1
|
Sokolowska KE, Antoniewski J, Sobalska-Kwapis M, Strapagiel D, Marciniak W, Lubiński J, Wojdacz TK. Synergic effect of arsenic exposure related methylation changes in three cohorts exposed to levels of this toxicant. Int Arch Occup Environ Health 2025:10.1007/s00420-025-02147-6. [PMID: 40418341 DOI: 10.1007/s00420-025-02147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE The results of studies assessing impact of arsenic exposure on methylome are to large extent inconsistent. To contribute to understanding of effect of arsenic exposure on methylome of the exposed cells, we assess the impact of low-level arsenic exposure on methylome of blood cells in three cohorts of exposed individuals. METHODS The Infinium MethylationEPIC array (Illumina Inc.) was used for genome-wide methylation profiling and robust linear regression to identify arsenic-related methylation changes in blood cells from healthy individuals with a 12-year cancer-free follow-up and breast cancer patients, sampled on average 4.29 years before diagnosis, as well as methylomics data from cord blood samples of Biomarkers of Exposure to Arsenic cohort. RESULTS Our analysis identified a 2,453 arsenic-associated methylation changes in blood from healthy individuals, 9,662 in breast cancer patients and 6,745 in cord blood samples. Similarly to previous studies methylation changes that we identified in each cohort, overlapped only to some extent. However, molecular processes linked to identified methylation changes were very similar in each of the cohorts. And included pathways that could be clearly associated with the adverse effects of arsenic exposure and specifically cancer in the cohort of cancer patients. Moreover, the genomic regions harboring identified in each cohort methylation changes were similar and predominantly included regions participating in regulation of gene transcription. CONCLUSION Overall, our findings show that specificity of arsenic related methylation changes is low but the impact of these changes on cell physiology is very similar across three cohorts we studded.
Collapse
Affiliation(s)
- Katarzyna Ewa Sokolowska
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Jacek Antoniewski
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Marta Sobalska-Kwapis
- Biobank Laboratory, Departament of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139 St, Lodz, 90-235, Poland
| | - Dominik Strapagiel
- Biobank Laboratory, Departament of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139 St, Lodz, 90-235, Poland
| | - Wojciech Marciniak
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Read-Gene SA, Grzepnica, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Read-Gene SA, Grzepnica, Poland
| | - Tomasz Kazimierz Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland.
| |
Collapse
|
2
|
Das S, Thakur S, Cahais V, Virard F, Claeys L, Renard C, Cuenin C, Cros MP, Keïta S, Venuti A, Sirand C, Ghantous A, Herceg Z, Korenjak M, Zavadil J. Molecular and cell phenotype programs in oral epithelial cells directed by co-exposure to arsenic and smokeless tobacco. Biofactors 2025; 51:e70011. [PMID: 40056068 PMCID: PMC11962598 DOI: 10.1002/biof.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Chronic exposure to arsenic can lead to various health issues, including cancer. Concerns have been mounting about the enhancement of arsenic toxicity through co-exposure to various prevalent lifestyle habits. Smokeless tobacco (SLT) products are commonly consumed in South Asian countries, where their use frequently co-occurs with exposure to arsenic from contaminated groundwater. To decipher the in vitro molecular and cellular responses to arsenic and/or smokeless tobacco, we performed temporal multi-omics analysis of the transcriptome and DNA methylome remodeling in exposed hTERT-immortalized human normal oral keratinocytes (NOK), as well as arsenic and/or smokeless tobacco genotoxicity and mutagenicity investigations in NOK cells and in human p53 knock-in murine embryonic fibroblasts (Hupki MEF). RNAseq results from acute exposures of NOK cell to arsenic alone and in combination with smokeless tobacco extract revealed upregulation of genes with roles in cell cycle changes, apoptosis and inflammatory responses. This was in keeping with global DNA hypomethylation affecting genes involved in the same processes after chronic treatment. At the phenotypic level, we observed a dose-dependent decrease in NOK cell viability, induction of DNA damage, cell cycle changes and increased apoptosis, with the most pronounced effects observed under arsenic and SLT co-exposure conditions. Live-cell imaging experiments indicated that the DNA damage likely resulted from induction of apoptosis, an observation validated by a lack of exome-wide mutagenesis in response to chronic exposure to arsenic and/or smokeless tobacco. In sum, our integrative omics study provides novel insights into the acute and chronic responses to arsenic and smokeless tobacco (co-)exposure, with both types of responses converging on several key mechanisms associated with cancer hallmark processes. The resulting rich catalogue of molecular programs in oral cells regulated by arsenic and smokeless tobacco (co-)exposure may provide bases for future development of biomarkers for use in molecular cancer epidemiology studies of exposed populations at risk.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - François Virard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- University Claude Bernard Lyon 1, INSERM U1052–CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculty of Odontology, Hospices Civils de Lyon, Lyon, France
| | - Liesel Claeys
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Marie-Pierre Cros
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Stéphane Keïta
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Assunta Venuti
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cécilia Sirand
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
3
|
Das S, Thakur S, Cahais V, Virard F, Claeys L, Renard C, Cuenin C, Cros MP, Keïta S, Venuti A, Sirand C, Ghantous A, Herceg Z, Korenjak M, Zavadil J. Molecular and cell phenotype programs in oral epithelial cells directed by co-exposure to arsenic and smokeless tobacco. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618077. [PMID: 39463997 PMCID: PMC11507705 DOI: 10.1101/2024.10.14.618077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic arsenic exposure can lead to various health issues, including cancer. Concerns have been mounting about the enhancement of arsenic toxicity through co-exposure to various prevalent lifestyle habits. Smokeless tobacco products are commonly consumed in South Asian countries, where their use frequently co-occurs with exposure to arsenic from contaminated groundwater. To decipher the in vitro molecular and cellular responses to arsenic and/or smokeless tobacco, we performed temporal multi-omics analysis of the transcriptome and DNA methylome remodelling in exposed hTERT-immortalized human normal oral keratinocytes (NOK), as well as arsenic and/or smokeless tobacco genotoxicity and mutagenicity investigations in NOK cells and in human p53 knock-in murine embryonic fibroblasts (Hupki MEF). RNAseq results from acute exposures to arsenic alone and in combination with smokeless tobacco extract revealed upregulation of genes with roles in cell cycle changes, apoptosis and inflammation responses. This was in keeping with global DNA hypomethylation affecting genes involved in the same processes in response to chronic treatment in NOK cells. At the phenotypic level, we observed a dose-dependent decrease in NOK cell viability, induction of DNA damage, cell cycle changes and increased apoptosis, with the most pronounced effects observed under arsenic and SLT co-exposure conditions. Live-cell imaging experiments indicated that the DNA damage likely resulted from induction of apoptosis, an observation validated by a lack of exome-wide mutagenesis in response to chronic exposure to arsenic and/or smokeless tobacco. In sum, our integrative omics study provides novel insights into the acute and chronic responses to arsenic and smokeless tobacco (co-)exposure, with both types of responses converging on several key mechanisms associated with cancer hallmark processes. The generated rich catalogue of molecular programs in oral cells regulated by arsenic and smokeless tobacco (co-)exposure may provide bases for future development of biomarkers for use in molecular epidemiology studies of exposed populations at risk of developing oral cancer.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - François Virard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- University Claude Bernard Lyon 1, INSERM U1052–CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculty of Odontology, Hospices Civils de Lyon, Lyon, France
| | - Liesel Claeys
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Marie-Pierre Cros
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Stéphane Keïta
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Assunta Venuti
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cécilia Sirand
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
4
|
Wei Y, Zhou YF, Xiao L, Qin J, Cheng H, Cai H, Chen X, Zou Y, Yang L, Zhang H, Zhang Z, Yang X. Associations of Heavy Metals with Cognitive Function: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. Ann Neurol 2024; 96:87-98. [PMID: 38661228 DOI: 10.1002/ana.26942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.
