an endocrine disruptor. Additionally, we investigate the metabolism of pyrimethanil in mammals and its molecular mechanism in the occurrence of Alzheimer's disease. Furthermore, this review outlines the influence of climate change on the toxicity of pyrimethanil, emphasizing the need to consider the impact of mixtures of multiple compounds on human health. Finally, we propose several promising future directions for pyrimethanil research, believing that there is a better understanding of the interaction between pyrimethanil and organisms, as well as the development of techniques to remove pyrimethanil, may be the best approach to eliminating the threat posed by this compound.
Collapse
Affiliation(s)
- Risi Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Tingting Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Dan Deng
- Gannan Health Vocational College, Ganzhou 341000, Jiangxi, China
| | - Linzhe Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Meixin Min
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; Provincal Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou 341000, Jiangxi, China; Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
13
|
Li X, Zhang F, Zheng L, Guo J. Advancing ecotoxicity assessment: Leveraging pre-trained model for bee toxicity and compound degradability prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134828. [PMID: 38876015 DOI: 10.1016/j.jhazmat.2024.134828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The prediction of ecological toxicity plays an increasingly important role in modern society. However, the existing models often suffer from poor performance and limited predictive capabilities. In this study, we propose a novel approach for ecological toxicity assessment based on pre-trained models. By leveraging pre-training techniques and graph neural network models, we establish a highperformance predictive model. Furthermore, we incorporate a variational autoencoder to optimize the model, enabling simultaneous discrimination of toxicity to bees and molecular degradability. Additionally, despite the low similarity between the endogenous hormones in bees and the compounds in our dataset, our model confidently predicts that these hormones are non-toxic to bees, which further strengthens the credibility and accuracy of our model. We also discovered the negative correlation between the degradation and bee toxicity of compounds. In summary, this study presents an ecological toxicity assessment model with outstanding performance. The proposed model accurately predicts the toxicity of chemicals to bees and their degradability capabilities, offering valuable technical support to relevant fields.
Collapse
Affiliation(s)
- Xinkang Li
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangzhen Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Zelixir Biotech Company Ltd. Shanghai, China.
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao.
| |
Collapse
|
14
|
Mei L, Xia X, Cao J, Zhao Y, Huang H, Li Y, Zhang Z. Degradation of Three Herbicides and Effect on Bacterial Communities under Combined Pollution. TOXICS 2024; 12:562. [PMID: 39195664 PMCID: PMC11360099 DOI: 10.3390/toxics12080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Pesticide residues in soil, especially multiple herbicide residues, cause a series of adverse effects on soil properties and microorganisms. In this work, the degradation of three herbicides and the effect on bacterial communities under combined pollution was investigated. The experimental results showed that the half-lives of acetochlor and prometryn significantly altered under combined exposure (5.02-11.17 d) as compared with those of individual exposure (4.70-6.87 d) in soil, suggesting that there was an antagonistic effect between the degradation of acetochlor and prometryn in soil. No remarkable variation in the degradation rate of atrazine with half-lives of 6.21-6.85 d was observed in different treatments, indicating that the degradation of atrazine was stable. 16S rRNA high-throughput sequencing results showed that the antagonistic effect of acetochlor and prometryn on the degradation rate under combined pollution was related to variation of the Sphingomonas and Nocardioide. Furthermore, the potential metabolic pathways of the three herbicides in soil were proposed and a new metabolite of acetochlor was preliminarily identified. The results of this work provide a guideline for the risk evaluation of combined pollution of the three herbicides with respect to their ecological effects in soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaoxian Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China (X.X.); (Y.L.)
| |
Collapse
|
15
|
Chwoyka C, Linhard D, Durstberger T, Zaller JG. Ornamental plants as vectors of pesticide exposure and potential threat to biodiversity and human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49079-49099. [PMID: 39044056 PMCID: PMC11310276 DOI: 10.1007/s11356-024-34363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
The production of conventional ornamental plants is pesticide-intensive. We investigated whether pesticide active ingredients (AIs) are still present in ornamentals at the time of purchase and assessed their potential ecotoxicity to non-target organisms. We purchased 1000 pot plants and 237 cut flowers of different species from garden centers in Austria and Germany between 2011 and 2021 and analyzed them for up to 646 AIs. Ecotoxicological risks of AIs were assessed by calculating toxic loads for honeybees (Apis mellifera), earthworms (Eisenia fetida), birds (Passer domesticus), and mammals (Rattus norvegicus) based on the LD50 values of the detected AIs. Human health risks of AIs were assessed on the basis of the hazard statements of the Globally Harmonized System. Over the years, a total of 202 AIs were detected in pot plants and 128 AIs in cut flowers. Pesticide residues were found in 94% of pot plants and 97% of cut flowers, with cut flowers containing about twice as many AIs (11.0 ± 6.2 AIs) as pot plants (5.8 ± 4.0 AIs). Fungicides and insecticides were found most frequently. The ecotoxicity assessment showed that 47% of the AIs in pot plants and 63% of the AIs in cut flowers were moderately toxic to the considered non-target organisms. AIs found were mainly toxic to honeybees; their toxicity to earthworms, birds, and mammals was about 105 times lower. Remarkably, 39% of the plants labeled as "bee-friendly" contained AIs that were toxic to bees. More than 40% of pot plants and 72% of cut flowers contained AIs classified as harmful to human health. These results suggest that ornamental plants are vectors for potential pesticide exposure of consumers and non-target organisms in home gardens.
Collapse
Affiliation(s)
- Cecily Chwoyka
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, BOKU University, 1180, Vienna, Austria
| | - Dominik Linhard
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070, Vienna, Austria
| | - Thomas Durstberger
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070, Vienna, Austria
| | - Johann G Zaller
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, BOKU University, 1180, Vienna, Austria.
| |
Collapse
|
16
|
Dobrowolski H, Kopczyńska K, Kazimierczak R, Rembiałkowska E, Włodarek D. Organic Food in Athletes Diet-Narrative Review of Alternative Products in Sports Nutrition. Nutrients 2024; 16:2347. [PMID: 39064790 PMCID: PMC11279679 DOI: 10.3390/nu16142347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Athletes are characterized by special nutritional needs. Meeting their dietary needs associated with intensive exercise is a prerequisite for effective training and success in sports competitions. Hence, it is important to supply key performance nutrients, such as macronutrients, antioxidants, calcium, vitamin D, or iron, in adequate quantities. The increased need for these nutrients makes it necessary to look for food products on the market that more fully cover these needs. Such products may include organic foods. According to research, they have unique properties and are richer in selected nutrients, such as antioxidants. Hence, the aim of this review was to analyze the available literature as to whether organic foods have the potential to more fully cover the increased nutritional requirements of athletes for selected nutrients compared to conventionally produced foods. A narrative review of current literature was carried out. As the analysis showed, organic foods are characterized by a higher content of antioxidant bioactive compounds, a higher content of n-3 fatty acids, a better n:3/n:6 ratio, and a more optimal amino acid composition, which may result in an appropriate dietary ration design for athletes. In conclusion, organic food appears to be an interesting alternative to meet the special nutritional needs of professional and amateur athletes.
