1
|
Aparicio V, Kaseker J, Scheepers PTJ, Alaoui A, Figueiredo DM, Mol H, Silva V, Harkes P, Dos Santos DR, Geissen V, Costa JL. Pesticide contamination in indoor home dust: A pilot study of non-occupational exposure in Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126208. [PMID: 40189084 DOI: 10.1016/j.envpol.2025.126208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/20/2025]
Abstract
Agricultural use of pesticides continues to rise globally. Argentina ranks fifth in use. While pesticides help yields, they also pose risks to human health and the environment. Indoor dust can present high pesticide concentrations, raising concerns about chronic exposure in non-farming households. Studies of pesticides in indoor dust are few worldwide. This pioneering study aimed to identify and/or quantify for the first time pesticide occurrence in indoor dust from urban residences in the Pampas Region, southeast of Buenos Aires Province, Argentina. Pesticide residues in indoor dust from 48 non-agricultural homes in the Pampas plain region were analysed. Study participants completed questionnaires on household demographics, pet ownership, pesticide use, gardening, and habits like leaving shoes outside. We detected 41 out of 49 targeted pesticides, including metabolites and banned compounds. Seven of the 49 tested are dual-use compounds (i.e. pesticide & biocide or veterinary applications). The synergist piperonyl butoxide, the dual-use imidacloprid, and "agricultural only" pesticides carbaryl, glyphosate, and atrazine were detected in all dust samples. Glyphosate, 2,4-D, atrazine, imidacloprid, carbaryl, tetramethrin, and piperonyl butoxide had maximum concentrations exceeding 1, 000 μg kg-1. Complex mixtures of up to 32 residues were found per sample. Questionnaire responses revealed that most participants brought shoes inside (60 %), almost all had pets (93 %), and 51 % had used flea repellents (mainly imidacloprid and fipronil). Approximately 48 % reported pesticide use in the past year, and 19 % reported exposure via their (non-farmer) jobs, e.g., via disinfection and weeding. These findings highlight the prevalence of pesticide residues in residential settings and the need for further research on long-term exposure and risks. Improved tracking of agricultural, household, and mixed-use pesticide applications is crucial, particularly in regions heavily reliant on agriculture.
Collapse
Affiliation(s)
- Virginia Aparicio
- Instituto Nacional de Tecnología Agropecuaria INTA EEA Balcarce, Ruta Nacional 226, Km 73,5, Balcarce, CP 7620, Buenos Aires, Argentina
| | - Jessica Kaseker
- Soils Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
| | - Daniel M Figueiredo
- Institute for Risk Assessment Sciences, Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Hans Mol
- Wageningen Food Safety Research - part of Wageningen University & Research, Wageningen, the Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands.
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - José Luis Costa
- Instituto Nacional de Tecnología Agropecuaria INTA EEA Balcarce, Ruta Nacional 226, Km 73,5, Balcarce, CP 7620, Buenos Aires, Argentina
| |
Collapse
|
2
|
Ruiz-Arias MA, Bernal-Hernández YY, Medina-Díaz IM, Mora AM, Herrera-Moreno JF, Barrón-Vivanco BS, González-Arias CA, Verdín-Betancourt FA, Aguilar-Bañuelos JA, Agraz-Cibrián JM, Zambrano-Zaragoza JF, Bastidas-Bastidas PDJ, Rojas-García AE. Environmental pesticide exposure and its association with hematological parameters and inflammation indices among school-aged children in Mexico. Toxicol Lett 2025; 407:83-94. [PMID: 40158756 DOI: 10.1016/j.toxlet.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/04/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Few studies have investigated the association between pesticide exposure and immune-inflammatory indices in children. We conducted a cross-sectional study of 369 school-aged children from three Mexican communities with varying levels of agricultural production. Blood samples were collected to calculate immune-inflammatory indices, and pooled hand-washing samples from 30 randomly selected children per community were analyzed for pesticide metabolites. Urinary dialkylphosphates (DAP) were determined in pooled samples per community. Multivariable logistic regression models assessed associations between pesticide exposure and immune-inflammatory indices (>median vs.
Collapse
Affiliation(s)
- Miguel Alfonso Ruiz-Arias
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico
| | - Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, United States
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico; Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Padrón de Investigadoras e Investigadores por México, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico
| | | | - José Antonio Aguilar-Bañuelos
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
| | | | - Pedro de Jesús Bastidas-Bastidas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (Residuos de Plaguicidas), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Culiacán, Carretera a Eldorado Km. 5.5, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado. Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, C.P, Tepic, Nayarit 63000, Mexico.
| |
Collapse
|
3
|
Kumar SN, Kumari R, Khan NH, Khan NS, Nayek A, Sahu A, Bastia B, Ahluwalia M, Raisuddin S, Jain AK. Decreased activity of acetylcholine esterase as a biomarker of pesticide exposure in female tea plantation workers. Toxicol Ind Health 2025:7482337251336580. [PMID: 40271925 DOI: 10.1177/07482337251336580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Because of their beneficial effects in controlling pests, pesticides are used worldwide to reduce pests in agricultural fields and commercial gardens, thereby increasing the crop yield. Pesticides are ubiquitous in the environment and besides targeting pests they also affect non-target organisms. This study was undertaken to evaluate the activity of acetylcholine esterase (AChE) inhibition and its associated health effects in female tea plantation workers (TPW). In silico analysis was applied to identify whether pesticide exposure had an increased affinity after binding with the AChE enzyme, and the findings were validated by measuring the AChE activity in the plasma of study subjects by the biochemical analysis. The activity of AChE was found to be considerably compromised in TPW exposed to pesticides. Inhibition of AChE activity may lead to severe adverse health effects, such as cough, fatigue, and headache in TPW exposed to pesticides. Among all pesticides, λ-cyhalothrin, fipronil, and fenazaquine had the highest binding affinity with AChE (-10.098 Kcal/mol, -8.574 Kcal/mol, and -8.507 Kcal/mol, respectively) as compared to the other pesticides and their natural acetylcholine substrate (-4.398 Kcal/mol). Based on in silico results, AChE was found to have the highest binding affinity with λ-cyhalothrin, fipronil, and fenazaquine, and these pesticides could be responsible for the enzyme activity inhibition. Hence, these pesticides may cause more adverse health effects on humans compared to other pesticides. This finding on biomarker role for AChE may aid in the development of effective antidotes against pesticide exposure, thereby faciliating mitigation of negative health effects of pesticides.
Collapse
Affiliation(s)
- Shashi Nandar Kumar
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | - Rakhi Kumari
- Department of Computer Science and Information Systems, Birla Institute of Technology & Science Pilani, Pilani, India
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Noor Saba Khan
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | - Arnab Nayek
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | - Ankita Sahu
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Banajit Bastia
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Meenakshi Ahluwalia
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Arun Kumar Jain
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
4
|
Chronister BNC, Kayser GL, de la Cruz F, Suarez-Torres J, Lopez-Paredes D, Gahagan S, Checkoway H, Jankowska MM, Suarez-Lopez JR. Relationships of residential distance to greenhouse floriculture and organophosphate, pyrethroid, and neonicotinoid urinary metabolite concentration in Ecuadorian Adolescents. Int J Health Geogr 2025; 24:9. [PMID: 40251564 PMCID: PMC12008992 DOI: 10.1186/s12942-025-00395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Adolescents living in agricultural areas are at higher risk of secondary pesticide exposure; however, there is limited evidence to confirm exposure by pesticide drift for greenhouse floriculture, like rose production. METHODS 525 adolescents (12-17, 49% male) living in Pedro Moncayo, Ecuador were assessed in 2016. Urinary concentrations of creatinine and pesticide biomarkers (organophosphates, neonicotinoids, and pyrethroids) were measured using mass-spectrometry. Home distance to the nearest greenhouse and surface area of greenhouses within various buffer sizes around the home were calculated. Linear regression assessed whether home distance and surface area of greenhouses was associated with creatinine-adjusted metabolite concentration, adjusting for demographic, socioeconomic, and anthropometric variables. Geospatially weighted regression (GWR) was conducted, adjusting for similar covariates. Getis-ord Gi* identified hot and cold spots using a 1994 m distance band. RESULTS The associations between residential distance to greenhouses and urinary pesticide metabolites differed by metabolite type. The adjusted mean concentrations of OHIM (neonicotinoid) were greater (p-difference = 0.02) among participants living within 200 m (1.08 ug/g of creatinine) vs > 200 m (0.64 ug/g); however, the opposite was observed for 3,5,6-Trichloro-2-pyridinol (TCPy, organophosphate; 0-200 m: 3.63 ug/g vs > 200 m: 4.30 ug/g, p-diff = 0.05). In linear models, greater distances were negatively associated with para-nitrophenol (PNP, organophosphate; percent difference per 50% greater distance [95% CI]: - 2.5% [- 4.9%, - 0.1%]) and somewhat with 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy, organophosphate; - 4.0% [- 8.3%, 0.4%]), among participants living within 200 m of greenhouses. Concurring with the adjusted means analyses, opposite (positive) associations were observed for TCPy (2.1% [95%CI 0.3%, 3.9%]). Organophosphate and pyrethroid hotspots were found in parishes with greater greenhouse density, whereas neonicotinoid hot spots were in parishes with the lowest greenhouse density. CONCLUSION We observed negative associations between residential distance to greenhouses with OHIM, PNP and to some extent IMPy, suggesting that imidacloprid, parathion and diazinon are drifting from floricultural greenhouses and reaching children living within 200 m. Positive TCPy associations suggest greenhouses weren't the chlorpyrifos source during this study period, which implies that non-floricultural open-air agriculture (e.g. corn, potatoes, strawberries, grains) may be a source. Further research incorporating diverse geospatial constructs of pesticide sources, pesticide use reports (if available), participant location tracking, and repeated metabolite measurements is recommended.
Collapse
Affiliation(s)
- Briana N C Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Georgia L Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | | | | | - Sheila Gahagan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Marta M Jankowska
- Department of Population Sciences, Beckman Research Institute of City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Quintana-Mejia M, Palacio-Herrera F, Olivero-Verbel J, Caballero-Gallardo K. Exposure to pesticides and cognitive function in school-age children of the Bolivar Department (Colombia). Toxicol Lett 2025:S0378-4274(25)00073-6. [PMID: 40253014 DOI: 10.1016/j.toxlet.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/28/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Joining efforts to address the interactions between social and environmental determinants of cognitive functioning allows the identification of structural barriers that guide government plans towards the fulfillment of the 2030 Agenda. This study examined the pesticide exposure and cognitive function in school-age children between the ages of 6-12 years old from Magangue, Achi, and Arjona (reference site) in the Bolivar Department (Colombia). A total of 323 school-age children participated in the study. A cross-sectional examination was conducted, including the measurement of blood serum pesticide concentrations using a gas chromatography-mass spectrometer (GC-MS) and cognitive function was assessed employing the Wechsler Intelligence Scale for Children, 4th edition. A comprehensive questionnaire was used to collect demographic information and exposure profiles. A total of fourteen organophosphate pesticides and 2 carbamates in human blood serum were detected. In Magangue, pesticides were quantified in 91% of the participants, and in Achi in 34%. At the comparison site, the results showed the presence of these pesticides in less than 2% of the total samples analyzed. Interaction effects were observed between parental education, number of pesticides detected (>LOD), IQ, and verbal comprehension index, which could generate alterations in reasoning, problem solving, memory and verbal comprehension. Interaction effects were observed between parental education, the number of pesticides detected, sum of pesticide concentrations detected in blood divided by the reported LD50 of each chemical (ΣCPN/LD), and very low scores on the perceptual reasoning index, indicating compromised performance in abstract, logical, and analytical reasoning tasks. These findings underscore the magnitude of pesticide exposure as a public health concern, emphasizing the need for longitudinal studies to establish causal relationships between social determinants and neurotoxicant exposure as predictors of human development. The results contribute to governmental public health strategies aimed at protecting vulnerable populations and raising awareness of the risks associated with toxic exposures.
Collapse
Affiliation(s)
- Maria Quintana-Mejia
- Environmental, and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Flor Palacio-Herrera
- Environmental, and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Jesus Olivero-Verbel
- Environmental, and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Karina Caballero-Gallardo
- Environmental, and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| |
Collapse
|
6
|
Lokhman NN, Hashim Z, Jalaludin J, Yu Bin H, How V, Mohidem NA. Levels of acetylcholinesterase and DNA damage in children exposed to organophosphate pesticides in Tanjung Karang, Selangor, Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 40237585 DOI: 10.1080/09603123.2025.2492367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
This study aims to determine the levels of acetylcholinesterase in blood and DNA damage in children exposed to organophosphate pesticides in Tanjung Karang, Selangor, Malaysia. The acetylcholinesterase level was analysed using a Cholinesterase Test Kit. A comet assay was applied on the cheek wall, where DNA was liberated from the head of the comet assay. There was a significant difference in the acetylcholinesterase levels (p = <0.001) between the exposed and control groups. There was also a significant correlation between acetylcholinesterase levels and the length of the comet tail in the exposed group (p = 0.028) and in the combined groups (p < 0.001). The distance from the children's houses to the paddy field ranged from less than 100 m to more than 1,000 m, and acetylcholinesterase levels showed a significant relationship with micronucleus frequency and comet assay. Cycling showed a significant relationship with the micronucleus frequency. A distance of less than 100 m from home to school, completion of primary school, and having a father who worked as a farmer were significantly associated with the comet assay. The children exposed to organophosphate pesticides exhibit lower levels of acetylcholinesterase and an increase in comet tail length, indicating heightened DNA damage.