Collapse
Affiliation(s)
- Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yan-Feng Zhou
- Department of Social Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath Research, Guilin Medical University, Guilin, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Jeremian R, Lytvyn Y, Fotovati R, Li K, Sachdeva M, Tarafdar N, Georgakopoulos JR, Piguet V, Litvinov IV, Yeung J. Signatures of epigenetic, biological and mitotic age acceleration and telomere shortening are associated with arsenic-induced skin lesions. Arch Dermatol Res 2024; 316:195. [PMID: 38775978 DOI: 10.1007/s00403-024-02923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Chronic arsenic exposure is a global health hazard significantly associated with the development of deleterious cutaneous changes and increased keratinocyte cancer risk. Although arsenic exposure is associated with broad-scale cellular and molecular changes, gaps exist in understanding how these changes impact the skin and facilitate malignant transformation. Recently developed epigenetic "clocks" can accurately predict chronological, biological and mitotic age, as well as telomere length, on the basis of tissue DNA methylation state. Deviations of predicted from expected age (epigenetic age dysregulation) have been associated with numerous complex diseases, increased all-cause mortality and higher cancer risk. We investigated the ability of these algorithms to detect molecular changes associated with chronic arsenic exposure in the context of associated skin lesions. To accomplish this, we utilized a multi-algorithmic approach incorporating seven "clocks" (Horvath, Skin&Blood, PhenoAge, PCPhenoAge, GrimAge, DNAmTL and epiTOC2) to analyze peripheral blood of pediatric and adult cohorts of arsenic-exposed (n = 84) and arsenic-naïve (n = 33) individuals, among whom n = 18 were affected by skin lesions. Arsenic-exposed adults with skin lesions exhibited accelerated epigenetic (Skin&Blood: + 7.0 years [95% CI 3.7; 10.2], q = 6.8 × 10-4), biological (PhenoAge: + 5.8 years [95% CI 0.7; 11.0], q = 7.4 × 10-2, p = 2.8 × 10-2) and mitotic age (epiTOC2: + 19.7 annual cell divisions [95% CI 1.8; 37.7], q = 7.4 × 10-2, p = 3.2 × 10-2) compared to healthy arsenic-naïve individuals; and accelerated epigenetic age (Skin&Blood: + 2.8 years [95% CI 0.2; 5.3], q = 2.4 × 10-1, p = 3.4 × 10-2) compared to lesion-free arsenic-exposed individuals. Moreover, lesion-free exposed adults exhibited accelerated Skin&Blood age (+ 4.2 [95% CI 1.3; 7.1], q = 3.8 × 10-2) compared to their arsenic-naïve counterparts. Compared to the pediatric group, arsenic-exposed adults exhibited accelerated epigenetic (+ 3.1 to 4.4 years (95% CI 1.2; 6.4], q = 2.4 × 10-4-3.1 × 10-3), biological (+ 7.4 to 7.8 years [95% CI 3.0; 12.1] q = 1.6 × 10-3-2.8 × 10-3) and mitotic age (+ 50.0 annual cell divisions [95% CI 15.6; 84.5], q = 7.8 × 10-3), as well as shortened telomere length (- 0.23 kilobases [95% CI - 0.13; - 0.33], q = 2.4 × 10-4), across all seven algorithms. We demonstrate that lifetime arsenic exposure and presence of arsenic-associated skin lesions are associated with accelerated epigenetic, biological and mitotic age, and shortened telomere length, reflecting altered immune signaling and genomic regulation. Our findings highlight the usefulness of DNA methylation-based algorithms in identifying deleterious molecular changes associated with chronic exposure to the heavy metal, serving as potential prognosticators of arsenic-induced cutaneous malignancy.
Collapse
Affiliation(s)
- Richie Jeremian
- Faculty of Medicine and Health Sciences, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada.
| | - Yuliya Lytvyn
- Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rayyan Fotovati
- Faculty of Medicine and Health Sciences, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada
| | - Kaiyang Li
- Faculty of Medicine and Health Sciences, McGill University, 1001 Decarie Boulevard, Montréal, QC, H4A 3J1, Canada
| | - Muskaan Sachdeva
- Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Nawar Tarafdar
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jorge R Georgakopoulos
- Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Vincent Piguet
- Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Canada
| | - Ivan V Litvinov
- Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada
| | - Jensen Yeung
- Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Jiang EX, Domingo-Relloso A, Abuawad A, Haack K, Tellez-Plaza M, Fallin MD, Umans JG, Best LG, Zhang Y, Kupsco A, Belsky DW, Cole SA, Navas-Acien A. Arsenic Exposure and Epigenetic Aging: The Association with Cardiovascular Disease and All-Cause Mortality in the Strong Heart Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127016. [PMID: 38133959 PMCID: PMC10743589 DOI: 10.1289/ehp11981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Inorganic arsenic (As) may increase the risk of cardiovascular disease (CVD) and all-cause mortality through accelerated aging, which can be estimated using epigenetic-based measures. OBJECTIVES We evaluated three DNA methylation-based aging measures (PhenoAge, GrimAge, DunedinPACE) (epigenetic aging measures) as potential mediators of the previously reported association of As exposure with CVD incidence, CVD mortality, and all-cause mortality in the Strong Heart Study (SHS), an epidemiological cohort of American Indian adults. METHODS Blood DNA methylation and urinary As levels were measured in 2,323 SHS participants (41.5% men, mean age of 55 years old). PhenoAge and GrimAge values were calculated using a residual-based method. We tested the association of urinary As with epigenetic aging measures using linear regression, the association of epigenetic aging measures with the three health outcomes using additive hazards models, and the mediation of As-related CVD incidence, CVD mortality, and all-cause mortality by epigenetic aging measures using the product of coefficients method. RESULTS SHS participants with higher vs. lower urinary As levels had similar PhenoAge age, older GrimAge age, and faster DunedinPACE. An interquartile range increase in urinary As was associated with higher of PhenoAge age acceleration [mean difference ( 95 % confidence interval ) = 0.48 (0.17, 0.80) years], GrimAge age acceleration [0.80 (0.60, 1.00) years], and DunedinPACE [0.011 (0.005, 0.018)], after adjusting for age, sex, center location, genetic components, smoking status, and body mass index. Of the 347 incident CVD events per 100,000 person-years associated with a doubling in As exposure, 21.3% (9.1, 57.1) and 22.6% (9.5, 56.9), were attributable to differences in GrimAge and DunedinPACE, respectively. DISCUSSION Arsenic exposure was associated with older GrimAge and faster DunedinPACE measures of biological age. Furthermore, accelerated biological aging measured from DNA methylation accounted for a relevant fraction of As-associated risk for CVD, CVD mortality, and all-cause mortality in the SHS, supporting the role of As in accelerated aging. Research of the biological underpinnings can contribute to a better understanding of the role of aging in arsenic-related disease. https://doi.org/10.1289/EHP11981.