Collapse
Affiliation(s)
- Hubert Dobrowolski
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59 Str., 01-043 Warsaw, Poland
| | - Klaudia Kopczyńska
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c Str., 02-776 Warsaw, Poland; (K.K.); (R.K.); (E.R.)
| | - Renata Kazimierczak
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c Str., 02-776 Warsaw, Poland; (K.K.); (R.K.); (E.R.)
| | - Ewa Rembiałkowska
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c Str., 02-776 Warsaw, Poland; (K.K.); (R.K.); (E.R.)
| | - Dariusz Włodarek
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c Str., 02-776 Warsaw, Poland;
| |
Collapse
|
17
|
Jiang Y, Zhu K, Hou J, Dai Q, Li Y, Li K, Deng Y, Zhu L, Jia H. Unlocking high-efficiency decontamination by building a novel heterogeneous catalytic reduction system of thiourea dioxide/biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134471. [PMID: 38691994 DOI: 10.1016/j.jhazmat.2024.134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Herein, we reported a new contaminant purification paradigm, which enabled highly efficient reductive denitration and dechlorination using a green, stable reducing agent thiourea dioxide (TDO) coupled with biochar (BC) over a wide pH range under anoxic conditions. Specifically, BC acted as both activators and electron shuttles for TDO decomposition to achieve complete anoxic degradation of p-nitrophenol (PNP), p-nitroaniline, 4-chlorophenol and 2,4-dichlorophenol within 2 h. During this process, multiple strongly reducing species (i.e., SO22-, SO2•- and e-/H•) were generated in BC/TDO systems, accounting for 13.3%, 9.7% and 75.5% of PNP removal, respectively. While electron transfer between TDO and H+ or contaminants mediated by BC led to H• generation and contaminant reduction. These processes depended on the electron-accepting capacity and electron-conducting domains of biochar. Significantly, the BC/TDO systems were highly efficient at a pH of 2.0-8.0, especially under acidic conditions, which performed robustly in common natural water constituents.
Collapse
Affiliation(s)
- Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Jiayi Hou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qingyang Dai
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yuegen Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
18
|
Uwamahoro C, Jo JH, Jang SI, Jung EJ, Lee WJ, Bae JW, Kwon WS. Assessing the Risks of Pesticide Exposure: Implications for Endocrine Disruption and Male Fertility. Int J Mol Sci 2024; 25:6945. [PMID: 39000054 PMCID: PMC11241045 DOI: 10.3390/ijms25136945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.
Collapse
Affiliation(s)
- Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Jae-Hwan Jo
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
19
|
Xiong Y, Ma X, He B, Zhi J, Liu X, Wang P, Zhou Z, Liu D. Multifaceted Effects of Subchronic Exposure to Chlorfenapyr in Mice: Implications from Serum Metabolomics, Hepatic Oxidative Stress, and Intestinal Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7423-7437. [PMID: 38502791 DOI: 10.1021/acs.jafc.3c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1β, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.
Collapse
Affiliation(s)
- Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoran Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingying He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianwen Zhi
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Wang H, Zeng J, Dai R, Wang Z. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5878-5888. [PMID: 38498471 DOI: 10.1021/acs.est.3c08523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Data-driven machine learning (ML) provides a promising approach to understanding and predicting the rejection of trace organic contaminants (TrOCs) by polyamide (PA). However, various confounding variables, coupled with data scarcity, restrict the direct application of data-driven ML. In this study, we developed a data-knowledge codriven ML model via domain-knowledge embedding and explored its application in comprehending TrOC rejection by PA membranes. Domain-knowledge embedding enhanced both the predictive performance and the interpretability of the ML model. The contribution of key mechanisms, including size exclusion, charge effect, hydrophobic interaction, etc., that dominate the rejections of the three TrOC categories (neutral hydrophilic, neutral hydrophobic, and charged TrOCs) was quantified. Log D and molecular charge emerge as key factors contributing to the discernible variations in the rejection among the three TrOC categories. Furthermore, we quantitatively compared the TrOC rejection mechanisms between nanofiltration (NF) and reverse osmosis (RO) PA membranes. The charge effect and hydrophobic interactions possessed higher weights for NF to reject TrOCs, while the size exclusion in RO played a more important role. This study demonstrated the effectiveness of the data-knowledge codriven ML method in understanding TrOC rejection by PA membranes, providing a methodology to formulate a strategy for targeted TrOC removal.
Collapse
Affiliation(s)
- Hejia Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Coelho N, Camarinho R, Garcia P, Rodrigues AS. Histological evidence of hypothyroidism in mice chronically exposed to conventional farming. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104387. [PMID: 38364936 DOI: 10.1016/j.etap.2024.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Worldwide, disorders of the thyroid gland are a growing concern; such can be caused by exposure to contaminants, including agrochemicals used in conventional agriculture, which act as endocrine disruptors. The purpose of this study is to evaluate whether or not exposure to an environment with conventional agriculture leads to thyroid disruption. Mus musculus were used as bioindicator species, captured in two sites: a farm where conventional agriculture is practiced, and a place without agriculture. Thyroid histomorphometric and morphologic data were analyzed. The impacts of the agricultural environment over the thyroid were revealed, as indications of hypothyroidism were observed in exposed mice: the area and volume of epithelial cells were much lower. Alterations in thyroid histomorphology were also observed: lower follicular sphericity, irregularly delimited epithelium and increased exfoliation into the colloid. These results highlight the need for transition from current conventional agricultural systems towards organic systems.
Collapse
Affiliation(s)
- Nádia Coelho
- FCT, Faculty of Sciences and Technology, University of the Azores, Ponta Delgada 9501-801, Portugal.
| | - Ricardo Camarinho
- FCT, Faculty of Sciences and Technology, University of the Azores, Ponta Delgada 9501-801, Portugal; IVAR, Institute of Volcanology and Risks Assessment, University of the Azores, Ponta Delgada 9501-801, Portugal.
| | - Patrícia Garcia
- FCT, Faculty of Sciences and Technology, University of the Azores, Ponta Delgada 9501-801, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Azorean Biodiversity Group, University of the Azores, Ponta Delgada 9501-801, Portugal.
| | - Armindo S Rodrigues
- FCT, Faculty of Sciences and Technology, University of the Azores, Ponta Delgada 9501-801, Portugal; IVAR, Institute of Volcanology and Risks Assessment, University of the Azores, Ponta Delgada 9501-801, Portugal.
| |
Collapse
|
22
|
Yu Z, Jin X, Guo Y, Liu Q, Xiang W, Zhou S, Wang J, Yang D, Wu HB, Wang J. Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment. Nat Commun 2024; 15:1186. [PMID: 38332033 PMCID: PMC10853265 DOI: 10.1038/s41467-024-45481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
In-situ wastewater treatment has gained popularity due to cost and energy savings tailored to water sources and user needs. However, this treatment, particularly through advanced oxidation processes (AOPs), poses ecological risks due to the need for strong oxidizing agents. Here, we present a decoupled oxidation process (DOP) using single-atom copper-modified graphite felt electrodes. This process creates a positive potential difference (ΔE ~ 0.5 V) between spatially isolated oxidants and organics and drives electron transfer-based redox reactions. The approach avoids the drawbacks of conventional AOPs, while being capable of treating various recalcitrant electron-rich organics. A floating water treatment device designed based on the DOP approach can degrade organic molecules in large bodies of water with oxidants stored separately in the device. We demonstrate that over 200 L of contaminated water can be treated with a floating device containing only 40 mL of oxidant (10 mM peroxysulphate). The modular device can be used in tandem structures on demand, maximizing water remediation per unit area. Our result provides a promising, eco-friendly method for in-situ water treatment that is unattainable with existing techniques.
Collapse
Affiliation(s)
- Ziwei Yu
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Xuming Jin
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Yang Guo
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Qian Liu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenyu Xiang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Zhou
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Jiaying Wang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Dailin Yang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Juan Wang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Ladeia Ramos R, Rezende Moreira V, Santos Amaral MC. Phenolic compounds in water: Review of occurrence, risk, and retention by membrane technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119772. [PMID: 38147771 DOI: 10.1016/j.jenvman.2023.119772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Phenolic compounds are one of the main contributors to water source contamination worldwide. In this review, the data collected on Elsevier, Scopus, and Pubmed, considering papers published between 2000 and 2023, showed more than 60 different phenols have been identified in water matrix (<0.065-179,000,000 ng L-1). The highest concentration reported was in surface water canals in India. The most recurrent and studied compound was bisphenol A (n = 93) in concentrations ranging from 0.45 to 2,970,000 ng L-1. The solid phase extraction (HBL Oasis cartridge) and methanol as solvent was the method of pre-concentration most used followed by gas chromatography for the determination of phenols in water samples. The importance of drinking water guidelines incorporating more phenolic compounds was emphasized given the variety of these compounds quantified in water matrix. The human health risk assessment (HRA) was performed for the min-max concentrations of the pollutants reported in the literature. High HRA even at the lowest concentrations for 2-nitrophenol, 2,6-dichlorophenol, 3,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, and 2,4-dinitrophenol was recognized. The cancer risk estimated was considered possible for 3-methylphenol, 2,4-dimethylphenol, 2,4,6-trichlorophenol, pentachlorophenol, and 2,4-dinitrophenol in the highest concentrations. The in-depth discussion of mechanisms, advantages, challenges, and carbon footprint of membrane technologies in water treatment and phenols retention demonstrated the great potential and trends for the production of safe drinking water, highlighting reverse osmosis, as a mature technology, and membrane distillation, as an emergent technology.