Collapse
Affiliation(s)
- Nur Naqibah Lokhman
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ho Yu Bin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Adibah Mohidem
- Public Health Unit, Department of Primary Health Care, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
7
|
Brand JA, Martin JM, Michelangeli M, Thoré ES, Sandoval-Herrera N, McCallum ES, Szabo D, Callahan DL, Clark TD, Bertram MG, Brodin T. Advancing the Spatiotemporal Dimension of Wildlife-Pollution Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:358-370. [PMID: 40224496 PMCID: PMC11984497 DOI: 10.1021/acs.estlett.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
Chemical pollution is one of the fastest-growing agents of global change. Numerous pollutants are known to disrupt animal behavior, alter ecological interactions, and shift evolutionary trajectories. Crucially, both chemical pollutants and individual organisms are nonrandomly distributed throughout the environment. Despite this fact, the current evidence for chemical-induced impacts on wildlife largely stems from tests that restrict organism movement and force homogeneous exposures. While such approaches have provided pivotal ecotoxicological insights, they overlook the dynamic spatiotemporal interactions that shape wildlife-pollution relationships in nature. Indeed, the seemingly simple notion that pollutants and animals move nonrandomly in the environment creates a complex of dynamic interactions, many of which have never been theoretically modeled or experimentally tested. Here, we conceptualize dynamic interactions between spatiotemporal variation in pollutants and organisms and highlight their ecological and evolutionary implications. We propose a three-pronged approach-integrating in silico modeling, laboratory experiments that allow movement, and field-based tracking of free-ranging animals-to bridge the gap between controlled ecotoxicological studies and real-world wildlife exposures. Advances in telemetry, remote sensing, and computational models provide the necessary tools to quantify these interactions, paving the way for a new era of ecotoxicology that accounts for spatiotemporal complexity.
Collapse
Affiliation(s)
- Jack A. Brand
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom
| | - Jake M. Martin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Marcus Michelangeli
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Australian
Rivers Institute, Griffith University, Nathan 4111, Australia
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- TRANSfarm
- Science, Engineering, & Technology Group, KU Leuven, Lovenjoel 3360, Belgium
- Laboratory
of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary
Biology, Institute of Life, Earth and Environment, University of Namur, Namur 5000, Belgium
| | - Natalia Sandoval-Herrera
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| | - Erin S. McCallum
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| | - Drew Szabo
- Centre
of Excellence in Mass Spectrometry, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- School
of Chemistry, The University of Melbourne, Melbourne 3010, Australia
| | - Damien L. Callahan
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Timothy D. Clark
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Tomas Brodin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| |
Collapse
|
8
|
Wang Y, Hermetz K, Burt A, Lesseur C, Panuwet P, Fiedler N, Prapamontol T, Suttiwan P, Nimmapirat P, Sittiwang S, Naksen W, Yakimavets V, Barr DB, Hao K, Chen J, Marsit CJ. Prenatal exposure to pesticide mixtures and the placental transcriptome: Insights from trimester-specific, sex-specific and metabolite-scaled analyses in the SAWASDEE cohort. ENVIRONMENTAL RESEARCH 2025; 267:120637. [PMID: 39675449 PMCID: PMC11794011 DOI: 10.1016/j.envres.2024.120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
We investigated the effect of exposure to pesticide mixtures during pregnancy on the placental transcriptome, to link these exposures and placental functions. The Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE) enrolled pregnant farmworkers from Thailand (n = 248), who were primarily exposed to organophosphate (OP) and pyrethroid pesticides. We measured maternal urinary levels of six non-specific OP metabolites expressed as three summary measures (dimethylalkylphosphates (DMAP), diethylalkylphosphates (DEAP), and dialkylphosphates (DAP) and three pyrethroid metabolites (3-phenoxybenzoic acid (3-PBA), cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA, trans-DCCA) during early, middle, and late pregnancy, and adjusted for urine dilution using creatinine. RNA-sequencing was used to profile the placental transcriptome from which 21 co-expression network modules were identified by Weighted Gene Co-expression Network Analysis. Quantile g-computation analysis identified a positive mixture exposure effect on the E2f Target Module (β = 0.013 per SD, p = 0.012) and a negative mixture exposure effect (β = -0.016 per SD, p = 0.008) on the Myogenesis Module. The pesticide metabolites driving the associations differed for each module on each module varied, highlighting differential susceptibilities within the placental transcriptome to various pesticides. The Myogenesis Module exhibited a consistently significant negative association in both the second trimester (β = -0.013 per SD, p = 0.015) and the third trimester (β = -0.012 per SD, p = 0.028). When stratifying by infant sex, the mixture exhibited a significant negative effect (β = -0.018 per SD, P = 0.016) on the Myogenesis Module only in females. Other modules, such as epithelial-mesenchymal transition, though not demonstrating an overall mixture effect, did demonstrate differential impacts of the mixture by sex. These findings underscore the importance of considering the prenatal environment more holistically, understanding the placenta's susceptibility to contaminants, and incorporating sex-specific analyses to understand differential impacts.
Collapse
Affiliation(s)
- Yewei Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Fiedler
- Rutgers University School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Pimjuta Nimmapirat
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Supattra Sittiwang
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Volha Yakimavets
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Kornher K, Gould CF, Manzano JM, Baines K, Kayser G, Tu X, Suarez-Torres J, Martinez D, Peterson LA, Huset CA, Barr DB, Suarez-Lopez JR. Associations of PFAS and pesticides with lung function changes from adolescence to young adulthood in the ESPINA study. Int J Hyg Environ Health 2025; 265:114526. [PMID: 39904133 DOI: 10.1016/j.ijheh.2025.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) and pesticides are widespread environmental contaminants linked to adverse health outcomes; yet, their impact on lung function-individually and as mixtures-remains poorly understood. This study analyzed data from 381 adolescents in a longitudinal cohort in Ecuador, measuring serum levels of three PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], and perfluorononanoic acid [PFNA]) and urinary levels of three pesticides (glyphosate, 2,4-dichlorophenoxyacetic acid [2,4-D], and ethylene thiourea [ETU]). Spirometric lung function was assessed in 2016 and 2022. We evaluated associations between individual chemical levels and lung measures in log-log models estimated via ordinary least squares regression. We used quantile g-computation to assess the association of the mixture of PFAS and pesticides with lung function outcomes. After accounting for multiple hypothesis testing, and in a range of socioeconomic, geographic variables, and tobacco exposure, no statistically significant associations were observed for individual or combined exposures with lung function outcomes, after correcting for multiple hypothesis testing. Slight, non-significant increases in FEV1/FVC were noted for PFOA, glyphosate, and ETU levels between 2016 and 2022. Our findings suggest that PFAS and pesticides, either individually or in combination, may not have substantial effects on adolescent lung function in this mid-to-high-altitude agricultural population. Further research is needed to assess these relationships in larger cohorts and over longer exposure periods.
Collapse
Affiliation(s)
- Kayleigh Kornher
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Carlos F Gould
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Jomel Meeko Manzano
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Katie Baines
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Georgia Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Xin Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, San Diego, CA, 92093, USA
| | | | | | - Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carin A Huset
- Department of Minnesota Department of Health, St. Paul, MN, 55164, USA
| | - Dana B Barr
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, San Diego, CA, 92093, USA; Fundación Cimas del Ecuador, Quito, Ecuador.
| |
Collapse
|
10
|
Marciano LPA, Kleinstreuer N, Chang X, Costa LF, Silvério ACP, Martins I. A novel approach to triazole fungicides risk characterization: Bridging human biomonitoring and computational toxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176003. [PMID: 39236816 DOI: 10.1016/j.scitotenv.2024.176003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Brazil stands as the world's leading coffee producer, where the extensive use of pesticides is economically critical yet poses health and environmental risks due to their non-selective mechanisms of action. Specifically, triazole fungicides are widely used in agriculture to manage fungal diseases and are known to disrupt mammalian CYP450 and liver microsomal enzymes. This research establishes a framework for risk characterization of human exposure to triazole fungicides by internal-dose biomonitoring, biochemical marker measurements, and integration of high-throughput screening (HTS) data via computational toxicology workflows from the Integrated Chemical Environment (ICE). Volunteers from the southern region of Minas Gerais, Brazil, were divided into two groups: farmworkers and spouses occupationally and environmentally exposed to pesticides from rural areas (n = 140) and individuals from the urban area to serve as a comparison group (n = 50). Three triazole fungicides, cyproconazole, epoxiconazole, and triadimenol, were detected in the urine samples of both men and women in the rural group. Androstenedione and testosterone hormones were significantly reduced in the farmworker group (Mann-Whitney test, p < 0.0001). The data show a significant inverse association of testosterone with cholesterol, LDL, VLDL, triglycerides, and glucose and a direct association with HDL (Spearman's correlation, p < 0.05). In the ICE workflow, active in vitro HTS assays were identified for the three measured triazoles and three other active ingredients from the pesticide formulations. The curated HTS data confirm bioactivities predominantly related to steroid hormone metabolism, cellular stress processes, and CYP450 enzymes impacted by fungicide exposure at occupationally and environmentally relevant concentrations based on the in vitro to in vivo extrapolation models. These results characterize the potentially significant human health risk, particularly from the high frequency and intensity of exposure to epoxiconazole. This study showcases the critical role of biomonitoring and utility of computational tools in evaluating pesticide exposure and minimizing the risk.
Collapse
Affiliation(s)
- Luiz P A Marciano
- Laboratory of Toxicant and Drug Analyses, Department of clinical and toxicological analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Minas Gerais, Brazil
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Luiz F Costa
- Laboratory of Toxicant and Drug Analyses, Department of clinical and toxicological analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Minas Gerais, Brazil
| | | | - Isarita Martins
- Laboratory of Toxicant and Drug Analyses, Department of clinical and toxicological analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Marchesi S, Econdi S, Paul G, Carniato F, Marchese L, Guidotti M, Bisio C. Nb(V)-containing saponite: A versatile clay for the catalytic degradation of the hazardous organophosphorus pesticide paraoxon under very mild conditions. Heliyon 2024; 10:e39898. [PMID: 39553565 PMCID: PMC11564950 DOI: 10.1016/j.heliyon.2024.e39898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
A synthetic saponite clay containing structural Nb(V) metal centres (NbSAP) was investigated in the abatement of paraoxon-ethyl, an anti-cholinergic organophosphorus pesticide, under mild conditions (neutral pH, room temperature and ambient pressure) in heterogenous phase, without additional basic additives. The material was selected according to its high surface acidity and ease of preparation through a one-step hydrothermal synthesis. The presence of Nb(V) ions played a crucial role in efficiently catalysing the degradation of aggressive chemical substrates. A niobium(V) oxide with very low surface acidity was also tested as a reference material. The study employed a multi-technique approach to monitor the pesticide degradation pathway and by-products formed during abatement experiments in polar non-protic and aqueous solvents. Notably, in water, the concentration of paraoxon-ethyl significantly decreased by 82 % within the first hour of contact with the clay. Additionally, NbSAP demonstrated a good performance after three repeated catalytic cycles and subsequent reactivation.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Stefano Econdi
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Geo Paul
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Matteo Guidotti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
| |
Collapse
|
12
|
Schaffner U, Heimpel GE, Mills NJ, Muriithi BW, Thomas MB, Gc YD, Wyckhuys KAG. Biological control for One Health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175800. [PMID: 39197787 DOI: 10.1016/j.scitotenv.2024.175800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Biological control has been effectively exploited by mankind since 300 CE. By promoting the natural regulation of pests, weeds, and diseases, it produces societal benefits at the food-environment-health nexus. Here we scrutinize biological control endeavours and their social-ecological outcomes through a holistic 'One-Health' lens, recognizing that the health of humans, animals, plants, and the wider environment are linked and interdependent. Evidence shows that biological control generates desirable outcomes within all One Health dimensions, mitigating global change issues such as chemical pollution, biocide resistance, biodiversity loss, and habitat destruction. Yet, its cross-disciplinary achievements remain underappreciated. To remedy this, we advocate a systems-level, integrated approach to biological control research, policy, and practice. Framing biological control in a One Health context helps to unite medical and veterinary personnel, ecologists, conservationists and agricultural professionals in a joint quest for solutions to some of the most pressing issues in planetary health.