Collapse
Affiliation(s)
- Enoch X. Jiang
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - M. Danielle Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jason G. Umans
- MedStar Health Research Institute, Washington, DC, USA
- Center for Clinical and Translational Sciences, Georgetown/Howard Universities, Washington, DC, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Eagle Butte, South Dakota, USA
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Daniel W. Belsky
- Department of Epidemiology, Columbia University, New York, USA
- Butler Columbia Aging Center, Columbia University, New York, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
7
|
Silva CS, Kudlyk T, Tryndyak VP, Twaddle NC, Robinson B, Gu Q, Beland FA, Fitzpatrick SC, Kanungo J. Gene expression analyses reveal potential mechanism of inorganic arsenic-induced apoptosis in zebrafish. J Appl Toxicol 2023; 43:1872-1882. [PMID: 37501093 DOI: 10.1002/jat.4520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tetyana Kudlyk
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Suzanne C Fitzpatrick
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
8
|
Smagulova F. [Multigenerational epigenetic inheritance in human: the past, present and perspectives]. Biol Aujourdhui 2023; 217:233-243. [PMID: 38018951 DOI: 10.1051/jbio/2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 11/30/2023]
Abstract
Nowadays, a growing body of evidence suggests that the developmental programs of each individual could be modified. The acquired new phenotypic changes could be persistent throughout the individual's life and even transmitted to the next generation. While the exact mechanism for that preservation is not well understood yet, there are many evidences showing that epigenetic alterations, which are robust and dynamic in response to the influence of the environmental factors, could be responsible for that inheritance. A growing number of external factors such as social stress, environmental pollution and climate changes make adaptation to these environmental changes rather challenging. According to the Developmental Origin of Human Disease theory, formulated by David Barker, environmental conditions experienced during the first phases of development can have long term effects on later phases of life. This phenomenon is linked to the biological plasticity of development, which allows reprogramming of physiological functions in response to different stimuli. Consequently, in utero exposure to environmental pollutants can increase predisposition to different pathologies that can occur both in early and later phases of life not only in the living generation but also in subsequent ones. Here, we have summarised some findings in human epigenetic research studies performed for the past few years which address the question whether transgenerational effects observed in model organisms could also occur in humans.
Collapse
Affiliation(s)
- Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 9 avenue Léon Bernard, 35000 Rennes, France
| |
Collapse
|
9
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
10
|
Sakai K, Hara K, Tanemura K. Testicular histone hyperacetylation in mice by valproic acid administration affects the next generation by changes in sperm DNA methylation. PLoS One 2023; 18:e0282898. [PMID: 36893188 PMCID: PMC9997898 DOI: 10.1371/journal.pone.0282898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/25/2023] [Indexed: 03/10/2023] Open
Abstract
Various studies have described epigenetic inheritance through sperms. However, the detailed mechanisms remain unclear. In this study, we focused on DNA methylation in mice treated with valproic acid (VPA), an inducer of epigenomic changes, and analyzed the treatment effects on the sperm from the next generation of mice. The administration of 200 mg/kg/day VPA to mice for 4 weeks caused transient histone hyperacetylation in the testes and DNA methylation changes in the sperm, including promoter CpGs of genes related to brain function. Oocytes fertilized with VPA-treated mouse sperm showed methylation fluctuations at the morula stage. Pups that were fathered by these mice also showed behavioral changes in the light/dark transition test after maturation. Brain RNA-seq of these mice showed that the expression of genes related to neural functions were altered. Comparison of the sperm DNA methylation status of the next generation of mice with that of the parental generation revealed the disappearance of methylation changes observed in the sperm of the parental generation. These findings suggest that VPA-induced histone hyperacetylation may have brain function-related effects on the next generation through changes in sperm DNA methylation.
Collapse
Affiliation(s)
- Kazuya Sakai
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- Department of Integrative Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
11
|
Wei S, Wang W, Liu S, Sun B, Zeng Q, Wang G, Luo P, Zhang A. Genome-wide DNA methylation pattern in whole blood of patients with coal-burning arsenic poisoning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114323. [PMID: 36436256 DOI: 10.1016/j.ecoenv.2022.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Exposure to coal-burning arsenic leads to an increased risk of cancer, multi-systems damage and chronic diseases, with DNA methylation one potential mechanism of arsenic toxicity. There are few studies on genome-wide methylation in the coal-burning arsenic poisoning population. Illumina 850 K methylation beadchip is the most suitable technology for DNA methylation of epigenome-wide association analysis. This study used 850 K to detect changes in Genome-wide DNA methylation in whole blood samples of 12 patients with coal-burning arsenic poisoning ( Arsenic poisoning group) and four healthy control participants (Healthy control group). There is clearly abnormal genome-wide DNA methylation in coal-burning arsenic poisoning, with 647 significantly different methylation positions, 524 different methylation regions and 335 significantly different methylation genes in arsenic poisoning patients compared with healthy controls. Further functional analysis of Gene ontology (GO) and Kyoto encyclopedia of genes (KEGG) found 592 GO items and 131 KEGG pathways between patients of coal-burning arsenic poisoning and healthy control. Then, analysis of gene degree and combined-score identified NAPRT1, NT5C3B, NEDD4L, SLC22A3 and RAB11B as target genes. Further validation by qRT-PCR indicates that mRNA expression of five genes changes significantly in the arsenic poisoning group (n = 72) compared to the healthy control group (n = 72). These results showed the genome-wide methylation pattern and highlighted five critical genes within the coal-burning arsenic poisoning population that involve Nicotinate and nicotinamide metabolism, Choline metabolism in cancer, and Ubiquitin mediated proteolysis. Next, the methylation profile of coal burning arsenic poisoning will be further excavation and the mechanism of coal burning arsenic poisoning will be further explored from five genes related pathways and functions.
Collapse
Affiliation(s)
- Shaofeng Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China.
| | - Wenjing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shiwen Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qibing Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Guoze Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Peng Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China.
| |
Collapse
|
12
|
Liu R, Deng Z, Lin M, Ruan F, Luo G, Luo Z, Dou L, Wang L, Qiu G, Huang Z, Hou X, Wang D, Guo D, Zhou H, An R, Yao Y, Zhang Y. Arsenic induces bronchial epithelial carcinogenesis with mitochondrial dysfunction through AKAP95-mediated cell cycle alterations. Toxicol Appl Pharmacol 2022; 450:116166. [PMID: 35842138 DOI: 10.1016/j.taap.2022.116166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Arsenic is a widely existing pollutant in the environment, but the mechanism of occurrence and development of lung cancer by long-term arsenic exposure needs to be elucidated further. How the high and low doses of arsenic induce human bronchial epithelial cell transformation is yet to be elucidated. In the present study, human bronchial epithelial cells were exposed to varying high-dose sodium arsenite (NaAsO2) for the short-term or treated with low dose for long-term. The data showed that both short- and long-term treatment promoted G1/S transition of Beas-2B cells, inducing a significant increase in the expression of AKAP95, cyclin D1, cyclin D2, and cyclin E1. However, silencing AKAP95 by treating cells with siAKAP95 exerted a protective function that inhibited G1/S transition, suggesting a regulatory mechanism of AKAP95 on the cell cycle during cell malignant transformation induced by NaAsO2. In addition, mitochondrial dysfunctions occurred during NaAsO2 exposure. Beas-2B cells exposed to low-dose NaAsO2 for long-term were subcultured for 20 generations, and the exposure time was positively proportional to the growth and migration rate of the cells. The exposed cells were used in a tumor-bearing transplantation experiment (mice), and the results showed that the longer the exposure time, the faster the tumor volume growth rate of As-Beas-2B cells. Tumor tissues were excised for hematoxylin-eosin staining, which showed altered cell morphology and increased volume.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zifeng Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Mo Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guangping Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhen Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Liangding Dou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Guihua Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Haitao Zhou
- Microbiology laboratory, Futian District Center for Disease Prevention and Control, Shenzhen City, Guangdong 518000, China
| | - Ran An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China.