Collapse
Affiliation(s)
- Ramatisa Ladeia Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Miriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
24
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
25
|
Abbott DA, Mancini MG, Bolt MJ, Szafran AT, Neugebauer KA, Stossi F, Gorelick DA, Mancini MA. A novel ERβ high throughput microscopy platform for testing endocrine disrupting chemicals. Heliyon 2024; 10:e23119. [PMID: 38169792 PMCID: PMC10758781 DOI: 10.1016/j.heliyon.2023.e23119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
In this study we present an inducible biosensor model for the Estrogen Receptor Beta (ERβ), GFP-ERβ:PRL-HeLa, a single-cell-based high throughput (HT) in vitro assay that allows direct visualization and measurement of GFP-tagged ERβ binding to ER-specific DNA response elements (EREs), ERβ-induced chromatin remodeling, and monitor transcriptional alterations via mRNA fluorescence in situ hybridization for a prolactin (PRL)-dsRED2 reporter gene. The model was used to accurately (Z' = 0.58-0.8) differentiate ERβ-selective ligands from ERα ligands when treated with a panel of selective agonists and antagonists. Next, we tested an Environmental Protection Agency (EPA)-provided set of 45 estrogenic reference chemicals with known ERα in vivo activity and identified several that activated ERβ as well, with varying sensitivity, including a subset that is completely novel. We then used an orthogonal ERE-containing transgenic zebrafish (ZF) model to cross validate ERβ and ERα selective activities at the organism level. Using this environmentally relevant ZF assay, some compounds were confirmed to have ERβ activity, validating the GFP-ERβ:PRL-HeLa assay as a screening tool for potential ERβ active endocrine disruptors (EDCs). These data demonstrate the value of sensitive multiplex mechanistic data gathered by the GFP-ERβ:PRL-HeLa assay coupled with an orthogonal zebrafish model to rapidly identify environmentally relevant ERβ EDCs and improve upon currently available screening tools for this understudied nuclear receptor.
Collapse
Affiliation(s)
- Derek A. Abbott
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Michael J. Bolt
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Kaley A. Neugebauer
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
| | - Daniel A. Gorelick
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Liu Y, Wang F, Wang Z, Xiang L, Fu Y, Zhao Z, Kengara FO, Mei Z, He C, Bian Y, Naidu R, Jiang X. Soil properties and organochlorine compounds co-shape the microbial community structure: A case study of an obsolete site. ENVIRONMENTAL RESEARCH 2024; 240:117589. [PMID: 37926227 DOI: 10.1016/j.envres.2023.117589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Organochlorine compounds (OCs) such as chlorobenzenes (CB) are persistent organic pollutants that are ubiquitous in soils at organochlorine pesticides (OCP) production sites. Long-term contamination with OCs might alter the soil microbial structure and further affect soil functions. However, the effects of OCs regarding the shaping of microbial community structures in the soils of OCs-contaminated sites remain obscure, especially in the vertical soil profile where pollutants are highly concealed. Hence this paper explored the status and causes of OCs pollution (CB, hexachlorocyclohexane (HCH), and dichlorodiphenyltrichloroethane (DDT)) in an obsolete site, and its combined effects with soil properties (pH, available phosphorus (AP), dissolved organic carbon (DOC), etc) on microbial community structure. The mean total concentration of OCs in the subsoils was up to 996 times higher than that in the topsoils, with CB constituting over 90% of OCs in the subsoil. Historical causes, anthropogenic effects, soil texture, and the nature of OCs contributed to the differences in the spatial distribution of OCs. Redundancy analysis revealed that both the soil properties and OCs were important factors in shaping microbial composition and diversity. Variation partitioning analysis further indicated that soil properties had a greater impact on microbial community structure than OCs. Significant differences in microbial composition between topsoils and subsoils were observed through linear discriminant analysis effect size (LEfSe) analysis, primarily driven by different pollutant conditions. Additionally, co-occurrence network analysis indicated that heavily contaminated subsoils exhibited closer and more intricate bacterial community interactions compared to lightly contaminated topsoils. This work reveals the impact of environmental factors in co-shaping the structure of soil microbial communities. These findings advance our understanding of the intricate interplay among organochlorine pollutants, soil properties, and microbial communities, and provides valuable insights into devising effective management strategies in OCs-contaminated soils.
Collapse
Affiliation(s)
- Yu Liu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Leilei Xiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Zhao
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhi Mei
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongrong Bian
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xin Jiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Ma J, Zhu P, Wang W, Zhang X, Wang P, Sultan Y, Li Y, Ding W, Li X. Environmental impacts of chlorpyrifos: Transgenerational toxic effects on aquatic organisms cannot be ignored. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167311. [PMID: 37742960 DOI: 10.1016/j.scitotenv.2023.167311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Chlorpyrifos (CPF) has been extensively used in the world and frequently found in natural environments, might cause a range of environmental issues and pose a health risk to aquatic species. However, investigation of its toxic effects on offspring after parental exposure has been neglected, especially for aquatic organisms such as fish. In the current study, the effects of chronic CPF exposure (3 and 60 μg/L) on adult zebrafish (F0) was investigated to determine its influence on adult reproductive capacity and offspring (F1 and F2). The results showed the existence of CPF both in F0 ovaries and F1 embryos and larvae, indicating that CPF could be transferred directly from the F0 adult fish to F1 offspring. After 90 d exposure, we observed that F0 female fish showed increased proportion of perinucleolar oocyte in the ovaries, decreased proportion of mature oocyte, and decreased egg production, but not in F1 adult. The transcriptomic analysis revealed that the disruption of metabolism during oocyte maturation in the CPF treatment zebrafish might interfere with F0 oocytes development and quality and ultimately influence offspring survival. For the larvae, the parental CPF exposure distinctly inhibited heart rate at 72 and 120 hpf and increased the mortality of F1 but not F2 larvae. The changes of biochemical indicators confirmed a disturbance in the oxidative balance, induced inflammatory reaction and apoptosis in F1 larvae. Furthermore, the changing profiles of mRNA revealed by RNA-seq confirmed an increased susceptibility in F1 larvae and figured out potential disruptions of ROS metabolism, immune system, apoptosis, and metabolism pathways. Taken together, these results show that chronic CPF treatment can induce reproductive toxicity, and parental transfer of CPF occurs in fish, resulting in transgenerational alters in F1 generation survival and transcription that raising concerns on the ecological risk of CPF in the natural environment.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Penglin Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenhua Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaodan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Panliang Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
28
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BMR. Association between Environmental Exposure to Multiclass Organic Pollutants and Sex Steroid Hormone Levels in Women of Reproductive Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19383-19394. [PMID: 37934613 DOI: 10.1021/acs.est.3c06095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Organic pollutant exposure may alter sex steroid hormone levels in both animals and humans, but studies on mixture effects have been lacking and mainly limited to persistent organic pollutants, with few hormones being investigated. Moreover, measurements from a single blood or urine sample may not be able to reflect long-term status. Using hair analysis, here, we evaluated the relationship between multiclass organic pollutants and sex steroid hormones in 196 healthy Chinese women aged 25-45 years. Associations with nine sex steroid hormones, including progesterone, androstenedione (AD), testosterone (T), estrone (E1), and 17β-estradiol (E2), and eight related hormone ratios were explored on 54 pollutants from polychlorinated biphenyl (PCB), pesticide, and bisphenol families using stability-based Lasso regression analysis. Our results showed that each hormone was associated with a mixture of at least 10 examined pollutants. In particular, hair E2 concentration was associated with 19 pollutants, including γ-hexachlorocyclohexane, propoxur, permethrin, fipronil, mecoprop, prochloraz, and carbendazim. There were also associations between pollutants and hormone ratios, with pentachlorophenol, dimethylthiophosphate, 3-phenoxybenzoic acid, and flusilazole being related to both E1/AD and E2/T ratios. Our results suggest that exposure to background levels of pesticides PCB180 and bisphenol S may affect sex steroid hormone homeostasis among women of reproductive age.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Emilie Adelin
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, Singapore 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
29
|
Cascajosa-Lira A, Guzmán-Guillén R, Arjona AB, Aguinaga-Casañas MA, Ayala-Soldado N, Moyano-Salvago MR, Molina A, Jos Á, Cameán AM, Pichardo S. Risk assessment and environmental consequences of the use of the Allium-derived compound propyl-propane thiosulfonate (PTSO) in agrifood applications. ENVIRONMENTAL RESEARCH 2023; 236:116682. [PMID: 37459943 DOI: 10.1016/j.envres.2023.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
The organosulfur compound propyl-propane thiosulfonate (PTSO), mainly found in Allium cepa, has a promising use in the agrifood industry. To confirm its safety for livestock, consumers, and environment, toxicological assessment is needed. In this regard, endocrine-disrupting chemicals (EDCs) are in the spotlight of research. Therefore, as part of the risk assessment of PTSO, in the present work, an in vivo study was performed in mice exposed to PTSO to investigate its potential reproductive toxicity considering fertility, genetic and endocrine endpoints. Five-weeks-old CD1 mice (80 males, 80 females) were exposed for 11 or 16 weeks (males or females, respectively) to different doses of PTSO (0, 14, 28 and 55 mg PTSO/kg b.w./day; 20 animals per group and sex) through the food pellets. No clinical observations or mortality and no changes in absolute organ weights and relative organ weights/body weight or brain ratios occurred during the study. The estrous cycle did not undergo any significant toxicologically relevant change. Most of the sex hormones displayed normal values. Some alterations in the expression of some genes related to reproduction is only observed in females, but they do not appear to have consequences in the development of sex organs. Docking results showed the impossibility of stable binding to estrogen and androgen receptors. Considering all the results obtained, the safe profile of PTSO can be confirmed for different agrifood applications at the conditions assayed.
