1
|
Liao Y, Wang Y, Lin Y, Xiao Y, Mohan M, Jaman R, Dong H, Zhu J, Li X, Zhang C, Chen G, Zhou J. Molecular mechanisms of tetrabromobisphenol A (TBBPA) toxicity: Insights from various biological systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117418. [PMID: 39612681 DOI: 10.1016/j.ecoenv.2024.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant extensively incorporated into a wide range of products. As its utilization has escalated, its environmental exposure risks have concomitantly increased. The molecular properties of TBBPA allow it to persist in the environment and within organisms. In this review, we comprehensively examine the toxicity of TBBPA across different organ systems and elucidate the underlying molecular mechanisms. We particularly emphasize TBBPA's impact on biological signaling pathways, protein functionality, cellular architecture, and epigenetic regulation, which collectively lead to disruptions in endocrine, hepatic, neurological, reproductive, and other biological systems. The analysis of these toxicological phenomena and their fundamental molecular mechanisms has substantially enhanced our understanding of TBBPA's hazardous characteristics. This review also examines potential avenues for future research, with a focus on uncovering novel molecular mechanisms and assessing the toxicological impacts of TBBPA exposure, particularly in relation to interactions with other environmental contaminants. We propose a greater focus on examining the toxic effects and molecular mechanisms of long-term TBBPA exposure at environmentally relevant concentrations to facilitate more accurate assessments of human health risks.
Collapse
Affiliation(s)
- Yuxing Liao
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Yilin Wang
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - YaJie Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yuxi Xiao
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Mohith Mohan
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Rummana Jaman
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hao Dong
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jiao Zhu
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xuerui Li
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Conglin Zhang
- Department rehabilitation medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guiyuan Chen
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Jiaqi Zhou
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
2
|
Li J, Fang X, Cui D, Ma Z, Yang J, Niu Y, Liu H, Xiang P. Mechanistic insights into cadmium exacerbating 2-Ethylhexyl diphenyl phosphate-induced human keratinocyte toxicity: Oxidative damage, cell apoptosis, and tight junction disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116858. [PMID: 39137464 DOI: 10.1016/j.ecoenv.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Organophosphate flame retardants 2-ethylhexyldiphenyl phosphate (EHDPP) and cadmium (Cd) are ubiquitous in environmental matrices, and dermal absorption is a major human exposure pathway. However, their detrimental effects on the human epidermis remain largely unknown. In this study, human keratinocytes (HaCaT cells) were employed to examine the toxicity and underlying mechanisms of co-exposure to EHDPP and Cd. Their influence on cell morphology and viability, oxidative damage, apoptosis, and tight junction were determined. The results showed that co-exposure decreased cell viability by >40 %, induced a higher level of oxidative damage by increasing the generation of reactive oxygen species (1.3 folds) and inhibited CAT (79 %) and GPX (90 %) activities. Moreover, Cd exacerbated EHDPP-induced mitochondrial disorder and cellular apoptosis, which was evidenced by a reduction in mitochondrial membrane potential and an elevation of cyt-c and Caspase-3 mRNA expression. In addition, greater loss of ZO-1 immunoreactivity at cellular boundaries was observed after co-exposure, indicating skin epithelial barrier function disruption, which may increase the human bioavailability of contaminants via the dermal absorption pathway. Taken together, oxidative damage, cell apoptosis, and tight junction disruption played a crucial role in EHDPP + Cd triggered cytotoxicity in HaCaT cells. The detrimental effects of EHDPP + Cd co-exposure were greater than individual exposure, suggesting the current health risk assessment or adverse effects evaluation of individual exposure may underestimate their perniciousness. Our data imply the importance of considering the combined exposure to accurately assess their health implication.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Xianlei Fang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ziya Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ji Yang
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Youya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
3
|
Chen Q, Yi S, Yang L, Zhu L. Penetration pathways, influencing factors and predictive models for dermal absorption of exobiotic molecules: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172390. [PMID: 38608904 DOI: 10.1016/j.scitotenv.2024.172390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
This review provides a comprehensive summary of the skin penetration pathways of xenobiotics, including metals, organic pollutants, and nanoparticles (NPs), with a particular focus on the methodologies employed to elucidate these penetration routes. The impacts of the physicochemical properties of exogenous substances and the properties of solvent carriers on the penetration efficiencies were discussed. Furthermore, the review outlines the steady-state and transient models for predicting the skin permeability of xenobiotics, emphasizing the models which enable realistic visualization of pharmaco-kinetic phenomena via detailed geometric representations of the skin microstructure, such as stratum corneum (SC) (bricks and mortar) and skin appendages (hair follicles and sebaceous gland units). Limitations of published research, gaps in current knowledge, and recommendations for future research are highlighted, providing insight for a better understanding of the skin penetration behavior of xenobiotics and associated health risks in practical application contexts.
Collapse
Affiliation(s)
- Qiaoying Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
4
|
Coelho SD, Maricoto T, Taborda-Barata L, Annesi-Maesano I, Isobe T, Sousa ACA. Relationship between flame retardants and respiratory health- A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123733. [PMID: 38458527 DOI: 10.1016/j.envpol.2024.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Chronic respiratory diseases are a dealing cause of death and disability worldwide. Their prevalence is steadily increasing and the exposure to environmental contaminants, including Flame Retardants (FRs), is being considered as a possible risk factor. Despite the widespread and continuous exposure to FRs, the role of these contaminants in chronic respiratory diseases is yet not clear. This study aims to systematically review the association between the exposure to FRs and chronic respiratory diseases. Searches were performed using the Cochrane Library, MEDLINE, EMBASE, PUBMED, SCOPUS, ISI Web of Science (Science and Social Science Index), WHO Global Health Library and CINAHL EBSCO. Among the initial 353 articles found, only 9 fulfilled the inclusion criteria and were included. No statistically significant increase in the risk for chronic respiratory diseases with exposure to FRs was found and therefore there is not enough evidence to support that FRs pose a significantly higher risk for the development or worsening of respiratory diseases. However, a non-significant trend for potential hazard was found for asthma and rhinitis/rhinoconjunctivitis, particularly considering urinary organophosphate esters (OPEs) including TNBP, TPHP, TCEP and TCIPP congeners/compounds. Most studies showed a predominance of moderate risk of bias, therefore the global strength of the evidence is low. The limitations of the studies here reviewed, and the potential hazardous effects herein identified highlights the need for good quality large-scale cohort studies in which biomarkers of exposure should be quantified in biological samples.
Collapse
Affiliation(s)
- Sónia D Coelho
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Tiago Maricoto
- Beira Ria Health Unit, Aveiro Health Center, Ílhavo, Portugal; GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Luís Taborda-Barata
- GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Immunoallergology, Cova da Beira University Hospital Center, Covilhã, Portugal
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, INSERM and Montpellier University, Department of Allergology and Respiratory Medicine, Montpellier University Hospital, Montpellier, France
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ana C A Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, School of Science and Technology, University of Évora, Portugal
| |
Collapse
|
5
|
Shindo M, Ishida M, Tokumura M, Wang Q, Miyake Y, Amagai T, Makino M. Determination of potential dermal exposure rates of phosphorus flame retardants via the direct contact with a car seat using artificial skin. CHEMOSPHERE 2024; 353:141555. [PMID: 38417497 DOI: 10.1016/j.chemosphere.2024.141555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Dermal exposure to phosphorus flame retardants (PFRs) has received much attention as a major alternative exposure route in recent years. However, the information regarding dermal exposure via direct contact with a product is limited. In addition, in the commonly used dermal permeability test, the target substance is dissolved in a solvent, which is unrealistic. In this study, a dermal permeability test of PFRs in three car seats was performed using artificial skin. The PFR concentrations in the car seats are 0.12 wt% tris(2-chloroethyl) phosphate (TCEP), 0.030-0.25 wt% tris(2-chloroisopropyl) phosphate (TCPP), 0.15 wt% triphenyl phosphate (TPhP), 0.89 wt% cresyl diphenyl phosphate (CsDPhP), 0.074 wt% tricresyl phosphate (TCsP), and 0.46-4.7 wt% diethylene glycol bis [di (2-chloroisopropyl) phosphate (DEG-BDCIPP). The mean skin permeation rates for a contact time of 24 h are 14 (TCEP), 5.4-160 (TCPP), 0.67 (CsDPhP), 0.38 (TPhP), and 3.3-58 ng cm-2 h-1 (DEG-BDCIPP). The concentrations of TCsP in receptor liquid were lower than the limit of quantification at the contact time of 24 h. The skin permeation rates were significantly affected by the type of car seat (e.g., fabric or non-fabric). The potential dermal TCPP exposure rate for an adult via direct contact with the car seat during the average daily contact time (1.3 h), which was the highest value assessed in this study, was estimated to be 16,000 ng kg-1 day-1, which is higher than that related to inhalation and dust ingestion reported as significant exposure route of PFRs in previous studies. These facts reveal that dermal exposure associated with direct contact with the product might be an important exposure pathway for PFRs.