| | - Yongxing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
13
|
Domingo-Relloso A, Makhani K, Riffo-Campos AL, Tellez-Plaza M, Klein KO, Subedi P, Zhao J, Moon KA, Bozack AK, Haack K, Goessler W, Umans JG, Best LG, Zhang Y, Herreros-Martinez M, Glabonjat RA, Schilling K, Galvez-Fernandez M, Kent JW, Sanchez TR, Taylor KD, Craig Johnson W, Durda P, Tracy RP, Rotter JI, Rich SS, Berg DVD, Kasela S, Lappalainen T, Vasan RS, Joehanes R, Howard BV, Levy D, Lohman K, Liu Y, Daniele Fallin M, Cole SA, Mann KK, Navas-Acien A. Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ Res 2022; 131:e51-e69. [PMID: 35658476 PMCID: PMC10203287 DOI: 10.1161/circresaha.122.320991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Spain
| | - Kiran Makhani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Angela L. Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile
- Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Pooja Subedi
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Katherine A. Moon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anne K. Bozack
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry for Health and Environment, University of Graz, Austria
| | | | - Lyle G. Best
- Missouri Breaks Industries and Research Inc., Eagle Butte, SD, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, OK, USA
| | | | - Ronald A. Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Jack W. Kent
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Russell P. Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA; Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, department of Epidemiology, Boston University Schools of medicine and Public health, Boston, MA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | | | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | - Kurt Lohman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - M Daniele Fallin
- Departments of Mental Health and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Koren K. Mann
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
14
|
Madrid E, Gonzalez-Miranda I, Muñoz S, Rejas C, Cardemil F, Martinez F, Cortes JP, Berasaluce M, Párraga M. Arsenic concentration in topsoil of central Chile is associated with aberrant methylation of P53 gene in human blood cells: a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48250-48259. [PMID: 35188613 DOI: 10.1007/s11356-022-19085-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Gene expression can be modified in people who are chronically exposed to high concentrations of heavy metals. The soil surrounding the Ventanas Industrial Complex, located on the coastal zone of Puchuncaví and Quintero townships (Chile), contain heavy metal concentrations (As, Cu, Pb, Zn, among others) that far exceed international standards. The aim of this study was to determine the potential association of the heavy metals in soils, especially arsenic, with the status of methylation of four tumor suppressor genes in permanent residents in those townships. To study the methylation status in genes p53, p16, APC, and RASSF1A, we took blood samples from adults living in areas near the industrial complex for at least 5 years and compared it to blood samples from adults living in areas with normal heavy metal concentrations of soils. Results indicated that inhabitants of an area with high levels of heavy metals in soil have a significantly higher proportion of methylation in the promoter region of the p53 tumor suppressor gene compared with control areas (p-value: 0.0035). This is the first study to consider associations between heavy metal exposure in humans and aberrant DNA methylation in Chile. Our results suggest more research to support consistent decision-making on processes of environmental remediation or prevention of exposure.
Collapse
Affiliation(s)
- Eva Madrid
- Interdisciplinary Centre for Health Studies (CIESAL) - Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Valparaíso, Chile.
| | - Isabel Gonzalez-Miranda
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (Ceres), Quillota, Valparaíso, Chile
- Pontificia Universidad Católica de Valparaíso, Vicerrectoría de Investigación y Estudios Avanzados, Valparaíso, Chile
| | - Sergio Muñoz
- Department of Public Health-CIGES, Universidad de La Frontera, Temuco, Chile
| | - Carolina Rejas
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Felipe Cardemil
- Department of Basic and Clinical Oncology, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Felipe Martinez
- Facultad de Medicina, Escuela de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | | | - Maite Berasaluce
- Interdisciplinary Centre for Health Studies (CIESAL) - Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Valparaíso, Chile
| | - Mario Párraga
- Laboratorio de Biología Molecular, Centro de Investigaciones Biomédicas, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
15
|
Yan N, Li Y, Xing Y, Wu J, Li J, Liang Y, Tang Y, Wang Z, Song H, Wang H, Xiao S, Lu M. Developmental arsenic exposure impairs cognition, directly targets DNMT3A, and reduces DNA methylation. EMBO Rep 2022; 23:e54147. [PMID: 35373418 PMCID: PMC9171692 DOI: 10.15252/embr.202154147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Developmental arsenic exposure has been associated with cognitive deficits in epidemiological studies, but the underlying mechanisms remain poorly understood. Here, we establish a mouse model of developmental arsenic exposure exhibiting deficits of recognition and spatial memory in the offspring. These deficits are associated with genome-wide DNA hypomethylation and abnormal expression of cognition-related genes in the hippocampus. Arsenic atoms directly bind to the cysteine-rich ADD domain of DNA methyltransferase 3A (DNMT3A), triggering ubiquitin- and proteasome-mediated degradation of DNMT3A in different cellular contexts. DNMT3A degradation leads to genome-wide DNA hypomethylation in mouse embryonic fibroblasts but not in non-embryonic cell lines. Treatment with metformin, a first-line antidiabetic agent reported to increase DNA methylation, ameliorates the behavioral deficits and normalizes the aberrant expression of cognition-related genes and DNA methylation in the hippocampus of arsenic-exposed offspring. Our study establishes a DNA hypomethylation effect of developmental arsenic exposure and proposes a potential treatment against cognitive deficits in the offspring of pregnant women in arsenic-contaminated areas.
Collapse
Affiliation(s)
- Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Kim S, Hollinger H, Radke EG. 'Omics in environmental epidemiological studies of chemical exposures: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 164:107243. [PMID: 35551006 PMCID: PMC11515950 DOI: 10.1016/j.envint.2022.107243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systematic evidence maps are increasingly used to develop chemical risk assessments. These maps can provide an overview of available studies and relevant study information to be used for various research objectives and applications. Environmental epidemiological studies that examine the impact of chemical exposures on various 'omic profiles in human populations provide relevant mechanistic information and can be used for benchmark dose modeling to derive potential human health reference values. OBJECTIVES To create a systematic evidence map of environmental epidemiological studies examining environmental contaminant exposures with 'omics in order to characterize the extent of available studies for future research needs. METHODS Systematic review methods were used to search and screen the literature and included the use of machine learning methods to facilitate screening studies. The Populations, Exposures, Comparators and Outcomes (PECO) criteria were developed to identify and screen relevant studies. Studies that met the PECO criteria after full-text review were summarized with information such as study population, study design, sample size, exposure measurement, and 'omics analysis. RESULTS Over 10,000 studies were identified from scientific databases. Screening processes were used to identify 84 studies considered PECO-relevant after full-text review. Various contaminants (e.g. phthalate, benzene, arsenic, etc.) were investigated in epidemiological studies that used one or more of the four 'omics of interest: epigenomics, transcriptomics, proteomics, and metabolomics . The epidemiological study designs that were used to explore single or integrated 'omic research questions with contaminant exposures were cohort studies, controlled trials, cross-sectional, and case-control studies. An interactive web-based systematic evidence map was created to display more study-related information. CONCLUSIONS This systematic evidence map is a novel tool to visually characterize the available environmental epidemiological studies investigating contaminants and biological effects using 'omics technology and serves as a resource for investigators and allows for a range of applications in chemical research and risk assessment needs.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Hillary Hollinger
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, NC, USA.
| | - Elizabeth G Radke
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C, USA.
| |
Collapse
|
17
|
Kim S, White SM, Radke EG, Dean JL. Harmonization of transcriptomic and methylomic analysis in environmental epidemiology studies for potential application in chemical risk assessment. ENVIRONMENT INTERNATIONAL 2022; 164:107278. [PMID: 35537365 DOI: 10.1016/j.envint.2022.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Recent efforts have posited the utility of transcriptomic-based approaches to understand chemical-related perturbations in the context of human health risk assessment. Epigenetic modification (e.g., DNA methylation) can influence gene expression changes and is known to occur as a molecular response to some chemical exposures. Characterization of these methylation events is critical to understand the molecular consequences of chemical exposures. In this context, a novel workflow was developed to interrogate publicly available epidemiological transcriptomic and methylomic data to identify relevant pathway level changes in response to chemical exposure, using inorganic arsenic as a case study. Gene Set Enrichment Analysis (GSEA) was used to identify causal methylation events that result in concomitant downstream transcriptional deregulation. This analysis demonstrated an unequal distribution of differentially methylated regions across the human genome. After mapping these events to known genes, significant enrichment of a subset of these pathways suggested that arsenic-mediated methylation may be both specific and non-specific. Parallel GSEA performed on matched transcriptomic samples determined that a substantially reduced subset of these pathways are enriched and that not all chemically-induced methylation results in a downstream alteration in gene expression. The resulting pathways were found to be representative of well-established molecular events known to occur in response to arsenic exposure. The harmonization of enriched transcriptional patterns with those identified from the methylomic platform promoted the characterization of plausibly causal molecular signaling events. The workflow described here enables significant gene and methylation-specific pathways to be identified from whole blood samples of individuals exposed to environmentally relevant chemical levels. As future efforts solidify specific causal relationships between these molecular events and relevant apical endpoints, this novel workflow could aid risk assessments by identifying molecular targets serving as biomarkers of hazard, informing mechanistic understanding, and characterizing dose ranges that promote relevant molecular/epigenetic signaling events occuring in response to chemical exposures.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Shana M White
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| | - Elizabeth G Radke
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C., USA.