Collapse
Affiliation(s)
| | | | | | | | - Nahúm Ayala-Soldado
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - M Rosario Moyano-Salvago
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - Ana Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| |
Collapse
|
30
|
Baudry J, Rebouillat P, Samieri C, Berlivet J, Kesse-Guyot E. Dietary pesticide exposure and non-communicable diseases and mortality: a systematic review of prospective studies among adults. Environ Health 2023; 22:76. [PMID: 37907942 PMCID: PMC10617043 DOI: 10.1186/s12940-023-01020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Research on the effect of pesticide exposure on health has been largely focused on occupational settings. Few reviews have synthesized the associations between dietary pesticide exposure and health outcomes in non-occupationally exposed adults. OBJECTIVE We aim to summarize the evidence regarding dietary pesticide exposure and non-communicable diseases (NCD) in adults, using a systematic review of prospective studies. METHODS Electronic and manual searches were performed until July 2023. The inclusion criteria were the following: 1) adults aged ≥ 18years, 2) (non)-randomized trials, prospective cohort studies, 3) dietary exposure to pesticides. A bias analysis was carried out using the Nutrition Evidence Systematic Review guidelines based on the Cochrane ROBINS-I. RESULTS A total of 52 studies were retrieved and 6 studies that met the above criteria were included. Studies were conducted either in France or in the United States. The studies investigated the risk of cancer (n = 3), diabetes (n = 1), cardiovascular diseases (n = 1), and mortality (n = 1). The quality of the studies varied with overall grades derived from the bias analysis ranging from low to moderate bias. The level of evidence was estimated as low for the risk of cancer while the grading was not assignable for other outcomes, as only one study per outcome was available. CONCLUSIONS Although further research is warranted to examine more in depth the relationships between low-dose chronic exposure to pesticides through diet and NCD outcomes in non-occupationally-exposed adults, studies suggest a possible role of exposure to dietary pesticide on health. Standardized methodological guidelines should also be proposed to allow for comparison across studies.
Collapse
Affiliation(s)
- Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), Bobigny, F-93017, France.
| | - Pauline Rebouillat
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), Bobigny, F-93017, France
| | - Cécilia Samieri
- Univ Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Justine Berlivet
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), Bobigny, F-93017, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), Bobigny, F-93017, France
| |
Collapse
|
31
|
Bour A, Budde Christensen T, Hunka AD, Palmqvist A, Skjold E, Syberg K. Implications of circular textile policies for the future regulation of hazardous substances in textiles in the European Union. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165153. [PMID: 37385492 DOI: 10.1016/j.scitotenv.2023.165153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The textile industry's business model is currently unsustainable and systemic changes must be made. The transition to a circular textile economy can be a major lever for this. However, it faces multiple issues, including the (in)ability of current legislations to provide sufficient protection regarding hazardous chemicals in recirculating materials. It is therefore crucial to identify legislative gaps that prevent the implementation of a safe circular textile economy, and to identify which chemicals could jeopardize this process. With this study, we aim to identify hazardous substances that could be found in recirculated textiles, to identify and discuss gaps in current regulations covering chemicals in textiles, and to suggest solutions to ensure better safety of circular textiles. We compile and analyze data on 715 chemicals and their associated functions, textile production stage, and hazard data. We also present how chemicals have been regulated over time and discuss regulations' strengths and weaknesses in the perspective of circular economy. We finally discuss the recently proposed Ecodesign regulation, and which key point should be included in the future delegated acts. We found that most of the compiled chemicals present at least one recognized or suspected hazard. Among them, there were 228 CMR (carcinogenic, mutagenic, reprotoxic substances), 25 endocrine disruptors, 322 skin allergens or sensitizers, and 51 respiratory allergens or sensitizers. 30 chemicals completely or partially lack hazard data. 41 chemicals were found to present a risk for consumers, among which 15 recognized or suspected CMR and 36 recognized or suspected allergens/sensitizers. Following the analysis of regulations, we argue that an improved risk assessment of chemicals should consider chemicals specific hazardous properties and product's multiple life cycles, instead of being limited to the product's end-of-life stage. We especially argue that implementing a safe circular textile economy requires that chemicals of concern are eliminated from the market.
Collapse
Affiliation(s)
- Agathe Bour
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | | | - Agnieszka D Hunka
- RISE Research Institutes of Sweden, Sustainable Business Unit, Gothenburg, Sweden
| | - Annemette Palmqvist
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Else Skjold
- Institute of Architecture and Design, Royal Danish Academy, Copenhagen, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
32
|
Li Y, Guo R, Liang X, Yao B, Yan S, Guo Y, Han Y, Cui J. Pollution characteristics, ecological and health risks of herbicides in a drinking water source and its inflowing rivers in North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122130. [PMID: 37394054 DOI: 10.1016/j.envpol.2023.122130] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
This study measured the pollution characteristics and ecological and health risks of 19 herbicides found in drinking water sources and their inflowing rivers. The targeted herbicides were prevalent in the study area, but most concentrations were well below 10 ng L-1. Acetochlor and atrazine were the dominant herbicides, although their levels were much lower than previously reported. Total herbicide residual levels were greater in April than in December and increased from upstream to downstream, resulting in the highest pollution levels found in the reservoirs, likely due to herbicides delivered from upstream and dense agricultural planting in the surrounding areas. Only atrazine and ametryn presented moderate ecological risks, while the summed risk quotients (ΣRQs) of each sample were >0.1, indicated that the total herbicide levels represented a moderate risk in all samples. For the human health risks, the risk quotients (RQ) of all target herbicides, the total RQs of each sample, and estimated life-stage RQs were far smaller than the 0.2 threshold, indicating the absence of human health risks when the water was consumed at any stage of life. However, early life stages exhibited 3-6 times higher RQ values than adulthood and should not be overlooked. And crucially, the synergistic or antagonistic effects of mixed herbicides are not well understood, and further research is needed to understand the impact of these herbicides on the ecosystem and human health, particularly possible affects in early life stages, such as infants and children.