Collapse
Affiliation(s)
- Mai Shindo
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Maho Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Masahiro Tokumura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Qi Wang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; National Institute of Occupational Safety and Health, Japan, 6-21-1 Nagao, Tama-ku, Kawasaki, 214-8585, Japan
| | - Yuichi Miyake
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Masakazu Makino
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
6
|
Akpojevwe Abafe O, Harrad S, Abou-Elwafa Abdallah M. Assessment of human dermal absorption of flame retardant additives in polyethylene and polypropylene microplastics using 3D human skin equivalent models. ENVIRONMENT INTERNATIONAL 2024; 186:108635. [PMID: 38631261 DOI: 10.1016/j.envint.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
To overcome ethical and technical challenges impeding the study of human dermal uptake of chemical additives present in microplastics (MPs), we employed 3D human skin equivalent (3D-HSE) models to provide first insights into the dermal bioavailability of polybrominated diphenyl ether (PBDEs) present in MPs; and evaluated different factors influencing human percutaneous absorption of PBDEs under real-life exposure scenario. PBDEs were bioavailable to varying degrees (up to 8 % of the exposure dose) and percutaneous permeation was evident, albeit at low levels (≤0.1 % of the exposure dose). While the polymer type influenced the release of PBDEs from the studied MPs to the skin, the polymer type was less important in driving the percutaneous absorption of PBDEs. The absorbed fraction of PBDEs was strongly correlated (r2 = 0.88) with their water solubility, while the dermal permeation coefficient Papp of PBDEs showed strong association with their molecular weight and logKOW. More sweaty skin resulted in higher bioavailability of PBDEs from dermal contact with MPs than dry skin. Overall, percutaneous absorption of PBDEs upon skin contact with MPs was evident, highlighting, for the first time, the potential significance of the dermal pathway as an important route of human exposure to toxic additive chemicals in MPs.
Collapse
Affiliation(s)
- Ovokeroye Akpojevwe Abafe
- Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
7
|
Brandmair K, Tao TP, Gerlach S, Przibilla J, Schepky A, Marx U, Hewitt NJ, Kühnl J, Maschmeyer I. Suitability of different reconstructed human skin models in the skin and liver Chip2 microphysiological model to investigate the kinetics and first-pass skin metabolism of the hair dye, 4-amino-2-hydroxytoluene. J Appl Toxicol 2024; 44:333-343. [PMID: 37699698 DOI: 10.1002/jat.4542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
The HUMIMIC skin-liver Chip2 microphysiological systems model using the epidermal model, EpiDerm™, was reported previously to mimic application route-dependent metabolism of the hair dye, 4-amino-2-hydroxytoluene (AHT). Therefore, we evaluated the use of alternative skin models-SkinEthic™, EpiDermFT™ and PhenionFT™-for the same purpose. In static incubations, AHT permeation was similar using SkinEthic™ and EpiDerm™ models. Older Day 21 (D21) SkinEthic™ models with a thicker stratum corneum did not exhibit a greater barrier to AHT (overall permeation was the same in D17 and D21 models). All epidermal models metabolised AHT, with the EpiDerm™ exhibiting higher N-acetylation than SkinEthic™ models. AHT metabolism by D21 SkinEthic™ models was lower than that by D17 SkinEthic™ and EpiDerm™ models, thus a thicker stratum corneum was associated with fewer viable cells and a lower metabolic activity. AHT permeation was much slower using PhenionFT™ compared to epidermal models and better reflected permeation of AHT through native human skin. This model also extensively metabolised AHT to N-acetyl-AHT. After a single topical or systemic application of AHT to Chip2 model with PhenionFT™, medium was analysed for parent and metabolites over 5 days. The first-pass metabolism of AHT was demonstrated, and the introduction of a wash step after 30 min decreased the exposure to AHT and its metabolites by 33% and 40%-43%, respectively. In conclusion, epidermal and FT skin models used in the Chip2 can mimic the first-pass skin metabolism of AHT. This highlights the flexibility of the Chip2 to incorporate different skin models according to the purpose.
Collapse
Affiliation(s)
| | - Thi-Phuong Tao
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | - Silke Gerlach
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | - Julia Przibilla
- Pharmacelsus GmbH, Science Park 2, D-66123, Saarbrücken, Germany
| | | | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | - Nicola J Hewitt
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | - Jochen Kühnl
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | | |
Collapse
|
8
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
9
|
Chao X, Yao D, Chen C, Sheng Z, Zhu B. Tetrabromobisphenol A induces neuronal cytotoxicity by inhibiting PINK1-Parkin-mediated mitophagy via upregulating ATF3 expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169175. [PMID: 38065503 DOI: 10.1016/j.scitotenv.2023.169175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/30/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Tetrabromobisphenol A (TBBPA), as a widely used brominated flame retardant, has been implicated as a potential neurotoxicant. However, the mechanism of TBBPA-induced neurotoxicity has not been fully elucidated yet. In this study, using mouse hippocampal neuron cell HT22 as the in vitro model, the neuronal cytotoxicity of TBBPA and the mechanism by focusing on mitophagy have been studied. We found that neuronal cytotoxic effects were indeed induced by TBBPA exposure at concentrations of >20 μM for 24 h, including decreased cell viability (to 92.38 % at 20 μM; 18.25 % at 80 μM), enhanced ROS (enhanced 53.26 % at IC50 of 60 μM, compared with that in the control group) and mitochondrial ROS (mtROS) levels (enhanced 24.12 % at 60 μM), reduced mitochondrial membrane potential (MMP) (decreased 33.60 % at 60 μM). As a protective mechanism in cells, autophagy was initiated; however, mitophagy was inhibited, where PINK1 (PINK1-Parkin activation is critical in the depolarized MMP-induced mitophagy) expression was found to be repressed and decreased, further leading to the failure of Parkin recruitment to the damaged mitochondria. Mitophagy activator, nicotinamide mononucleotide (β-NMN) that activates the PINK1-Parkin pathway, could alleviate TBBPA-induced mitophagy deficiency and further reduce the neuronal cytotoxicity, demonstrating that TBBPA-induced PINK1-Parkin-mediated mitophagy deficiency contributed to the neuronal cytotoxicity. Furthermore, we found TBBPA caused the upregulation of Atf3 (activating transcription factor 3) gene transcription and expression levels, alongside reduced Pink1 levels; whereas enhanced Pink1 transcript levels were observed after ATF3 depletion even under TBBPA treatment, demonstrating TBBPA-induced overexpression of ATF3 should be responsible for the reduced PINK1 expression. Therefore, for the first time, here we demonstrate that TBBPA can inhibit PINK1-Parkin-mediated mitophagy via upregulating ATF3 expression, which further contributes to its neuronal cytotoxicity. This study should be able to improve our understanding of the mechanism of TBBPA-induced neuronal cytotoxicity.
Collapse
Affiliation(s)
- Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dezhi Yao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chuxuan Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiguo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, China
| | - Benzhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Wang Z, Geng S, Zhang J, Yang H, Shi S, Zhao L, Luo X, Cao Z. Methods for the characterisation of dermal uptake: Progress and perspectives for organophosphate esters. ENVIRONMENT INTERNATIONAL 2024; 183:108400. [PMID: 38142534 DOI: 10.1016/j.envint.2023.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Organophosphate esters (OPEs) are a group of pollutants that are widely detected in the environment at high concentrations. They can adversely affect human health through multiple routes of exposure, including dermal uptake. Although attention has been paid to achieving an accurate and complete quantification of the dermal uptake of OPEs, existing evaluation methods and parameters have obvious weaknesses. This study reviewed two main categories of methodologies, namely the relative absorption (RA) model and the permeability coefficient (PC) model, which are widely used to assess the dermal uptake of OPEs. Although the PC model is more accurate and is increasingly used, the most important parameter in this model, the permeability coefficient (Kp), has been poorly characterised for OPEs, resulting in considerable errors in the estimation of the dermal uptake of OPEs. Thus, the detailed in vitro methods for the determination of Kp are summarised and sorted. Furthermore, the commonly used skin membranes are identified and the factors affecting Kp and corresponding mechanisms are discussed. In addition, the experimental conditions, conclusions, and available data on Kp values of the OPEs are thoroughly summarised. Finally, the corresponding knowledge gaps are proposed, and a more accurate and sophisticated experimental system and unknown Kp values for OPEs are suggested.