| | - Jeffry L Dean
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| |
Collapse
|
18
|
Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 2022; 39:85-110. [PMID: 35362847 PMCID: PMC10042769 DOI: 10.1007/s10565-022-09710-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
Worldwide, more than 200 million people are estimated to be exposed to unsafe levels of arsenic. Chronic exposure to unsafe levels of groundwater arsenic is responsible for multiple human disorders, including dermal, cardiovascular, neurological, pulmonary, renal, and metabolic conditions. Consumption of rice and seafood (where high levels of arsenic are accumulated) is also responsible for human exposure to arsenic. The toxicity of arsenic compounds varies greatly and may depend on their chemical form, solubility, and concentration. Surprisingly, synthetic organoarsenicals are extremely toxic molecules which created interest in their development as chemical warfare agents (CWAs) during World War I (WWI). Among these CWAs, adamsite, Clark I, Clark II, and lewisite are of critical importance, as stockpiles of these agents still exist worldwide. In addition, unused WWII weaponized arsenicals discarded in water bodies or buried in many parts of the world continue to pose a serious threat to the environment and human health. Metabolic inhibition, oxidative stress, genotoxicity, and epigenetic alterations including micro-RNA-dependent regulation are some of the underlying mechanisms of arsenic toxicity. Mechanistic understanding of the toxicity of organoarsenicals is also critical for the development of effective therapeutic interventions. This review provides comprehensive details and a critical assessment of recently published data on various chemical forms of arsenic, their exposure, and implications on human and environmental health.
Collapse
Affiliation(s)
- Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Ritesh Srivastava
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, School of Optometry, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
19
|
Domingo-Relloso A, Bozack A, Kiihl S, Rodriguez-Hernandez Z, Rentero-Garrido P, Casasnovas JA, Leon-Latre M, Garcia-Barrera T, Gomez-Ariza JL, Moreno B, Cenarro A, de Marco G, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Navas-Acien A, Gamble M, Tellez-Plaza M. Arsenic exposure and human blood DNA methylation and hydroxymethylation profiles in two diverse populations from Bangladesh and Spain. ENVIRONMENTAL RESEARCH 2022; 204:112021. [PMID: 34516978 PMCID: PMC8734953 DOI: 10.1016/j.envres.2021.112021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Associations of arsenic (As) with the sum of 5-mC and 5-hmC levels have been reported; however, As exposure-related differences of the separated 5-mC and 5-hmC markers have rarely been studied. METHODS In this study, we evaluated the association of arsenic exposure biomarkers and 5-mC and 5-hmC in 30 healthy men (43-55 years) from the Aragon Workers Health Study (AWHS) (Spain) and 31 healthy men (31-50 years) from the Folic Acid and Creatinine Trial (FACT) (Bangladesh). We conducted 5-mC and 5-hmC profiling using Infinium MethylationEPIC arrays, on paired standard and modified (ox-BS in AWHS and TAB in FACT) bisulfite converted blood DNA samples. RESULTS The median for the sum of urine inorganic and methylated As species (ΣAs) (μg/L) was 12.5 for AWHS and 89.6 for FACT. The median of blood As (μg/L) was 8.8 for AWHS and 10.2 for FACT. At a statistical significance p-value cut-off of 0.01, the differentially methylated (DMP) and hydroxymethylated (DHP) positions were mostly located in different genomic sites. Several DMPs and DHPs were consistently found in AWHS and FACT both for urine ΣAs and blood models, being of special interest those attributed to the DIP2C gene. Three DMPs (annotated to CLEC12A) for AWHS and one DHP (annotated to NPLOC4) for FACT remained statistically significant after false discovery rate (FDR) correction. Pathways related to chronic diseases including cardiovascular, cancer and neurological were enriched. CONCLUSIONS While we identified common 5-hmC and 5-mC signatures in two populations exposed to varying levels of inorganic As, differences in As-related epigenetic sites across the study populations may additionally reflect low and high As-specific associations. This work contributes a deeper understanding of potential epigenetic dysregulations of As. However, further research is needed to confirm biological consequences associated with DIP2C epigenetic regulation and to investigate the role of 5-hmC and 5-mC separately in As-induced health disorders at different exposure levels.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Statistics and Operations Research, University of Valencia, Spain
| | - Anne Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Samara Kiihl
- Department of Statistics, State University of Campinas, Brazil
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, Biomedical Research Institute Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - J Antonio Casasnovas
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Montserrat Leon-Latre
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - J Luis Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - Belen Moreno
- Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Griselda de Marco
- Genomics Area, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO), Valencia, Spain
| | - Faruque Parvez
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Mary Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Wang Q, Wang W, Sun B, Zhang A. Genomic DNA hydroxymethylation reveals potential role in identification of lung injury in coal-burning arsenicosis populations. ENVIRONMENTAL RESEARCH 2022; 204:112053. [PMID: 34536373 DOI: 10.1016/j.envres.2021.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid element that causes lung cancer and multiple non-malignant respiratory diseases. The toxicity of arsenic is mediated in part by epigenetic mechanisms, such as alterations in DNA methylation. While increasing studies have highlighted the potential importance of arsenic exposure to DNA methylation patterns and the subsequent risks for arsenic toxicity, there has been little focus on DNA hydroxymethylation-a negative regulation mechanism of DNA methylation. Therefore, this study aimed to investigate the relationship between genomic DNA methylation/hydroxymethylation and lung injury in arsenicosis populations. First, an increased risk of lung injury and exacerbation of lung function impairment in the arsenicosis population was confirmed. Levels of 5-methylcytosine/deoxycytidine (5 mC/dC), 5-hydroxymethylcytosine/deoxycytidine (5 hmC/dC) and 5 hmC/5 mC in genomic DNA of peripheral blood were decreased in the arsenicosis population compared to in the control. Additionally, multivariate logistic regression models showed an increased risk of chest digital radiography (DR) abnormalities when 5 hmC/dC and 5 hmC/5 mC levels were lower (OR = 3.12 and 3.96, all P < 0.001). For 3 years follow-up, regression analysis showed that a decline in 5 hmC/dC was significantly associated with the decline of lung function parameters [forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and maximal mid-expiratory flow (MMEF); β = 0.167, 0.122 and 0.073, respectively; all P < 0.05]. Using the receiver operating characteristic (ROC) curve, a combination of 5 hmC/5 dC and 5 hmC/5 mC obtained the highest value for distinguishing lung injury in all subjects (AUC = 0.82, P < 0.01). In contrast, in arsenicosis subjects, 5 hmC/dC was better at distinguishing lung injury (AUC = 0.84, P < 0.01). Together, the results revealed that a decrease in genomic DNA hydroxymethylation markers was associated with lung injury in coal-burning arsenicosis populations. Genomic DNA hydroxymethylation could be a novel biomarker for identifying the risk of lung injury caused by coal-burning arsenicosis.