Collapse
Affiliation(s)
- Yilin Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Ruiyao Guo
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoge Liang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Bo Yao
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yanan Guo
- Department of Cardiology, Hebei Province Hospital of Traditional Chinese Medicine, Shijiazhuang, 050011, China
| | - Yonghui Han
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiansheng Cui
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
33
|
Hilz EN, Gore AC. Endocrine-Disrupting Chemicals: Science and Policy. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:142-150. [PMID: 39758979 PMCID: PMC11698485 DOI: 10.1177/23727322231196794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are chemicals that disrupt the normal functioning of endocrine system hormones, leading to a range of adverse health effects in humans and wildlife. Exposure to EDCs is ubiquitous and occurs through contaminated food and water, air, consumer products, and transfer from parents to offspring. Effective regulation has been challenging due to a limited understanding of EDCs' complex and nonlinear dose-response relationships, as well as difficulty in attributing specific health effects to individual EDC exposures in real-world scenarios. Current EDC policies face limitations in terms of the diversity and complexity of EDCs, the lack of comprehensive testing requirements, and the need for more robust regulatory frameworks that consider cumulative and mixture effects of EDCs. Understanding these aspects is crucial for developing effective and evidence-based EDC policies that can safeguard public health and the environment.
Collapse
|
34
|
Beyer J, Song Y, Lillicrap A, Rodríguez-Satizábal S, Chatzigeorgiou M. Ciona spp. and ascidians as bioindicator organisms for evaluating effects of endocrine disrupting chemicals: A discussion paper. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106170. [PMID: 37708617 DOI: 10.1016/j.marenvres.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In context of testing, screening and monitoring of endocrine-disrupting (ED) type of environmental pollutants, tunicates could possibly represent a particularly interesting group of bioindicator organisms. These primitive chordates are already important model organisms within developmental and genomics research due to their central position in evolution and close relationship to vertebrates. The solitary ascidians, such as the genus Ciona spp. (vase tunicates), could possibly be extra feasible as ED bioindicators. They have a free-swimming, tadpole-like larval stage that develops extremely quickly (<20 h under favorable conditions), has a short life cycle (typically 2-3 months), are relatively easy to maintain in laboratory culture, have fully sequenced genomes, and transgenic embryos with 3D course data of the embryo ontogeny are available. In this article, we discuss possible roles of Ciona spp. (and other solitary ascidians) as ecotoxicological bioindicator organisms in general but perhaps especially for effect studies of contaminants with presumed endocrine disrupting modes of action.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | | |
Collapse
|
35
|
Tremongkoltip A, Pengpumkiat S, Kongtip P, Nankongnab N, Siri S, Woskie S. Urinary Cypermethrin Metabolites among Conventional and Organic Farmers in Thailand. TOXICS 2023; 11:507. [PMID: 37368607 PMCID: PMC10305172 DOI: 10.3390/toxics11060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Cypermethrin, a pyrethroid insecticide, is frequently spread on agricultural farmlands and is also used in households in Thailand. Conventional pesticide-using farmers (n = 209) were recruited from the Phitsanulok and Nakornsawan provinces. Certified organic farmers (n = 224) were also recruited in the Yasothorn province. The farmers were interviewed via a questionnaire and the urine from their first morning void was collected. The urine samples were analyzed for 3-phenoxybenzoic acid (3-PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA). The results showed no significant difference in the urinary cypermethrin metabolites between the conventional farmers and the organic farmers, for whom the usage of cypermethrin was not accounted for. However, when conventional farmers who used cypermethrin on the farm and in the home were compared with conventional farmers who did not use any cypermethrin or with organic farmers, a significant difference was noted for all metabolites except for trans-DCCA. These findings show that the most significant exposures to cypermethrin are among conventional farmers who use the insecticide on their farms or in their homes. However, measurable levels of all metabolites were found among both conventional and organic farmers who only used cypermethrin in the home or not at all, suggesting that the at-home use of pyrethroids and other possible exposures from pyrethroid residues on market-bought food may contribute to urinary levels of pyrethroids that exceed those of the general population in the US and Canada.
Collapse
Affiliation(s)
- Atima Tremongkoltip
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, 420/1 Rajvidhi Road, Bangkok 10400, Thailand
| | - Sumate Pengpumkiat
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, 420/1 Rajvidhi Road, Bangkok 10400, Thailand
| | - Pornpimol Kongtip
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, 420/1 Rajvidhi Road, Bangkok 10400, Thailand
| | - Noppanun Nankongnab
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, 420/1 Rajvidhi Road, Bangkok 10400, Thailand
| | - Sukhontha Siri
- Department of Epidemiology, Mahidol University, 420/1 Rajvidhi Road, Bangkok 10400, Thailand
| | - Susan Woskie
- Department of Public Health, University of Massachusetts Lowell, 61 Wilder St., Lowell, MA 01854, USA
| |
Collapse
|
36
|
Zhou Z, Yan Y, Li X, Zeng F, Shao S. Effect of urea-based chemical cleaning on TrOCs rejection by nanofiltration membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
37
|
Zhang Q, Gu S, Wang Y, Hu S, Yue S, Wang C. Stereoselective metabolic disruption of cypermethrin by remolding gut homeostasis in rat. J Environ Sci (China) 2023; 126:761-771. [PMID: 36503801 DOI: 10.1016/j.jes.2022.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/17/2023]
Abstract
Cypermethrin (CYP), a prototypical synthetic pyrethroid, reportedly causes metabolic disruption, while its stereoselective impact remains elusive. This study initially revealed that only α-CYP caused significant weight loss at 8.5 mg/(kg•day) in rats. All three CYP isomers caused the accumulation of hepatic glycogen, and hyperlipemia phenotype as the increment of total triglyceride. Rats treated with α-CYP had markedly high blood glucose levels and homeostasis model assessment of insulin resistance index. The systematic inflammation of θ-CYP group rats was evidenced by high lipopolysaccharide-binding protein levels and abnormalities of leukocytes indices. By examining the gut microbiome, we found that α-CYP-treated rats had low contents of Firmicutes and high levels of Verrucomicrobia while Elusimicrobia was enriched in the β-CYP group. The increasing alpha diversity in the θ-CYP group may be due to the dominance of pathogenic bacteria and the increase of probiotics to counteract adverse effects. Exclusively, the α-CYP group enriched total short-chain fatty acids (SCFAs), whereas most SCFAs depleted in the θ-CYP group. The correlation analysis further found Firmicutes, an energy storage modulator, was positive to body weight (BW), while SCFAs exerted the opposite, confirming the low BW in α-CYP. Blood glucose that correlated well with SCFAs and Verrucomicrobia can be accounted for the discrepancy between α-CYP and θ-CYP. Overall, the three isomers exerted stereoselective glycolipid disruption in rats, and gut homeostasis acted as vital indicators.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shitao Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
38
|
Sokan-Adeaga AA, Sokan-Adeaga MA, Sokan-Adeaga ED, Oparaji AN, Edris H, Tella EO, Balogun FA, Aledeh M, Amubieya OE. Environmental toxicants and health adversities: A review on interventions of phytochemicals. J Public Health Res 2023; 12:22799036231181226. [PMID: 37440795 PMCID: PMC10334012 DOI: 10.1177/22799036231181226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/28/2023] [Indexed: 07/15/2023] Open
Abstract
Toxicity arising from environmental contaminants has attracted global interest in the last few decades, due to the high morbidity and mortality associated with them. Efforts have been made to combat the consequential outcomes of environmental toxicity in humans through traditional remediation techniques and therapeutic measures which have been hampered by one or more limitations. Consequently, this scenario has triggered interest in the medicinal properties of phytochemicals. Thus, this review gives a succinct and in-depth elucidation of the various environmental contaminants and their toxicity effects on humans. It delves into the various classes of phytochemicals and their intervention roles. The study adopted a desk review of existing literatures from scientific reports and peer reviewed articles through triangulation of data sources. "Phytochemicals" are group of secondary metabolites obtained from plants with medicinal properties. These groups of compounds are included but not limited to flavonoids, tannins, saponins, alkaloids, cardenoloids, terpenoids, and phytosteroids. This review corroborates the prophylactic and therapeutics efficacy of these phytochemicals as anti-metastatic, anti-inflammatory, anti-aging, anti-oxidant, anti-microbial and live saving substances with empirical findings from several laboratory, clinical trials and epidemiologic studies. It conclude that given the wide range of medicinal properties of phytochemicals, there is an urgent need for its full optimization in the pharmaceutical industry and future studies should focus on identifying the bioactive molecules in these compounds and its effectiveness against mixer toxicity.