Collapse
Affiliation(s)
- Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shuxiang Geng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hengkang Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
11
|
Li X, Zheng N, Zhang W, Sun S, An Q, Li Z, Ji Y, Wang S. Estimate of the maximum amount of dust adhering to skin and the upper limit of dust-skin adherence factor for young adults: An example from Changchun, China. CHEMOSPHERE 2023; 339:139754. [PMID: 37553043 DOI: 10.1016/j.chemosphere.2023.139754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
Contaminants present in dust adhering to the skin can pose a significant risk to human health through dermal absorption and hand-to-mouth contact. The adhesion capacity of dust differs significantly from that of soil due to its physicochemical properties. Therefore, applying the raw soil exposure parameters to estimate the health risks associated with dermal exposure to dust may lead to erroneous conclusions. In this study, we quantified the maximum amount of dust that adhered to the skin (MADmax) and the upper limit of dust-skin adherence factor (DSAFmax) in 26 adults using element markers as a proxy for dust. The volunteers were exposed to dust and rinse water samples were collected from their hands, forearms, lower legs, and feet. We analyzed both the raw dust samples and the rinse water samples for 11 element markers, including Be, V, Cr, Mn, Co, Ni, Cu, Zn, Se, Ba, and Pb. The results showed that the MADmax of indoor dust and outdoor dust increased by 0.08-0.62 mg and 0.33-0.56 mg following a 1 cm2 increase in skin surface area, respectively. Based on best dust element markers, the body part-weighted dust-skin adherences (WDSAFmaxs) of indoor dust and outdoor dust were 0.35 and 0.64 mg/cm2, respectively. A smaller particle size and higher moisture content resulted in a larger DSAFmax. Only when indoor dust concentrations exceed 24.2 mg/m3 or outdoor dust concentrations exceed 44.3 mg/m3, can the WDSAFmax be applied directly in the health risk assessment of dermal exposure to dust. The method from this study can be re-applied in different regions, and the adherence data can help to improve future studies on the health effects of dermal exposure to dust.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Zimeng Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, Jilin, China
| |
Collapse
|
12
|
Kuttiyathil MS, Ali L, Ahmed OH, Altarawneh M. Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH) 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98300-98313. [PMID: 37606772 DOI: 10.1007/s11356-023-29428-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Legacy brominated flame retardants (BFRs) in printed circuit boards are gradually being replaced by novel BFRs (NBFRs). Safe disposal and recycling of polymeric constituents in the polymeric fractions of e-waste necessitate the removal of their toxic and corrosive bromine content. This is currently acquired through thermal recycling operations involving the pyrolysis of BFRs-containing materials with metal oxides. Nonetheless, the debromination capacity toward NBFRs is yet to be established. Thus, this study aims to address these two crucial gaps in the current knowledge pertaining to the plausible formation of brominated toxicants from the thermal decomposition of NBFRs and their thermal recycling potential. Herein, we investigate the pyrolysis of a mixture of 2,4,6-tribromophenol (TBP), allyl 2,4,6-tribromophenyl ether (ATE) and Tetrabromobisphenol A-bis (2,3-dibromo propyl ether) (TBBPA-DBPE) in the presence of acrylonitrile butadiene styrene (ABS) polymers at various loads. To demonstrate a viable debromination route, pyrolysis of NBFRs-ABS mixture with Ca(OH)2 was also investigated. The latter is a potent debromination agent for legacy BFRs. Upon pyrolysis with Ca(OH)2, the bromine content in the collected oil was reduced up to 80.49% between 25-500 °C. Products of the co-pyrolysis process generally feature non-brominated aromatic and aliphatic compounds; a finding that indicates an effective thermal recycling approach. As evident by IC measurements, no HBr emission could be detected when Ca(OH)2 is added to the mixture. As XRD patterns show, Ca(OH)2 is partially converted into CaBr2. DFT calculations provide pathways for the observed surface debromination characterized by surface-assisted fission of aromatic C-Br bonds and the formation of CaBr sites. Outcomes reported herein are instrumental to designing and operating a thermal recycling facility of polymeric materials contaminated with high loads of bromine, i.e., most notably during scenarios encountered in the thermal recycling of e-waste.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Labeeb Ali
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Oday H Ahmed
- Department of Physics, College of Education, Al- Iraqia University, Baghdad, Iraq
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
13
|
Zhang S, Cheng Z, Yang M, Guo Z, Zhao L, Baqar M, Lu Y, Wang L, Sun H. Percutaneous Penetration of Liquid Crystal Monomers (LCMs) by In Vitro Three-Dimensional Human Skin Equivalents: Possible Mechanisms and Implications for Human Dermal Exposure Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4454-4463. [PMID: 36867107 DOI: 10.1021/acs.est.2c07844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear. Herein, we used EpiKutis 3D-Human Skin Equivalents (3D-HSE) to quantitatively assess the percutaneous penetration of nine LCMs, which were detected in e-waste dismantling workers' hand wipes with high detection frequencies. LCMs with higher log Kow and greater molecular weight (MW) were more difficult to penetrate through the skin. Molecular docking results showed that ABCG2 (an efflux transporter) may be responsible for percutaneous penetration of LCMs. These results suggest that passive diffusion and active efflux transport may be involved in the penetration of LCMs across the skin barrier. Furthermore, the occupational dermal exposure risks evaluated based on the dermal absorption factor suggested the underestimation of the continuous LCMs' health risks via dermal previously.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zijin Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Lv YZ, Luo XJ, Li QQ, Yang Y, Zeng YH, Mai BX. A new insight into the emission source of DDT in indoor environment from rural area of South China and comprehensive human health exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35189-35199. [PMID: 36527556 DOI: 10.1007/s11356-022-24743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Human exposure to dichlorodiphenyltrichloroethanes (DDTs) and the subsequent risk to human health remain an important concern due to the "new" input of DDTs in the environment, especially since exposure to DDTs in indoor microenvironments is often ignored. In this study, we identified a new source of DDT emission in indoor environments and evaluated the health risk from the exposure to DDTs by investigating DDTs in indoor and outdoor dust, air, and coatings of household items in rural areas of Qingyuan, South China. The concentrations of DDTs in house dust and air were < MQL (method quantification limit)-3450 ng/g (median 42.4 ng/g) and 22.7-965 pg/m3 (median 49.5 pg/m3), respectively, which were significantly higher than the outdoor DDT values. Dichlorodiphenyldichloroethylene (DDE) was the main isomer in air samples, while DDT was the dominant isomer in indoor dust. Significant correlations between different DDT isomers were observed in indoor samples but not in outdoor samples. Furniture coating was identified as a source of DDTs in the indoor dust. The total daily exposure dose of DDTs (1.75 × 10-2 ng/kg bw/day for adults and 1.28 × 10-1 ng/kg bw/day for toddlers) through inhalation, dust ingestion, and dermal contact was found unlikely to pose a health risk. Our findings provide new insights into the emission sources and health risks caused by DDT indoors, highlighting the need to further investigate the toxicity mechanisms of parent DDT compound.
Collapse
Affiliation(s)
- Yin-Zhi Lv
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Qi-Qi Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
15
|
Ding T, Cai M, Wu CC, Bao LJ, Li J. Distribution profiles of bisphenols in school supplies and implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157938. [PMID: 35952887 DOI: 10.1016/j.scitotenv.2022.157938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol compounds (BPs) are usually applied in the production of school supplies, however, little is known on the occurrence of BPs in school supplies. In this study, 15 BPs were detected in 121 samples of school supplies collected from commercial market. Among all compounds studied, BPA, BPF, and BPS were the dominant compounds in school supplies with the detection frequency of 93.15 %, 85.62 % and 82.53 %, respectively, and at median concentrations of 161, 23.64 and 14.11 ng g-1 dw. The total concentrations of BPs varied among types of school supplies in the following order: paper (median: 1347 ng g-1 dw) > fabric (521.4 ng g-1 dw) > plastic (472.7 ng g-1 dw) > rubber (352.4 ng g-1 dw). Risk assessment of BPs in school supplies was evaluated by the estimated daily intake (EDI) via dermal absorption, and the median EDIs of ∑15 BPs were 156.78 ng d-1 (11.27-37,042.37 ng d-1) and 432.75 ng d-1 (32.44-91,624.22 ng d-1) for general and occupational people, respectively.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miao Cai
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chen-Chou Wu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
16
|
Tetrabromobisphenol Exposure Impairs Bovine Oocyte Maturation by Inducing Mitochondrial Dysfunction. Molecules 2022; 27:molecules27228111. [PMID: 36432212 PMCID: PMC9696588 DOI: 10.3390/molecules27228111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrabromobisphenol (TBBPA) is the most widely used brominated flame retardant in the world and displays toxicity to humans and animals. However, few studies have focused on its impact on oocyte maturation. Here, TBBPA was added to the culture medium of bovine cumulus-oocyte complexes (COCs) to examine its effect on oocytes. We found that TBBPA exposure displayed an adverse influence on oocyte maturation and subsequent embryonic development. The results of this study showed that TBBPA exposure induced oocyte meiotic failure by disturbing the polar-body extrusion of oocytes and the expansion of cumulus cells. We further found that TBBPA exposure led to defective spindle assembly and chromosome alignment. Meanwhile, TBBPA induced oxidative stress and early apoptosis by mediating the expression of superoxide dismutase 2 (SOD2). TBBPA exposure also caused mitochondrial dysfunction, displaying a decrease in mitochondrial membrane potential, mitochondrial content, mtDNA copy number, and ATP levels, which are regulated by the expression of pyruvate dehydrogenase kinase 3 (PDK3). In addition, the developmental competence of oocytes and the quality of blastocysts were also reduced after TBBPA treatment. These results demonstrated that TBBPA exposure impaired oocyte maturation and developmental competence by disrupting both nuclear and cytoplasmic maturation of the oocyte, which might have been caused by oxidative stress induced by mitochondrial dysfunction.
Collapse
|
17
|
Organophosphorus Flame Retardant TCPP Induces Cellular Senescence in Normal Human Skin Keratinocytes: Implication for Skin Aging. Int J Mol Sci 2022; 23:ijms232214306. [PMID: 36430782 PMCID: PMC9698913 DOI: 10.3390/ijms232214306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56-400 μg/mL for 24 h, with an IC50 of 275 μg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 μg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-β-galactosidase activity and related proinflammatory cytokine IL-1β and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging.