Collapse
Affiliation(s)
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Nicholas J Mills
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, USA
| | - Beatrice W Muriithi
- Social Science and Impact Assessment Unit, International Centre of Insect Physiology and Ecology (icipe), Duduville Campus, Nairobi, Kenya
| | - Matthew B Thomas
- Department of Biology, University of York, York, UK; Entomology & Nematology Department, and Invasion Science Research Institute, University of Florida, Gainesville, FL, USA
| | - Yubak D Gc
- United Nations Food and Agriculture Organization (FAO), Bangkok, Thailand
| | - Kris A G Wyckhuys
- Chrysalis Consulting, Danang, Viet Nam; Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China; School of the Environment, University of Queensland, Saint Lucia, Australia; United Nations Food and Agriculture Organization (FAO), Rome, Italy
| |
Collapse
|
13
|
Xie S, Hofmann JN, Sampson JN, Josse PR, Madrigal JM, Chang VC, Deziel NC, Andreotti G, Keil AP, Ward MH, Beane Freeman LE, Friesen MC. Quantitative measures of recent and lifetime agricultural pesticide use are associated with increased pesticide concentrations in house dust. ENVIRONMENT INTERNATIONAL 2024; 193:109123. [PMID: 39541787 PMCID: PMC11620478 DOI: 10.1016/j.envint.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Elevated pesticide concentrations have been found in dust from homes with residents who use agricultural pesticides, but few studies have compared these concentrations to quantitative measures of their use. We evaluated household pesticide dust concentrations in relation to quantitative, active ingredient-specific metrics of agricultural pesticide use in the Biomarkers of Exposure and Effect in Agriculture Study. METHODS Participants provided vacuum dust samples (2013-2018) and information regarding recent (last 12 months) and lifetime pesticide use. Thirty-two pesticide analytes were measured in 295 dust samples from 213 participants; 54 had repeated measurements (median = 96 days between visits). We used mixed-effects quantile regression models to estimate relative differences in pesticide concentrations for recent and lifetime agricultural use (number of days, intensity-weighted days), recent home/garden use (yes/no), and household characteristics. Only household characteristics were examined for dacthal because of no use information. We calculated intraclass correlation coefficients (ICCs) to evaluate temporal variability. We report only descriptive statistics for pesticides with detection rates <25 %. RESULTS For currently used pesticides, quantitative measures of recent agricultural use were associated with significantly increased household pesticide dust concentrations for malathion, metolachlor, acetochlor, cyfluthrin, and atrazine (p-trends < 0.001), but not permethrin. Similarly, quantitative measures of lifetime use were associated with increased concentrations of malathion, metolachlor, carbaryl, diazinon, and atrazine (p-trends < 0.001), but not permethrin, chlorpyrifos, or chlorothalonil. For banned pesticides, ever agricultural use was associated with elevated chlordane and heptachlor concentrations and non-significantly elevated dieldrin concentrations, but not lindane, p,p-DDD, p,p-DDE, or p,p-DDT. Recent home/garden use predicted increased malathion, carbaryl, and cyfluthrin concentrations. ICCs (range = 0.57-0.90) suggested moderate to high correlation over 3-6 months. Detection rates were <25 % for alachlor, butylate, EPTC, metribuzin, simazine, carbofuran, coumaphos, as well as for three banned pesticides (cyanazine, aldrin, endosulfan). CONCLUSIONS Household pesticide dust concentrations were strongly associated with the frequency of agricultural pesticide use.
Collapse
Affiliation(s)
- Shuai Xie
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pabitra R Josse
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Alexander P Keil
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
14
|
Kornher K, Gould CF, Manzano JM, Baines K, Kayser G, Tu X, Suarez-Torres J, Martinez D, Suarez-Lopez JR. Associations of PFASs and Pesticides with Lung Function Changes from Adolescence to Young Adulthood in the ESPINA study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24315189. [PMID: 39417100 PMCID: PMC11483001 DOI: 10.1101/2024.10.09.24315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and pesticides are ubiquitous environmental exposures with increasingly recognized adverse health outcomes; however, their impact on lung function, particularly in combination, remains poorly understood. We included 381 adolescent participants from a prospective cohort study in Ecuador who underwent measurements of serum PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS] and perfluorononanoic acid [PFNA]) and urinary herbicides (glyphosate, 2,4D) and fungicides (ethylene thiourea) and had spirometric measurements in either 2016 or 2022. We characterized the association between each PFAS or pesticide and each lung function measure in log-log models estimated via ordinary least squares regression. We used quantile g-computation to assess the association of the mixture of PFAS and pesticides with lung function outcomes. After accounting for multiple hypothesis testing, and in models adjusting for household income, parental education, and exposure to tobacco, we found that, individually, PFOA, glyphosate, and ETU were associated with slight increases in FEV1/FVC between 2016 and 2022. No other individual associations were significant. In mixtures analyses, a one quartile increase in all PFASs and pesticides simultaneously was also not associated with statistically significant changes in lung function outcomes after accounting for multiple hypothesis testing. In large part, we do not provide evidence for associations of PFAS and herbicide and fungicide pesticides with lung function among adolescents in moderate-to-high-altitude agricultural communities in Ecuador.
Collapse
Affiliation(s)
- Kayleigh Kornher
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carlos F Gould
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jomel Meeko Manzano
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katie Baines
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Georgia Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xin Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Ornelas Van Horne Y, Johnston JE, Barahona DD, Razafy M, Kamai EM, Ruiz BC, Eckel SP, Bejarano E, Olmedo L, Farzan SF. Exposure to agricultural pesticides and wheezing among 5-12-year-old children in the Imperial Valley, CA, USA. Environ Epidemiol 2024; 8:e325. [PMID: 39165346 PMCID: PMC11335338 DOI: 10.1097/ee9.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Background Exposure to pesticides has been linked to adverse respiratory health outcomes in children. Methods We leveraged the Children's Assessing Imperial Valley Respiratory Health and the Environment cohort located in the rural community of Imperial Valley near the US-Mexico border. We calculated the kilograms of total pesticides applied within 400 m of children's residential addresses for the years 2016-2020. Estimated pesticide usage near homes was categorized into three groups (none vs. low vs. high [split at the median]). All health variables (i.e., asthma status and wheezing) were derived from a parent-reported questionnaire on respiratory health. We used generalized linear models, controlling for child sex, the language of survey, health insurance, respondents' highest education, and exposure to environmental secondhand smoking, to calculate prevalence differences between none versus low and high exposure to agricultural pesticides. Results Approximately 62% of the 708 children (aged 5-12 years) lived within 400 m of at least one pesticide application within 12 months prior to survey administration. Exposure to pesticides within 400 m of children's residences was associated with 12-month prior wheeze. Those in the "high" exposure group had a prevalence of wheezing that was 10 (95% confidence interval: 2%, 17%) percentage points higher than among children not exposed to pesticide applications. Associations for high exposure to specific categories of pesticide applications, sulfur only, all pesticides except sulfur, chlorpyrifos, and glyphosate, also were observed with a higher prevalence of wheezing than among children not exposed to pesticide applications. Conclusions We observed associations between living near pesticide applications and more wheeze symptoms among children.
Collapse
Affiliation(s)
- Yoshira Ornelas Van Horne
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jill E. Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dayane Duenas Barahona
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitiasoa Razafy
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Elizabeth M. Kamai
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brandyn C. Ruiz
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Luis Olmedo
- Comite Civico Del Valle, Brawley, California
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
Madrigal JM, Gunier RB, Jones RR, Flory A, Metayer C, Nuckols JR, Ward MH. Residential proximity to agricultural herbicide and fungicide applications and dust levels in homes of California children. ENVIRONMENT INTERNATIONAL 2024; 192:109024. [PMID: 39326242 DOI: 10.1016/j.envint.2024.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Few studies of the relationship between residential proximity to agricultural pesticide applications and pesticide levels in the home have incorporated crop location or wind direction. We evaluated the relationship between agricultural pesticide applications using the California Pesticide Use Reporting (CPUR) database and pesticide concentrations in carpet dust accounting for land use and wind direction. METHODS We measured concentrations (ng/g) of seven herbicides and two fungicides in carpet dust samples from 578 California homes (2001-2007). We created three metrics by computing the density (kg/km2) of use of each pesticide reported in CPUR within 0.5-, 1-, 2-, and 4-km buffers around homes 180- and 365-days before sampling (CPUR metric). We apportioned applications to the crop area within the buffers (CROP-A metric) and weighted CPUR applications by the proportion of days that the home was within ±45° of the downwind direction (W-CPUR metric). We modeled natural-log concentrations (Tobit regression) and dust detections (logistic regression) adjusting for season/year, occupation, and home/garden use. RESULTS Detections were >90 % for glyphosate, 2,4-D, and simazine. Detection rates and dust concentrations increased with increasing CPUR densities for all herbicides and one fungicide. Compared to homes without applications within 4 km, the highest tertile of 365-day glyphosate use was associated with ∼100 % higher concentrations (CPURT3>9.2kg/km2 %change = 110, 95 %CI = 55, 183; CROP-AT3>13.4kg/km2 %change = 144, 95 %CI = 81, 229; and W-CPURT3>2.1kg/km2 %change = 102, 95 %CI = 50, 171). The highest density tertiles of 2,4-D, simazine, and trifluralin were associated with 2- to 6-times higher concentrations, respectively; that was similar across metrics. Across all metrics, agricultural use of dacthal, dicamba, and iprodione were associated with 5- to 10-times higher odds of dust detections. Associations were unclear for 2-methyl-4-chlorophenoxyacetic acid and null for chlorothalonil. CONCLUSIONS Agricultural herbicide and fungicide use was an important determinant of indoor contamination within 4 km of homes. Accounting for crops and wind direction did not substantially change these relationships.
Collapse
Affiliation(s)
- Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA.
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, School of Public Health, Berkeley, CA, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | | | - Catherine Metayer
- University of California, Berkeley, School of Public Health, Berkeley, CA, USA
| | - John R Nuckols
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; JRN Environmental Health Sciences, Ltd, North Bethesda, MD, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| |
Collapse
|
17
|
Arnnok P, Burakham R. Multi-residue analysis method based on QuEChERS followed by ultra-high performance liquid chromatography coupled with diode-array detector for pesticides in human serum and breast milk. Bioanalysis 2024; 16:1011-1023. [PMID: 39320853 PMCID: PMC11581190 DOI: 10.1080/17576180.2024.2403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Background: Maternal fluids play a key role in the risk assessment regarding early life pesticide exposure as the chemicals can transfer to neonate through prenatal exposure and lactation.Aim: A developed UHPLC-DAD and modified QuChERS methods were validated for human serum and breast milk. Matrix effect of the biological samples were evaluated.Methods & results: Serum was extracted by unbuffered QuChERS method while breast milk was extracted by citrate buffered method with addition of hexane. Remaining lipid in breast milk extract was later removed using lipid-removal sorbent. Sample matrices caused huge impacted on low-sensitivity pesticides.Conclusion: The modified QuEChERS methods coupled with UHPLC-DAD were fully validated. Application in paired-serum and breast milk samples revealed 6 detected pesticides.
Collapse
Affiliation(s)
- Prapha Arnnok
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
18
|
Tan MY, Wu S, Zhu SX, Jiang LH. Association between exposure to organophosphorus pesticide and suicidal ideation among U.S. adults: A population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116572. [PMID: 38896903 DOI: 10.1016/j.ecoenv.2024.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This study aims to investigate the potential link between exposure to organophosphorus pesticides (OPPs) and suicidal ideation (SI) among adults. METHODS This study encompassed four cycles of the National Health and Nutrition Examination Survey (NHANES), involving 5244 participants aged 20 and above. SI was assessed using the Patient Health Questionnaire-9. The levels of exposure to OPPs were estimated by analyzing concentrations of OPP metabolites in urine samples. Multivariate logistic regression models were used to explore the association between exposure to each OPP and SI. Stratified analyses and interaction tests were conducted across various groups, including pairwise combinations of gender and age, as well as body mass index, smoking status, hypertension, and diabetes. Weighted Quantile Sum (WQS) regression and Bayesian Kernel Machine Regression (BKMR) models were applied to assess the cumulative impact of exposure to the four OPPs on SI, along with their respective contributions. Additionally, the potential interactions among these four OPPs were evaluated. RESULTS Multivariate logistic regression revealed that only dimethylthiophosphate (DMTP) among OPPs demonstrated a statistically significant positive association with SI [OR: 1.18; 95 % CI: 1.02-1.37]. Stratified analyses indicated that the influence of OPPs on SI was particularly pronounced in young and older men. The WQS regression analysis revealed a statistically significant association between the mixed metabolites of OPPs and SI [OR = 1.10, 95 % CI: 1.04-1.16], with DMTP (weighted 0.63) contributing the most. Furthermore, the BKMR model supported a positive trend in the overall impact of these OPP metabolites on SI, displaying notable individual exposure-response relationships for DMTP (PIP: 0.77). CONCLUSIONS Our study suggests an association between exposure to DMTP and an increased risk of SI. Specifically, young adult males and older males appear particularly susceptible to the effects of OPP exposure.