Collapse
Affiliation(s)
- Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Aihau Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
21
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
22
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
23
|
Foley KFW, Barnett D, Cory-Slechta DA, Xia H. Early Low-Level Arsenic Exposure Impacts Post-Synaptic Hippocampal Function in Juvenile Mice. TOXICS 2021; 9:206. [PMID: 34564357 PMCID: PMC8470588 DOI: 10.3390/toxics9090206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
Arsenic is a well-established carcinogen known to increase mortality, but its effects on the central nervous system are less well understood. Epidemiological studies suggest that early life exposure is associated with learning deficits and behavioral changes. Studies in arsenic-exposed rodents have begun to shed light on potential mechanistic underpinnings, including changes in synaptic transmission and plasticity. However, previous studies relied on extended exposure into adulthood, and little is known about the effect of arsenic exposure in early development. Here, we studied the effects of early developmental arsenic exposure in juvenile mice on synaptic transmission and plasticity in the hippocampus. C57BL/6J females were exposed to arsenic (0, 50 ppb, 36 ppm) via drinking water two weeks prior to mating, with continued exposure throughout gestation and parturition. Electrophysiological recordings were then performed on juvenile offspring prior to weaning. In this paradigm, the offspring are exposed to arsenic indirectly, via the mother. We found that high (36 ppm) and relatively low (50 ppb) arsenic exposure both decreased basal synaptic transmission. A compensatory increase in pre-synaptic vesicular release was only observed in the high-exposure group. These results suggest that indirect, ecologically relevant arsenic exposure in early development impacts hippocampal synaptic transmission and plasticity that could underlie learning deficits reported in epidemiological studies.
Collapse
Affiliation(s)
- Karl F. W. Foley
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Daniel Barnett
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Houhui Xia
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
24
|
Bozack AK, Boileau P, Wei L, Hubbard AE, Sillé FCM, Ferreccio C, Acevedo J, Hou L, Ilievski V, Steinmaus CM, Smith MT, Navas-Acien A, Gamble MV, Cardenas A. Exposure to arsenic at different life-stages and DNA methylation meta-analysis in buccal cells and leukocytes. Environ Health 2021; 20:79. [PMID: 34243768 PMCID: PMC8272372 DOI: 10.1186/s12940-021-00754-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Arsenic (As) exposure through drinking water is a global public health concern. Epigenetic dysregulation including changes in DNA methylation (DNAm), may be involved in arsenic toxicity. Epigenome-wide association studies (EWAS) of arsenic exposure have been restricted to single populations and comparison across EWAS has been limited by methodological differences. Leveraging data from epidemiological studies conducted in Chile and Bangladesh, we use a harmonized data processing and analysis pipeline and meta-analysis to combine results from four EWAS. METHODS DNAm was measured among adults in Chile with and without prenatal and early-life As exposure in PBMCs and buccal cells (N = 40, 850K array) and among men in Bangladesh with high and low As exposure in PBMCs (N = 32, 850K array; N = 48, 450K array). Linear models were used to identify differentially methylated positions (DMPs) and differentially variable positions (DVPs) adjusting for age, smoking, cell type, and sex in the Chile cohort. Probes common across EWAS were meta-analyzed using METAL, and differentially methylated and variable regions (DMRs and DVRs, respectively) were identified using comb-p. KEGG pathway analysis was used to understand biological functions of DMPs and DVPs. RESULTS In a meta-analysis restricted to PBMCs, we identified one DMP and 23 DVPs associated with arsenic exposure; including buccal cells, we identified 3 DMPs and 19 DVPs (FDR < 0.05). Using meta-analyzed results, we identified 11 DMRs and 11 DVRs in PBMC samples, and 16 DMRs and 19 DVRs in PBMC and buccal cell samples. One region annotated to LRRC27 was identified as a DMR and DVR. Arsenic-associated KEGG pathways included lysosome, autophagy, and mTOR signaling, AMPK signaling, and one carbon pool by folate. CONCLUSIONS Using a two-step process of (1) harmonized data processing and analysis and (2) meta-analysis, we leverage four DNAm datasets from two continents of individuals exposed to high levels of As prenatally and during adulthood to identify DMPs and DVPs associated with arsenic exposure. Our approach suggests that standardizing analytical pipelines can aid in identifying biological meaningful signals.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA.
| | - Philippe Boileau
- Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Linqing Wei
- Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Alan E Hubbard
- Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Johanna Acevedo
- Department of Public Health, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Health Planning Division in the Ministry of Health, Santiago, Chile
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vesna Ilievski
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Craig M Steinmaus
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
25
|
Nava-Rivera LE, Betancourt-Martínez ND, Lozoya-Martínez R, Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Delgado-Aguirre H, Zambrano-Ortíz JO, Morán-Martínez J. Transgenerational effects in DNA methylation, genotoxicity and reproductive phenotype by chronic arsenic exposure. Sci Rep 2021; 11:8276. [PMID: 33859283 PMCID: PMC8050275 DOI: 10.1038/s41598-021-87677-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
An emerging concern is the influences of early life exposure to environmental toxicants on offspring characteristics in later life. Since recent evidence suggests a transgenerational transference of aberrant phenotypes from exposed-parents to non-exposed offspring related to adult-onset diseases including reproductive phenotype. The transgenerational potential of arsenic a well know genotoxic and epigenetic modifier agent has not been assessed in mammals until now. In this experimental study, we evaluated the transgenerational effects of arsenic in a rat model with chronic exposure to arsenic. Rats chronically exposed to arsenic in drinking water (1 mg As2O3/mL) (F0) were mated to produce the arsenic lineage (F1, F2, and F3). The arsenic toxic effects on were evaluated over the four generations by analyzing the DNA methylation percentage, genotoxicity in WBC and physical and reproductive parameters, including sperm quality parameters and histopathological evaluation of the gonads. Chronic exposure to arsenic caused genotoxic damage (F0-F3) different methylation patterns, alterations in physical and reproductive parameters, aberrant morphology in the ovaries (F0 and F1) and testicles (F1-F3), and a decrease in the quality of sperm (F0-F3, except F2). Parental chronic arsenic exposure causes transgenerational genotoxicity and changes in global DNA methylation which might be associated with reproductive defects in rats. Combined with recent studies reveal that disturbances in the early life of an individual can affect the health of later generations.
Collapse
Affiliation(s)
- Lydia Enith Nava-Rivera
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Rodrigo Lozoya-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Nancy Elena Guzmán-Delgado
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Hector Delgado-Aguirre
- Laboratorio de Histocompatibilidad, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - José Omar Zambrano-Ortíz
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México.
| |
Collapse
|
26
|
TET-mediated DNA demethylation plays an important role in arsenic-induced HBE cells oxidative stress via regulating promoter methylation of OGG1 and GSTP1. Toxicol In Vitro 2021; 72:105075. [DOI: 10.1016/j.tiv.2020.105075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/12/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
|
27
|
Gong Y, Xue Y, Li X, Zhang Z, Zhou W, Marcolongo P, Benedetti A, Mao S, Han L, Ding G, Sun Z. Inter- and Transgenerational Effects of Paternal Exposure to Inorganic Arsenic. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002715. [PMID: 33854880 PMCID: PMC8025034 DOI: 10.1002/advs.202002715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/26/2020] [Indexed: 05/03/2023]
Abstract
The rise of metabolic disorders in modern times is mainly attributed to the environment. However, heritable effects of environmental chemicals on mammalian offsprings' metabolic health are unclear. Inorganic arsenic (iAs) is the top chemical on the Agency for Toxic Substances and Disease Registry priority list of hazardous substances. Here, we assess cross-generational effects of iAs in an exclusive male-lineage transmission paradigm. The exposure of male mice to 250 ppb iAs causes glucose intolerance and hepatic insulin resistance in F1 females, but not males, without affecting body weight. Hepatic expression of glucose metabolic genes, glucose output, and insulin signaling are disrupted in F1 females. Inhibition of the glucose 6-phosphatase complex masks the intergenerational effect of iAs, demonstrating a causative role of hepatic glucose production. F2 offspring from grandpaternal iAs exposure show temporary growth retardation at an early age, which diminishes in adults. However, reduced adiposity persists into middle age and is associated with altered gut microbiome and increased brown adipose thermogenesis. In contrast, F3 offspring of the male-lineage iAs exposure show increased adiposity, especially on a high-calorie diet. These findings have unveiled sex- and generation-specific heritable effects of iAs on metabolic physiology, which has broad implications in understanding gene-environment interactions.