Collapse
|
18
|
Ragnarsdóttir O, Abdallah MAE, Harrad S. Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119478. [PMID: 35588958 DOI: 10.1016/j.envpol.2022.119478] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
Collapse
Affiliation(s)
- Oddný Ragnarsdóttir
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
19
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
20
|
Yu Y, Hua X, Chen H, Yang Y, Dang Y, Xiang M. Tetrachlorobisphenol A mediates reproductive toxicity in Caenorhabditis elegans via DNA damage-induced apoptosis. CHEMOSPHERE 2022; 300:134588. [PMID: 35427672 DOI: 10.1016/j.chemosphere.2022.134588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Tetrachlorobisphenol A (TCBPA), an alternative to tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and could potentially impact the reproductive system of organisms. However, the mechanisms underlying TCBPA-mediated reproductive effects remain unclear. Herein, we exposed Caenorhabditis elegans (C. elegans, L4 larvae) to TCBPA at environmentally relevant doses (0-100 μg/L) for 24 h. Exposure to TCBPA at concentrations of 1-100 μg/L impaired fertility of C. elegans, as indicated by brood size. After staining, the number of germline cells decreased in a dose-dependent manner, whereas germline cell corpses increased in exposed nematodes (10-100 μg/L TCBPA). Moreover, the expression of genes related to the germline apoptosis pathway was regulated following exposure to 100 μg/L TCBPA, indicating the potential role of DNA damage in TCBPA-induced apoptosis. Apoptosis was nearly abolished in ced-4 and ced-3 mutants and blocked in hus-1, egl-1, cep-1, and ced-9 mutants. Numerous foci were detected in TCBPA (100 μg/L)-exposed hus-1::GFP strains. These results indicate that TCBPA induces hus-1-mediated DNA damage and further causes apoptosis via a cep-1-dependent pathway. Our data provide evidence that TCBPA causes reproductive toxicity via DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
21
|
Zhao M, Yin N, Yang R, Li S, Zhang S, Faiola F. Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119467. [PMID: 35577262 DOI: 10.1016/j.envpol.2022.119467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs' potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.
Collapse
Affiliation(s)
- Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Abou-Elwafa Abdallah M, Harrad S. Dermal uptake of chlorinated organophosphate flame retardants via contact with furniture fabrics; implications for human exposure. ENVIRONMENTAL RESEARCH 2022; 209:112847. [PMID: 35104485 DOI: 10.1016/j.envres.2022.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The chlorinated organophosphate flame retardants (Cl-PFRs): tris-(2-chloroethyl)-phosphate (TCEP), tris-(1-chloro-2-propyl)-phosphate (TCIPP) and tris-(1,3-dichloropropyl)-phosphate (TDCIPP), have been widely used in upholstered furniture despite their carcinogenic potential. Although Cl-PFRs are mainly added to furniture foam, they are present in the fabrics likely due to migration from the foam. While several studies have assessed human exposure to Cl-PFRs via different pathways, no information exists on dermal uptake of these chemicals through contact with fabrics. In the current study, dermal absorption of TCEP, TCIPP and TDCIPP from 3 UK domestic furniture fabrics was experimentally assessed for the first time using in vitro 3D-human skin equivalents (EpiSkin™) under different real-life exposure scenarios. Results revealed all 3 target Cl-PFRs were dermally bioavailable to varying degrees (3.5%-25.9% of exposure dose) following 24 h contact with the studied fabrics. Estimated permeability coefficients (KP, cm h-1) showed TCEP had the highest percutaneous penetration potential followed by TCIPP, then TDCIPP. Further investigation revealed human dermal uptake of Cl-PFRs can be influenced by several factors including: the specific physicochemical properties of the compound, the type of exposure matrix, the exposure dose and the degree of skin hydration at the point of contact. Exposure assessment revealed UK adults and toddlers can be exposed to 20.4 and 14.1 ng TCIPP/kg bw/day via contact with furniture fabrics in summer, which is higher than international average exposures via inhalation and dust ingestion for adults and dietary exposure for toddlers. Therefore, risk assessment studies for Cl-PFRs and future replacements should consider dermal contact with consumer products (e.g. furniture fabrics) as a potential significant human exposure pathway.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526, Assiut, Egypt.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
23
|
Tang J, Lin M, Ma S, Yang Y, Li G, Yu Y, Fan R, An T. Identifying Dermal Uptake as a Significant Pathway for Human Exposure to Typical Semivolatile Organic Compounds in an E-Waste Dismantling Site: The Relationship of Contaminant Levels in Handwipes and Urine Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14026-14036. [PMID: 34596389 DOI: 10.1021/acs.est.1c02562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermal exposure to semivolatile organic compounds (SVOCs) has recently attracted widespread attention; understanding these exposures is particularly important for people whose skin is frequently exposed to different pollution surfaces. In this study, handwipes were collected from exposed occupational workers and local residents near a typical electronic waste (e-waste) dismantling area; urine samples were also sampled. The wipes were analyzed for three typical SVOCs: polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and organophosphate flame retardants (OPFRs). The median levels of PAHs, OPFRs, and PBDEs in handwipes from e-waste dismantlers were 96.0, 183, and 238 ng, respectively. The analytes were higher in the handwipes collected from workers than those from residents, indicating that they were subjected to greater dermal exposure during primitive e-waste dismantling activities. Among the three SVOCs, the strongest correlation was found between triphenyl phosphate (TPhP) in handwipes and diphenyl phosphate (DPhP) in paired urine; the next strongest correlations were between PAHs and PBDEs and their corresponding urinary metabolites. The results showed that TPhP contributed the highest exposure to e-waste dismantlers via dermal exposure. Our research highlights the importance of dermal exposure to TPhP, which should be considered in future exposure risk assessments.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Synergy Innovation Institute of GDUT, Shantou 515041, P. R. China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Synergy Innovation Institute of GDUT, Shantou 515041, P. R. China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, P. R. China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
24
|
A hybrid monolithic column based on flower-shaped zeolitic imidazolate framework for efficient capillary microextraction of brominated flame retardants. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
26
|
Davis A, Ryan PB, Cohen JA, Harris D, Black M. Chemical exposures from upholstered furniture with various flame retardant technologies. INDOOR AIR 2021; 31:1473-1483. [PMID: 33624349 PMCID: PMC8451937 DOI: 10.1111/ina.12805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/02/2023]
Abstract
Upholstered furniture is often manufactured with polyurethane foam (PUF) containing flame retardants (FRs) to prevent the risk of a fire and/or to meet flammability regulations, however, exposure to certain FRs and other chemicals have been linked to adverse health effects. This study developed a new methodology for evaluating volatile organic compound (VOC) and FR exposures to users of upholstered furniture by simulating use of a chair in a controlled exposure chamber and assessing the health significance of measured chemical exposure. Chairs with different fire-resistant technologies were evaluated for VOC and FR exposures via inhalation, ingestion, and dermal contact exposure routes. Data show that VOC exposure levels are lower than threshold levels defined by the US and global indoor air criteria. Brominated FRs were not detected from the studied chairs. The organophosphate FRs added to PUF were released into the surrounding air (0.4 ng/m3 ) and as dust (16 ng/m2 ). Exposure modeling showed that adults are exposed to FRs released from upholstered furniture mostly by dermal contact and children are exposed via dermal and ingestion exposure. Children are most susceptible to FR exposure/dose (2 times higher average daily dose than adults) due to their frequent hand to mouth contact.
Collapse
Affiliation(s)
- Aika Davis
- Underwriters Laboratories, Inc.MariettaGAUSA
| | | | | | | | | |
Collapse
|
27
|
Silva EZM, Dorta DJ, de Oliveira DP, Leme DM. A review of the success and challenges in characterizing human dermal exposure to flame retardants. Arch Toxicol 2021; 95:3459-3473. [PMID: 34436642 DOI: 10.1007/s00204-021-03130-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022]
Abstract
Since organic flame retardants (FRs) have several industrial applications, they have been largely detected in environmental and biological samples, and humans have been highly exposed to them. Although the effects of oral and inhaled FRs have been well studied, dermal exposure to them has only recently been pointed out as a potential route of human exposure. Consequently, the effects of FRs on the skin and secondary target organs have been poorly investigated. This review article summarizes the main findings regarding dermal exposure to FRs, points the limitation of the published studies, and suggests future perspectives for better understanding of how dermal exposure to FRs impacts the human health. This review lists some gaps that must be filled in future studies, including characterization of the bioavailable fraction and assessment of exposure for new FRs, to establish their physiological significance and to improve the development of 3D dermal tissue for more reliable results to be obtained.
Collapse
Affiliation(s)
- Enzo Zini Moreira Silva
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil
| | - Daniel Junqueira Dorta
- Departament of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Daniela Morais Leme
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil. .,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
28
|
Zhang YX, Liu YP, Miao SS, Liu XD, Ma SM, Qu ZY. Exposure to persistent organic pollutants and thyroid cancer risk: a study protocol of systematic review and meta-analysis. BMJ Open 2021; 11:e048451. [PMID: 34408050 PMCID: PMC8375755 DOI: 10.1136/bmjopen-2020-048451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The thyroid cancer incidence has been increasing all over the world. However, the aetiology of thyroid cancer remains unclear. A growing body of evidence suggested exposure to persistent organic pollutants (POPs) may play a role in the initiation of thyroid cancer, but the results are generally inconsistent across studies. This review aims to synthesise the evidence for the health effects of POPs on the risk of thyroid cancer. METHODS AND ANALYSIS This protocol was reported in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA) statements. A comprehensive search, including electronic database search (eg, PubMed, Embase, ProQuest and CNKI), website search and manual search, will be performed to identify all eligible studies. The Population, Exposure, Comparator and Outcome framework was used to clarify the inclusion and exclusion criteria. The Newcastle-Ottawa Scale will be used to assess the quality of included studies. Maximally adjusted effect estimates from individual studies will be summarised with random-effect models in a conservative manner. I2 statistics and Q-tests will be used to test the heterogeneity across studies. We will perform extensive sensitivity analyses, such as confounding risk ratio (confounding), E-value, fixed-effect models, excluding the most relatively weighted study, including only the high-quality studies and many predesigned subgroup analyses, etc. The findings will be reported in accordance to the PRISMA guidelines. ETHICS AND DISSEMINATION Ethical approval is not required in this systematic review of published literatures. The results will be published in a peer-reviewed journal and presented at relevant conferences. PROSPERO REGISTRATION NUMBER CRD42020181343.