Collapse
Affiliation(s)
- Mo-Yao Tan
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Shan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Si-Xuan Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li-Hai Jiang
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
20
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
21
|
Abstract
Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Luke J Bonanni
- Grossman School of Medicine (L.J.B.), NYU Langone Health, New York, NY
| | | |
Collapse
|
22
|
Tian Y, Majid A, Zhang Y, Tan L, Li H, Wang N, Wang J. Preparation of surface molecularly imprinted polymers with Fe 3O 4/ZIF-8 as carrier for detection of Dimethoate in cabbage. J Chromatogr A 2024; 1722:464859. [PMID: 38604056 DOI: 10.1016/j.chroma.2024.464859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 μg·kg-1.
Collapse
Affiliation(s)
- Yanbo Tian
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Abdul Majid
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yuewei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Huiru Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Na Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
23
|
Marín-Sáez J, Hernández-Mesa M, Gallardo-Ramos JA, Gámiz-Gracia L, García-Campaña AM. Assessing human exposure to pesticides and mycotoxins: optimization and validation of a method for multianalyte determination in urine samples. Anal Bioanal Chem 2024; 416:1935-1949. [PMID: 38321180 PMCID: PMC10901940 DOI: 10.1007/s00216-024-05191-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Humans are exposed to an increasing number of contaminants, with diet being one of the most important exposure routes. In this framework, human biomonitoring is considered the gold standard for evaluating human exposure to chemicals. Pesticides and mycotoxins are chemicals of special concern due to their health implications. They constitute the predominant border rejection notifications for food and feed in Europe and the USA. However, current biomonitoring studies are focused on a limited number of compounds and do not evaluate mycotoxins and pesticides together. In this study, an analytical method has been developed for the determination of 30 pesticides and 23 mycotoxins of concern in urine samples. A salting-out liquid-liquid extraction (SALLE) procedure was optimized achieving recoveries between 70 and 120% for almost all the compounds and limits as lower as when QuEChERS was applied. The compounds were then determined by liquid chromatography coupled to triple quadrupole mass spectrometry. Different chromatographic conditions and analytical columns were tested, selecting a Hypersild gold aQ column as the best option. Finally, the method was applied to the analysis of 45 urine samples, in which organophosphate and pyrethroid pesticides (detection rates (DR) of 82% and 42%, respectively) and ochratoxin A and deoxynivalenol (DR of 51% and 33%, respectively) were the most detected compounds. The proposed analytical method involves the simultaneous determination of a diverse set of pesticides and mycotoxins, including their most relevant metabolites, in human urine. It serves as an essential tool for biomonitoring the presence of highly prevalent contaminants in modern society.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain.
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, 04120, Almeria, Spain.
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain
| | - Jose A Gallardo-Ramos
- Department of Food Technology, Engineering and Science, Applied Mycology Group, AGROTECNIO-CERCA Center, University of Lleida, 25198, Lleida, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain.
| |
Collapse
|
24
|
Hyland C, McConnell K, DeYoung E, Curl CL. Evaluating the accuracy of satellite-based methods to estimate residential proximity to agricultural crops. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:294-307. [PMID: 36002734 PMCID: PMC9950293 DOI: 10.1038/s41370-022-00467-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Epidemiologic investigations increasingly employ remote sensing data to estimate residential proximity to agriculture as a means of approximating individual-level pesticide exposure. Few studies have examined the accuracy of these methods and the implications for exposure misclassification. OBJECTIVES Compare metrics of residential proximity to agricultural land between a groundtruth approach and commonly-used satellite-based estimates. METHODS We inspected 349 fields and identified crops in current production within a 0.5 km radius of 40 residences in Idaho. We calculated the distance from each home to the nearest agricultural field and the total acreage of agricultural fields within a 0.5 km buffer. We compared these groundtruth estimates to satellite-derived estimates from three widely used datasets: CropScape, the National Land Cover Database (NLCD), and Landsat imagery (using Normalized Difference Vegetation Index thresholds). RESULTS We found poor to moderate agreement between the classification of individuals living within 0.5 km of an agricultural field between the groundtruth method and the comparison datasets (53.1-77.6%). All satellite-derived estimates overestimated the acreage of agricultural land within 0.5 km of each home (average = 82.8-148.9%). Using two satellite-derived datasets in conjunction resulted in substantial improvements; specifically, combining CropScape or NLCD with Landsat imagery had the highest percent agreement with the groundtruth data (92.8-93.8% agreement). SIGNIFICANCE Residential proximity to agriculture is frequently used as a proxy for pesticide exposure in epidemiologic investigations, and remote sensing-derived datasets are often the only practical means of identifying cultivated land. We found that estimates of agricultural proximity obtained from commonly-used satellite-based datasets are likely to result in exposure misclassification. We propose a novel approach that capitalizes on the complementary strengths of different sources of satellite imagery, and suggest the combined use of one dataset with high temporal resolution (e.g., Landsat imagery) in conjunction with a second dataset that delineates agricultural land use (e.g., CropScape or NLCD).
Collapse
Affiliation(s)
- Carly Hyland
- School of Public and Population Health, Boise State University, Boise, ID, USA.
| | | | - Edwin DeYoung
- Department of Geosciences, Boise State University, Boise, ID, USA
| | - Cynthia L Curl
- School of Public and Population Health, Boise State University, Boise, ID, USA
| |
Collapse
|
25
|
Mu H, Yang X, Wang K, Osman R, Xu W, Liu X, Ritsema CJ, Geissen V. Exposure risk to rural Residents: Insights into particulate and gas phase pesticides in the Indoor-Outdoor nexus. ENVIRONMENT INTERNATIONAL 2024; 184:108457. [PMID: 38281448 DOI: 10.1016/j.envint.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Rural residents are exposed to both particulate and gaseous pesticides in the indoor-outdoor nexus in their daily routine. However, previous personal exposure assessment mostly focuses on single aspects of the exposure, such as indoor or gaseous exposure, leading to severe cognition bias to evaluate the exposure risks. In this study, residential dust and silicone wristbands (including stationary and personal wearing ones) were used to screen pesticides in different phases and unfold the hidden characteristics of personal exposure via indoor-outdoor nexus in intensive agricultural area. Mento-Carlo Simulation was performed to assess the probabilistic exposure risk by transforming adsorbed pesticides from wristbands into air concentration, which explores a new approach to integrate particulate (dust) and gaseous (silicone wristbands) pesticide exposures in indoor and outdoor environment. The results showed that particulate pesticides were more concentrated in indoor, whereas significantly higher concentrations were detected in stationary outdoor wristbands (p < 0.05). Carbendazim and chlorpyrifos were the most frequently detected pesticides in dust and stationary wristbands. Higher pesticide concentration was found in personal wristbands worn by farmers, with the maximum value of 2048 ng g-1 for difenoconazole. Based on the probabilistic risk assessment, around 7.1 % of farmers and 2.6 % of bystanders in local populations were potentially suffering from chronic health issues. One third of pesticide exposures originated mainly from occupational sources while the rest derived from remoting dissipation. Unexpectedly, 43 % of bystanders suffered the same levels of exposure as farmers under the co-existence of occupational and non-occupational exposures. Differed compositions of pesticides were found between environmental samples and personal pesticide exposure patterns, highlighting the need for holistic personal exposure measurements.
Collapse
Affiliation(s)
- Hongyu Mu
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands; College of Resources and Environmental Sciences, Northwest A&F University, 712100 Yangling, China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Rima Osman
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Wen Xu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
26
|
Awounou D, Mancini M, Lacour B, de Crouy-Chanel P, Aerts I, Minard-Colin V, Schleiermacher G, Verschuur A, Guissou S, Desandes E, Guldner L, Clavel J, Goujon S. Residential proximity to vines and risk of childhood embryonal tumours in France - GEOCAP case-control study, 2006-2013. ENVIRONMENTAL RESEARCH 2024; 240:117417. [PMID: 37865323 DOI: 10.1016/j.envres.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Exposure to pesticides has been suggested as a potential risk factor for childhood embryonal tumour. The existing literature has mainly focused on parental occupational exposure and domestic use of pesticides, and is very limited for residential exposures to agricultural pesticides. The study aimed to test the hypothesis of an increased risk of embryonal tumour in children living close to viticultural plots, likely to be subject to frequent pesticide applications. METHODS The study is part of the French national registry-based GEOCAP program. We included 2761 cases of neuroblastoma, retinoblastoma, Wilms tumour and rhabdomyosarcoma diagnosed before the age of 15 years in the 2006-2013 period, and 40,196 controls representative of the same age population during this period. Indicators of proximity to vines, the presence of vines and viticulture density within 1000 m of the geocoded addresses of residence, were evaluated combining three sources of data on agricultural land use in a geographic information system. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regressions and carried out several sensitivity analyses to test the stability of the results. RESULTS Approximately 10% of the controls lived within 1000 m of vines, with regional variations ranging from <1% to 38%. We observed a 5% increase in the risk of neuroblastoma for a 10% increase in viticulture density (OR = 1.05, 95% CI: 0.98-1.13), with a regional heterogeneity. The indicators of proximity to vines were not associated with the other non-CNS embryonal tumours. CONCLUSION The study showed a slight increase in the risk of neuroblastoma in children living close to vines, suggesting that residential exposure to agricultural pesticides may be involved in the occurrence of these tumours.
Collapse
Affiliation(s)
- Danielle Awounou
- Inserm UMR1153, Epidemiology of Childhood and Adolescent Cancers (EPICEA) team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France.
| | - Matthieu Mancini
- Inserm UMR1153, Epidemiology of Childhood and Adolescent Cancers (EPICEA) team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Brigitte Lacour
- Inserm UMR1153, Epidemiology of Childhood and Adolescent Cancers (EPICEA) team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France; French National Registry of Childhood Cancers, RNHE, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, Villejuif, and RNTSE, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Perrine de Crouy-Chanel
- Santé publique France, the French Public Health Agency, Direction Appui, Traitements et Analyses des données (DATA), Saint-Maurice, France
| | - Isabelle Aerts
- SIREDO Centre (Care, Innovation, Research In Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Véronique Minard-Colin
- Department of Paediatric and Adolescent Oncology, Institut Gustave Roussy - Inserm UMR1015, Université Paris Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- SIREDO Centre (Care, Innovation, Research In Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - Arnauld Verschuur
- Department of Paediatric Haematology, Immunology and Oncology, Children Hospital of La Timone, AP-HM, 13385, Marseille, France
| | - Sandra Guissou
- Inserm UMR1153, Epidemiology of Childhood and Adolescent Cancers (EPICEA) team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France; French National Registry of Childhood Cancers, RNHE, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, Villejuif, and RNTSE, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Emmanuel Desandes
- Inserm UMR1153, Epidemiology of Childhood and Adolescent Cancers (EPICEA) team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France; French National Registry of Childhood Cancers, RNHE, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, Villejuif, and RNTSE, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Laurence Guldner
- Santé publique France, the French Public Health Agency, Direction Santé Environnement Travail (DSET), Saint-Maurice, France
| | - Jacqueline Clavel
- Inserm UMR1153, Epidemiology of Childhood and Adolescent Cancers (EPICEA) team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France; French National Registry of Childhood Cancers, RNHE, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, Villejuif, and RNTSE, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Stéphanie Goujon
- Inserm UMR1153, Epidemiology of Childhood and Adolescent Cancers (EPICEA) team, Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France; French National Registry of Childhood Cancers, RNHE, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, Villejuif, and RNTSE, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
27
|
Navarro I, de la Torre A, Sanz P, Baldi I, Harkes P, Huerta-Lwanga E, Nørgaard T, Glavan M, Pasković I, Pasković MP, Abrantes N, Campos I, Alcon F, Contreras J, Alaoui A, Hofman J, Vested A, Bureau M, Aparicio V, Mandrioli D, Sgargi D, Mol H, Geissen V, Silva V, Martínez MÁ. Occurrence of pesticide residues in indoor dust of farmworker households across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167797. [PMID: 37838044 DOI: 10.1016/j.scitotenv.2023.167797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 μg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).
Collapse
Affiliation(s)
- Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain.