Collapse
Affiliation(s)
- Yingyun Gong
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
| | - Yanfeng Xue
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
- National Center for International Research on Animal Gut NutritionCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Xin Li
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular BiologyMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Wenjun Zhou
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
| | - Paola Marcolongo
- Department of Molecular and Developmental MedicineUniversity of SienaSiena53100Italy
| | - Angiolo Benedetti
- Department of Molecular and Developmental MedicineUniversity of SienaSiena53100Italy
| | - Shengyong Mao
- National Center for International Research on Animal Gut NutritionCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Leng Han
- Department of Biochemistry and Molecular BiologyMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Guolian Ding
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan UniversityShanghai Key Laboratory of Embryo Original DiseasesShanghai200011China
| | - Zheng Sun
- Division of EndocrinologyDepartment of MedicineBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTX77030USA
| |
Collapse
|
28
|
Xu Y, Yu C, Zeng Q, Yao M, Chen X, Zhang A. Assessing the potential value of Rosa Roxburghii Tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1165-1175. [PMID: 32564172 DOI: 10.1007/s10653-020-00612-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Environmental exposure to arsenic is a major public health challenge worldwide. Growing evidence indicates that coal-burning arsenic can cause hepatic oxidative damage. However, the value of Rosa roxburghii Tratt (RRT) with antioxidant properties on arsenic-caused hepatic oxidative damage has never been elucidated yet. In this study, the animals were exposed to coal-burning arsenic (10 mg/kg bw) for 90 days and the result showed a loss of body weight, impaired liver function and liver diseases, increased hepatic oxidative damage and metabolic disorder of multiple elements including selenium, copper, zinc which were related to synthesis of antioxidant enzymes. Another finding is that RRT restored the abnormal liver function and alleviated the procedures of liver diseases of arsenic poisoning rats. In addition, it could also effectively reduce the degree of oxidative damage in serum and liver, and restore the activity of some antioxidant enzymes. Importantly, RRT reversed the content of most disordered elements caused by arsenic in liver and reduced the excretion of several essential elements in urine, including selenium, copper and zinc. Our study provides some limited evidence that RRT can alleviate coal-burning arsenic-induced liver damage induced by regulating elemental metabolic disorders and liver oxidation and antioxidant balance. The study provides a scientific basis for further studies of the causes of the arsenic-induced liver damage, and effective intervention strategies.
Collapse
Affiliation(s)
- Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Chun Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
29
|
Nohara K, Suzuki T, Okamura K. Gestational arsenic exposure and paternal intergenerational epigenetic inheritance. Toxicol Appl Pharmacol 2020; 409:115319. [PMID: 33160984 DOI: 10.1016/j.taap.2020.115319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
A growing body of evidence has shown that gestational exposure to environmental factors such as imbalanced diet, environmental chemicals, and stress can lead to late-onset health effects in offspring and that some of these effects are heritable by the next generation and subsequent generations. Furthermore, altered epigenetic modifications in DNA methylation, histone modifications and small RNAs in a single sperm genome have been shown to transmit disease phenotypes acquired from the environment to later generations. Recently, our group found that gestational exposure of F0 pregnant dams to an inorganic arsenic, sodium arsenite, increases the incidence of hepatic tumors in male F2 mice, and the effects are paternally transmitted to the F2. Here, we first overview the epigenetic changes involved in paternal intergenerational and transgenerational inheritance caused by exposure to environmental factors. Then, we discuss our recent studies regarding paternal inheritance of the tumor-augmenting effects in F2 mice by gestational arsenite exposure, in which we investigated alterations of DNA methylation status in F2 tumors and causative F1 sperm. We also discuss the possible targets of the F2 effects. Finally, we discuss future perspectives on the studies that are needed to fully understand the health effects of arsenic exposure.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
30
|
Bozack AK, Domingo-Relloso A, Haack K, Gamble MV, Tellez-Plaza M, Umans JG, Best LG, Yracheta J, Gribble MO, Cardenas A, Francesconi KA, Goessler W, Tang WY, Fallin MD, Cole SA, Navas-Acien A. Locus-Specific Differential DNA Methylation and Urinary Arsenic: An Epigenome-Wide Association Study in Blood among Adults with Low-to-Moderate Arsenic Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67015. [PMID: 32603190 PMCID: PMC7534587 DOI: 10.1289/ehp6263] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chronic exposure to arsenic (As), a human toxicant and carcinogen, remains a global public health problem. Health risks persist after As exposure has ended, suggesting epigenetic dysregulation as a mechanistic link between exposure and health outcomes. OBJECTIVES We investigated the association between total urinary As and locus-specific DNA methylation in the Strong Heart Study, a cohort of American Indian adults with low-to-moderate As exposure [total urinary As, mean ( ± SD ) μ g / g creatinine: 11.7 (10.6)]. METHODS DNA methylation was measured in 2,325 participants using the Illumina MethylationEPIC array. We implemented linear models to test differentially methylated positions (DMPs) and the DMRcate method to identify regions (DMRs) and conducted gene ontology enrichment analysis. Models were adjusted for estimated cell type proportions, age, sex, body mass index, smoking, education, estimated glomerular filtration rate, and study center. Arsenic was measured in urine as the sum of inorganic and methylated species. RESULTS In adjusted models, methylation at 20 CpGs was associated with urinary As after false discovery rate (FDR) correction (FDR < 0.05 ). After Bonferroni correction, 5 CpGs remained associated with total urinary As (p Bonferroni < 0.05 ), located in SLC7A11, ANKS3, LINGO3, CSNK1D, ADAMTSL4. We identified one DMR on chromosome 11 (chr11:2,322,050-2,323,247), annotated to C11orf2; TSPAN32 genes. DISCUSSION This is one of the first epigenome-wide association studies to investigate As exposure and locus-specific DNA methylation using the Illumina MethylationEPIC array and the largest epigenome-wide study of As exposure. The top DMP was located in SLC7A11A, a gene involved in cystine/glutamate transport and the biosynthesis of glutathione, an antioxidant that may protect against As-induced oxidative stress. Additional DMPs were located in genes associated with tumor development and glucose metabolism. Further research is needed, including research in more diverse populations, to investigate whether As-related DNA methylation signatures are associated with gene expression or may serve as biomarkers of disease development. https://doi.org/10.1289/EHP6263.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Environmental Health Science, Columbia University, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Science, Columbia University, New York, New York, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mary V Gamble
- Department of Environmental Health Science, Columbia University, New York, New York, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jason G Umans
- MedStar Health Research Institute, Washington, District of Columbia, USA
- Center for Clinical and Translational Sciences, Georgetown/Howard Universities, Washington, DC, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Eagle Butte, South Dakota, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Eagle Butte, South Dakota, USA
| | - Matthew O Gribble
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkley, California, USA
| | | | | | - Wan-Yee Tang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Columbia University, New York, New York, USA
| |
Collapse
|
31
|
Zeng Q, Zhang A. Assessing potential mechanisms of arsenic-induced skin lesions and cancers: Human and in vitro evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113919. [PMID: 31995775 DOI: 10.1016/j.envpol.2020.113919] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 05/10/2023]
Abstract
Environmental exposure to arsenic is a major public health challenge worldwide. In detailing the hallmark signs of chronic arsenic exposure, previous studies have shown that epigenetic and immune dysfunction are associated with arsenic-induced skin lesions; however, knowledge regarding interactions between the mechanisms listed above is limited. In this study, a total of 106 skin samples were collected over the past 20 years. Based on the presence or absence of high arsenic exposure, the participants were divided into arsenic exposure (72) and reference (34) groups. Additionally, the arsenic exposure group was further divided into the non-cancer group (31, including skin hyperpigmentation and hyperkeratosis) and the skin cancer group (41, including Bowen's disease, basal cell carcinoma and squamous cell carcinoma) according to a skin histopathological examination. First, the associations among miR-155, NF-AT1 with immunological dysfunction and arsenic-induced skin lesions and carcinogenesis were confirmed using these skin samples. In the arsenic-exposed group, miR-155-5p, keratin 1(Krt1), keratin 10 (Krt10), and keratin 6c (Krt6c) were significantly increased in the skin (p < 0.05), while NF-AT1, interleukin-2 (IL-2), and interferon-γ (IFN-γ) were significantly decreased (p < 0.05). Clear correlations were observed among these factors (p < 0.05). In immortalized human keratinocytes, silencing and overexpression of NF-AT1 could alter the expression and secretion of immunological dysfunction indicators (IL-2 and IFN-γ) that are induced by arsenic exposure (p < 0.05); however, miR-155-5p levels did not change significantly (p > 0.05). The miR-155-5p mimic and inhibitor could regulate the NF-AT1-mediated immunological dysfunction caused by arsenic (p < 0.05). Our study provides some limited evidence that miR-155-5p regulates the NF-AT1-mediated immunological dysfunction that is involved in the pathogenesis and carcinogenesis of arsenic. The second major finding was that Krt1 and Krt10 are markers of hyperkeratosis caused by arsenic, and Krt6c is a potential biomarker that can reflect arsenic carcinogenesis.