Collapse
Affiliation(s)
- Yu Xue Zhang
- Department of Preventive Medicine, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Peng Liu
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Su Sheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiao Dong Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shu Mei Ma
- Department of Occupational and Environmental Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhang Yi Qu
- Department of Hygiene Microbiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
29
|
Gao W, Lin Y, Liang Y, Wang Y, Jiang L, Wang Y, Jiang G. Percutaneous penetration and dermal exposure risk assessment of chlorinated paraffins. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126178. [PMID: 34492952 DOI: 10.1016/j.jhazmat.2021.126178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The widespread occurrence of chlorinated paraffins (CPs) in environmental matrices has resulted in a high frequency exposure to CPs via dermal contact. To quantitatively estimate percutaneous penetration of CPs, Episkin® human skin equivalents (HSE) was applied as an in vitro model to evaluate the mechanism of percutaneous penetration of CPs. The co-exposure of CPs mixtures to HSE showed that about 11.7% and 10.2% of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) could penetrate the HSE and enter the receptor fluid, while no long-chain CPs (LCCPs) (C>17) were able to penetrate the HSE during the 36-h assay period. The experimentally obtained permeability coefficient (Kp) values for CPs were significantly (p < 0.01) negatively correlated with their log octanol-water partition coefficient (log Kow). Furthermore, 24 participants were recruited to assess direct human dermal exposure to CPs in China with the total CPs collected onto hand wipes and forehead wipes being 96,600 and 30,400 ng/person, respectively. The proportion of total SCCPs and MCCPs intake via dermal penetration (skin area investigated in this study) accounting for 2.0% of the total intake of CPs. Considering the total skin surface of human body is around 20 times of the area studied, the total intake of CPs through dermal penetration could be a significant exposure pathway.
Collapse
Affiliation(s)
- Wei Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingjun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
Jing Y, Singh V, Chen L, Pawliszyn J. High-throughput biomonitoring of organophosphate flame-retardant metabolites in urine via 96-blade solid-phase microextraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Talanta 2021; 232:122466. [PMID: 34074438 DOI: 10.1016/j.talanta.2021.122466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022]
Abstract
Organophosphate flame retardants (OPFRs) are widely used in consumer products and building materials, but their propensity for migration poses a problem with respect to polluting indoor environments, water, soil, and dust. OPFR metabolites in urine samples are appropriate biomarkers for assessing exposure risk levels. In this paper, a high-throughput method that couples 96-blade solid-phase microextraction with ultra-performance liquid chromatography-tandem mass spectrometry (SPME-UPLC-MS/MS) is applied for the simultaneous detection of four OPFR metabolites in urine samples. The results indicated that the best extraction was achieved using 96 blades coated with hydrophilic-lipophilic balance weak anion exchange (HLB-WAX). The proposed SPME method's extraction efficiency was maximized by optimizing extraction time, pH value, desorption solution, desorption volume, and desorption time, and it was validated in accordance with the Food and Drug Administration's guidelines. The findings indicated that the proposed method has a wide linearity range (0.5-100 ng mL-1) and low detection limits (0.09-0.14 ng mL-1). The method's accuracy ranged from 98% to 118%, with intra-day precision ranging from 1% to 10%. In contrast, inter-day precision ranged from 3% to 16%. Accuracy was also evaluated using independent urine samples, which ranged from 78% to 124% with corresponding relative standard deviations (1%-16%). Ultimately, DoCP was detected in two real samples at a concentration of 0.5-1.1 ng mL-1, and BEHP was detected at a concentration of 0.2-1.2 ng mL-1. Overall, the proposed SPME-UPLC-MS/MS method is reliable, accurate, and capable of simultaneously determining four OPFR metabolites in urine samples and screening them to assess exposure risk for humans.
Collapse
Affiliation(s)
- Yu Jing
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium(1)
| | - Liqin Chen
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
31
|
NiFe 2O 4-based magnetic covalent organic framework nanocomposites for the efficient adsorption of brominated flame retardants from water. Mikrochim Acta 2021; 188:161. [PMID: 33834309 DOI: 10.1007/s00604-021-04809-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
A new kind of NiFe2O4-based magnetic covalent organic framework nanocomposites (NiFe2O4@COFs) was fabricated through facile synthesis approach under room temperature. The NiFe2O4@COFs exhibited higher adsorption capacity for brominated flame retardants than carbon nanotube material based on hydrophobic interactions, π-π stacking interaction, and van der Waals forces. In addition, the adsorption isotherm and the kinetic model were more suitable for Langmuir and pseudo-second-order model, respectively. NiFe2O4-based magnetic covalent organic framework nanocomposites combined with HPLC-UV (absorption wavelength: 214 nm) technology has excellent adsorption performance, which exhibited low detection limits (0.03-1.9 μg L-1), wide linear range (0.11-1000 μg L-1), good recoveries (91.5-102%) with a relative standard deviation of less than 2.9%. Finally, the prepared magnetic material was successfully used asadsorbents of magnetic solid-phase extraction and applied to the determination of five BFRs from the real water samples. The adsorption and removal of BFRs by NiFe2O4@COFs from water samples.
Collapse
|
32
|
Madiedo-Podvrsan S, Belaïdi JP, Desbouis S, Simonetti L, Ben-Khalifa Y, Collin-Djangone C, Soeur J, Rielland M. Utilization of patterned bioprinting for heterogeneous and physiologically representative reconstructed epidermal skin models. Sci Rep 2021; 11:6217. [PMID: 33737638 PMCID: PMC7973417 DOI: 10.1038/s41598-021-85553-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/01/2021] [Indexed: 11/09/2022] Open
Abstract
Organotypic skin tissue models have decades of use for basic research applications, the treatment of burns, and for efficacy/safety evaluation studies. The complex and heterogeneous nature of native human skin however creates difficulties for the construction of physiologically comparable organotypic models. Within the present study, we utilized bioprinting technology for the controlled deposition of separate keratinocyte subpopulations to create a reconstructed epidermis with two distinct halves in a single insert, each comprised of a different keratinocyte sub-population, in order to better model heterogonous skin and reduce inter-sample variability. As an initial proof-of-concept, we created a patterned epidermal skin model using GPF positive and negative keratinocyte subpopulations, both printed into 2 halves of a reconstructed skin insert, demonstrating the feasibility of this approach. We then demonstrated the physiological relevance of this bioprinting technique by generating a heterogeneous model comprised of dual keratinocyte population with either normal or low filaggrin expression. The resultant model exhibited a well-organized epidermal structure with each half possessing the phenotypic characteristics of its constituent cells, indicative of a successful and stable tissue reconstruction. This patterned skin model aims to mimic the edge of lesions as seen in atopic dermatitis or ichthyosis vulgaris, while the use of two populations within a single insert allows for paired statistics in evaluation studies, likely increasing study statistical power and reducing the number of models required per study. This is the first report of human patterned epidermal model using a predefined bioprinted designs, and demonstrates the relevance of bioprinting to faithfully reproduce human skin microanatomy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jérémie Soeur
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| | - Maïté Rielland
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| |
Collapse
|
33
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
34
|
Ozkaleli Akcetin M, Gedik K, Balci S, Gul HK, Birgul A, Kurt Karakus PB. First insight into polybrominated diphenyl ethers in car dust in Turkey: concentrations and human exposure implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39041-39053. [PMID: 32642893 DOI: 10.1007/s11356-020-09905-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The presence of polybrominated diphenyl ethers (PBDEs) in the car is due to their use as a flame retardant additive in various car components such as dashboard, plastic parts, seat and headliner cushion foams, insulated cables, and electronic circuits. Ingestion of dust inadvertently or dermal contact to dust are significant pathways of human exposure to pollutants including PBDEs. There are no studies documenting presence of car dust associated flame retardants in Turkey. In the current study, a total of 13 PBDEs congeners were investigated in 62 car dust samples collected from Bursa province of Turkey using glass-fiber filters and a vacuum cleaner. Results of the study showed that congener concentrations were within the range of <MDL-40198 ng/g and PBDE-209, major component of commercial deca-BDE, showed the highest concentration among the targeted congeners. Assessment of exposure to analyzed PBDEs via inadvertent dust ingestion and skin contact showed toddlers are exposed to these chemicals approx. 10 times higher compared to adults. Hazard quotient (HQ) values calculated based on total exposure (ingestion + dermal contact) and were < 1 for both adults and toddler indicated that exposure to car dust-associated PBDEs through ingestion and skin contact does not pose any health risks for human in Bursa.