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Isabelle Baldi
- University of Bordeaux, INSERM, BPH, U1219 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Esperanza Huerta-Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Nelson Abrantes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and Planning and CESAM, University of Aveiro, Aveiro, Portugal
| | - Francisco Alcon
- Department of Business Economics, Universidad Politécnica de Cartagena, Spain
| | - Josefina Contreras
- Department Agricultural Engineering, Universidad Politécnica de Cartagena, Spain
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anne Vested
- Department of Public Health - Unit for Environment, Occupation, and Health, Danish Ramazzini Centre, Aarhus University, Denmark
| | | | | | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Hans Mol
- Wageningen Food Safety Research - part of Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| |
Collapse
|
28
|
Siriwat S, Ong-Artborirak P, Ponrachom C, Siriwong W, Nganchamung T. Non-carcinogenic health risk from carbamate pesticide exposure of toddlers living in agricultural areas of Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1738-1748. [PMID: 36103631 DOI: 10.1080/09603123.2022.2123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toddlers in agricultural areas may be athave risk from pesticide exposure . A cross-sectional study was conducted with 130 toddlers and their caregivers. Face-to-face interviews were done to gather information about exposure factors. A wipe sampling technique was used to collect carbamate residues on each toddler's hands and feet. Results showed that there were carbamate residues on all wipe samples (100%), with a median concentration of 30.47 micrograms per sample (hands and feet). Carbamate residues detected on toddlers' hands and feetwere significantly associated (p < 0.05) with many factors, including the toddlers' relationships with caregivers, the education level of caregivers, the household incomes, the gender of toddlers, the frequency of following caregivers to farms, the frequency of foot washing, daytime activities, and playing durations. The health risk from dermal carbamate exposurewas above the acceptable range (HI = 3.244). Preventive measures should be considered to reduce toddlers' pesticide exposure in agricultural areas.
Collapse
Affiliation(s)
- Satinee Siriwat
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakhon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | | | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thitirat Nganchamung
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
29
|
Curl CL, Hyland C, Spivak M, Sheppard L, Lanphear B, Antoniou MN, Ospina M, Calafat AM. The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127001. [PMID: 38054699 PMCID: PMC10699167 DOI: 10.1289/ehp12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Glyphosate is one of the most heavily used pesticides in the world, but little is known about sources of glyphosate exposure in pregnant people living in agricultural regions. OBJECTIVE Our objective was to evaluate glyphosate exposure during pregnancy in relation to residential proximity to agriculture as well as agricultural spray season. METHODS We quantified glyphosate concentrations in 453 urine samples collected biweekly from a cohort of 40 pregnant people in southern Idaho from February through December 2021. We estimated each participant's glyphosate exposure as the geometric mean (GM) of glyphosate concentrations measured in all samples (average n = 11 samples/participant), as well as the GM of samples collected during the pesticide "spray season" (defined as those collected 1 May-15 August; average n = 5 samples/participant) and the "nonspray season" (defined as those collected before 1 May or after 15 August; average n = 6 samples/participant). We defined participants who resided < 0.5 km from an actively cultivated agriculture field to live "near fields" and those residing ≥ 0.5 km from an agricultural field to live "far from fields" (n = 22 and 18, respectively). RESULTS Among participants living near fields, urinary glyphosate was detected more frequently and at significantly increased GM concentrations during the spray season in comparison with the nonspray season (81% vs. 55%; 0.228 μ g / L vs. 0.150 μ g / L , p < 0.001 ). In contrast, among participants who lived far from fields, neither glyphosate detection frequency nor GMs differed in the spray vs nonspray season (66% vs. 64%; 0.154 μ g / L vs. 0.165 μ g / L , p = 0.45 ). Concentrations did not differ by residential proximity to fields during the nonspray season (0.154 μ g / L vs. 0.165 μ g / L , for near vs. far, p = 0.53 ). DISCUSSION Pregnant people living near agriculture fields had significantly increased urinary glyphosate concentrations during the agricultural spray season than during the nonspray season. They also had significantly higher urinary glyphosate concentrations during the spray season than those who lived far from agricultural fields at any time of year, but concentrations did not differ during the nonspray season. These findings suggest that agricultural glyphosate spray is a source of exposure for people living near fields. https://doi.org/10.1289/EHP12768.
Collapse
Affiliation(s)
- Cynthia L. Curl
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Carly Hyland
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Division of Agriculture and National Resources, University of California, Berkeley, CA, USA
| | - Meredith Spivak
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Lianne Sheppard
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Bruce Lanphear
- Simon Fraser University, Vancouver, British Columbia, Canada
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, London, UK
- Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Nguyen A, Crespi CM, Vergara X, Kheifets L. Pesticides as a potential independent childhood leukemia risk factor and as a potential confounder for electromagnetic fields exposure. ENVIRONMENTAL RESEARCH 2023; 238:116899. [PMID: 37598846 DOI: 10.1016/j.envres.2023.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Both pesticides and high magnetic fields are suspected to be childhood leukemia risk factors. Pesticides are utilized at commercial plant nurseries, which sometimes occupy the areas underneath high-voltage powerlines. OBJECTIVES To evaluate whether potential pesticide exposures (intended use, chemical class, active ingredient) utilized at plant nurseries act as an independent childhood leukemia risk factor or as a confounder for proximity to, or magnetic fields exposure from, high-voltage powerlines. METHODS We conducted a state-wide records-based case-control study for California with 5788 childhood leukemia cases and 5788 controls that examined specific pesticide use, magnetic field exposures and distances to both powerlines and plant nurseries. Exposure assessment incorporated geographic information systems, aerial satellite images, and other historical information. RESULTS Childhood leukemia risk was potentially elevated for several active pesticide ingredients: permethrin (odds ratio (OR) 1.49, 95% confidence interval (CI) (0.83-2.67), chlorpyrifos (OR 1.29, 95% CI 0.89-1.87), dimethoate (OR 1.79, 95% CI 0.85-3.76), mancozeb (OR 1.41, 95% CI 0.85-2.33), oxyfluorfen (OR 1.41, 95% CI 0.75-2.66), oryzalin (OR 1.60, 95% CI 0.97-2.63), and pendimethalin (OR 1.82, 95% CI 0.81-2.25). Rodenticide (OR 1.42, 95% CI 0.78-2.56) and molluscicide (OR 1.22, 95% CI 0.82-1.81) exposure also presented potentially elevated childhood leukemia risks. Childhood leukemia associations with calculated fields or powerline proximity did not materially change after adjusting for pesticide exposure. Childhood leukemia risks with powerline proximity remained similar when pesticide exposures were excluded. DISCUSSION Pesticide exposure may be an independent childhood leukemia risk factor. Childhood leukemia risks for powerline proximity and magnetic fields exposure were not explained by pesticide exposure.
Collapse
Affiliation(s)
- A Nguyen
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA, 90095-1772, USA.
| | - C M Crespi
- Department of Biostatistics, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA, 90095-1772, USA.
| | - X Vergara
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA, 90095-1772, USA.
| | - L Kheifets
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA, 90095-1772, USA.
| |
Collapse
|
31
|
Freisthler M, Winchester PW, Young HA, Haas DM. Perinatal health effects of herbicides exposures in the United States: the Heartland Study, a Midwestern birth cohort study. BMC Public Health 2023; 23:2308. [PMID: 37993831 PMCID: PMC10664386 DOI: 10.1186/s12889-023-17171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The objective of the Heartland Study is to address major knowledge gaps concerning the health effects of herbicides on maternal and infant health. To achieve this goal, a two-phased, prospective longitudinal cohort study is being conducted. Phase 1 is designed to evaluate associations between biomarkers of herbicide concentration and pregnancy/childbirth outcomes. Phase 2 is designed to evaluate potential associations between herbicide biomarkers and early childhood neurological development. METHODS People (target enrollment of 2,000) who are seeking prenatal care, are ages 18 or older, and are ≤ 20 + 6 weeks gestation will be eligible for recruitment. The Heartland Study will utilize a combination of questionnaire data and biospecimen collections to meet the study objectives. One prenatal urine and buccal sample will be collected per trimester to assess the impact of herbicide concentration levels on pregnancy outcomes. Infant buccal specimens will be collected post-delivery. All questionnaires will be collected by trained study staff and clinic staff will remain blinded to all individual level research data. All data will be stored in a secure REDCap database. Hospitals in the agriculturally intensive states in the Midwestern region will be recruited as study sites. Currently participating clinical sites include Indiana University School of Medicine- affiliated Hospitals in Indianapolis, Indiana; Franciscan Health Center in Indianapolis, Indiana; Gundersen Lutheran Medical Center in La Crosse, Wisconsin, and University of Iowa in Iowa City, Iowa. An anticipated 30% of the total enrollment will be recruited from rural areas to evaluate herbicide concentrations among those pregnant people residing in the rural Midwest. Perinatal outcomes (e.g. birth outcomes, preterm birth, preeclampsia, etc.) will be extracted by trained study teams and analyzed for their relationship to herbicide concentration levels using appropriate multivariable models. DISCUSSION Though decades of study have shown that environmental chemicals may have important impacts on the health of parents and infants, there is a paucity of prospective longitudinal data on reproductive impacts of herbicides. The recent, rapid increases in herbicide use across agricultural regions of the United States necessitate further research into the human health effects of these chemicals, particularly in pregnant people. The Heartland Study provides an invaluable opportunity to evaluate health impacts of herbicides during pregnancy and beyond. TRIAL REGISTRATION The study is registered at clinicaltrials.gov, NCT05492708 with initial registration and release 05 August, 2022.
Collapse
Affiliation(s)
- Marlaina Freisthler
- Department of Environmental and Occupational Health, Milken Institute of Public Health, George Washington University, 950 New Hampshire Ave NW #2, Washington, DC, 20052, USA
| | - Paul W Winchester
- Neonatal-Perinatal Medicine, Riley Children's Hospital, Indiana University School of Medicine, 699 Riley Hospital Dr RR 208, Indianapolis, IN, 46202, USA
- Franciscan Health, Indianapolis, 8111 South Emerson Avenue, Indianapolis, IN, 46237, USA
| | - Heather A Young
- Department of Epidemiology, Milken Institute for Public Health, George Washington University, 950 New Hampshire Ave NW #2, Washington, DC, 20052, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, IN, UH2440, USA.
| |
Collapse
|
32
|
Hymel E, Degarege A, Fritch J, Farazi E, Napit K, Coulter D, Schmidt C, Watanabe-Galloway S. Agricultural exposures and risk of childhood neuroblastoma: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113193-113204. [PMID: 37858025 DOI: 10.1007/s11356-023-30315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
While neuroblastoma accounts for an estimated 8% of childhood cancers, it causes about 15% of childhood cancer deaths in the United States. The role of agricultural exposures in the development of neuroblastoma is unclear. We conducted a systematic review and meta-analysis of studies examining the relationship between agricultural exposures and neuroblastoma. MEDLINE, EMBASE, Scopus, and Google Scholar were searched in February 2022, identifying 742 publications. Seventeen articles met the inclusion criteria; all were published between 1985 and 2020 and included 14 case-control, one cross-sectional, and two cohort studies. Random and fixed effects models were used to calculate summary odds ratios (sORs) and 95% confidence intervals (CIs). An increased odds of developing neuroblastoma with parental exposure to any pesticides (sOR = 1.25, 95% CI: 1.03-1.48; 4 studies), insecticides (sOR = 1.55, 95% CI: 1.19-1.91; 3 studies), and residential exposure to crops/vegetables (sOR = 1.04, 95% CI: 1.01-1.06; 2 studies) was seen. Heterogeneity was low in all analyses, and no publication bias was evident. No significant associations were found with agricultural occupations, herbicides, and agricultural dusts. The studies were limited by exposure measurements and small sample sizes. Further studies are needed to explore mechanisms in the development of neuroblastoma in children with parental agricultural exposures, especially pesticides, and to improve methods of measuring agricultural-related exposures.
Collapse
Affiliation(s)
- Emma Hymel
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Abraham Degarege
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jordan Fritch
- Pediatric Hematology & Oncology, Sanford Children's Hospital, Sioux Falls, SD, USA
| | - Evi Farazi
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Krishtee Napit
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Don Coulter
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cynthia Schmidt
- McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shinobu Watanabe-Galloway
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
33
|
Šulc L, Figueiredo D, Huss A, Kalina J, Gregor P, Janoš T, Šenk P, Dalecká A, Andrýsková L, Kodeš V, Čupr P. Current-use pesticide exposure pathways in Czech adults and children from the CELSPAC-SPECIMEn cohort. ENVIRONMENT INTERNATIONAL 2023; 181:108297. [PMID: 37939438 DOI: 10.1016/j.envint.2023.108297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION In this study, we aimed to characterise exposure to pyrethroids, organophosphates, and tebuconazole through multiple pathways in 110 parent-child pairs participating in the CELSPAC-SPECIMEn study. METHODS First, we estimated the daily intake (EDI) of pesticides based on measured urinary metabolites. Second, we compared EDI with estimated pesticide intake from food. We used multiple linear regression to identify the main predictors of urinary pesticide concentrations. We also assessed the relationship between urinary pesticide concentrations and organic and non-organic food consumption while controlling for a range of factors. Finally, we employed a model to estimate inhalation and dermal exposure due to spray drift and volatilization after assuming pesticide application in crop fields. RESULTS EDI was often higher in children in comparison to adults, especially in the winter season. A comparison of food intake estimates and EDI suggested diet as a critical pathway of tebuconazole exposure, less so in the case of organophosphates. Regression models showed that consumption per g of peaches/apricots was associated with an increase of 0.37% CI [0.23% to 0.51%] in urinary tebuconazole metabolite concentrations. Consumption of white bread was associated with an increase of 0.21% CI [0.08% to 0.35%], and consumption of organic strawberries was inversely associated (-61.52% CI [-79.34% to -28.32%]), with urinary pyrethroid metabolite concentrations. Inhalation and dermal exposure seemed to represent a relatively small contribution to pesticide exposure as compared to dietary intake. CONCLUSION In our study population, findings indicate diet plays a significant role in exposure to the analysed pesticides. We found an influence of potential exposure due to spray drift and volatilization among the subpopulation residing near presumably sprayed crop fields to be minimal in comparison. However, the lack of data indicating actual spraying occurred during the critical 24-hour period prior to urine sample collection could be a significant contributing factor.