Collapse
Affiliation(s)
- Adewale Allen Sokan-Adeaga
- Department of Environmental Health
Science, Faculty of Public Health, College of Medicine, Lead City University,
Ibadan, Nigeria
| | - Micheal Ayodeji Sokan-Adeaga
- Department of Community Health and
Primary Health Care, Faculty of Clinical Sciences, College of Medicine, University
of Lagos, Lagos, Nigeria
| | - Eniola Deborah Sokan-Adeaga
- Department of Physiology, Faculty of
Basic Medical Sciences, College of Medicine, Ladoke Akintola University of
Technology (LAUTECH), Ogbomosho, Oyo State, Nigeria
| | | | - Hoseinzadeh Edris
- Incubation and Innovation Center, Saveh
University of Medical Sciences, Saveh, Iran
| | - Esther Oluwabukunola Tella
- Department of Environmental Health
Science, Faculty of Public Health, College of Medicine, Lead City University,
Ibadan, Nigeria
| | - Francis Adeniyi Balogun
- Department of Community Health, Faculty
of Public Health, College of Medicine, Lead City University, Ibadan, Nigeria
| | - Muhammad Aledeh
- College of Health, Psychology and
Social Care, University of Derby, Derby, United Kingdom
- Wiener Gesundheitsverbund, Psychiatric
Department, Klinik Donaustadt, Vienna, Austria
| | | |
Collapse
|
39
|
Hussain J, Cohen M, O'Malley CJ, Mantri N, Li Y, Mueller JF, Greaves R, Wang X. Detections of organophosphate and pyrethroid insecticide metabolites in urine and sweat obtained from women during infrared sauna and exercise: A pilot crossover study. Int J Hyg Environ Health 2023; 248:114091. [PMID: 36516689 DOI: 10.1016/j.ijheh.2022.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Synthetic pesticides such as organophosphates and pyrethroids are commonly used worldwide yet the metabolic and long-term human health effects of these environmental exposures are unclear. Urinary detections of metabolites involving both classes of insecticides have been documented in various global populations. However, reports documenting similar detections in human sweat are sparse. In this study, the concentrations of four insecticide metabolites were measured using liquid chromatography coupled with tandem mass spectrometry in repeated sweat and urine collections (n = 85) from 10 women undergoing three interventions (control, infrared sauna and indoor bicycling) within a single-blinded randomised crossover trial. The Friedman test with post-hoc two-way analysis of variance, the related-samples Wilcoxon signed rank test and the Spearman's rank-order correlation test were used to analyse the results. Organophosphate metabolites were detected in 84.6% (22/26) and pyrethroids in 26.9% (7/26) of the collected sweat samples (pooled per individual, per intervention). Urinary concentrations of three of the four metabolites marginally increased after infrared sauna bathing: 3,5,6-trichloro-2-pyridinol (z = 2.395, p = 0.017); 3-phenoxybenzoic acid (z = 2.599, p = 0.009); and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (z = 2.090, p = 0.037). Urinary 3-phenoxybenzoic acid also increased after exercise (z = 2.073, p = 0.038) and demonstrated the most temporal variability (days to weeks) of any of the urinary metabolites. Definitive sweat/urine correlations were not demonstrated. These results indicate metabolites from organophosphate and pyrethroid pesticides can be detected in human sweat and this raises intriguing questions about perspiration and its role in the metabolism and excretion of synthetic pesticides.
Collapse
Affiliation(s)
- Joy Hussain
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | - Marc Cohen
- Extreme Wellness Institute, Melbourne, Victoria, Australia
| | - Cindy J O'Malley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- Pangenomics Group, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Yan Li
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia; Minderoo Centre - Plastics and Human Health, The University of Queensland, Queensland, Australia
| | - Ronda Greaves
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia; Minderoo Centre - Plastics and Human Health, The University of Queensland, Queensland, Australia
| |
Collapse
|
40
|
Zeng H, Sun F, Zhang J, Wang Y, Yang S, Xing D. Gradient crosslinking optimization for the selective layer to prepare polyvinyl alcohol (PVA) nanofiltration (NF) membrane: The enhanced filtration performance and potential rejection for EDCs. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
41
|
Gu S, Zhang Q, Gu J, Wang C, Chu M, Li J, Mo X. The stereoselective metabolic disruption of cypermethrin on rats by a sub-acute study based on metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31130-31140. [PMID: 36441315 DOI: 10.1007/s11356-022-24359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the massive application of cypermethrin (CYP) for pest control in China, the adverse effects on non-target organisms have aroused great attention. However, comparative studies between its different stereoisomers remain scarce, especially for metabolism perturbations. Herein, the rats were administered α-CYP, β-CYP, and θ-CYP by gavage at doses of 8.5, 29.2, and 25.0 mg/kg/day, respectively, for 28 consecutive days. By blood examination, significant changes in liver and renal function parameters were observed in rats exposed to all three CYPs. The stereoisomeric selectivity in metabolic disturbances was assessed based on a metabolomic strategy via multivariate analysis and pathway analysis. The results demonstrated that amino acid and glycolipid metabolism were disrupted in all CYP groups. Among them, the most significant changes in the metabolic phenotype were observed in the θ-CYP group, with 56 differential metabolites enriched in 9 differential metabolic pathways. At the same time, the endogenous metabolite trimethylamine oxide (TMAO), which is closely linked to the gut microbiota, was also significantly elevated in this group. Gender differences were found in α- and θ-CYP-exposed rats, with perturbations in amino acid and glucose metabolism of greater concern in females and lipid metabolism of greater concern in males. Overall, β-CYP exhibited a lower risk of metabolic perturbations than α-CYP or θ-CYP, which helps to screen suitable agrochemical products for green agricultural development.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengjie Chu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jing Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xunjie Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| |
Collapse
|
42
|
Muñoz JP, Araya-Osorio R, Mera-Adasme R, Calaf GM. Glyphosate mimics 17β-estradiol effects promoting estrogen receptor alpha activity in breast cancer cells. CHEMOSPHERE 2023; 313:137201. [PMID: 36379430 DOI: 10.1016/j.chemosphere.2022.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate, the active ingredient in several broad-spectrum herbicide formulations, has been validated and widely used throughout the world. Recent reports have questioned its safety, showing that glyphosate may act as an endocrine disruptor by promoting estrogenic activity. However, the molecular mechanism involved in this phenomenon remains unclear. Therefore, here we aimed to elucidate the mechanism by which glyphosate induces estrogenic activity using estrogen-sensitive breast cancer cell line models. Our results show that glyphosate mimics the cell effects of 17β-estradiol (E2), promoting estrogen receptor α (ERα) phosphorylation, its degradation, and transcriptional activity at high concentrations. The molecular mechanism seems involved in the ERα ligand-binding domain (LBD). Molecular simulations suggest a plausible interaction between glyphosate and the LBD through a coordinated complex involving divalent cations such as Zn (II). In addition, glyphosate exposure alters the level of Cyclin-dependent kinase 7 that contribute to ERα phosphorylation. Finally, glyphosate increases cell proliferation rate and levels of cell cycle regulators, accompanied by an increase in anchorage-independent growth capacity. These findings suggest that glyphosate at high concentrations, induces estrogen-like effects through an ERα ligand binding site-dependent mechanism, leading to cellular responses resulting from a complex interplay of genomic and non-genomic events.