Collapse
Affiliation(s)
- Merve Ozkaleli Akcetin
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Kadir Gedik
- Department of Environmental Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Selçuk Balci
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Hatice Kübra Gul
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Askin Birgul
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Perihan Binnur Kurt Karakus
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
| |
Collapse
|
35
|
Zhou H, Yin N, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci (China) 2020; 97:54-66. [PMID: 32933740 DOI: 10.1016/j.jes.2020.04.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and is extensively used in electronic equipment, furniture, plastics, and textiles. It is frequently detected in water, soil, air, and organisms, including humans, and has raised concerns in the scientific community regarding its potential adverse health effects. Human exposure to TBBPA is mainly via diet, respiration, and skin contact. Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals, and potentially exert hepatic, renal, neural, cardiac, and reproductive toxicities. Nevertheless, other reports have claimed that TBBPA might be a safe chemical. In this review, we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity. We concluded that, although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population, particular attention should be paid to the potential effects of TBBPA on early developmental stages.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Tang B, Christia C, Malarvannan G, Liu YE, Luo XJ, Covaci A, Mai BX, Poma G. Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China. ENVIRONMENT INTERNATIONAL 2020; 143:105972. [PMID: 32707272 DOI: 10.1016/j.envint.2020.105972] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 05/22/2023]
Abstract
Indoor dust has been extensively used for assessment of indoor contamination, especially for semi-volatile organic compounds (SVOCs). In the present study, the occurrence of four groups of SVOCs, i.e. organophosphorus flame retardants (PFRs), emerging PFRs (ePFRs), legacy phthalates (LPs), and alternative plasticizers (APs), was investigated in the indoor dust and air collected from floors, table surfaces, windows, and air conditioner (A/C) filters in bedrooms and offices in Guangzhou, South China. In bedrooms, A/C filter dust showed the highest median concentrations of PFRs (4670 ng/g) and ePFRs (586 ng/g), whilst the highest median concentrations of LPs and APs were found in floor (240,880 ng/g) and window dust (157,160 ng/g), respectively. In offices, A/C filter dust showed the highest median concentrations for PFRs (6750 ng/g) and APs (504,520 ng/g), while the highest ePFR median level was found in PC table dust (5810 ng/g) and LPs in floor dust (296,270 ng/g). Median air concentrations of PFRs, ePFRs, LPs, and APs were measured at 4.6, 0.12, 399, and 25 ng/m3 in bedrooms, and at 8.0, 0.05, 332, and 43 ng/m3 in offices, respectively. Tris(1-chloro-iso-propyl) phosphate (TCIPP) was the predominant PFRs/ePFRs in both dust and air. Di(2-ethylhexyl) phthalate (DEHP), di-iso-decyl phthalate (DIDP) and di-iso-nonyl phthalate (DINP) were the main LP/AP compounds in dust, whilst di-iso-butyl phthalate (DIBP) and di-n-butyl phthalate (DNBP) were the most abundant LPs/APs in air. A significant correlation (p < 0.05) was found between dust and air levels for chemicals with log Koa < 14, indicating that equilibrium was achieved for these chemicals but not for those with log Koa > 14. Among the investigated human exposure pathways (i.e. dust ingestion, dermal absorption, and air inhalation), dust ingestion was the predominant one for all chemicals. Human exposures of this magnitude to these chemicals through the investigated pathways was unlikely to present a health risk in the present study.
Collapse
Affiliation(s)
- Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, PR China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, PR China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| |
Collapse
|
37
|
Pan W, Zeng D, Ding N, Luo K, Man YB, Zeng L, Zhang Q, Luo J, Kang Y. Percutaneous Penetration and Metabolism of Plasticizers by Skin Cells and Its Implication in Dermal Exposure to Plasticizers by Skin Wipes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10181-10190. [PMID: 32678582 DOI: 10.1021/acs.est.0c02455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous studies focused on the human exposure to plasticizers via dermal contact; however, the percutaneous penetration of plasticizers was seldom considered in exposure assessment. In the present study, skin wipes of palms, back-of-hands, and forehead were collected from 114 participants (ages: 18-27). There was no significant difference between the levels of phthalates from palms and back-of-hand, while all phthalates collected from the forehead were significantly higher than those from palms and back-of-hand (p < 0.001); di(2-ethylhexyl)phthalate levels were substantially higher than other detected phthalates followed by di(n-butyl)phthalate and di(isobutyl)phthalate (DiBP), and for alternative plasticizers, bis-2-ethylhexyl terephthalate levels were substantially higher than acetyltributyl citrate and bis-2-ethylhexyladipate. Skin permeation and metabolism of phthalates was assessed using human skin equivalent models. The permeability coefficient (kp) values of phthalates were significantly negatively correlated with their log octanol-water partition coefficient (log Kow), while a significantly positive correlation was found between the log Kow and the cumulative amounts of phthalates in the cells. The proportion of phthalate intake via dermal exposure to skin wipes ranges from 1.3% (for dimethyl phthalate) to 8.6% (for DiBP) and suggests that dermal absorption is a significant route for adult phthalate exposure.
Collapse
Affiliation(s)
- Weijian Pan
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- School of Chemistry, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Diya Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Na Ding
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
38
|
Sheikh IA, Beg MA. Structural binding interactions of tetrabromobisphenol A with sex steroid nuclear receptors and sex hormone‐binding globulin. J Appl Toxicol 2020; 40:832-842. [DOI: 10.1002/jat.3947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Ishfaq A. Sheikh
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz University Jeddah Saudi Arabia
| | - Mohd A. Beg
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
39
|
Hu L, Tao Y, Luo D, Feng J, Wang L, Yu M, Li Y, Covaci A, Mei S. Simultaneous biomonitoring of 15 organophosphate flame retardants metabolites in urine samples by solvent induced phase transition extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry. CHEMOSPHERE 2019; 233:724-732. [PMID: 31200132 DOI: 10.1016/j.chemosphere.2019.05.242] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Organophosphate flame retardants and plasticizers (OPFRs) are widely additives in consumer products and building materials. They are frequently detected in environmental media, including indoor air, water, soil, and dust. To provide a low-cost and multi-target tool for monitoring individual exposure to OPFRs, a high-throughput method for simultaneous detection of 15 urinary OFPR metabolites was established using solvent induced phase transition extraction (SIPTE) technique for sample pretreatment and ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) for target quantification. SIPTE is implemented by adding a hydrophobic solvent (methyl tert-butyl ether, used as the phase transition solution) to the homogeneous acetonitrile (ACN) aqueous solution for phase separation. Method performance was validated based on the evaluation indicators. The linear range of this present method was between 0.1 and 50 ng/mL for 15 urinary OPFR metabolites. The limits of detection (LODs) were from 0.012 to 0.25 ng/mL, and the spiked recoveries ranged of 71.3-117.6%, with corresponding relative standard deviations (RSDs) from 4.8 to 25.6%. Unlike most studies only focused on the determination of dialkyl and diaryl phosphate esters (DAPs), our analytical method also covered hydroxylated OPFRs metabolites (OH-OPFRs). Seven DAPs with detection frequencies (DF) more than 60% were detected in a small pilot study (n = 15). Besides, 4-hydroxy diphenyl phosphate (4-HO-DPHP) could be also detected in urine samples. Overall, this newly developed high-throughput analytical method could simultaneously determine 15 urinary OPFRs metabolites and screen these biomarkers of human exposure to OPFRs.
Collapse
Affiliation(s)
- Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yun Tao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Hospital Management Institute, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jingwen Feng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
40
|
Giovanoulis G, Nguyen MA, Arwidsson M, Langer S, Vestergren R, Lagerqvist A. Reduction of hazardous chemicals in Swedish preschool dust through article substitution actions. ENVIRONMENT INTERNATIONAL 2019; 130:104921. [PMID: 31229872 DOI: 10.1016/j.envint.2019.104921] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Consumer goods and building materials present in the preschool environment can be important sources of hazardous chemicals, such as plasticizers, bisphenols, organophosphorus and brominated flame retardants, poly- and perfluoroalkyl substances, which may pose a health risk to children. Even though exposure occurs via many different pathways, such as food intake, inhalation, dermal exposure, mouthing of toys etc., dust has been identified as a valuable indicator for indoor exposure. In the present study, we evaluate the efficiency of product substitution actions taken in 20 Swedish preschools from the Stockholm area to reduce the presence of hazardous substances in indoor environments. Dust samples were collected from elevated surfaces in rooms where children have their everyday activities, and the concentrations found were compared to the levels from a previous study conducted in 2015 at the same preschools. It was possible to lower levels of hazardous substances in dust, but their continued presence in the everyday environment of children was confirmed since bisphenol A, restricted phthalates and organophosphate esters were still detectable in all preschools. Also, an increase in the levels of some of the substitutes for the nowadays restricted substances was noted; some of the alternative plasticizers to phthalates, such as DEHA and DEHT, were found with increased concentrations. DINP was the dominant plasticizer in preschool dust with a median concentration of 389 μg/g, while its level was significantly (p = 0.012) higher at 716 μg/g in preschools with polyvinyl chloride (PVC) flooring. PBDEs were now less frequently detected in dust and their levels decreased 20% to 30%. This was one of the few times that PFAS were analyzed in preschool dust, where 6:2 diPAP was found to be most abundant with a median concentration of 1140 ng/g, followed by 6:2 PAP 151 ng/g, 8:2 diPAP 36 ng/g, N-Et-FOSAA 18 ng/g, PFOS 12 ng/g, PFOA 7.7 ng/g and PFNA 1.1 ng/g. In addition, fluorotelomer alcohols were detected in 65-90% of the samples. Children's exposure via dust ingestion was evaluated using intermediate and high daily intake rates of the targeted chemicals and established health limit values. In each case, the hazard quotients (HQs) were < 1, and the risk for children to have adverse health effects from the hazardous chemicals analyzed in this study via dust ingestion was even lower after the product substitution actions were taken in preschools.