Collapse
Affiliation(s)
- Libor Šulc
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Daniel Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jiří Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Petr Gregor
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Andrea Dalecká
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Prague, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
34
|
Sarğın B, Karaca S. Land suitability assessment for wheat-barley cultivation in a semi-arid region of Eastern Anatolia in Turkey. PeerJ 2023; 11:e16396. [PMID: 37927788 PMCID: PMC10624173 DOI: 10.7717/peerj.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
The efficient use and sustainability of agricultural lands depend heavily on the characteristics of soil resources in a given area, as different soil properties can significantly impact crop growth and yield. Therefore, land suitability studies play a crucial role in determining the appropriate crops for a given area and ensuring sustainable agricultural practices. This study, conducted in Tusba District-Van, Turkey, represents a significant advancement in land suitability studies for wheat-barley cultivation. Using geographic information systems, the analytical hierarchical process method, and the standard scoring function, lands were determined based on the examined criteria for the suitability of wheat-barley cultivation. One of this study's main findings is identifying critical factors that influence the suitability of land for wheat-barley cultivation. These factors include slope, organic matter content, available water capacity, soil depth, cation exchange capacity, pH level, and clay content. It is important to note that slope is the most influential factor, followed by organic matter content and available water capacity. A Soil Quality Index map was produced, and the suitability of wheat-barley production in the studied area was demonstrated. More than 28% of the study area was very suitable for wheat-barley production (S2), and more than was 39% moderately suitable (S3). A positive regression (R2 = 0.67) was found between soil quality index values and crop yield. The relationship between soil quality index values and crop yield is above acceptable limits. Land suitability assessment can minimize labor and cost losses in the planning and implementation of sustainable ecological and economic agriculture. Furthermore, land suitability classes play an active role in the selection of the product pattern of the area by presenting a spatial decision support system.
Collapse
Affiliation(s)
- Bulut Sarğın
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Van Yuzuncu Yil University, Van, Turkey
| | - Siyami Karaca
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
35
|
Toltin AC, Belkadi A, Gamba LM, Hossain MM. The Preventive Effects of Salubrinal against Pyrethroid-Induced Disruption of Adult Hippocampal Neurogenesis in Mice. Int J Mol Sci 2023; 24:15614. [PMID: 37958604 PMCID: PMC10648946 DOI: 10.3390/ijms242115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Environmental factors, including pesticide exposure, have been identified as substantial contributors to neurodegeneration and cognitive impairments. Previously, we demonstrated that repeated exposure to deltamethrin induces endoplasmic reticulum (ER) stress, reduces hippocampal neurogenesis, and impairs cognition in adult mice. Here, we investigated the potential relationship between ER stress and hippocampal neurogenesis following exposure to deltamethrin, utilizing both pharmacological and genetic approaches. To investigate whether ER stress is associated with inhibition of neurogenesis, mice were given two intraperitoneal injections of eIf2α inhibitor salubrinal (1 mg/kg) at 24 h and 30 min prior to the oral administration of deltamethrin (3 mg/kg). Salubrinal prevented hippocampal ER stress, as indicated by decreased levels of C/EBP-homologous protein (CHOP) and transcription factor 4 (ATF4) and attenuated deltamethrin-induced reductions in BrdU-, Ki-67-, and DCX-positive cells in the dentate gyrus (DG) of the hippocampus. To further explore the relationship between ER stress and adult neurogenesis, we used caspase-12 knockout (KO) mice. The caspase-12 KO mice exhibited significant protection against deltamethrin-induced reduction of BrdU-, Ki-67-, and DCX-positive cells in the hippocampus. In addition, deltamethrin exposure led to a notable upregulation of CHOP and caspase-12 expression in a significant portion of BrdU- and Ki-67-positive cells in WT mice. Conversely, both salubrinal-treated mice and caspase-12 KO mice exhibited a considerably lower number of CHOP-positive cells in the hippocampus. Together, these findings suggest that exposure to the insecticide deltamethrin triggers ER stress-mediated suppression of adult hippocampal neurogenesis, which may subsequently contribute to learning and memory deficits in mice.
Collapse
Affiliation(s)
| | | | | | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
36
|
Mancini M, Hémon D, de Crouy-Chanel P, Guldner L, Faure L, Clavel J, Goujon S. Association between Residential Proximity to Viticultural Areas and Childhood Acute Leukemia Risk in Mainland France: GEOCAP Case-Control Study, 2006-2013. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107008. [PMID: 37850750 PMCID: PMC10583703 DOI: 10.1289/ehp12634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Pesticide exposures are suspected of being a risk factor for several childhood cancers, particularly acute leukemia (AL). Most of the evidence is based on self-reported parental domestic use of pesticides, but some studies have also addressed associations with agricultural use of pesticides near the place of residence. OBJECTIVES The objective of the study was to evaluate the risk of AL in children living close to vines, a crop subject to intensive pesticide use. METHODS Data were drawn from the national registry-based GEOCAP study. We included all of the AL cases under the age of 15 years diagnosed in 2006-2013 (n = 3,711 ) and 40,196 contemporary controls representative of the childhood population in France. The proximity of the vines (probability of presence within 200, 500, and 1,000 m ) and the viticulture density (area devoted to vines within 1,000 m ) were evaluated around the geocoded addresses in a geographic information system combining three national land use maps. Logistic regression models were used to estimate odds ratios (ORs) for all AL and for the lymphoblastic (ALL) and myeloid (AML) subtypes. Heterogeneity between regions was studied by stratified analyses. Sensitivity analyses were carried out to take into account, in particular, geocoding uncertainty, density of other crops and potential demographic and environmental confounders. RESULTS In all, about 10% of the controls lived within 1 km of vines. While no evidence of association between proximity to vines and AL was found, viticulture density was positively associated with ALL [OR = 1.05 (1.00-1.09) for a 10% increase in density], with a statistically significant heterogeneity across regions. No association with AML was observed. The results remained stable in all the sensitivity analyses. CONCLUSION We evidenced a slight increase in the risk of ALL in children living in areas with high viticulture density. This finding supports the hypothesis that environmental exposure to pesticides may be associated with childhood ALL. https://doi.org/10.1289/EHP12634.
Collapse
Affiliation(s)
- Matthieu Mancini
- Epidemiology of childhood and adolescent cancers, Center for Research in Epidemiology and StatisticS (CRESS), Université Paris-Cité, Université Sorbonne Paris Nord, INSERM, INRAe, Paris, France
| | - Denis Hémon
- Epidemiology of childhood and adolescent cancers, Center for Research in Epidemiology and StatisticS (CRESS), Université Paris-Cité, Université Sorbonne Paris Nord, INSERM, INRAe, Paris, France
| | - Perrine de Crouy-Chanel
- Direction appui, traitement et analyse de données (DATA), Santé publique France, Saint-Maurice, France
| | - Laurence Guldner
- Direction Santé, Environnement, Travail (DSET), Santé publique France, Saint-Maurice, France
| | - Laure Faure
- Epidemiology of childhood and adolescent cancers, Center for Research in Epidemiology and StatisticS (CRESS), Université Paris-Cité, Université Sorbonne Paris Nord, INSERM, INRAe, Paris, France
- National registry of childhood cancers, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris (AP-HP), Villejuif, et Centre Hospitalier Régional Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Jacqueline Clavel
- Epidemiology of childhood and adolescent cancers, Center for Research in Epidemiology and StatisticS (CRESS), Université Paris-Cité, Université Sorbonne Paris Nord, INSERM, INRAe, Paris, France
- National registry of childhood cancers, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris (AP-HP), Villejuif, et Centre Hospitalier Régional Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Stéphanie Goujon
- Epidemiology of childhood and adolescent cancers, Center for Research in Epidemiology and StatisticS (CRESS), Université Paris-Cité, Université Sorbonne Paris Nord, INSERM, INRAe, Paris, France
- National registry of childhood cancers, Hôpital Paul Brousse, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris (AP-HP), Villejuif, et Centre Hospitalier Régional Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| |
Collapse
|
37
|
Tunca H, Doğru A, Köçkar F, Kiliç HE, Sevindik TO. Oxidative stress in Arthrospira platensis by two organophosphate pesticides. AN ACAD BRAS CIENC 2023; 95:e20200463. [PMID: 37729300 DOI: 10.1590/0001-3765202320200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 09/22/2023] Open
Abstract
Although it is known that organophosphate insecticides are harmfull to aquatic ecosystems, oxidative damages caused by Dimethoate and Chlorpyrifos are not studied on Arthrospira platensis Gomont. In this study, various Chlorpyrifos (0-150 µg mL-1) and Dimethoate (0-250 µg mL-1) concentrations were added to the culture medium in laboratory to evaulate growth rate, chlorophyll-a content and antioxidant parameters of A. platensis. Optical Density (OD560) and chlorophyll-a decreased compared to the control for seven days in both pesticide applications. Superoxide dismutase (SOD) activity increased at 50 µg mL-1 Chlorpyrifos concentration but it decreased at all concentrations. Although Ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased with Chlorpyrifos application, they did not change with Dimethoate application. Malondialdehyde (MDA) amount decreased at 150 µg mL-1 Chlorpyrifos concentration but it increased in Dimethoate application. The H2O2 content were increased in both applications. Proline decreased in 50 and 75 µg mL-1 Chlorpyrifos concentrations and increased at 150 µg mL-1 concentration, while it increased at 25 µg mL-1 Dimethoate concentration. The results were tested at 0.05 significance level. These pesticides inhibit A. platensis growth and chlorophyll-a production and cause oxidative stress. The excessive use may affect the phytoplankton and have negative consequences in the aquatic ecosystem.
Collapse
Affiliation(s)
- Hatice Tunca
- Sakarya University, Science Faculty, Biology Department, Esentepe Campus, Serdivan, 54187, Sakarya, Turkiye
| | - Ali Doğru
- Sakarya University, Science Faculty, Biology Department, Esentepe Campus, Serdivan, 54187, Sakarya, Turkiye
| | - Feray Köçkar
- Balıkesir University, Arts and Science Faculty, Molecular Biology and Genetics Department, Cagil Campus, 10145, Balıkesir, Turkiye
| | - Hediye E Kiliç
- Sakarya University, Science Faculty, Biology Department, Esentepe Campus, Serdivan, 54187, Sakarya, Turkiye
| | - Tuğba O Sevindik
- Sakarya University, Science Faculty, Biology Department, Esentepe Campus, Serdivan, 54187, Sakarya, Turkiye
| |
Collapse
|
38
|
Louati K, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Maalej A, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Research of Pesticide Metabolites in Human Brain Tumor Tissues by Chemometrics-Based Gas Chromatography-Mass Spectrometry Analysis for a Hypothetical Correlation between Pesticide Exposure and Risk Factor of Central Nervous System Tumors. ACS OMEGA 2023; 8:29812-29835. [PMID: 37599976 PMCID: PMC10433342 DOI: 10.1021/acsomega.3c04592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Pesticides are widely used, resulting in continuing human exposure with potential health impacts. Some exposures related to agricultural works have been associated with neurological disorders. Since the 2000s, the hypothesis of the role of pesticides in the occurrence of central nervous system (CNS) tumors has been better documented in the literature. However, the etiology of childhood brain cancers still remains largely unknown. The major objective of this work was to assess the potential role of pesticide exposure as a risk factor for CNS tumors based on questionnaires and statistical analysis of information collected from patients hospitalized in the Neurosurgery Department of the Habib Bourguiba Hospital Medium in Sfax, Tunisia, during the period from January 1, 2022, to May 31, 2023. It also aimed to develop a simple and rapid analytical method by the gas chromatography-mass spectrometry technique for the research traces of pesticide metabolites in some collected human brain tumor tissues in order to more emphasize our hypothesis for such a correlation between pesticide exposure and brain tumor development. Patients with a history of high-risk exposure were selected to conduct further analysis. Chemometric methods were adapted to discern intrinsic variation between pathological and control groups and ascertain effective separation with the identification of differentially expressed metabolites accountable for such variations. Three samples revealed traces of pesticide metabolites that were mostly detected at an early age. The histopathological diagnosis was medulloblastoma for a 10-year-old child and high-grade gliomas for 27- and 35-year-old adults. The bivariate analyses (odds ratio >1 and P value <5%) confirmed the great probability of developing cancer by an exposure case. The Cox proportional hazards model revealed the risk of carcinogenicity beyond the age of 50 as a long-term effect of pesticide toxicity. Our study supports the correlation between pesticide exposure and the risk of development of human brain tumors, suggesting that preconception pesticide exposure, and possibly exposure during pregnancy, is associated with an increased childhood brain tumor risk. This hypothesis was enhanced in identifying traces of metabolites from the carbamate insecticide class known for their neurotoxicity and others from pyridazinone, organochlorines (OCs), triazole fungicide, and N-nitroso compounds known for their carcinogenicity. The 2D-OXYBLOT analysis confirmed the neurotoxicity effect of insecticides to induce oxidative damage in CNS cells. Aldicarb was implicated in brain carcinogenicity confirmed by the identification of oxime metabolites in a stress degradation study. Revealing "aziridine" metabolites from the OC class may better emphasize the theory of detecting traces of pesticide metabolites at an early age. Overall, our findings lead to the recommendation of limiting the residential use of pesticides and the support of public health policies serving this objective that we need to be vigilant in the postmarketing surveillance of human health impacts.