Collapse
Affiliation(s)
- Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
32
|
Huang J, Bai L, Cui B, Wu L, Wang L, An Z, Ruan S, Yu Y, Zhang X, Chen J. Leveraging biological and statistical covariates improves the detection power in epigenome-wide association testing. Genome Biol 2020; 21:88. [PMID: 32252795 PMCID: PMC7132874 DOI: 10.1186/s13059-020-02001-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies (EWAS), which seek the association between epigenetic marks and an outcome or exposure, involve multiple hypothesis testing. False discovery rate (FDR) control has been widely used for multiple testing correction. However, traditional FDR control methods do not use auxiliary covariates, and they could be less powerful if the covariates could inform the likelihood of the null hypothesis. Recently, many covariate-adaptive FDR control methods have been developed, but application of these methods to EWAS data has not yet been explored. It is not clear whether these methods can significantly improve detection power, and if so, which covariates are more relevant for EWAS data. RESULTS In this study, we evaluate the performance of five covariate-adaptive FDR control methods with EWAS-related covariates using simulated as well as real EWAS datasets. We develop an omnibus test to assess the informativeness of the covariates. We find that statistical covariates are generally more informative than biological covariates, and the covariates of methylation mean and variance are almost universally informative. In contrast, the informativeness of biological covariates depends on specific datasets. We show that the independent hypothesis weighting (IHW) and covariate adaptive multiple testing (CAMT) method are overall more powerful, especially for sparse signals, and could improve the detection power by a median of 25% and 68% on real datasets, compared to the ST procedure. We further validate the findings in various biological contexts. CONCLUSIONS Covariate-adaptive FDR control methods with informative covariates can significantly increase the detection power for EWAS. For sparse signals, IHW and CAMT are recommended.
Collapse
Affiliation(s)
- Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Ling Bai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Bowen Cui
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Liang Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Liwen Wang
- Department of General Surgery, Rui-Jin Hospital, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhiyin An
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shulin Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yue Yu
- Division of Digital Health Sciences, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Xianyang Zhang
- Department of Statistics, Texas A&M University, Blocker 449D, College Station, TX, 77843, USA.
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
33
|
Biswas S, Banna HU, Jahan M, Anjum A, Siddique AE, Roy A, Nikkon F, Salam KA, Haque A, Himeno S, Hossain K, Saud ZA. In vivo evaluation of arsenic-associated behavioral and biochemical alterations in F 0 and F 1 mice. CHEMOSPHERE 2020; 245:125619. [PMID: 31846792 DOI: 10.1016/j.chemosphere.2019.125619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Groundwater contaminated with arsenic (As) is the biggest threat to public health in Bangladesh. The children of As-exposure parents are also exposing to As through drinking water. The effects of As on the children's health of As-exposure parents are poorly understood. An animal study was taken to evaluate the effects of As on behavioral and biochemical changes in F1 mice. Swiss albino mice were separated into three groups: a) control, b) As-treated F0 and c) As-treated F1. Elevated plus maze and Morris water maze tests were used for evaluating anxiety, spatial memory and learning, respectively. We found that the effect of As on anxiety like behavior, spatial memory and learning impairment in As-treated F1 mice was significantly higher than that of As-treated F0 mice and control group. Additionally, we also evaluated the effects of As on biochemical parameters by measuring ALT, AST, ALP, BChE, SOD activities and the level of creatinine in As-induced mice, where we found that all of the blood parameters were significantly changed in F1 generation. A significant portion of As accumulated in the brain, liver and kidney of F1 mice than F0 mice. Histological analysis revealed a significant change in tissue damage related to hepatic and renal dysfunctions that might be associated with As-induced biochemical alterations. In conclusion, arsenic plays an important role for the development of As-associated neurological disorders, hepatic toxicities, and renal dysfunctions in both F0 and F1 generations. Notably F1 mice were much more vulnerable to As-exposure than F0 mice.
Collapse
Affiliation(s)
- Sheta Biswas
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hasan Ul Banna
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Momotaj Jahan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Adiba Anjum
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Apurba Roy
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kazi Abdus Salam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
34
|
Barajas-Olmos FM, Ortiz-Sánchez E, Imaz-Rosshandler I, Córdova-Alarcón EJ, Martínez-Tovar A, Villanueva-Toledo J, Morales-Marín ME, Cruz-Colín JL, Rangel C, Orozco L, Centeno F. Analysis of the dynamic aberrant landscape of DNA methylation and gene expression during arsenic-induced cell transformation. Gene 2019; 711:143941. [PMID: 31242453 DOI: 10.1016/j.gene.2019.143941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
Inorganic arsenic is a well-known carcinogen associated with several types of cancer, but the mechanisms involved in arsenic-induced carcinogenesis are not fully understood. Recent evidence points to epigenetic dysregulation as an important mechanism in this process; however, the effects of epigenetic alterations in gene expression have not been explored in depth. Using microarray data and applying a multivariate clustering analysis in a Gaussian mixture model, we describe the alterations in DNA methylation around the promoter region and the impact on gene expression in HaCaT cells during the transformation process caused by chronic exposure to arsenic. Using this clustering approach, the genes were grouped according to their methylation and expression status in the epigenetic landscape, and the changes that occurred during the cellular transformation were identified adequately. Thus, we present a valuable method for identifying epigenomic dysregulation.
Collapse
Affiliation(s)
- Francisco M Barajas-Olmos
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Ivan Imaz-Rosshandler
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 OWA, UK
| | | | - Adolfo Martínez-Tovar
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Jairo Villanueva-Toledo
- Centro de Investigación en Salud "Dr. Jesús Kumate Rodríguez", Instituto Mexicano del Seguro Social, Mérida, Yucatán, Mexico; Cátedras CONACYT - Fundación IMSS AC, CONACYT, Ciudad de México, Mexico
| | - Mirna E Morales-Marín
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - José L Cruz-Colín
- Subdirección de Investigación Básica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Claudia Rangel
- Computational Genomics Consortium, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Federico Centeno
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico.
| |
Collapse
|