Collapse
Affiliation(s)
| | - Minh Anh Nguyen
- IVL Swedish Environmental Research Institute, 100 31 Stockholm, Sweden
| | - Maria Arwidsson
- City of Stockholm Environment and Health Administration, Environmental Analysis, 104 20 Stockholm, Sweden
| | - Sarka Langer
- IVL Swedish Environmental Research Institute, 100 31 Stockholm, Sweden
| | - Robin Vestergren
- IVL Swedish Environmental Research Institute, 100 31 Stockholm, Sweden
| | - Anne Lagerqvist
- City of Stockholm Environment and Health Administration, Environmental Analysis, 104 20 Stockholm, Sweden
| |
Collapse
|
41
|
Tokumura M, Seo M, Wang Q, Miyake Y, Amagai T, Makino M. Dermal exposure to plasticizers in nail polishes: An alternative major exposure pathway of phosphorus-based compounds. CHEMOSPHERE 2019; 226:316-320. [PMID: 30939370 DOI: 10.1016/j.chemosphere.2019.03.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Phosphorus-based compounds are used as plasticizers in the manufacture of many products found in the indoor environment. Here we quantitatively investigated dermal exposure to phosphorus-based compounds contained in 45 nail polishes purchased in Japan. The alternative plasticizer triphenyl phosphate (TPhP) was detected in some samples of the nail polishes made in the USA (concentration, 1.1-1.8 wt%). The potential dermal exposure rates for TPhP, estimated using ConsExpo (version 5.0; Dutch National Institute for Public Health and the Environment), were in the range 200 (5%ile)-1700 (50%ile)-5000 (95%ile) ng kg-bw-1 day-1, which is more than 1400 times the reported values for exposure via dust ingestion and inhalation. Thus, dermal exposure via nail polish may be a major route of exposure to TPhP. The margin of exposure range for TPhP was 3.6 × 105-4.1 × 104-1.4 × 104. For comparison, the potential dermal exposure rate range for the conventional plasticizer dibutyl phthalate and the alternative plasticizer acetyl tributyl citrate was 360-3500-14,000 and 430-4100-17,000 ng kg-bw-1 day-1, respectively, and the margin of exposure range was 4.1 × 103-4.2 × 102-1.1 × 102 and 2.3 × 105-2.4 × 104-5.9 × 103, respectively.
Collapse
Affiliation(s)
- Masahiro Tokumura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Makiko Seo
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Qi Wang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuichi Miyake
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Masakazu Makino
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
42
|
Christia C, Poma G, Harrad S, de Wit CA, Sjostrom Y, Leonards P, Lamoree M, Covaci A. Occurrence of legacy and alternative plasticizers in indoor dust from various EU countries and implications for human exposure via dust ingestion and dermal absorption. ENVIRONMENTAL RESEARCH 2019; 171:204-212. [PMID: 30665122 DOI: 10.1016/j.envres.2018.11.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Plasticizers are a category of chemicals extensively used in consumer products and, consequently, their presence is ubiquitous in the indoor environment. In the present study, an analytical method has been developed for the quantification of plasticizers (7 legacy phthalate esters (LPEs) and 14 alternative plasticizers (APs)) in indoor floor dust based on ultrasonic and vortex extraction, Florisil fractionation and GC-(EI)-MS analysis. Dust samples (n = 54) were collected from homes, offices, and daycare centers from different EU countries (Belgium, the Netherlands, Ireland and Sweden). Method LOQs ranged from 0.2 to 5 μg/g. Tri-n-hexyl trimellitate (THTM) was not detected in any sample, whereas dimethyl phthalate (DMP), diphenyl phthalate and acetyl triethyl citrate (ATEC) were detected only in 6, 2 and 1 out of 54 samples, respectively. The highest concentrations of plasticizers were measured in Swedish offices, at a mean concentration of total plasticizers of 1800 μg/g, followed by Swedish daycare centers at 1200 and 670 μg/g for winter and spring sampling, respectively. Generally, the contribution of APs was slightly higher than for LPEs for all indoor environments (mean contribution 60% and 40%, respectively based on contributions per indoor environment). For the APs, main contributors were DINP in Belgian homes (28%), Swedish offices (60%), Swedish daycare centers (48%), and Dutch offices (31%) and DEHT in Belgian (28%), Irish (40%) and Dutch homes (37%) of total APs. The predominant LPE was bis-2-ethylhexyl-phthalate (DEHP) with a mean contribution varying from 60% to 85% of total LPEs. Human exposure was evaluated for dust ingestion and dermal absorption using hazard quotients (HQs) of plasticizers (ratio between average daily doses and the reference dose). None of the HQs of plasticizers exceeded 1, meaning that the risk for adverse human health effects from these plasticizers via dust ingestion and dermal absorption is unlikely.
Collapse
Affiliation(s)
- Christina Christia
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, United Kingdom
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ylva Sjostrom
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, SE-701 85 Örebro, Sweden; MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Pim Leonards
- Institute for Environmental Sciences (IVM), VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Marja Lamoree
- Institute for Environmental Sciences (IVM), VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
43
|
Wu S, Wu M, Qi M, Zhong L, Qiu L. Effects of novel brominated flame retardant TBBPA on human airway epithelial cell (A549) in vitro and proteome profiling. ENVIRONMENTAL TOXICOLOGY 2018; 33:1245-1253. [PMID: 30098271 DOI: 10.1002/tox.22632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The cellular toxicity response of human airway epithelial cells (A549) to tetrabromobisphenol (TBBPA) was assessed in vitro. Cell viability, levels of intracellular reactive oxygen species (ROS), lipid peroxidation (MDA), and caspase-3 activity were determined after A549 treated with varying concentrations of TBBPA. A comparative proteomic analysis was performed in cells treated with different concentrations of TBBPA (0, 10, and 40 μg/mL). Two-way anova analysis showed that cell viability was significantly decreased after treatment by TBBPA with a concentration of 16 μg/mL for 48 hr, however, the caspase-3 activities, ROS generation, and MDA content increased. Ultrastructural observation revealed that the cell was morphological damaged after exposure to 64 μg/mL TBBPA, with mitochondria seriously injured and the smooth endoplasmic reticulum dilated. There was a good correlation between ROS generation and mitochondrial dysfunction. Seventeen differentially expressed proteins involved in various biological processes were identified. These findings provide a basis for understanding the mechanisms of cell dysfunction and perturbation of antioxidant status induced by additive flame retardant on airway epithelial cells.
Collapse
Affiliation(s)
- Shijin Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mei Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mengting Qi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Li Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lequan Qiu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
44
|
The renaissance of human skin organ culture: A critical reappraisal. Differentiation 2018; 104:22-35. [DOI: 10.1016/j.diff.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
|
45
|
Tan H, Chen D, Peng C, Liu X, Wu Y, Li X, Du R, Wang B, Guo Y, Zeng EY. Novel and Traditional Organophosphate Esters in House Dust from South China: Association with Hand Wipes and Exposure Estimation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11017-11026. [PMID: 30199231 DOI: 10.1021/acs.est.8b02933] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present study investigated the occurrence of 20 organophosphate esters (OPEs) in house dust from 51 South China homes and the risks of human exposure to OPEs via two pathways: dust ingestion and hand-to-mouth contact. In addition to several traditional OPEs, five out of six novel OPEs, including bisphenol A bis(deiphenyl phosphate) (BPA-BDPP), t-butylphenyl diphenyl phosphate (BPDPP), cresyl diphenyl phosphate (CDP), isodecyl diphenyl phosphate (IDDPP), and resorcinol-bis(diphenyl)phosphate (RDP), were frequently detected in house dust (median concentration: 59.7-531 ng/g). Eight of the 20 target OPEs were frequently detected in hand wipes collected from adults and children ( n = 51 and 31, respectively), which in combination (referred to as Σ8OPEs) had a median mass of 76.9 and 58.9 ng, respectively. Increasing dust concentrations of Σ8OPEs or three individual substances among these eight OPEs, including tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), and triphenyl phosphate (TPHP), were strongly associated with their levels in children's hand wipes ( p < 0.05 in all cases). By contrast, in adults' hand wipes only TPHP exhibited a marginally significant association with dust concentrations ( p = 0.04). Levels of Σ8OPEs in hand wipes from children, but not adults, were inversely influenced by hand washing frequency ( p = 0.002), while indoor temperature was inversely associated with hand wipe levels of Σ8OPEs from both children and adults ( p = 0.01 and 0.002, respectively). Exposure estimation suggests that hand-to-mouth contact represents another important pathway in addition to dust ingestion and that children are subjected to higher OPE exposure than adults.