Collapse
Affiliation(s)
- Kaouthar Louati
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics and Galenic Drug
Development, LR12ES09, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rania Zribi
- Higher Institute
of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, 1005 Tunis, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Basma Mnif
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Zouheir Khemakhem
- Legal
Medicine Department, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Fathi Safta
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics and Galenic Drug
Development, LR12ES09, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| |
Collapse
|
39
|
Sherif M, Makame KR, Östlundh L, Paulo MS, Nemmar A, Ali BR, Al-Rifai RH, Nagy K, Ádám B. Genotoxicity of Occupational Pesticide Exposures among Agricultural Workers in Arab Countries: A Systematic Review and Meta-Analysis. TOXICS 2023; 11:663. [PMID: 37624167 PMCID: PMC10458041 DOI: 10.3390/toxics11080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Exposure to pesticides in Arab countries is a significant public health concern due to extensive agricultural activity and pesticide use. This systematic review aimed to evaluate the genotoxic effects of agricultural pesticide exposure in the region, identify research gaps, and assess methodological limitations. Following the PRISMA guidelines, a comprehensive search yielded five relevant studies conducted in Egypt, Syria, and Jordan. Various genotoxicity assays were employed, revealing a higher level of DNA damage in exposed compared to non-exposed individuals. Farmers exposed to pesticides exhibited a significantly higher occurrence of chromosomal translocation (t(14;18)), micronuclei, and chromosomal aberrations. However, only two studies assessed cytotoxicity indirectly. The studies predominantly focused on male participants, with variations in sample size and pesticide types. The lack of detailed exposure data necessitates cautious interpretation. This review underscores the need for further research on the genotoxicity of occupational pesticide exposure in the Middle East. Future studies should adopt robust study designs, collect biological and environmental samples, conduct repeated sampling, analyze seasonal variations, and encompass diverse study sites associated with specific crop groups.
Collapse
Affiliation(s)
- Moustafa Sherif
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.S.); (R.H.A.-R.)
| | - Khadija Ramadhan Makame
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Linda Östlundh
- University Library, Örebro University, SE-702 81 Örebro, Sweden;
| | - Marilia Silva Paulo
- IPH, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Rami H. Al-Rifai
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.S.); (R.H.A.-R.)
| | - Károly Nagy
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.S.); (R.H.A.-R.)
| |
Collapse
|
40
|
Andrade‐Rivas F, Paul N, Spiegel J, Henderson SB, Parrott L, Delgado‐Ron JA, Echeverri A, van den Bosch M. Mapping Potential Population-Level Pesticide Exposures in Ecuador Using a Modular and Scalable Geospatial Strategy. GEOHEALTH 2023; 7:e2022GH000775. [PMID: 37426690 PMCID: PMC10326482 DOI: 10.1029/2022gh000775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023]
Abstract
Human populations and ecosystems are extensively exposed to pesticides. Most nations lack the capacity to control pesticide contamination and have limited availability of pesticide use information. Ecuador is a country with intense pesticide use with high exposure risks to humans and the environment, although relative or combined risks are not well understood. Here, we analyzed the distribution of application rates in Ecuador and identified regions of concern because of high potential exposure. We used a geospatial analysis to identify grid cells (∼8 km × 8 km) where the highest pesticide application rates and density of human populations overlap. Furthermore, we identified other regions of concern based on the number of amphibian species as an indicator of ecosystem integrity and the location of natural protected areas. We found that 28% of Ecuador's population dwelled in areas with high pesticide application rate. We identified an area of ∼512 km2 in the Amazon region where high application rates, large human settlements, and a high number of amphibian species overlapped. Additionally, we distinguished clusters of pesticide application rates and human populations that intersected with natural protected areas. Ecuador exemplifies how pesticides are disproportionately applied in areas with the potential to affect human health and ecosystems' integrity. Global estimates of population dwelling, pesticide application rates, and environmental factors are key in prioritizing locations to conduct further exposure assessments. The modular and scalable nature of the geospatial tools we developed can be expanded and adapted to other regions of the world where data on pesticide use are limited.
Collapse
Affiliation(s)
- Federico Andrade‐Rivas
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Instituto de Salud y AmbienteUniversidad El BosqueBogotáColombia
| | - Naman Paul
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Environmental Health ServicesBritish Columbia Centre for Disease Control (BCCDC)VancouverBCCanada
| | - Jerry Spiegel
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
| | - Sarah B. Henderson
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Environmental Health ServicesBritish Columbia Centre for Disease Control (BCCDC)VancouverBCCanada
| | - Lael Parrott
- Department of BiologyThe University of British ColumbiaKelownaBCCanada
- Department of Earth, Environmental and Geographic SciencesThe University of British ColumbiaKelownaBCCanada
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem ServicesThe University of British ColumbiaKelownaBCCanada
| | - Jorge Andrés Delgado‐Ron
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- Faculty of Health SciencesSimon Fraser UniversityVancouverBCCanada
| | - Alejandra Echeverri
- Centre for Conservation BiologyStanford UniversityStanfordCAUSA
- The Natural Capital ProjectStanford UniversityStanfordCAUSA
| | - Matilda van den Bosch
- School of Population and Public HealthThe University of British ColumbiaVancouverBCCanada
- ISGlobalParc de Recerca Biomèdica de BarcelonaBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
| |
Collapse
|
41
|
Jacques MT, Soares MV, Farina M, Bornhorst J, Schwerdtle T, Ávila DS. Impaired Physiological Responses and Neurotoxicity Induced by a Chlorpyrifos-Based Formulation in Caenorhabditis elegans are not Solely Dependent on the Active Ingredient. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104196. [PMID: 37354962 DOI: 10.1016/j.etap.2023.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
The current massive and indiscriminate agrochemicals usage, which is inexorably linked to the toxic consequences to the environment and people, represents a great concern. Our work aimed to compare the toxicity induced by chlorpyrifos in its pure form (CPF) with that of a commercial formulation containing allegedly inert ingredients (CBCF) using Caenorhabditis elegans as in vivo model. After a 48h exposure period, CBCF was 14 times more lethal than CPF; Hatching, brood size, body length and motor-related behavioral parameters were decreased, but these effects were significantly higher in CBCF-exposed worms. Additionally, CBCF induced significant morphological changes in cholinergic neurons, which are associated with the motor-related behavioral parameters. Finally, by analyzing the CBCF, were detected the presence of potentially-toxic metals that were not specified in the label. The presented results highlight the toxicological relevance of components present in the commercial formulations of pesticides, which have been claimed as inert compounds.
Collapse
Affiliation(s)
- Mauricio Tavares Jacques
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa, BR 472, Km 592, PO BOX 118, Uruguaiana, RS, Brazil; Laboratory of Experimental Neuropathology, Department of Biochemistry, CCB, Federal University of Santa Catarina, Block C, Trindade, Florianópolis, SC, CEP 88040-900, Brazil
| | - Marcell Valandro Soares
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa, BR 472, Km 592, PO BOX 118, Uruguaiana, RS, Brazil; Laboratory of Neurotoxicology and Neuroprotection Experimental, Departament of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brasil
| | - Marcelo Farina
- Laboratory of Experimental Neuropathology, Department of Biochemistry, CCB, Federal University of Santa Catarina, Block C, Trindade, Florianópolis, SC, CEP 88040-900, Brazil
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa, BR 472, Km 592, PO BOX 118, Uruguaiana, RS, Brazil.
| |
Collapse
|
42
|
Janoš T, Ottenbros I, Bláhová L, Šenk P, Šulc L, Pálešová N, Sheardová J, Vlaanderen J, Čupr P. Effects of pesticide exposure on oxidative stress and DNA methylation urinary biomarkers in Czech adults and children from the CELSPAC-SPECIMEn cohort. ENVIRONMENTAL RESEARCH 2023; 222:115368. [PMID: 36716809 PMCID: PMC10009299 DOI: 10.1016/j.envres.2023.115368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 05/13/2023]
Abstract
Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.
Collapse
Affiliation(s)
- Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ilse Ottenbros
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Libor Šulc
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jessica Sheardová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
43
|
Prissel CM, Grossardt BR, Klinger GS, St. Sauver JL, Rocca WA. Integrating Environmental Data with Medical Data in a Records-Linkage System to Explore Groundwater Nitrogen Levels and Child Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5116. [PMID: 36982025 PMCID: PMC10049688 DOI: 10.3390/ijerph20065116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Background: The Rochester Epidemiology Project (REP) medical records-linkage system offers a unique opportunity to integrate medical and residency data with existing environmental data, to estimate individual-level exposures. Our primary aim was to provide an archetype of this integration. Our secondary aim was to explore the association between groundwater inorganic nitrogen concentration and adverse child and adolescent health outcomes. Methods: We conducted a nested case-control study in children, aged seven to eighteen, from six counties of southeastern Minnesota. Groundwater inorganic nitrogen concentration data were interpolated, to estimate exposure across our study region. Residency data were then overlaid, to estimate individual-level exposure for our entire study population (n = 29,270). Clinical classification software sets of diagnostic codes were used to determine the presence of 21 clinical conditions. Regression models were adjusted for age, sex, race, and rurality. Results: The analyses support further investigation of associations between nitrogen concentration and chronic obstructive pulmonary disease and bronchiectasis (OR: 2.38, CI: 1.64-3.46) among boys and girls, thyroid disorders (OR: 1.44, CI: 1.05-1.99) and suicide and intentional self-inflicted injury (OR: 1.37, CI: >1.00-1.87) among girls, and attention deficit conduct and disruptive behavior disorders (OR: 1.34, CI: 1.24-1.46) among boys. Conclusions: Investigators with environmental health research questions should leverage the well-enumerated population and residency data in the REP.
Collapse
Affiliation(s)
- Christine M. Prissel
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon R. Grossardt
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory S. Klinger
- Water Resources Center, University of Minnesota Extension, Minneapolis, MN 55455, USA
| | - Jennifer L. St. Sauver
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- The Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter A. Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Women’s Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
44
|
Assessment of exposure to pesticide mixtures in five European countries by a harmonized urinary suspect screening approach. Int J Hyg Environ Health 2023; 248:114105. [PMID: 36563507 DOI: 10.1016/j.ijheh.2022.114105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Humans are exposed to a mixture of pesticides through diet as well as through the environment. We conducted a suspect-screening based study to describe the probability of (concomitant) exposure to a set of pesticide profiles in five European countries (Latvia, Hungary, Czech Republic, Spain and the Netherlands). We explored whether living in an agricultural area (compared to living in a peri-urban area), being a a child (compared to being an adult), and the season in which the urine sample was collected had an impact on the probability of detection of pesticides (-metabolites). In total 2088 urine samples were collected from 1050 participants (525 parent-child pairs) and analyzed through harmonized suspect screening by five different laboratories. Fourty pesticide biomarkers (either pesticide metabolites or the parent pesticides as such) relating to 29 pesticides were identified at high levels of confidence in samples across all study sites. Most frequently detected were biomarkers related to the parent pesticides acetamiprid and chlorpropham. Other biomarkers with high detection rates in at least four countries related to the parent pesticides boscalid, fludioxonil, pirimiphos-methyl, pyrimethanil, clothianidin, fluazifop and propamocarb. In 84% of the samples at least two different pesticides were detected. The median number of detected pesticides in the urine samples was 3, and the maximum was 13 pesticides detected in a single sample. The most frequently co-occurring substances were acetamiprid with chlorpropham (in 62 urine samples), and acetamiprid with tebuconazole (30 samples). Some variation in the probability of detection of pesticides (-metabolites) was observed with living in an agricultural area or season of urine sampling, though no consistent patterns were observed. We did observe differences in the probability of detection of a pesticide (metabolite) among children compared to adults, suggesting a different exposure and/or elimination patterns between adults and children. This survey demonstrates the feasibility of conducting a harmonized pan-European sample collection, combined with suspect screening to provide insight in the presence of exposure to pesticide mixtures in the European population, including agricultural areas. Future improvements could come from improved (harmonized) quantification of pesticide levels.