Collapse
Affiliation(s)
- Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| | - Rocío Araya-Osorio
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Raúl Mera-Adasme
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| |
Collapse
|
43
|
Macedo S, Teixeira E, Gaspar TB, Boaventura P, Soares MA, Miranda-Alves L, Soares P. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review. ENVIRONMENTAL RESEARCH 2023; 218:114869. [PMID: 36460069 DOI: 10.1016/j.envres.2022.114869] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) are exogenous substances recognised as relevant tumourigenic chemicals. Studies show that even EDCs which were long abolished are still contributing to the increasing incidence of neoplasia. AIM To investigate the association between human exposure to EDCs and the risk of endocrine-related tumours: breast, prostate, thyroid, uterus, testis, and ovary. METHODS A systematic review using PubMed, Scopus, and Embase was conducted, searching for original observational studies published between 1980 and 2020, approaching EDCs exposure and endocrine tumourigenic risk in humans. We comprised neoplasia of six endocrine organs. We included all the studies on EDCs reporting tumour odds ratio, risk ratio, or hazard ratio. Study levels of confidence and risk of bias were accessed applying accredited guidelines. Human-made accidents and natural EDCs were not considered in the present study. RESULTS Our search returned 3271 papers. After duplicate removal and screening, only 237 papers were included (corresponding to 268 records). EDCs were grouped from the most frequently (pesticides) to the least frequently studied (salts). The most tumourigenic EDC groups were phthalates (63%), heavy metals (54%), particulate matter (47%), and pesticides (46%). Pesticides group comprised the highest number of retrieved studies (n = 133). Increased neoplasia risk was found in 43-67% of the studies, with a lower value for ovary (43%) and a higher value for thyroid (67%). CONCLUSIONS The innovative nature of our review comes from including human studies of six endocrine-related neoplasia aiming to understand the contribution of specific EDCs groups to each organ's tumourigenesis. Thyroid was the organ presenting the highest cancer risk after EDC exposure which may explain the increasing thyroid cancer incidence. However, detailed and controlled works reporting the effects of EDCs are scarce, probably justifying conflicting results. Multinational and multicentric human studies with biochemical analysis are needed to achieve stronger and concordant evidence.
Collapse
Affiliation(s)
- Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Elisabete Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Paula Boaventura
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Mariana Alves Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Postgraduate Endocrinology Program, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Postgraduate Endocrinology Program, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
44
|
Guimarães J, Bracchi I, Pinheiro C, Moreira NX, Coelho CM, Pestana D, Prucha MDC, Martins C, Domingues VF, Delerue-Matos C, Dias CC, Azevedo LFR, Calhau C, Leite JC, Ramalho C, Keating E, Fernandes VC. Association of 3-Phenoxybenzoic Acid Exposure during Pregnancy with Maternal Outcomes and Newborn Anthropometric Measures: Results from the IoMum Cohort Study. TOXICS 2023; 11:125. [PMID: 36851000 PMCID: PMC9958656 DOI: 10.3390/toxics11020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The aims of this study were to characterize the exposure of pregnant women living in Portugal to 3-phenoxybenzoic acid (3-PBA) and to evaluate the association of this exposure with maternal outcomes and newborn anthropometric measures. We also aimed to compare exposure in summer with exposure in winter. Pregnant women attending ultrasound scans from April 2018 to April 2019 at a central hospital in Porto, Portugal, were invited to participate. Inclusion criteria were: gestational week between 10 and 13, confirmed fetal vitality, and a signature of informed consent. 3-PBA was measured in spot urine samples by gas chromatography with mass spectrometry (GC-MS). The median 3-PBA concentration was 0.263 (0.167; 0.458) µg/g creatinine (n = 145). 3-PBA excretion was negatively associated with maternal pre-pregnancy body mass index (BMI) (p = 0.049), and it was higher during the summer when compared to winter (p < 0.001). The frequency of fish or yogurt consumption was associated positively with 3-PBA excretion, particularly during the winter (p = 0.002 and p = 0.015, respectively), when environmental exposure is low. Moreover, 3-PBA was associated with levothyroxine use (p = 0.01), a proxy for hypothyroidism, which could be due to a putative 3-PBA-thyroid hormone antagonistic effect. 3-PBA levels were not associated with the anthropometric measures of the newborn. In conclusion, pregnant women living in Portugal are exposed to 3-PBA, particularly during summer, and this exposure may be associated with maternal clinical features.
Collapse
Affiliation(s)
- Juliana Guimarães
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabella Bracchi
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cátia Pinheiro
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nara Xavier Moreira
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Nutrition and Dietetics (MND), Faculty of Nutrition Emília de Jesus Ferreiro (FNEJF), Fluminense Federal University (UFF), Niterói 20010-010, RJ, Brazil
| | - Cláudia Matta Coelho
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Diogo Pestana
- CINTESIS@RISE, Nutrition and Metabolism, NOVA Medical School│FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria do Carmo Prucha
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Cristina Martins
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| | - Cláudia C. Dias
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Luís Filipe R. Azevedo
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Conceição Calhau
- CINTESIS@RISE, Nutrition and Metabolism, NOVA Medical School│FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - João Costa Leite
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Carla Ramalho
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
- Department of Ginecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisa Keating
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| |
Collapse
|
45
|
Bastos MC, Rheinheimer DDS, Le Guet T, Vargas Brunet J, Aubertheau E, Mondamert L, Labanowski J. Presence of pharmaceuticals and bacterial resistance genes in river epilithic biofilms exposed to intense agricultural and urban pressure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:328. [PMID: 36697888 DOI: 10.1007/s10661-022-10899-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The continuous discharge of pharmaceutical compounds into the aquatic environment has raised concerns over the contamination of water resources. Urban activities and intensive animal breeding are important sources of contamination. The accumulation of antibiotics may lead to the transfer or alternatively maintain the presence of resistance genes in natural microbial communities existing in epilithic biofilms. The objective of this study was to evaluate the pharmaceutical contamination levels and the presence of resistance genes in biofilms from a South Brazilian watershed. The Guaporé watershed exhibits a high diversity of land use, including agricultural and urban areas with differing levels of anthropogenic pressure. Seventeen sites along the Guaporé watershed were monitored. Biofilm samples were collected in two seasons (winter and summer), and the pharmaceutical concentration and quantity of resistance genes were analyzed. All monitored sites were contaminated with pharmaceuticals. Agricultural activities contribute through transferring pharmaceuticals derived from the application of animal waste to agricultural fields. The most contaminated site (pharmaceuticals and bacterial resistance genes) was located in an urban area exposed to high pressure. Decreases in the contamination of biofilms were also observed, exemplifying processes of natural attenuation in the watershed. The quality of the biofilms sampled throughout the watershed served as a useful tool to understand and monitor environmental pollution.
Collapse
Affiliation(s)
- Marília Camotti Bastos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil.
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France.
| | - Danilo Dos Santos Rheinheimer
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil
| | - Thibaut Le Guet
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Jocelina Vargas Brunet
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Elodie Aubertheau
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Leslie Mondamert
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Jérôme Labanowski
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| |
Collapse
|
46
|
Antignac JP, Figiel S, Pinault M, Blanchet P, Bruyère F, Mathieu R, Lebdai S, Fournier G, Rigaud J, Mahéo K, Marchand P, Guiffard I, Bichon E, le Bizec B, Multigner L, Fromont G. Persistent organochlorine pesticides in periprostatic adipose tissue from men with prostate cancer: Ethno-geographic variations, association with disease aggressiveness. ENVIRONMENTAL RESEARCH 2023; 216:114809. [PMID: 36403647 DOI: 10.1016/j.envres.2022.114809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Although several studies have examined the relationship between organochlorine pesticides (OCPs) and prostate cancer (PCa) risk, no data are available concerning the association between OCPs concentrations in periprostatic adipose tissue (PPAT), which reflects cumulative exposure, and PCa aggressiveness. Moreover, no previous study has compared OCPs exposure in two distinct ethno-geographical populations. The objectives were to analyze OCPs in PPAT of PCa patients from either Mainland France or French West Indies in correlation with features of tumor aggressiveness, after adjusting for potential confounders such age, BMI, and polyunsaturated fatty acid (PUFA) content of PPAT. PPAT was analyzed in 160 patients (110 Caucasians and 50 African-Caribbeans), 80 with an indolent tumor (ISUP group 1 + pT2), and 80 with an aggressive tumor (ISUP group more than 3 + pT3). The concentrations of 29 OCPs were measured in PPAT concomitantly with the characterization of PUFA content. Exposure patterns of OCPs differed according to the ethno-geographical origin. Most OCPs were found at higher concentration in Caucasian patients, whereas pp'-DDE content was twice as high in African-Caribbeans. Chlordecone was only detected in PPAT from African-Caribbean patients. Most OCP concentrations were positively correlated with age, and some with BMI. After adjusting for age, BMI, and PUFA composition of PPAT, no significant association was found between OCPs content and risk of aggressive disease, except of mirex which appeared inversely associated with aggressive features of PCa in Caucasian patients. These results highlight a significant ethno-geographic variation in internal exposure to OCPs, which likely reflects differences in consumption patterns. The inverse relationship observed between mirex concentration and markers of PCa aggressiveness need to be further investigated.