Collapse
Affiliation(s)
- Hongli Tan
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Changfeng Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Xiaotu Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Yan Wu
- Cooperative Wildlife Research Laboratory and Department of Zoology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Xue Li
- Institute of Mass Spectrometer and Atmospheric Environment , Jinan University , Guangzhou , 510632 , China
| | - Rui Du
- Institute of Mass Spectrometer and Atmospheric Environment , Jinan University , Guangzhou , 510632 , China
| | - Bin Wang
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Institute of Reproductive and Child Health , Peking University , Beijing 100191 , China
- Department of Epidemiology and Biostatistics, School of Public Health , Peking University , Beijing 100191 , China
| | - Ying Guo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| | - Eddy Y Zeng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , 510632 , China
| |
Collapse
|
46
|
Iadaresta F, Manniello MD, Östman C, Crescenzi C, Holmbäck J, Russo P. Chemicals from textiles to skin: an in vitro permeation study of benzothiazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24629-24638. [PMID: 29911295 PMCID: PMC6133113 DOI: 10.1007/s11356-018-2448-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/29/2018] [Indexed: 05/21/2023]
Abstract
Despite the possible impact on human health, few studies have been conducted to assess the penetration and accumulation of contaminants in the skin after a prolonged contact with textile materials. In previous studies, we have shown that benzothiazole and its derivatives, as well as other potentially hazardous chemicals, often are present as textile contaminants in clothes available on the retail market. Since benzothiazole is a common contaminant in clothes, these can be a possible route for human chemical exposure, both systemic and onto the skin. To investigate this potential exposure, Franz-type and flow-through cells were used for the permeation studies together with a Strat-M® artificial membranes. Experiments were performed using solutions of benzothiazole, as well as contaminated textile samples in the donor chamber. Benzothiazole was demonstrated to penetrate through, as well as being accumulated in the membrane mimicking the skin. After 24 h, up to 62% of benzothiazole was found in the acceptor cell, while up to 37% was found absorbed in the skin mimicking membrane. It also was shown that there was release and permeation from contaminated fabrics. The results indicate that benzothiazole can be released from textile materials, penetrate through the skin, and further enter the human body. This will possibly also apply to other chemical contaminants in textiles, and the results of this study indicate that the presence of these textile contaminants entails potential health risks. A rough risk assessment was made for clothing textiles according to Environmental Protection Agency (EPA) and European regulations for carcinogenic and non-carcinogenic compounds, using literature data for benzothiazole.
Collapse
Affiliation(s)
- Francesco Iadaresta
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| | - Michele Dario Manniello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084, Fisciano, SA, Italy
| | - Conny Östman
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Carlo Crescenzi
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084, Fisciano, SA, Italy
| | - Jan Holmbäck
- Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084, Fisciano, SA, Italy
| |
Collapse
|
47
|
Lu S, Yu Y, Ren L, Zhang X, Liu G, Yu Y. Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1389-1396. [PMID: 29054660 DOI: 10.1016/j.scitotenv.2017.10.088] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 05/24/2023]
Abstract
Increasing concern has been raised in respect of exposure to bisphenols and triclosan (TCS) due to their widespread use. However, little is known about their occurrence in personal care products (PCPs) or, particularly, their dermal uptake following daily application. It is therefore necessary to evaluate the human health risk of bisphenols and TCS via dermal absorption. In this study, 150 PCPs, covering 11 different categories, were collected in China. The concentrations of seven bisphenol analogues and TCS were measured, and the associated human health risks by dermal contact were estimated. High detection frequencies of TCS (46.7%) and bisphenol AF (38.7%) were found in the PCPs. The highest mean concentration of Σ7BPs (sum concentration of all seven bisphenols) was 77.8ngg-1 found in masks, and the highest mean concentration of TCS was 86.7ngg-1 in hand sanitizers. The bisphenol composition profiles varied among different categories. Bisphenol A and bisphenol F generally showed higher concentrations. Combining the concentrations of the target substances with the daily usage quantities of PCPs and other parameters, the total estimated dermal intakes and uptakes of Σ7BPs and TCS were calculated. The results showed that the former (12.1 and 1.06ng·kg-1bwday-1) were markedly higher than the latter (1.21 and 9.58×10-2ng·kg-1bwday-1), which included dermal absorption rates of the chemicals in the estimation. Although diet is the main source, and oral ingestion is the main route, for human BPA exposure, the results of the estimated dermal uptakes of BPA in the present study combined with those from a European study show that dermal contact is the main route with thermal paper being the main contributor when both unconjugated and conjugated BPA in the human body are considered. The present study also showed that exposure to BPA in PCPs following dermal contact should not be ignored.
Collapse
Affiliation(s)
- Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuling Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lu Ren
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
48
|
Björnsdotter MK, Romera-García E, Borrull J, de Boer J, Rubio S, Ballesteros-Gómez A. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microenvironments in Spain and the Netherlands and estimation of human exposure. ENVIRONMENT INTERNATIONAL 2018; 112:59-67. [PMID: 29268159 DOI: 10.1016/j.envint.2017.11.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Phosphate flame retardants (PFRs) are ubiquitous chemicals in the indoor environment. Diphenyl phosphate (DPHP) is a major metabolite and a common biomarker of aryl-PFRs. Since it is used as a chemical additive and it is a common impurity of aryl-PFRs as well as a degradation product, its presence in indoor dust as an additional source of exposure should not be easily ruled out. In this study, DPHP (and TPHP) are measured in indoor dust in samples collected in Spain and in the Netherlands (n=80). Additionally, the presence of other emerging aryl-PFRs was monitored by target screening. TPHP and DPHP were present in all samples in the ranges 169-142,459ng/g and 106-79,661ng/g, respectively. DPHP concentrations were strongly correlated to the TPHP levels (r=0.90, p<0.01), suggesting that DPHP could be present as degradation product of TPHP or other aryl-PFRs. Estimated exposures for adults and toddlers in Spain to TPHP and DPHP via dust ingestion (country for which the number of samples was higher) were much lower than the estimated reference dose (US EPA) for TPHP. However, other routes of exposure may contribute to the overall internal exposure (diet, dermal contact with dust/consumer products and inhalation of indoor air). The estimated urinary DPHP levels for adults and toddlers in Spain (0.002-0.032ng/mL) as a result of dust ingestion were low in comparison with the reported levels, indicating a low contribution of this source of contamination to the overall DPHP exposure. Other aryl-PFRs, namely cresyl diphenyl phosphate (CDP), resorcinol bis(diphenyl phosphate) (RDP), 2-ethylhexyl diphenyl phosphate (EDPHP), isodecyl diphenyl phosphate (IDP) and bisphenol A bis(diphenyl phosphate) (BDP), were all detected in indoor dust, however, with lower frequency.
Collapse
Affiliation(s)
- Maria K Björnsdotter
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Encarnación Romera-García
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Josep Borrull
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Jacob de Boer
- Vrije Universiteit Amsterdam, Environment and Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Spain.
| |
Collapse
|
49
|
Zheng X, Sun R, Qiao L, Guo H, Zheng J, Mai B. Flame retardants on the surface of phones and personal computers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:541-545. [PMID: 28763651 DOI: 10.1016/j.scitotenv.2017.07.202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 05/22/2023]
Abstract
Mobile phones and personal computers (PCs) are essential products that are frequently contacted in daily life. Thus, phones and computers containing flame retardants (FRs) may play vital roles in human exposure to FRs. We measured several FRs, including polybrominated diphenyl ethers (PBDEs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), tetrabromobisphenol (TBBPA), and phosphate flame retardants (PFRs), on the surfaces of phones and PCs (laptop keyboards and mice). Triphenyl phosphate (TPHP, 228pg/cm2) and tris(chloroisopropyl) phosphate (TCIPP, 43pg/cm2) were the most abundant chemicals on the surfaces of phones, while TPHP (65pg/cm2), TCIPP (48pg/cm2), and DBDPE (22pg/cm2) were dominant on the surfaces of PCs. The usage time and time after the production of the electronics were not significantly correlated with the FR concentrations, except for that of BDE 209. The concentrations of FRs differed on the surfaces of different brands of electronics. Dermal contact with the surface of electronics may contribute to human exposure to FRs, which should be of concern.
Collapse
Affiliation(s)
- Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Lin Qiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Huiying Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Jing Zheng
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
50
|
Besis A, Christia C, Poma G, Covaci A, Samara C. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:871-881. [PMID: 28735244 DOI: 10.1016/j.envpol.2017.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Brominated flame retardants (BFRs) are organobromine compounds with an inhibitory effect on combustion chemistry tending to reduce the flammability of products. Concerns about health effects and environmental threats have led to phase-out or restrictions in the use of Penta-, Octa- and Deca-BDE technical formulations, increasing the demand for Novel BFRs (NBFRs) as replacements for the banned formulations. This study examined the occurrence of legacy and NBFRs in the dust from the interior of private cars in Thessaloniki, Greece, aged from 1 to 19 years with variable origin and characteristics. The determinants included 20 Polybrominated Diphenyl Ethers (PBDEs) (Di-to Deca-BDEs), four NBFRs such as Decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), and bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), three isomers of hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA). The concentrations of ∑20PBDE ranged from 132 to 54,666 ng g-1 being dominated by BDE-209. The concentrations of ∑4NBFRs ranged from 48 to 7626 ng g-1 and were dominated by DBDPE, the major substitute of BDE-209. HBCDs ranged between <5 and 1745 ng g-1, with alpha-HBCD being the most prevalent isomer Finally, the concentrations of TBBPA varied from <10 to 1064 ng g-1. The concentration levels and composition profiles of BFRs were investigated in relation to the characteristics of cars, such as year of manufacture, country of origin, and interior equipment (type of car seats, electronic and electrical components, ventilation, etc.). The average daily intakes of selected BFRs (BDE-47, BDE-99, BDE-153, BDE-209, TBB, BTBPE, TBPH, DBDPE, HBCDs and TBBPA) via ingestion and dermal absorption were estimated for adults and toddlers. The potential health risk due to BFRs was found to be several orders of magnitude lower than their corresponding reference dose (RfD) values.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Christina Christia
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerpen, Belgium
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerpen, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerpen, Belgium
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|