Collapse
|
45
|
Chen KC, Lee SF, Lin SW, Xie JS, Chang YH, Yiin LM, Hsieh CJ. Associations between residential proximity to agricultural land use as pesticides exposure and birth outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33253-33263. [PMID: 36478559 DOI: 10.1007/s11356-022-24571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Pesticides are widely used globally. Due to their widespread use, exposure to pesticides is of concern. In addition to occupational exposure, residential exposure during pesticide application is a concern for those living in or near agricultural areas. The objective of this study was to analyze the association between residential proximity to agricultural pesticide use and birth outcomes. The association between residential proximity to agricultural land use as pesticide exposure and birth outcomes was explored in a birth cohort including 283 pregnant women from a medical center in Hualien during 2013-2016. In the third trimester, we collected demographic information and the residential addresses of pregnant women via structured questionnaires. After delivery, newborn birth weight, gestational age, and head circumference were collected from medical records. Maternal residential address during pregnancy was collected for geospatial mapping. The percentages of farmland area within circular buffers of different sizes were applied to estimate pesticide exposure. Associations between residential proximity to agricultural land use as pesticide exposure and birth outcomes were analyzed by multiple linear regression analyses. A significantly smaller head circumference was associated with agricultural farmland located within 400 m (β = - 0.51 [95% CI, - 0.99, - 0.03], P = 0.037) and 500 m (β = - 0.67 [95% CI, - 1.14, - 0.19], P = 0.006) radii of residences in the tertile 2 group. A significantly smaller head circumference was also associated with dry farming area within 400 m (β = - 0.70 [95% CI, - 1.17, - 0.24], P = 0.003) and 500 m (β = - 0.81 [95% CI, - 1.27, - 0.34], P = 0.001) radii of residences in the tertile 2 group. The multivariate linear regression analyses did not show any significant association between residential farmland area and birth weight or gestational age. In conclusion, residential proximity to agricultural land use as pesticide exposure was associated with negative infant birth outcomes, especially a small head circumference. In the future, agricultural land use information could be combined with biological samples to more accurately assess exposure in pregnant women.
Collapse
Affiliation(s)
- Kuna-Chun Chen
- Department of Public Health, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien City, Hualien County, 970, Taiwan
| | - Shuo-Fang Lee
- Department of Public Health, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien City, Hualien County, 970, Taiwan
| | - Shyang-Woei Lin
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - Jia-Shan Xie
- Department of Public Health, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien City, Hualien County, 970, Taiwan
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Lih-Ming Yiin
- Department of Public Health, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien City, Hualien County, 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien City, Hualien County, 970, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien City, Hualien County, 970, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien City, Hualien County, 970, Taiwan.
| |
Collapse
|
46
|
Teysseire R, Barron E, Baldi I, Bedos C, Chazeaubeny A, Le Menach K, Roudil A, Budzinski H, Delva F. Pesticide Exposure of Residents Living in Wine Regions: Protocol and First Results of the Pestiprev Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3882. [PMID: 36900896 PMCID: PMC10001537 DOI: 10.3390/ijerph20053882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The PESTIPREV study has been designed to investigate residential exposure to pesticides applied to vines and ultimately propose mitigation measures. A feasibility study was carried out to validate a protocol for measuring six pesticides in three houses located near vineyards in July 2020. Samples included indoor and outdoor surfaces sampled with wipes (n = 214), patches on the resident's skin (n = 7), hand or foot washing (n = 5), and pets sampled using wipes (n = 2). Limits of quantification for wipes ranged between 0.02 ng for trifloxystrobin and 1.50 ng for pyraclostrobin. Tebuconazole and trifloxystrobin were quantified in nearly 100% of the surface samples, whereas the other fungicides were less frequently found (from 39.7% for pyraclostrobin to 55.1% for boscalid). The median surface loadings ranged from 3.13 ng/m2 for benalaxyl to 82.48 ng/m2 for cymoxanil. The pesticides most frequently quantified in hand washing, patch samples, and pet wipes were the same as those quantified on surfaces. Finally, the analyses proved to be successful. The tools developed to collect information on determinants were well completed. The protocol was well received by the participants and appeared to be feasible and relevant to the objective of the PESTIPREV study, although some improvements have been identified. It was applied on a larger scale in 2021 to study the determinants of pesticide exposure.
Collapse
Affiliation(s)
- Raphaëlle Teysseire
- Bordeaux Population Health Research Center, Inserm UMR1219-EPICENE, University of Bordeaux, 33076 Bordeaux, France
- Department of Occupational and Environmental Medicine, Bordeaux Hospital, 33000 Bordeaux, France
- Regional Health Agency of Nouvelle-Aquitaine, 33076 Bordeaux, France
| | | | - Isabelle Baldi
- Bordeaux Population Health Research Center, Inserm UMR1219-EPICENE, University of Bordeaux, 33076 Bordeaux, France
- Department of Occupational and Environmental Medicine, Bordeaux Hospital, 33000 Bordeaux, France
| | - Carole Bedos
- ECOSYS, INRAE-AgroParisTech-Paris-Saclay University, 91120 Palaiseau, France
| | | | - Karyn Le Menach
- UMR 5805 EPOC, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Audrey Roudil
- Department of Occupational and Environmental Medicine, Bordeaux Hospital, 33000 Bordeaux, France
| | - Hélène Budzinski
- UMR 5805 EPOC, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Fleur Delva
- Bordeaux Population Health Research Center, Inserm UMR1219-EPICENE, University of Bordeaux, 33076 Bordeaux, France
- Department of Occupational and Environmental Medicine, Bordeaux Hospital, 33000 Bordeaux, France
| |
Collapse
|
47
|
A solar photoFenton process with calcium peroxide from eggshell and ferrioxalate complexes for the degradation of the commercial herbicide 2,4-D in water. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Madrigal JM, Gunier RB, Jones RR, Flory A, Metayer C, Nuckols JR, Ward MH. Contributions of nearby agricultural insecticide applications to indoor residential exposures. ENVIRONMENT INTERNATIONAL 2023; 171:107657. [PMID: 36493610 PMCID: PMC10038187 DOI: 10.1016/j.envint.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pesticide exposure has been associated with adverse health effects. We evaluated relationships between proximity to agricultural insecticide applications and insecticides in household dust, accounting for land use and wind direction. METHODS We measured concentrations (ng/g) of nine insecticides in carpet-dust samples collected from 598 California homes. Using a geographic information system (GIS), we integrated the California Pesticide Use Reporting (CPUR) database to estimate agricultural use within residential buffers with radii of 0.5 to 4 km. We calculated the density of use (kg/km2) during 30-, 60-, 180-, and 365-day periods prior to dust collection and evaluated relationships between three density metrics (CPUR unit-based, agricultural land area adjusted, and average daily wind direction adjusted) and dust concentrations. We modeled natural-log transformed concentrations using Tobit regression for carbaryl, chlorpyrifos, cypermethrin, diazinon, and permethrin. Odds of detection were modeled with logistic regression for azinphos-methyl, cyfluthrin, malathion, and phosmet. We adjusted for season, year, occupation, and home/garden uses. RESULTS Chlorpyrifos use within 1-4 km was associated with 1 to 2-times higher dust concentrations in both the 60- and 365-day periods. Carbaryl applications within 2-4 km of homes 60-days prior to dust collection were associated with 3 to 7-times higher concentrations and the 4 km trend was strongest using the wind-adjusted metric (p-trend = 0.04). For diazinon, there were 2-times higher concentrations for the 60-day metrics in the 2 km buffer and for the CPUR and wind-adjusted metrics within 4 km. Cyfluthrin, phosmet, and azinphos-methyl applications within 4 km in the prior 365-days were associated with 2-, 6-, and 3-fold higher odds of detection, respectively. CONCLUSIONS Agricultural use of six of the nine insecticides within 4 km is an important determinant of indoor contamination. Our findings demonstrated that GIS-based metrics for quantifying potential exposure to fugitive emissions from agriculture should incorporate tailored distances and time periods and support wind-adjustment for some, but not all insecticides.
Collapse
Affiliation(s)
- Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA.
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, School of Public Health, Berkeley, CA, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | | | - Catherine Metayer
- University of California, Berkeley, School of Public Health, Berkeley, CA, USA
| | - John R Nuckols
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; JRN Environmental Health Sciences, Ltd, North Bethesda, MD, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| |
Collapse
|
49
|
Kalantzi OI, Castorina R, Gunier RB, Kogut K, Holland N, Eskenazi B, Bradman A. Determinants of organophosphorus pesticide urinary metabolite levels in pregnant women from the CHAMACOS cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158551. [PMID: 36075406 DOI: 10.1016/j.scitotenv.2022.158551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Organophosphosphorus pesticides (OPs) are widely used as insecticides in agriculture. Human exposure to OPs has been linked to adverse effects including poorer child neurodevelopment, reduced birth weight, altered serum hormone levels, and reduced semen quality. We measured six OP dialkyl phosphate (DAP) metabolites [three dimethyl alkylphosphates (DMs) and three diethyl alkylphosphates (DEs)] in urine samples collected two times during pregnancy (~13 and ~26 weeks gestation) from 594 women participating in the CHAMACOS birth cohort study and resided in an agricultural community in the United States (U.S.) between 1999 and 2000. Previous studies have shown these women have higher OP exposures compared with the general U.S. population. We examined bivariate associations between prenatal DAP metabolite levels and exposure determinants such as age, season, years living in the US, housing characteristics, fruit and vegetable consumption, occupation and residential proximity to agricultural fields. Final multivariable models indicated that season of urine collection was significantly associated (p < 0.01) with specific gravity-adjusted DM, DE and total DAP metabolites; samples collected in fall and winter had higher concentrations than those collected in spring-summer. Specific gravity-adjusted levels of DM and total DAP metabolites were significantly higher in women who had resided in the U.S. for 5 years or less (p < 0.05). Levels of DM metabolites also increased with daily fruit and vegetable servings (p < 0.01), and levels of DE metabolites were higher in residences with poorer housekeeping quality (p < 0.01) and in mothers that worked in agriculture (p < 0.05). These findings suggest that there are multiple determinants of OP exposure in pregnant women.
Collapse
Affiliation(s)
- O I Kalantzi
- Department of Environment, University of the Aegean, Mytilene 81100, Greece; Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States.
| | - R Castorina
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - R B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - K Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - N Holland
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - B Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - A Bradman
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States; Department of Public Health, University of California, Merced, CA, United States
| |
Collapse
|
50
|
Temkin AM, Uche UI, Evans S, Anderson KM, Perrone-Gray S, Campbell C, Naidenko OV. Racial and social disparities in Ventura County, California related to agricultural pesticide applications and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158399. [PMID: 36063919 DOI: 10.1016/j.scitotenv.2022.158399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Application of agricultural pesticides poses health concerns for farmworkers and for local communities due to pesticide drift from spraying or fumigation, pesticide volatilization into the air, contamination of household dust, as well as direct exposure for people who work in agriculture and their families. In this analysis of pesticide use records for Ventura County, California (USA) from 2016 to 2018, we identified the most prevalent toxicological effects of the pesticides applied. We also developed a cumulative toxicity index that incorporates specific toxicity endpoints for individual pesticides, the severity and strength of association for each endpoint, and the reliability of the data sources. Combining the toxicity index for each pesticide with the pounds applied within each square mile section in Ventura County, we calculated the total toxicity-weighted pesticide use and identified pesticides associated with higher potential risk to health. Analysis of U.S. Census data for Ventura County found a greater percentage of Hispanic/Latino, African American and Asian community members in township sections with a greater volume of pesticides applied and higher toxicity-weighted pesticide use. Similarly, areas with limited economic and social resources had elevated pesticide application overall and elevated toxicity-weighted pesticide use. The combination of toxicological and demographic analyses presented in this study provides information that can support the development of policies to protect public health from excessive exposure to pesticides and better environmental health protection for socially vulnerable populations.
Collapse
Affiliation(s)
- Alexis M Temkin
- Environmental Working Group, 1250 I street NW Suite 1000, Washington, DC 20005, USA.
| | - Uloma Igara Uche
- Environmental Working Group, 1250 I street NW Suite 1000, Washington, DC 20005, USA
| | - Sydney Evans
- Environmental Working Group, 1250 I street NW Suite 1000, Washington, DC 20005, USA
| | - Kayla M Anderson
- Peabody College, Vanderbilt University, Nashville, TN 37203, USA
| | | | - Chris Campbell
- Environmental Working Group, 1250 I street NW Suite 1000, Washington, DC 20005, USA
| | - Olga V Naidenko
- Environmental Working Group, 1250 I street NW Suite 1000, Washington, DC 20005, USA
| |
Collapse
|