Collapse
Affiliation(s)
| | - Sandy Figiel
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France
| | - Michèle Pinault
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France
| | - Pascal Blanchet
- CHU Pointe à Pitre, Department of Urology, France; Inserm UMR1085 - IRSET Rennes, France
| | - Franck Bruyère
- CHRU Bretonneau, Departments of Pathology and Urology, Tours, France
| | - Romain Mathieu
- Inserm UMR1085 - IRSET Rennes, France; CHU Rennes, Departments of Pathology and Urology, France
| | | | | | - Jerome Rigaud
- CHU Nantes, Departments of Pathology and Urology, France
| | - Karine Mahéo
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France
| | | | | | | | | | | | - Gaëlle Fromont
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France; CHRU Bretonneau, Departments of Pathology and Urology, Tours, France.
| |
Collapse
|
47
|
Lazofsky A, Buckley B. Recent Trends in Multiclass Analysis of Emerging Endocrine Disrupting Contaminants (EDCs) in Drinking Water. Molecules 2022; 27:8835. [PMID: 36557967 PMCID: PMC9781274 DOI: 10.3390/molecules27248835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ingestion of water is a major route of human exposure to environmental contaminants. There have been numerous studies exploring the different compounds present in drinking water, with recent attention drawn to a new class of emerging contaminants: endocrine-disrupting compounds (EDCs). EDCs encompass a broad range of physio-chemically diverse compounds; from naturally occurring to manmade. Environmentally, EDCs are found as mixtures containing multiple classes at trace amounts. Human exposure to EDCs, even at low concentrations, is known to lead to adverse health effects. Therefore, the ability to evaluate EDC contamination with a high degree of sensitivity and accuracy is of the utmost importance. This review includes (i) discussion on the perceived and actual risks associated with EDC exposure (ii) regulatory actions that look to limit EDC contamination (iii) analytical methods, including sample preparation, instrumentation and bioassays that have been advanced and employed for multiclass EDC identification and quantitation.
Collapse
Affiliation(s)
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
48
|
Pesticides and pancreatic adenocarcinoma: A transversal epidemiological, environmental and mechanistic narrative review. Dig Liver Dis 2022; 54:1605-1613. [PMID: 36089524 DOI: 10.1016/j.dld.2022.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/23/2023]
Abstract
Pancreatic adenocarcinoma (PA) incidence is rising worldwide, especially in France. The evolution of known risk factors such as tobacco smoking, obesity, type 2 diabetes, chronic pancreatitis, or constitutional mutations is not sufficient to explain this trend. Pesticides are known risk factors in other malignancies. Previous studies have outlined pesticides' influence in PA, such as dichlorodiphenyltrichloroethane as plausible risk factors. The general population is directly or indirectly exposed to pesticides through air, food or water. Some of these chemicals may accumulate in the body all along lifetime and may harm carriers. The toxic mixing effects of these chemicals are not well documented. Several hypotheses have been put forward to explain how pesticides can induce indirect (fatty pancreas, induced diabetes) or direct (oxidative stress, cell damage) carcinogenesis in pancreatic cells through inflammation. A strong corpus exists acknowledging pesticides as a PA risk factor. However, published studies do not provide a sufficient level of evidence to prove causality and current prospective case-control studies are still ongoing.
Collapse
|
49
|
Cho W, Lee D, Choi G, Kim J, Kojo AE, Park C. Supramolecular Engineering of Amorphous Porous Polymers for Rapid Adsorption of Micropollutants and Solar-Powered Volatile Organic Compounds Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206982. [PMID: 36121423 DOI: 10.1002/adma.202206982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Freshwater shortage is becoming one of the most critical global challenges owing to severe water pollution caused by micropollutants and volatile organic compounds (VOCs). However, current purification technology shows slow adsorption of micropollutants and requires an energy-intensive process for VOCs removal from water. In this study, a highly efficient molecularly engineered covalent triazine framework (CTF) for rapid adsorption of micropollutants and VOC-intercepting performance using solar distillation is reported. Supramolecular design and mild oxidation of CTFs (CTF-OXs) enable hydrophilic internal channels and improve molecular sieving of micropollutants. CTF-OX shows rapid removal efficiency of micropollutants (>99.9% in 10 s) and can be regenerated several times without performance loss. Uptake rates of selected micropollutants are high, with initial pollutant uptake rates of 21.9 g mg-1 min-1 , which are the highest rates recorded for bisphenol A (BPA) adsorption. Additionally, photothermal composite membrane fabrication using CTF-OX exhibits high VOC rejection rate (up to 98%) under 1 sun irradiation (1 kW m-2 ). A prototype of synergistic purification system composed of adsorption and solar-driven membrane can efficiently remove over 99.9% of mixed phenol derivatives. This study provides an effective strategy for rapid removal of micropollutants and high VOC rejection via solar-driven evaporation process.
Collapse
Affiliation(s)
- Wansu Cho
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Dongjun Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Gyeonghyeon Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Jihyo Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Acquah Ebenezer Kojo
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeongpun-Eup, Dalseong-Gun, Daegu, 42988, South Korea
| |
Collapse
|
50
|
Kou J, Li X, Zhang M, Wang L, Hu L, Liu X, Mei S, Xu G. Accumulative levels, temporal and spatial distribution of common chemical pollutants in the blood of Chinese adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119980. [PMID: 35985432 DOI: 10.1016/j.envpol.2022.119980] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
China has been in a rapid development period in recent decades, the mass production and use of chemical industrial products and pesticides have resulted in a large amount of pollutants in the environment. These pollutants enter the human body through environmental exposure and dietary intake, causing adverse health effects. Although many of them have been banned and restricted in the production and use in China, these pollutants still remain in the human body due to their high persistence and strong bioaccumulation. In this review, we aim to reveal the accumulation levels and profiles, as well as the temporal and spatial distribution of common chemical pollutants including chlorinated paraffins (CPs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, organophosphorus flame retardants (OPFRs), new halogenated flame retardants (NHFRs), polychlorinated biphenyls, phthalic acid esters, perfluorinated compounds, bisphenols, organophosphorus pesticides and pyrethroid insecticides in the blood (including whole blood, serum and plasma) of Chinese adults by extracting 93 related studies published from 1990 to 2021. Results have shown that CPs, OCPs and PAHs were the main pollutants in China, the levels of short-chain chlorinated paraffin, p,p'-DDE and phenanthrene in blood even reached 11,060.58, 740.41 and 498.28 ng/g lipid respectively. Under the strict control of pollutants in China, the levels of most pollutants have been on a downward trend except for perfluoro octanoate and perfluoro nonanoate. Besides, OPFRs, NHFRs and PAHs may have a potential upward trend, requiring further research and observation. As for spatial distribution, East China (Bohai Bay and Yangtze River Delta) and South China (Pearl River Delta) were the major polluted regions due to their fast development of industry and agriculture.
Collapse
Affiliation(s)
- Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|